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M. E. Zhitomirsky
Institute for Solid State Physics, University of Tokyo, Tokyo 106, Japan
and L. D. Landau Institute for Theoretical Physics, Moscow, 117334, Russia

Kazuo Ueda
Institute for Solid State Physics, University of Tokyo, Tokyo 106, Japan
(Received 26 June 1995

We study the phase diagram of the heavy fermion superconductgrwlitin a phenomenological model
with two nearly degenerate order parameters corresponding té.ttend E; irreducible representations. A
weak effect on superconductivity from the crystal lattice is also assumed. This assumption on one side provides
an explanation for the closeness of two critical temperatures. On the other side it yields parameters of the
Ginzburg-Landau functional which lead to a single superconducting transition when the order of critical
temperatures changes with pressure. The experimeinfaldiagram with a tetracritical point is reconstructed
in the AE model. Vortex lattices are found for two orientations of the field. Restrictions imposed on the theory
of the UPt phase diagram by experiments at pressures above critical and in a tilted magnetic field are also
discussed.

|. INTRODUCTION P.~3.8 kbar for the disappearance of the double supercon-
ducting transitiorf! The difficulty in explaining the same
The most convincing evidence of an unconventional sutopology of the phase diagram for different orientations of
perconductivity in the heavy fermion compound YR$ its  the field, which existed at the first versions of SBF modéls,
complicatedH-T diagram with multiple superconducting was solved by turning off the mixing gradient terms in the
phases. The main features of this phase diagram(iara later variantd;*13
small (about 10% splitting of the superconducting critical All models using antiferromagnetic order as SBF have,
temperatureT.~0.5 K in zero field and(ii) a tetracritical however, a common difficulty. As is known from neutron
point coinciding with(iii) a kink in the temperature depen- scattering experiment§,the tiny magnetic moments on U
dence of the upper critical field for two orientations of the atoms are ordered antiferromagnetically with a very short
magnetic field, parallel and perpendicular to the hexagonal correlation lengtra~150 A, which is comparable to the su-
axis! The assumption about anisotropic Cooper pairing inperconducting coherence length at zero temperature,
UPt; is also supported by various thermodynamic and transé,~110 A22 In order to have a nearly isotropld,, in the
port measurements which are compatible with zeros in théasal plan® one should assume that the moments rotate
energy gap below .t freely, maintaining their perpendicular orientation with re-
Despite this rich experimental information, no unambigu-spect to the magnetic field. Even if this theoretical assump-
ous identification of the symmetries of superconductingtion is correct, a serious problem still exists foero-field
phases has been made to date. Let us discuss the pros dsehaviors. Zero-field magnetic structure in Yronsists of
cons of various theoretical models of the YPphase small domains with equivalent orientations of antiferromag-
diagran?—2°in the light of recent experimental studies undernetic vectors in the hexagonal lattit¥** As has been re-
uniaxial pressuré§ and tilted magnetic field’ Different in-  cently shown by Isaacst al?* with the help of magnetic
terpretations of this phase diagram fall into two main classest-ray and neutron diffraction studies, this orientational disor-
The first class of theories is so-called symmetry-breakingler of magnetic moments is frozentdt=0. The appearence
field (SBF models. They assume a degenerate multicompoef superconductivity leads to a slight reduction of the mag-
nent superconducting order parametesually correspond- nitude of the staggered moments beldwwithout changes
ing to a multidimensional irreducible representation of thein the symmetry. Under such conditions there are many cha-
Den point group interacting with a weak additional field, otically oriented magnetic domains on the scale of the super-
which produces a small splitting df.. The degeneracy of conducting coherence leng§{T)> &;,a. This randomness
the order parameter may be connected either with its orbitéh the orientation restores ne@ the average in-plane isot-
parf* or with the spin part of the pairing functidnTwo  ropy for the superconducting order parameter, and the usual
candidates for an intrinsic SBF in UPthave been scenario for the double transition, (1,01, a), proposed
proposed: an antiferromagnetic order with in-plane mo- for homogeneous SB¥ does not work. The only realistic
ments developed beloWwy~5 K (Ref. 18 or a macroscopic consideration taking into account the random domain struc-
strain field due to incommensurate structural dom&lhe  ture was presented by Joyettal® They showed that though
former is considered as the primary SBF because it is suphe double transition between nonhomogeneous “glass” and
pressed by a hydrostatic pressuRf ~5.4+2.9 kbar®  homogeneous superconducting phases is possible in this
which is roughly of the same order as the critical pressurease, the second transition will be of first order, which is in
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obvious contradiction with the existing experimental data. remarkable choice of th&; and E; order parameters irre-
Another weak point of these models independent of thespective of their parity results seemingly from some approxi-
nature of the SBF is the interpretation of tHeT diagram at mate symmetry of the crystal field. A phenomenological as-
uniaxial pressures above the critical value, where the splitsumption about a weak crystal lattice effect on
ting of T, disappears. Boukhngt al!® found for several superconductivity in URthas been proposed in Ref. 10. The
values of P>P, and both field orientations that the inner kink in the H-T plane atP=0 and the qualitative structure
line of phase transitions inside the mixed stdig (T) is not ~ of the P-T phase diagram were explained assuming a nearly
traced back td., but intersects with thel=0 axis at some degeneratal-wave superconducting order parameter. Pt
intermediate temperatur&*. They interpreted further the shows, however, anisotropic properties in the normal state
almost-temperature-independent lifié (P) as a missing and a naive isotropic superconducting pairing is hardly ex-
fourth line of phase transitions in tH-T planel?® Though  Pected. In addition, the controversy remains about even or
such behavior of the fourth boundary in tReT plane may odd parity of the pairing function in connection with an al-
be explained by the temperature dependence of the criticahost constant Knight shift below, (Ref. 35 and an un-
pressure, which destroys the antiferromagnetic order, the bélsual temperature dependence of the anisotropy of the upper
havior of the inner transition line in the mixed stdg con-  critical field3*33
stant pressujedoes contradict the SBF concept. After the We therefore formulate a different phenomenological
disappearance of the SBF with pressure, the degeneracy odel, which is a combination of the proposals of Refs.
restored and all components of the superconducting ordet10. Namely, we study the mixture of accidentally degener-
parameter have the same critical temperature. Therefor@€A; andE, order parameters, both even or odd, using the
transition lines between various vortex structé?e¥should ~ assumption that the crystal lattice does not affect signifi-
originate from a singleT, for any P>P,. The lack of cantly their interactions. Only under this assumption is a
enough accuracy in the experimental d&@t the low-field —quantitative treatment of th&E model simple and most of
region leaves a certain degree of ambiguity in the exact beesults can be expressed in an analytical form. Our aim is to
havior of the inner line, but this observation makes SBFshow that the wholed-T diagram of the superconducting
scenarios at least questionable. states in UP$ at bothP<P. and P>P can be explained
An alternative phenomenological approach to the phas@nd fitted with experimental data in this simplified version of
diagram of UP} is to let critical temperatures of two differ- the AE model. We consider also the measurements by Lin
ent irreducible representations of [@%h group to be close €t aI.17 of the magnetic phase diagram in a tilted field, which
to each other. Such an assumption was used originally tshow features in the behavior of transition lines near the
describe the splitting of ; in the other heavy fermion super- tetracritical point.
conductor UBg5 under doping of Th impuritied! Two types
of analogous models were elaborated for Yt Ref. 6 and Il. MODEL
one of them, the so-calleAB model, was studied later in '
detail by Chen and GafjThe disadvantage of this argument ~ We first assume that the electrons in YiRirm pairs with
was realized soon after the experimental observation of ththe total momentund=2 in a nearly isotropic environment.
convergence rather than crossing of two specific heat anomén this model the lower symmetry of the crystal lattice causes
lies in UPt; under pressuré Generally, if the order of the only a slight splitting of the transition temperature of a five-
critical temperatures for two independent irreducible reprefold degenerate multiplet of the Cooper pairs. Considerations
sentations changes, the splitting should reappear again aftef the singlet i-wave and the triplet p-wave with strong
the intersection point. To explain thermodynamic spin-orbital coupling order parameters are completely
measurementsyhich did not show the split phase transition analogous. Therefore, for the the reader’s convinience, we
at P>P., one has to assume, in addition to the accidentaWill use in the following basis functions corresponding to
degeneracy of critical temperatures, also an accidental rela-wave pairing:
tion of phenomenological constants describing the interac-
tion of two order parameters in the Ginzburg-Land&l.) .
functional.[In the AB modef the necessary condition for the A(k)= 2 Bijkik;= Fa. (ke iky)2+ a.1(kyxiky)k,
disappearance of theT, spliting after P, is b
(Ba— B ) (Bp— B')>1.] Additional phenomenological pa- 1
rameters in gradient terms are introduced in such mbdels +—a0(k)2(+ k2—2k§). (1)
to obtain a kink inH .,(T) for bothH_L ¢ andH||c and so on. V6 /
Explaining experiments, accidental degeneracy models fail
to provide physical explanation for the choice of quite arti-Our analysis starts from the corresponding($@nvariant
ficial parameter values and, therefore, raise a quedfimit ~ GL functional, which we write in terms of 83, symmetric,
possible that accidental features of the GL functional reflect @araceless matriB:
hitherto unidentified symmetry of the superconducting order

