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We study the phase diagram of the heavy fermion superconductor UPt3 within a phenomenological model
with two nearly degenerate order parameters corresponding to theA1 andE1 irreducible representations. A
weak effect on superconductivity from the crystal lattice is also assumed. This assumption on one side provides
an explanation for the closeness of two critical temperatures. On the other side it yields parameters of the
Ginzburg-Landau functional which lead to a single superconducting transition when the order of critical
temperatures changes with pressure. The experimentalH-T diagram with a tetracritical point is reconstructed
in theAE model. Vortex lattices are found for two orientations of the field. Restrictions imposed on the theory
of the UPt3 phase diagram by experiments at pressures above critical and in a tilted magnetic field are also
discussed.

I. INTRODUCTION

The most convincing evidence of an unconventional su-
perconductivity in the heavy fermion compound UPt3 is its
complicatedH-T diagram with multiple superconducting
phases. The main features of this phase diagram are~i! a
small ~about 10%! splitting of the superconducting critical
temperatureTc'0.5 K in zero field and~ii ! a tetracritical
point coinciding with~iii ! a kink in the temperature depen-
dence of the upper critical field for two orientations of the
magnetic field, parallel and perpendicular to the hexagonalc
axis.1 The assumption about anisotropic Cooper pairing in
UPt3 is also supported by various thermodynamic and trans-
port measurements which are compatible with zeros in the
energy gap belowTc .

1

Despite this rich experimental information, no unambigu-
ous identification of the symmetries of superconducting
phases has been made to date. Let us discuss the pros and
cons of various theoretical models of the UPt3 phase
diagram2–15 in the light of recent experimental studies under
uniaxial pressures16 and tilted magnetic field.17 Different in-
terpretations of this phase diagram fall into two main classes.
The first class of theories is so-called symmetry-breaking
field ~SBF! models. They assume a degenerate multicompo-
nent superconducting order parameter~usually correspond-
ing to a multidimensional irreducible representation of the
D6h point group! interacting with a weak additional field,
which produces a small splitting ofTc . The degeneracy of
the order parameter may be connected either with its orbital
part3,4 or with the spin part of the pairing function.7 Two
candidates for an intrinsic SBF in UPt3 have been
proposed:2,9 an antiferromagnetic order with in-plane mo-
ments developed belowTN'5 K ~Ref. 18! or a macroscopic
strain field due to incommensurate structural domains.19 The
former is considered as the primary SBF because it is sup-
pressed by a hydrostatic pressureP*;5.462.9 kbar,20

which is roughly of the same order as the critical pressure

Pcr'3.8 kbar for the disappearance of the double supercon-
ducting transition.21 The difficulty in explaining the same
topology of the phase diagram for different orientations of
the field, which existed at the first versions of SBF models,3,4

was solved by turning off the mixing gradient terms in the
later variants.7,11–13

All models using antiferromagnetic order as SBF have,
however, a common difficulty. As is known from neutron
scattering experiments,18 the tiny magnetic moments on U
atoms are ordered antiferromagnetically with a very short
correlation lengtha'150 Å, which is comparable to the su-
perconducting coherence length at zero temperature,
j0'110 Å.22 In order to have a nearly isotropicHc2 in the
basal plane23 one should assume that the moments rotate
freely, maintaining their perpendicular orientation with re-
spect to the magnetic field. Even if this theoretical assump-
tion is correct, a serious problem still exists forzero-field
behaviors. Zero-field magnetic structure in UPt3 consists of
small domains with equivalent orientations of antiferromag-
netic vectors in the hexagonal lattice.20,24 As has been re-
cently shown by Isaacset al.24 with the help of magnetic
x-ray and neutron diffraction studies, this orientational disor-
der of magnetic moments is frozen atH50. The appearence
of superconductivity leads to a slight reduction of the mag-
nitude of the staggered moments belowTc without changes
in the symmetry. Under such conditions there are many cha-
otically oriented magnetic domains on the scale of the super-
conducting coherence lengthj(T)@j0 ,a. This randomness
in the orientation restores nearTc the average in-plane isot-
ropy for the superconducting order parameter, and the usual
scenario for the double transition, (1,0)→(1,ia), proposed
for homogeneous SBF,2,3 does not work. The only realistic
consideration taking into account the random domain struc-
ture was presented by Joyntet al.6 They showed that though
the double transition between nonhomogeneous ‘‘glass’’ and
homogeneous superconducting phases is possible in this
case, the second transition will be of first order, which is in
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obvious contradiction with the existing experimental data.
Another weak point of these models independent of the