parameter in URL. _ _ * * R)2 2|2
Semimicroscopic theories for the superconducting order F=a(T=To)TrB* B+ 1(TrB"B)"+ B[ TrE]
parameter in URY, which use an exchange of spin fluctua- + B5TrB*2B2+ K1D{ Bj\DiBj+ KD} BjD;Bj
tions as a mean of pairing, yield, for example, close critical )
temperatures for either the pair of singlet st and * % h _ . 2e
+K3DFBDBy+ 5=, Di=d—i—A. 2

E,y (Ref. 33 or the pair of odd stated,, andE,,, % This 8w’ hc
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The weak-coupling approximation imposes the following re- T
lations on the phenomenological parametes=0.58;,
B3=0, K,=K3=2K;. As was shown by Mermifi! who
studied the functional2) in connection with superfluid
phases ofHe, two different phases correspond to the ground - N
state under the conditiofi,>0: - - x(TmPa)

—
—

A(K)~ (ke tiky)?, B3>0, (3) - N T--n

A(k)~k§+e2””3k§+e4””3k§, :83<0 (4) N —

These solutions are unique up to multiplication by a phase
factor and rotation of coordinate axes. The c#@ke=0 is P
degenerate, and any matrR satisfying TB?=0 would
minimize the GL functional(2). The magnitude of3; is FIG. 1. Pressure dependence of critical temperatures for irreduc-
determined by strong-coupling effect8;~T./Ex and ible representation) assumed in thé& E model.
should be small even for URtwith Ep~10 K. This small-
ness ofB; is important in our description of the observed Analysis of all possible cases reveals that the Jphase
P-T phase diagram. diagram can be explained with a single arrangement of criti-
The crystal field splits a single transition temperatlite  cal temperatures in th®-T plane as shown in Fig. 1.
in _accordagggg with irreducible representations of Mg  Namely, the policritical point®.,,T,,) is determined by the
point group-™ intersection of linesTo(P) and T,(P), while the E, repre-
A K2+ K2—2K2 T sentation is not involved in the observed transitions. This
1-Bx y z1 10 : . ..
conclusion of the phenomenological theory is in agreement

E, (K, ik )k, Ty, 5 with microscopic cglculatlon?’: _Fmally, the GL functional
1= Tky )k o ®) of our model is given by(2) with split T, and excluded
Eo:(keiky)2,Ts. components of th&, representation. We will write explicitly

o o ) homogeneous and gradient terms of this functional in the
The direction ofz is along thec axis. We suggest that the following sections.

effect which primarily determines the structure of the phase

diagram is the splitting of the transition temperature for the

fivefold degengrate order parameter. We ignore_ the effect .of Ill. ZERO-FIELD PHASE DIAGRAM

the crystal lattice on the fourth-order and gradient terms in

(2), because it can only slightly change the picture derived For investigation of superconducting phases in zero mag-

below. netic field we may restrict ourselves to homogeneous terms
Symmetry arguments place no restrictions on the order ofor the A; andE; representations, and rewrite the free energy

critical temperature$5), which may change under pressure. density(2) in the form

F=a(T—To)|aol2+ a(T—Ty)(|as|?+|a_41|?) + B(|ac?+|as|?+|a_1|%)%+ Bylaj+2a.a_4|?

+ Ba 3laol*+ 1 (|ag|*+ a1 | + 3|as|?|a_ 4|2+ §|agl?(|ay|?+|a_1|?) + 2 (a§ *aja_; +c.C) 1. (6)

This GL functional for a three-component order parameter isThe energy gap of the phags (k) in the case ofd-wave
more_complicated than functionals studied previously forpairing has two lines of nodes whose position on the Fermi
UPt3;> "™ however, its analysis can be also done analyti-syrface is determined by d#=1/3. The order parametér)
cally. Let us first investigate superconducting phases whiclyges not minimize the second fourth-order term (B).

minimize (6), neglecting the last fourth-order term with Therefore, the lower second-order phase transition occurs at
small coefficientg;. We consider the cas@,>0 only, t_1-.
.

which gives an adequate description for Yt we will see.
At pressures below,, the upper transition takes place at
TS =T, to the phase 1 P
To-T) TJZE{T"(l_ 1
2 i), az=2Tem D
J6 Y 2(B1+B2)

a?(To—T)? . .
—_- 0 7 7) the complex order parameter with broken time-reversal sym-

L AR+ By metry:

B1

Bo

}. (8)
Aq(k)=

Below T, the free energy achieves its minimum value for
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R a a(T,-T T+
Az(k)=—\/%(k>2<+k§—2kf)+irkxkz,r2=—(zcﬂl L RN
2_r2 n a(To—Ty)
P72 A,

e a®(To+T1—2T)2  aX(To—Ty)?
2 164, 168,

The rotational symmetry around tieeaxis is also broken for
the phase\,(k), which is invariant under the residual sym-
metry groupD,(U,y). After T, the lines of zeros in the
energy gap are smeared, leaving only four-point nodes.

The ratio of the heat capacity jumps at the upper and
lower transitions is

©)

P

FIG. 2. Schematic zero-field diagram of UpPt

The resulting phase diagram is shown in Fig. 2. Due to the
(ACIT)|1- B, small slope with respect to the axis, the effective width of
—_— ==, (100  the transition on this fourth boundary observed in the tem-
(AC/T)|T§ P perature sweep experiments significantly increases, which

Note that Eqs(8) and (10) are exactly the same as for the mad? Iearller attempts at detection of ffig(P) line unsuc-
SBF orAB models. cesstul.

16
At pressures abov®,,, the superconducting transition ~ Boukhny etal.™ found the trace of the fourth phase
takes place af,=T, to the phase boundary in the?-T plane by the study of thel-T diagram

at uniaxial pressures abow,,. Applying Eqg. (14) to their

- . , a(T,—T) results we obtain the estimatigBs~0.1-0.23;. As B3 is
Ag(k)=ay(ket+ikyk,, aj=——F5-—, multiplied small factors in the corresponding formulds),
21 o L .
we will disregard below its influence on the thermodynamic
Q(T,—T)? properties.
Fa=———+————. (12) A few remarks are needed concerning our neglect of the

4P E,q representation, which may have a nonzero critical tem-
Its symmetry group iDg(E). The state&s(k) corresponds  peratureT,<T,,T,;. The symmetry of the phask,(k) al-
to the minimum of the fourth-order term multiplied 85 . lows an admixture ofa,=a_, with a real phase. As the
Therefore, the transition with an admixture of #ygcompo-  mixing term is proportional tg35, the components, and
nent is completely suppressedRit-P.. On the phase dia- a_, have smallness of the order g§/3; compared ta,
gram in the P-T plane there will be a temperature- anda,=a_,. Then, the correction to the free energy is of
independent fourth line of transitions betwean(k) and  the order of B3/81)? and may be neglected. The positive
Ag(k) states. This transition is of first order as g5 can also stabilize at low temperatures the phase with an-
D,(U,)EDg(E). The jump in the volume on this line is  other symmetry(3), as is the case for the degenerdie®’
) However, comparison of the energy of this phase with the
A_V: a™(Te—T) ((9_1'1_ ‘9_1-0) (12 energy(11) gives the result that such a transition between
Y, 45, oP 9P/’ phases (3) and (11) will not occur untl 0 K if
. . (T{—=Ty)/T>pB3/(8B1). Even a weaker condition is re-
Let us consider now the effect of nonzeg. Obviously,  qyired for the stability of the phask,(k): hence our analy-

the symmetries of all phases remain the same. The change gk yie|ds true low-temperature phases for a wide range of the
P<P is only quantitative and consists of the substitution values ofT,

B1—(B1t1:B3),  Ba—(Ba+t1383) (13

in all formulas (7)—(10). The energy of the statés(k) is IV. UPPER CRITICAL FIELD

obtained from(11) by the replacemens;— (8;+ 383). The

phase(11) does not minimize the third fourth-order term in  In this section we investigate the superconducting transi-

(6) for B3>0. As a result, the fourth transition line in the tion in a magnetic field for different orientations Bif with

P-T diagram deviates from the vertical position. Equatingrespect to crystal axes and f&<P,. The upper critical

the energies of the phase® and(11) we obtain in first order  field is anisotropic due to the splitting of critical temperature

in a small parametef;/B; the second transition tempera- py crystal field in the SCB)-invariant energy functiona).

ture To determineH,(T) we solve the linearized GL equations
63 derived from(2), omitting theE, components and assuming

T*(P)=T,(P)— _1[-|-1( P)—To(P)]. (14) a unlform order parameter along the field. The correspondm_g

B3 solutions and their critical fields depend on phenomenologi-
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cal parameterK; in gradient terms. The parametir, is Nl)(k,r):fo(r)(kx+iky)kz+ ofy(r)(ke—iky)ky,
inversely proportional to the effective electron mass and
scales critical fields for all superconducting phases. We also

assumeK,=Kj, be(;a[l%se their d!ﬁerencg is relfitively small: N =3| 1+ E —\2C%+(2+C)%,

(Ky,—K3)~(T./Eg)%,™ and define a dimensionless phe- 2

nomenological paramet&e=K,/K;=K3/K;. The param-

eterC determines the form of the-T phase diagram in our \/5 Dy a(T—T)

model.(In the weak-coupling approximatio@=2.) w=— ., HYM= 2—0 #
5(1+ E) —\; TR

A. Magnetic field along thec axis
g J (18)

In this case the gradient energy for thge andE; repre- -
sentations is The nonfactorized dependence &f)(k,r) onk andr is a

consequence of the classification of eigenstates of the order
parameter aH, by the generalized Landau level number
N=n+m, wherem is the projection of the internal angular
momentum of the pair on the field directiéhFor the phases
(17) and(18), N=0 and+1, respectively.

In a wide range of values o€ we have\y>\; and,
.+ (19 consequently, the slope of thel(T) curve is larger
than that ofH(®)(T). As they start from different tempera-
tures andT,>T, at P=0, a kink should appear in the tem-
perature dependence of the upper critical fieltl.,
=maxHO(T),H(T)}. Such a kink inH(T) for H|ic
as not detected in early experiments on the phase diagram
f UPt;, reflecting a small difference betwean and \ ;.
However, it was confirmed later by the existence of a well-
defined tetracritical point for this orientation of the field
R c |12 _ . which is formed by arintersectionof two different lines of
a=(m) (Dx—=iDy), [aa"]=1, (16)  transitions in theH-T plane! This tetracritical point is situ-

ated relatively far fromT., in the region where nonlinear

rrections to the GL approximation become significant.
erefore, we will fit the experimental curée.,(T) in UPt
and find the phenomenological paramefeby data for the
another field orientatioil L c.