nature of the SBF is the interpretation of theH-T diagram at
uniaxial pressures above the critical value, where the split-
ting of Tc disappears. Boukhnyet al.16 found for several
values ofP.Pcr and both field orientations that the inner
line of phase transitions inside the mixed stateHFL(T) is not
traced back toTc , but intersects with theH50 axis at some
intermediate temperatureT* . They interpreted further the
almost-temperature-independent lineT* (P) as a missing
fourth line of phase transitions in theP-T plane.1,25 Though
such behavior of the fourth boundary in theP-T plane may
be explained by the temperature dependence of the critical
pressure, which destroys the antiferromagnetic order, the be-
havior of the inner transition line in the mixed state~at con-
stant pressure! does contradict the SBF concept. After the
disappearance of the SBF with pressure, the degeneracy is
restored and all components of the superconducting order
parameter have the same critical temperature. Therefore,
transition lines between various vortex structures26–30should
originate from a singleTc for any P.Pcr . The lack of
enough accuracy in the experimental data16 at the low-field
region leaves a certain degree of ambiguity in the exact be-
havior of the inner line, but this observation makes SBF
scenarios at least questionable.

An alternative phenomenological approach to the phase
diagram of UPt3 is to let critical temperatures of two differ-
ent irreducible representations of theD6h group to be close
to each other. Such an assumption was used originally to
describe the splitting ofTc in the other heavy fermion super-
conductor UBe13 under doping of Th impurities.

31 Two types
of analogous models were elaborated for UPt3 in Ref. 6 and
one of them, the so-calledAB model, was studied later in
detail by Chen and Garg.8 The disadvantage of this argument
was realized soon after the experimental observation of the
convergence rather than crossing of two specific heat anoma-
lies in UPt3 under pressure.

21 Generally, if the order of the
critical temperatures for two independent irreducible repre-
sentations changes, the splitting should reappear again after
the intersection point. To explain thermodynamic
measurements,1 which did not show the split phase transition
at P.Pcr , one has to assume, in addition to the accidental
degeneracy of critical temperatures, also an accidental rela-
tion of phenomenological constants describing the interac-
tion of two order parameters in the Ginzburg-Landau~GL!
functional.@In theABmodel8 the necessary condition for the
disappearance of the Tc splitting after Pcr is
(ba2b8)/(bb2b8)@1.# Additional phenomenological pa-
rameters in gradient terms are introduced in such models6,8

to obtain a kink inHc2(T) for bothH'c andHic and so on.
Explaining experiments, accidental degeneracy models fail
to provide physical explanation for the choice of quite arti-
ficial parameter values and, therefore, raise a question:32 Is it
possible that accidental features of the GL functional reflect a
hitherto unidentified symmetry of the superconducting order
parameter in UPt3 .

Semimicroscopic theories for the superconducting order
parameter in UPt3 , which use an exchange of spin fluctua-
tions as a mean of pairing, yield, for example, close critical
temperatures for either the pair of singlet statesA1g and
E1g ~Ref. 33! or the pair of odd statesA1u andE1u .

34 This

remarkable choice of theA1 andE1 order parameters irre-
spective of their parity results seemingly from some approxi-
mate symmetry of the crystal field. A phenomenological as-
sumption about a weak crystal lattice effect on
superconductivity in UPt3 has been proposed in Ref. 10. The
kink in theH-T plane atP50 and the qualitative structure
of theP-T phase diagram were explained assuming a nearly
degenerated-wave superconducting order parameter. UPt3
shows, however, anisotropic properties in the normal state
and a naive isotropic superconducting pairing is hardly ex-
pected. In addition, the controversy remains about even or
odd parity of the pairing function in connection with an al-
most constant Knight shift belowTc ~Ref. 35! and an un-
usual temperature dependence of the anisotropy of the upper
critical field.36,33

We therefore formulate a different phenomenological
model, which is a combination of the proposals of Refs.
6,10. Namely, we study the mixture of accidentally degener-
ateA1 andE1 order parameters, both even or odd, using the
assumption that the crystal lattice does not affect signifi-
cantly their interactions. Only under this assumption is a
quantitative treatment of theAE model simple and most of
results can be expressed in an analytical form. Our aim is to
show that the wholeH-T diagram of the superconducting
states in UPt3 at bothP,Pcr andP.Pcr can be explained
and fitted with experimental data in this simplified version of
the AE model. We consider also the measurements by Lin
et al.17 of the magnetic phase diagram in a tilted field, which
show features in the behavior of transition lines near the
tetracritical point.