C 2
Fgrad:Kl 1+§ |Diatl|

’ C
|Dia0| +1 1+ E

C
+ E(D’ia’ilD+al+ D*ajD_a_;)

wherei=x,y andD.=D,*iD,. Linearized GL equations
separate fof15) into a system of two coupled equations on
amplitudesa; anda_; and an independent equation ag.

As in the ordinary case these equations can be solved b
defining the lowering and raising operators

and expanding each component of the order parameter in%
series of Landau level functiorfg(r), r denotes position of
the center of mass of the pair. The solution for the compo
nenta, with the lowest eigenvalue and the highest critical
field has the usual form o
B. Magnetic field in the basal plane
The GL functional(2) with split T, possesses rotational

fo(r) symmetry about the axis. Therefore, the upper critical field

A(0) _ 0N 2 2 o2 )
AT(k,r) J6 (Ketky=2k3), is isotropic in the basal plane. We assuhtiex. It is conve-
nient to define complex amplitudes insteadagfanda_,,
C q)o a(TO—T) -1
_ ~ 0Ty 0 Nx+17y
No=1tz, HE(M=57 Kihg (7 aﬂ:—ﬁ : (19

with @, being the flux quantum. On the other hand, thewhich coincide with the usual expansion coefficients for the
system of two coupled equations is satisfied by a more comE; representatiof®° In our notation the quadratic part of
plicated eigenstafé the energy(2) is

2 2 2 C 2 4 2 2
F:a(T_TO)|a0| +a(T_T1)(|77x| +|77y| )+ Ky 1+§ |Dya0| + 1+§C |Dza0| +|Dy77x|

C
+(1+C)(|Dz77x|2+|Dy77y|2+|Dz77y|2)_ ﬁ(D; W;Dzao"' D; 77; Dya0+c-c-)‘|- (20)
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The corresponding linearized GL equations separate again . (r'
into a system for th@, and », components and an indepen- AO(k,r)= 0
dent equation fory,. Because of the uniaxial symmetry, V6
gradients along andz directions entef20) with different

(KE+ko—2k2),

1/4
factors. As is known from the theory of anisotropic conven- _ 1+4C/3)
No=(1+ 1+4 =
tional superconductofs, the expressmrK DZ+K,DZ can 0= V(1+C/3)(1+4C13), s 1+C/i3 )
be written in an isotropic form/K,K (D + DZ,) by apply-
ing the scaling transformation HO(T)= (DO a(To—T) (23)

277 Kl)\

y'=sy, z'=zs, s=(K,/Ky)". (21)
Because of the difference in slopes,&\ 4, for C>0), the
With the help of this transformation one can find the follow- cyryesH©(T) andH®)(T) intersect at the point

ing eigenstate:

TiNo—Tory Dy a(To—Ty)
AL _ ' _ _ 1/4 170 071 070 v
(k,r)=fo(r')V2kk,, Ay=y1+C, s;=(1+C)"4 Tk e I Kiehy (24)
HO(T) = Qp (T~ T) 29 producing a kink in the temperature dependence of the upper
( )_ﬁ KiNg (22) critical field. The quantum number different for the two

eigenstate$22) and(23) is the parity of the order parameter

The diagonal terms for tha, and 5, components, however, | ,nder reflections in the plane perpendiculaHo

cannot be written in isotropic form simultaneously, which
leads to the problem of finding the lowest eigenvalue in an
infinite-dimension system. We solve this problem numeri-
cally, developing a perturbation theory for the coupling term. Assuming magnetic field in the x-z  plane,
Calculations are described in more detail in the next subsedd = (Hsind,0,Hcosd), we choose a coordinate frame with the
tion. Here we only formulate the result: Fan<T, it is Z axis parallel toH and they axis parallel toy. If we omit
possible to neglect the admixture ef, and to obtain the gradients along, and drop the tilde over our coordinates,
second solution analytically: the gradient energy can be written as

C. Arbitrary directed magnetic field

C , C ,
Fgrac= K1 1+§+CSII’120 |Dyag|?+| 1+ | |Dyao|?+ (1+C)(|Dynl?+|Dyny|?) +|Dyny| 2+ (1+ Csir? )| Dy ny |2

C C C
+ —=sing(Dy a5 D, 7, + Dy agDyny+c.c)+ —=sin26(Dy ag D7, +c.c) + —cosf(Dy 75 Dy 7y

23 2.3 2

-l-Dy M Dxny-i-C.C.)}. (25

For a general direction of the field¢ 0,7/2) there are no components. They can be easily calculated choosing a par-
guantum numbers which may be ascribed to different eigenticular gauge, e.gA=(—Hy,0,0). The eigenvalues of the
states of the linear problem. Therefore, an intersection ofinearized GL equations are obtained, then, by a truncation of
levels is prohibited andH .,(T) is a smooth curve. the infinite matrix.

To find a smearing of kink in a tilted magnetic field the  The first-order iteration is to omit all eigenstates except
differential linearized GL equations derived frof®5) have the zeroth Landau level functions and, then, to diagonalize
to be solved. We calculate the corresponding upper criticathe resulting system of three equations numerically. At the
field numerically using the following perturbation scheme.second step we allow the admixture of the second Landau
Turning off all three coupling terms 25 we get three level functions and diagonalize a system of six equations and
independent equations o@ly, 7y, 7,. Solutions of this so on.(Odd-number Landau levels are not admixed due to
zeroth-order approximation are known. They are sets of Lanthe remaining conserved quantum number, which is the par-
dau level functions obtained for each component by its owrity of N.%?) We do not write explicitly the cumbersome ex-
scaling transformationy’ =s,y, x'=s, 'x, with k=0x,y. pressions for the matrix elements, but present, instead, re-
We expand the componengg, 7y, 7, in terms of these sults of the first two iterations fofy=1, T,=0.9, C=2, and
three complete sets of basis functions and transform the dif¢=45° in Fig. 3. It can be seen that the proposed iteration
ferential equations to an infinite-dimension algebraic systemprocedure converges very rapidly, and an accuracy better
The off-diagonal terms in this system are given by the matrixhan 1% can be already achieved by diagonalizing the
elements of coupling terms between eigenstates of differerixX 6 matrix.
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0.4

H (arb. units)
e
fav]

0.0

T/T.