II. MODEL

We first assume that the electrons in UPt3 form pairs with
the total momentumJ52 in a nearly isotropic environment.
In this model the lower symmetry of the crystal lattice causes
only a slight splitting of the transition temperature of a five-
fold degenerate multiplet of the Cooper pairs. Considerations
of the singlet (d-wave! and the triplet (p-wave with strong
spin-orbital coupling! order parameters are completely
analogous. Therefore, for the the reader’s convinience, we
will use in the following basis functions corresponding to
d-wave pairing:

D̂~k!5(
i , j

Bi j kikj5
1
2a62~kx6 iky!

21a61~kx6 iky!kz

1
1

A6
a0~kx

21ky
222kz

2!. ~1!

Our analysis starts from the corresponding SO~3!-invariant
GL functional, which we write in terms of 333, symmetric,
traceless matrixB:

F5a~T2Tc!TrB*B1b1~TrB*B!21b2uTrB2u2

1b3TrB*
2B21K1Di*Bjk* DiBjk1K2Di*Bik*DjBjk

1K3Di*Bjk* DjBik1
h2

8p
, Di5] i2 i

2e

\c
Ai . ~2!
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The weak-coupling approximation imposes the following re-
lations on the phenomenological parameters:b250.5b1 ,
b350, K25K352K1 . As was shown by Mermin,37 who
studied the functional~2! in connection with superfluid
phases of3He, two different phases correspond to the ground
state under the conditionb2.0:

D̂~k!;~kx1 iky!
2, b3.0, ~3!

D̂~k!;kx
21e2p i /3ky

21e4p i /3kz
2 , b3,0. ~4!

These solutions are unique up to multiplication by a phase
factor and rotation of coordinate axes. The caseb350 is
degenerate, and any matrixB satisfying TrB250 would
minimize the GL functional~2!. The magnitude ofb3 is
determined by strong-coupling effectsb3;Tc /EF and
should be small even for UPt3 with EF'10 K. This small-
ness ofb3 is important in our description of the observed
P-T phase diagram.

The crystal field splits a single transition temperatureTc
in accordance with irreducible representations of theD6
point group:38,39

A1 :kx
21ky

222kz
2 ,T0 ,

E1 :~kx6 iky!kz ,T1 , ~5!

E2 :~kx6 iky!
2,T2 .

The direction ofẑ is along thec axis. We suggest that the
effect which primarily determines the structure of the phase
diagram is the splitting of the transition temperature for the
fivefold degenerate order parameter. We ignore the effect of
the crystal lattice on the fourth-order and gradient terms in
~2!, because it can only slightly change the picture derived
below.

Symmetry arguments place no restrictions on the order of
critical temperatures~5!, which may change under pressure.

Analysis of all possible cases reveals that the UPt3 phase
diagram can be explained with a single arrangement of criti-
cal temperatures in theP-T plane as shown in Fig. 1.
Namely, the policritical point (Pcr ,Tcr) is determined by the
intersection of linesT0(P) andT1(P), while theE2 repre-
sentation is not involved in the observed transitions. This
conclusion of the phenomenological theory is in agreement
with microscopic calculations.33,34Finally, the GL functional
of our model is given by~2! with split Tc and excluded
components of theE2 representation. We will write explicitly
homogeneous and gradient terms of this functional in the
following sections.

III. ZERO-FIELD PHASE DIAGRAM

For investigation of superconducting phases in zero mag-
netic field we may restrict ourselves to homogeneous terms
for theA1 andE1 representations, and rewrite the free energy
density~2! in the form

F5a~T2T0!ua0u21a~T2T1!~ ua1u21ua21u2!1b1~ ua0u21ua1u21ua21u2!21b2ua0
212a1a21u2

1b3@
1
2 ua0u41

1
4 ~ ua1u41ua21u4!1 3

2 ua1u2ua21u21
1
6 ua0u2~ ua1u21ua21u2!1 5

6 ~a0*
2a1a211c.c.!#. ~6!

This GL functional for a three-component order parameter is
more complicated than functionals studied previously for
UPt3;

3,7,13 however, its analysis can be also done analyti-
cally. Let us first investigate superconducting phases which
minimize ~6!, neglecting the last fourth-order term with
small coefficientb3 . We consider the caseb2.0 only,
which gives an adequate description for UPt3 as we will see.

At pressures belowPcr , the upper transition takes place at
Tc

15T0 to the phase

D̂1~k!5
a0

A6
~kx

21ky
222kz

2!, a0
25

a~T02T!

2~b11b2!
,

F152
a2~T02T!2

4~b11b2!
. ~7!