FIG. 3. Subsequent iterations for critical fields of different
eigenstates in thAE model with magnetic field at 45° to theaxis
and parameters from the text. Dashed lines correspond to the
zeroth-order approximation. 20 |

D. Comparison with experiment

—_~

We now compare the results of this section with experi- 8 15
mental data. We choose for this purpose ultrasonic velocity = 5
measurement$** which give theH-T phase diagram of -
UPt; at zero pressure for three orientations of figk0°, 10
45°, and 90°. As the experimenthl.,(T) curve for H|c
shows a significant curvature, we fit first the upper critical
field for H1 c (Ref. 49 under the assumption that all transi- 5
tion lines are perfectly straight. Parameters derived from the
experimental values of the critical temperatures
To=T4 =499 mK,T,=476 mK, T,=403 mK with the help 0
of Eq. (24) are 0 100 200 300 400 500 600

T (mK)

No/N\;=1.31, C=1.34, (26)

_ _ ) FIG. 4. Calculated phase boundarig®lid lines and experi-
while K is chosen so as to agree with observed values of thgyental data derived from ultrasonic velocity measureméRts.

critical fields[Fig. 4(@)]. 46) for two directions of the magnetic field HLc and(b) H|c.
The upper critical field foH||c calculated for the same set
of parameters is presented in Figb¥% Though the approxi- Contrary to the statement in Ref. 17 about the clearly

mation of theH,(T) curve by straight lines predicts the observed kink in the temperature dependence of the upper
intersection(kink) point at a higher temperature, the actual critical field, one can see that the experimental data are rea-
difference is not very large. Moreover, our formulas repro-sonably fitted by a smooth curve. A feature of the experimen-
duce well the observed anisotropy of the upper critical fieldtal phase diagram for the field directed at 45° to ¢thexis is
in the vicinity of T. an “intersection” of the inner transition lines apart from the
A common argument against theE model is that it pre-  H,(T) curve. This feature was interpreted as the existence
dicts a smearing of the kink for intermediate directions of theof two critical points instead of the single tetracritical point
magnetic field. We plot an experimental diagram forin the H-T planel’ Note that this is not allowed thermody-
6=45° (Ref. 17 together with our numerically calculated namically, if all lines correspond to the second-order phase
H¢2(T) curve in Fig. 5. As the sample used in 45° measuretransitions?®> We can not exclude priori the possibility to
ments is different from that used in Ref. 44, we choose newconstruct a model for such a splitting of the tetracritical point
values of the critical temperatuf& =T, and of the coher- into two points connected by a line of first-order transitions
ence length K,) in our calculations. However, the relative for intermediate directions of the field; however, its origin is
differences between the critical temperatures of the two repeompletely unclear in the framework of theories presented so
resentations To— T1)/To=0.954 and the paramet& are far2~*® A more natural interpretation of this behavior of the
kept the same. inner lines is a smearing of the kink point with the repulsion
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T T T Working in the limit of large values of the GL parameter
- kgL, We can neglect the contribution of superconducting
8 currents and write the free energy density near the upper
. critical field in the universal form

- F=a'No(H—Ho)ug+a'Ni(H—Hy) ui+ Soug+ Syl
] +28udul, (28)

wherea’=27K,/®,. The energetic parametey and 5,

are analogs of Abrikosov's parameter for conventional
supercpnducto@ while &, represents the interaction be-
tweenA(® and AM). These parameters depend on the par-
ticular form of the eigenstates and on the fourth-order terms.
We write them explicitly foH||c andH_L ¢ below. But before
that let us consider general conclusions which can be derived

o L N .7 from the universal two-order parameter functior2s).
250 300 350 400 450 500 550 By minimization of (28) with respect to the expansion
T (mK) coefficientsuy and w4, the following sequence of supercon-

ducting states is found fddy>H,. In close vicinity of the
FIG. 5. Experimental phase diagrafRef. 17 and the upper UPPEr critical fieldH .,=Hg only one eigenstate appears with

critical field calculated in thAE model (solid line) for the mag- the energy
netic field directed at 45° with respect to theaxis.

of two nonintersecting levels of the linear problem, as is 9
expected for theAE model. The analogous smearing of the
kink exists also in théE;; model;® but it is expected to be
more significant forH||c than forH at 45° to thec axis,
which is not confirmed by the experimerit}*

An infinite degeneracy of the order parameter is lifted by
nonlinear interactions and the form of the vortex lattice may
be determined by substitution of an arbitrary periodic solu-
tion for A© in the energy parametet, and its subsequent
minimization. .
The vortex lattice for theA® component becomes un-
Structural phase transitions in the flux lattice are, perhapsstable towards an admixture of the second eigenstéifeat
the most striking feature in a macroscopic behavior of a mul-
ticomponent superconductor. The vortex states near the He =H.— Ho—H, (30)
lower critical fieldH; were studied for the two-component FLE T N160/Ngbim— 1"

E, order parameter using the numerical relaxation tech'Below this field the superconducting phase consists of two
niques in Refs. 26-28. Hiranet all? presented numerical P gp

results obtained by the same method for intermediate ﬁeldinterpenetrating vort_e X Iat_tices forme_d py each eigen)state.
and fields close tH,. However, examination of vortex O (he phase transition line the periodic gtructurgAg’f
lattices in the vicinity of the upper critical field admits a Should coincide with the form found previously f‘m_( ),
significant simplification due to the fact that the spatial formWhile minimization of 5y (in order to achieve the highest
of the order parameter is determined by the linearized GLHrL) gives the displacement between two sublattices as well
equations. Phase transitions inside the mixed state have be@f their relative phasé. After the phase transition the free
studied in this approximation by a number of autfdf&é  energy density is given by
(see also Ref. 42 for a revigwWe calculate using the same e S A 52 (He —H)2
analytical approach, which is undoubtedly true near the tet- F=Fo—a’2( 1% %0 2"“) (He —H)
racritical point in theH-T diagram of UPj, the inner phase 8001~ iy 489
boundaries between different vortex states in our model. . " )

The general procedure is to expand the superconductin':Or tr:e other Lelatlgp .begNg'en tclrltlfcal f'gd;'é> ';01 E‘”
order parameter into the two eigenstates under considera\ticﬁ%rmu as may be ovtained directly from 429-(31) by
[either (17) and (18) or (22) and (23)], interchange of the indices<91.

V. PHASE TRANSITIONS INSIDE A MIXED STATE

(31)

A. Magnetic field along thec axis

A= poA®+ pyel #AD), (27 | . |
The energetic parameters defined above are given for the
and substitute this ansatz into the GL functional. phaseq17) and(18) by
(Il
60=(B1t+B2)7= (32

(IFol»?”
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Byl ol o) +2(B1+2B2) (| ol [ f4]?)
a (1+ 0?)%([fo]?)? '

8, (33
L 31<|?0|2| fol2+ w?[folY f2|2>+,32w<?3 ?fof o+ c.C)
" (1+0?)([fol){|ol?)

Atilde serves to distinguish zeroth Landau level functions for different eigenstates and brackets denote the spatial average. The
general expression for one-quantum periodic solutibgE) invariant under elementary translations as(a,0) and
b= (bcosy,bsina) is

(34)

) 27 1 ) ]
fo(r)~>, ex;{ — i pm2+ —imx— E(y—mbsma)2 H,(y—mbsine), (35)
m

whereH,(y) is the Hermitian polynomial of theth order responds to a two-quantum lattice. The unit cell of the vortex
and all distances are measured in the units of magnetilattice in Fig. Gc) contains three quanta of the magnetic flux.
lengthl?=7.c/2|e|H. The form of the vortex lattice is deter- Similar to antiferromagnets, the two-quantum vortex struc-
mined by two parameterp=b/acosx and o=b/asina, ture is still invariant under the combined transformation
while the area of the unit cell is fixed by the flux quantization ToRU,,, WhereU, is rotation byz around they axis. As

rule absina=27. The dependence of energetic parameterghe operatiorRU,, does not change the magnetic field, this

on p and ¢ may be found by substitution dB5) in (32—  Period multiplication cannot be observed in neutron diffrac-
(34) and integration ovex andy.*®*2 tion experimentgsee the next subsectipn
For the phasé17) the energetic paramet@y, is identical Breaking of the translational symmetry is important in

to what appears in the theory of conventional order to understand the role of the last phase-locking term

superconductor® Its minimum values,=1.160(8; + 3,) is
achieved for the one-quantum perfect triangular lattice with
p=3 and o= \/5/2. The energetic parameteéy; for the (a)
phase(18) is more complicated as a consequence of the ad-
mixture of two components; and a_; simultaneously?

The possible types of vortex structure for this phase include
perfect triangular, square, rectangular, and other lattices.
However, if the phenomenological parametggsandC are

not far from their weak-coupling values, the stable form is
again the perfect triangular lattice. Having the same form,
vortex lattices for the eigenstata$®) and A differ in the
phase factors gained under rotations on 60° and in the parity
under reflections in the basal plaffe.

We next investigate the vortex structure of the combined
solution. The vortex latticefo(r) displaced from(35) by
ro=(Xg,Yg) can be obtained substitutingx{xy) and
(y—Yo) instead ofx andy and applying simultaneously the
gauge transformation exggx). We will measurexy, andy,

XXX

O
XA

A’X’A

in units of (bcose) and (bsina), respectively. The expression

for the dependence of,; on the displacement, is pre- /.\ A /\
sented in the Appendix. For the two perfect triangular lattices (c)

there are three symmetrical relative positions shown in Fig.

6. In the first structure in Fig.(@), vortices of two sublattices K \/ \/

coincide with each other; in the second structure in Fig),6
vortices of the second sublattice appear at the centers of tri-
angle sides of the background lattice.=1, yo=0; and in

the third structure in Fig. @), vortices of the second sublat- \U/ \C{
tice are located at the centers of triangles formed by vortices

i . - 1
of the first SUblat.“C.exo_ L. yo=3. . FIG. 6. Three most symmetric locations of the second vortex
The characteristic feature of the vortex structure with twog ) attice (solid circles appearing belowHg,(T) on the back-

displaced g,lié)lattlce$27) is the breaking of translational g;o,nd of the first vortex sublattic@pen circles (a) undisplaced
|pvar|anc§3f "“ For example, the relative phagk between  girycture,(b) displacement on a half of a basis vector, doddis-

A©® and A for the state in Fig. @) changes byr under placement to the center of triangle. Dashed circles correspond to the
translation orb. Thus, the vortex structure in Fig(l§ cor-  equivalent positions for vortices of the second sublattice.




6600 M. E. ZHITOMIRSKY AND KAZUO UEDA 53

(A(O)Z@A(l)*2+ c.c.) in 8. The phase-locking term is non- Bi{laol nd?) + 5 Bx(a§ *ni+c.c)
zero, if the relative phase changes 0 orr under transla- int= {a |2><| |2> . (39
tions, that is, only for the vortex structures in Figéa)éand 0 K
6(b).*? For the particular form of the interactio34), rota- . _ _
tional invariance makes the phase-locking term equal to zero Be€ing expressed in scaled coordinatg5£’), the energy
for the coinciding structuréFig. 6a)] too. As a result, the ©f solution(36) in the GL approximation coincides with that
two-quantum structure with a relative displacement betweel? the isotropic case and is independent of the orientation of
sublattices on a half lattice basis vector has a minimal energyortex lattice in they-z plane. This is in contrast with the
for nonzeroB, in the AE model. The phase transition at "esidual twofold rotational symmetry of the system. The
Hg, is accompanied by time-reversal symmetry breaking,'ower symmetry should result in the stabilization of one from
i.e., p=ml2. the two most symmetric orientations of the lattice with the
The phase-locking term fok|c exists also in theAB smallest side of the triangle either along theor z axis.
model, and, as a consequence, the two-quantum vortex lathese two configurations are obtained fr¢a€) by substi-
tice has been found to be energetically favorable beloviution of the lattice parameters=3, o= (1/3/2)s? and
He, in a wide range of parameters, including those derivedp=13, o= (1/2\/5) s?, respectively. In conventional aniso-
from the experiment®® This prediction for the accidental tropic superconductors the particular lattice orientation is de-
degeneracy models is different from what is expected in théermined by the nonlocal next-order terms in GL functional
SBF models with a two-component order parameter. Th®r by a small misorientation of the field. Besides that, in
phase-locking term is absent féf|c in this case, and the multicomponent superconductors, the above degeneracy is
three-quantum structure is stabiliz&{?[The opposite con- lifted at fields H<Hg_ by the admixture of the second
clusion in Ref. 12 is a result of excluding the vortex configu-component
ration in Fig. Gc) from their numerical analysik. It is convenient to investigate the phase transition at
Evidently, the rotational symmetry of the perfect triangu-H=Hg_ in scaled coordinates corresponding to the eigen-
lar lattice is broken in the two-quantum structure. Hence, &tate, which has the highest critical field. Then, this solution
continuous distortion of the lattice should appear belowis given by(36) with s=1, while the second component is
Hg_ , which can result even in the stabilization of the squaredescribed by (36) with s=s;/sy for Hy>H; or with
lattice. The threefold rotational symmetry is preserved in thes=sy/s; for H;>H,. The phase-locking term i@, (39)
vortex structure in Fig. @) and the distortion of the lattice plays again an important role in the choice between various
does not appear below the structural phase transition alisplacements of two sublattices. The explicit expression for
Hg, in this case. Therefore, the observation of vortex latticessi,; can be found in Ref. 8. This term is nonzero either for the
other than the perfect triangular one fidfic would be im-  undisplaced latticefFig. 6(@)] or for the two-quantum struc-
portant in order to distinguish between the accidental degerture [Fig. 6b)].

eracy models and the SBF scenaltds of the splitting in In contrast to the isotropic case discussed above, the cen-
UPt;, because the two groups of models have different vorter of the triangle is not a special symmetric point. Therefore,
tex structures below, . the structure in Fig. @) is not extremal and vortices of the

second sublattice are displaced above and below the Koint
depending on the relatics™ 1 ors<1. The lower symmetry
lifts also the degeneracy between different displacements on
Vortex lattices and phase transitions in our model for thisa half of a lattice basis vector. Namely, the energy of the
geometry are completely analogous to those in the SBF anvo-quantumM , structure is different from the energy of the
AB models?3*8 The spatial dependences of both compo-M, and M structures. They depend also on the orientation
nentsay(r) ands,(r) are given by the scaled zeroth Landauof the first lattice, i.e., on the valuer= J3/2 or
level functions(22) and (23). AssumingH|[x, we construct ,— 1/2,/3 . Numerical evaluation o, with parameterC
the following solution periodic along the axis: and 3, derived from the experimerfsee next subsectidn
gives stability of theM, (M3) structure witho= J3/2 for

B. Magnetic field in the basal plane

. 27, 1 . s>1 and with o= 1/2y3 for s<1. The same structures
AP _ 2 . _ - _ 2 .
fo(r’) % ex;{ mpm+ —-imy= 55 (z=mbsina)™l. 506 been found in thAB and SBF model&2
(36) Straightforward generalization of the diamagnetic contri-

bution neaH, in conventional superconduct8ryields the

The distortion parametes is equal tos, for the a, compo-  following expression for the magnetic field generated by su-
nent and tos, for the », component. The energetic param- Perconducting currents in our case:
eters, which determine the form of the vortex lattice and

phase transition, are 8mle|K

1
hsz—T()\o|ao|2+M| 2. (40)

(lagl*)
50:(181+52)W' (37 This formula shows that though the gap function of the vor-
tex structure for two displaced sublattices is not invariant
4 under all elementary translations, the distribution of the mag-
(I 7d*) netic field preserves periodicity with one quantum of the flux

51:(B1+'82)<| ) (38) per unit cell. As we have mentioned above, for ¥Mestruc-
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TABLE |. Parameters deduced from different measurements of
the H-T diagram of UPj for a magnetic field oriented in the basal
plane.

Parameter Ref. 46 Ref. 48 Ref. 49
C 1.34 1.27 1.45
B2l B4 0.233 0.290 0.254

ture this is due to the existence of combined invariance under
the transformationm,RU,. The same conclusion holds for
Hllc as well. Therefore, it is the one-quantum flux lattices
which should be observed in the neutron diffraction measure-
ments in UP§.%? The period multiplication in the vortex
lattice can be found only by phase sensitive techniques.

In addition, the continuous distortion of the lattice, analo-
gous to that discussed in the previous subsection, should ap-
pear belowHg, in all vortex structures, because of the dif-
ferent scaling parameters for each component. Such an
anomalous field dependence of the anglevas observed by
Kleiman et al??> at T=50 mK for HLc. The prediction in
our model of the distorted hexagonal lattice with the long
triangle side along the axis forH,>Hg coincides with their
experimental observation. Moreover, the anglis predicted
to be tada=1/3(1+C), that is, «~21°, which is quite
close to the experimental value. However, we do not try to fit
their results as the experimental errors in the most interesting H
range of fields nea ., are too large.

C. Comparison with experiment

To compare the calculated lines of phase transitions inside
a mixed state with experimental ddfagne needs to know
the additional phenomenological paramegy/B,. Using
Eqg. (8) we estimate it from the experimental valueTf as
B>,=0.2333;. The corresponding phase boundaries Har
¢ andH||c are plotted in Figs. @) and 4b). While the tran-
sition line Hg (T) at T>T, (the AB boundary in standard
notationg is fitted quite well for both directions, there is a
significant discrepancy between experimental and calculated FIG. 7. Different types of the phase diagram of YRt pres-
slopes ofHg (T) at T<T (the BC phase boundajy Note  sures above the critical valug) in the AB model, arbitrary direc-
that the same discrepancy was found in the framework of théon of field, and in theAE model, Hlc; (b) in the AE model,
AB and SBF model&2n order to fit theBC phase bound- H.Lc; and(c) in the E;4 model, arbitrary direction of field.
ary for HLc, an additional diamagnetic term of the form

) :
|H- 7° was assumed for thie,, order parameter in Ref. 12. ghonding breaking of translational symmetry should occur as

However, this explanation seems to be doubtful because the ,ase transition even in the absence of rotational symmetry
same discrepancy between theoretical and experimental traQp outH

sition lines exists also foH|c, where this term does not
work.

In addition to ultrasonic data, we have fitted also the
phase diagram of URtobtained from dilatometf§y and
magnetocaloriy measurements. The derived parameters are |f @ magnetic field is applied parallel to theaxis, the
given in Table I. Again three phase boundaries are fittedphase diagrams are identical for th& andAB models. The
rather well, while the experiment&8 C line lies always be- tetracritical point in the H-T plane, which exists at
low the calculated curve. P<P,, shifts to lower fields and higher temperatures with

In a tilted magnetic field all three components of the orderincreasing pressure and disappearB atP.,. After that the
parameter appear simultaneously at the upper critical fieldgphase diagram consists of two smooth nonintersecting lines
This, however, does not necessarily mean the disappearankk,(T) and Hg (T) as shown schematically in Fig.(&.
of the phase transition in the vortex lattice belbly,. If the  The extrapolated temperature, at which the culdsg (T)
nonzero displacement is energetically preferable, the corresrosses théd=0 axis, is given by

T T

D. Magnetic phase diagram at high pressures
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T061—T1 6 eters corresponding to the, andE; irreducible representa-
™ TS 8. (4D tions under the assumption of a weak effect of the crystal
r Tt lattice on superconductivity. We have reproduced the well-
By replacing spatial averages in expressionsdpand §;,;  known magnetic phase diagram with the tetracritical point in
by 1 in a low-field region, it can be shown thBt coincides theH-T plané*“®*7and interpreted experimental results on
with the expression foll, in the AB model (P>P.) and the behavior of superconducting phases under preSsame
with the expression for the temperature of the second transin a tilted magnetic field!
tion (14) in the AE model if the small parametgs; is taken An attractive feature of thA E model with weak-crystal-
into account in (32)—(34). This confirms the previous field effects in comparison with the other theories is a
assumptioff that the extrapolation of thi - (T) curve may  Smaller number of phenomenological parameters which de-
be used to determine position of the fourth transition line intermine the form of the phase diagram. These two parameters
the P-T plane. C and B, not only give the tetracritical point in thel-T
The same type oH-T diagram holds in theAB model  plane forH|c andH_Lc, but also reproduce roughly the an-
when a magnetic field is applied in the basal plane. Howeveisotropy of the critical fields neaf.. Non-negligible effects
for the AE model the situation becomes more complicated. Ifon nonlinear and gradient terms in the GL functior2l
T,>Ty, the mixing of thes, component to the eigenstate from the crystal lattice lead to additional parameters, which
(23) cannot be neglected in the regidg<T<T,. This ad- might explain the discrepancy between theory and experi-
mixture leads to the upward curvaturetdg, (T) which goes ~ ment in the behavior of thBC phase boundary.
directly to T, [Fig. 7(b)]. A further experimental investiga- We have also discussed the features of the phase diagram
tion of the H-T diagrams forH|c and H.Lc is needed in of UPtz which can distinguish unambiguously between dif-
order to choose between the two accidental degeneracy moterent types of superconducting order parameter and between
els. different hypotheses of thg; splitting. The key experiments
As for the SBF models, the magnetic diagram at highinclude the following.
pressures is expected to be different for models without mix- (i) Measurement of the phase diagram in a tilted fiéld.
ing gradient term$~24and for the recent proposal by Park The existence of the tetracritical point is not affected by a
and Joynt® For the latter the phase diagram is the same ashange in the field direction for thg,,,, E,,, andAB mod-
for a perfect hexagonal two-component supercond#éttfr, els. In contrast, a slight smearing is expected in &t
which is shown in Fig. #®). On the other hand, SBF is used model(see Fig. 3. In theE;4 model such a smearing is most
in the former models not only to split,, but also to change ~significant forH|lc.
coefficients in gradient terms. This is necessary in order to (i) Measurement of théi-T phase diagram at pressures
have different slopes of critical fields in the absence of mix-(straing above the critical value after the disappearance of
ing gradient terms. Therefore, when the SBF disappears, tHge T, splitting. The behavior of thelg (T) phase boundary
two first solutions of the linearized GL equations for a givenfor Hllc is different for theE;y model on the one hand and
direction of H have exactly the same critical fields near the AB and AE models on the other hand. This line merges
T.. Even in the absence of the SBF the diamagnetic ternwith the H.,(T) curve asP approache®, in the E;, and
|H- #|? may again split critical fields foH directed in the Ej, models.
basal plane. But foH||c all these models predict that tiBeC (i) The same foH.Lc. The inner transition line behaves
transition line and théd.,(T) curve merge. This conclusion differently for theAB and AE models at a low-field region.
can be modified, in principle, by turning on mixing gradient  (iv) Zero-field properties of the superconducting phase at
terms. For example, in thg,, model such terms are possible P> P, are also different in thé B and AE models. For the
for a noncylindrical Fermi surface.However, the spliting former the time-reversal symmetry is preserved, while for
of the critical fields produced by the additional gradientthe latter, as well as for the SBF models, the time-reversal
terms atP> P, is of the order of a splitting of the tetracriti- Symmetry is broken directly belo,. A corresponding ef-
cal point atP=0 and should be very small. The resulting fect can be observed, e.g., by muon spin resonap@R(
phase diagram of thg&,, and E,, scenarios with merging measurements, which showed previously the existence of
transition lines is in a sharp contrast with the earlier thermabpontaneous magnetic moments in the low-temperature
expansion measuremeifayhich yield faster suppression of phase aP=0"®
the BC transition than of théd »(T) curve atP#0, as well (v) Observation of the vortex lattice below thé, (T)
as with a recent direct observation of the inner transition lingransition line forH|jc by means of neutron diffraction scat-
for H|c by means of an ultrasonic technigtfeThus, we tering. The “nontriangular” forms of the flux lattice would
conclude that among different SBF models only the recensupport one of the two accidental degeneracy models.
proposal of theE;, order parameter by Park and Joynt As for the small sixfold modulation ofl., for magnetic
could satisfy, in principle, theH-T diagram of UP4 at fields lying in the basal plan@, this feature may be inter-
P> P, for Hlc, provided a more careful experimental study preted in the considered model as an interaction ofEhe
will show the phase diagram like in Fig(¢J in contrast to  components of the superconducting order parameter with the
the observation by Boukhngt al1® antiferromagnetic momen{$/ - %|2. In contrast to the SBF
model* we need not assume rotation of magnetic moments
in the basal plane for this. Modulation of the upper critical
field appears as a result of the interaction with the frozen
To summarize, we have studied the phase diagram adomain structuréM (r) with three types of antiferromagnetic
UPt; in the model with two nearly degenerate order param-domains.

VI. DISCUSSION
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APPENDIX

Here we calculate the spatial averages for the interactio
parameter(34). We use the standard procedir® which
consists of a substitution of periodic solutiof®5) into (34)
and an integration over a large rectangle in #g plane
ignoring boundary effectéee, e.g., Ref. 8 for more details
The interaction parameter is subdivided into two parts

5+ 52)

Oint= Oint int » (A1)

where 8{3) corresponds to the first two terms (&4), while
5% is the last phase-locking term. Measurirg and y,
components of the displacement betwdgfr) andfy(r) in

units of bcosy and bsine, respectively, we obtain

int —

B
<1>_ﬁ¢;mz‘n cog2mpm(n—xg)]

X exp{ — wo[m?+ (n—yg)?]}
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X(1+ 30§~ mo[m*+(n—yo)?]
+2mo[m?—(n—yg)?]+ o[ m?—(n—yo)*]?}).
(A2)

I
Written in this form the parameteﬁf,}t) possesses an explicit
periodicity with respect to the elementary translationsaon

andb. Numerical evaluation ofA2) for two perfect triangu-

lar lattices withp=3 and o= /3/2 giveséi(nlt)= 1.1533, for
Q0=Yo=0 [the vortex structure in Fig. (8)];
50=0.8628; for x,=1, yo=0 [Fig. 6b)]; s¥=0.8278,

for xo=1, yo=13 [Fig. 6c)].

The phase-locking term is nonzero only for the vortex
structure with the second sublattice displaced on a half of a
basis vectofFig. 6(b)]:

cog 2
52 P200%820) 5ES (— 1™ neog2mpmn
1+ w mn
xexd — mo(m?+n?)][mo(m—n)°—3%]. (A3)
Calculation of the sum vyields&{®=-0.089; and
¢=ml2. Thus, the minimal interaction energy

8m=0.7743, and the highest critical fielHg_ (30) are
achieved for the two-quantum vortex lattice shown in Fig.
6(b).
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