The energy gap of the phaseD̂1(k) in the case ofd-wave
pairing has two lines of nodes whose position on the Fermi
surface is determined by cos2u51/3. The order parameter~7!
does not minimize the second fourth-order term in~6!.
Therefore, the lower second-order phase transition occurs at
T5Tc

2 :

Tc
25

1

2 FT0S 12
b1

b2
D1T1S 11

b1

b2
D G . ~8!

Below Tc
2 the free energy achieves its minimum value for

the complex order parameter with broken time-reversal sym-
metry:

FIG. 1. Pressure dependence of critical temperatures for irreduc-
ible representations~5! assumed in theAE model.
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D̂2~k!5
a0

A6
~kx

21ky
222kz

2!1 irk xkz ,r
25

a~Tc
22T!

2b1
,

a0
25

r 2

2
1

a~T02T1!

4b2
,

F252
a2~T01T122T!2

16b1
2

a2~T02T1!
2

16b2
. ~9!

The rotational symmetry around thec axis is also broken for
the phaseD̂2(k), which is invariant under the residual sym-
metry groupD2(U2y). After Tc

2 the lines of zeros in the
energy gap are smeared, leaving only four-point nodes.

The ratio of the heat capacity jumps at the upper and
lower transitions is

~DC/T!uT
c
2

~DC/T!uT
c
1

5
b2

b1
. ~10!

Note that Eqs.~8! and ~10! are exactly the same as for the
SBF orAB models.

At pressures abovePcr , the superconducting transition
takes place atTc5T1 to the phase

D̂3~k!5a1~kx1 iky!kz , a1
25

a~T12T!

2b1
,

F352
a2~T12T!2

4b1
. ~11!

Its symmetry group isD6(E). The stateD̂3(k) corresponds
to the minimum of the fourth-order term multiplied byb2 .
Therefore, the transition with an admixture of thea0 compo-
nent is completely suppressed atP.Pcr . On the phase dia-
gram in the P-T plane there will be a temperature-
independent fourth line of transitions betweenD̂2(k) and
D̂3(k) states. This transition is of first order as
D2(U2)úD6(E). The jump in the volume on this line is

DV

V
5

a2~Tcr2T!

4b1
S ]T1

]P
2

]T0
]P D . ~12!

Let us consider now the effect of nonzerob3 . Obviously,
the symmetries of all phases remain the same. The change at
P,Pcr is only quantitative and consists of the substitution

b1→~b11
1
12b3!, b2→~b21

5
12b3! ~13!

in all formulas ~7!–~10!. The energy of the stateD̂3(k) is
obtained from~11! by the replacementb1→(b11

1
4b3). The

phase~11! does not minimize the third fourth-order term in
~6! for b3.0. As a result, the fourth transition line in the
P-T diagram deviates from the vertical position. Equating
the energies of the phases~9! and~11! we obtain in first order
in a small parameterb3 /b1 the second transition tempera-
ture

T* ~P!5T1~P!2
6b1

b3
@T1~P!2T0~P!#. ~14!

The resulting phase diagram is shown in Fig. 2. Due to the
small slope with respect to theT axis, the effective width of
the transition on this fourth boundary observed in the tem-
perature sweep experiments significantly increases, which
made earlier attempts at detection of theT* (P) line unsuc-
cessful.

Boukhny et al.16 found the trace of the fourth phase
boundary in theP-T plane by the study of theH-T diagram
at uniaxial pressures abovePcr . Applying Eq. ~14! to their
results we obtain the estimationb3;0.1–0.2b1 . As b3 is
multiplied small factors in the corresponding formulas~13!,
we will disregard below its influence on the thermodynamic
properties.

A few remarks are needed concerning our neglect of the
E2g representation, which may have a nonzero critical tem-
peratureT2,T0 ,T1 . The symmetry of the phaseD̂2(k) al-
lows an admixture ofa25a22 with a real phase. As the
mixing term is proportional tob3 , the componentsa2 and
a22 have smallness of the order ofb3 /b1 compared toa0
anda15a21 . Then, the correction to the free energy is of
the order of (b3 /b1)

2 and may be neglected. The positive
b3 can also stabilize at low temperatures the phase with an-
other symmetry~3!, as is the case for the degenerateTc .

37

However, comparison of the energy of this phase with the
energy~11! gives the result that such a transition between
phases ~3! and ~11! will not occur until 0 K if
(T12T2)/T1.b3 /(8b1). Even a weaker condition is re-
quired for the stability of the phaseD̂2(k); hence our analy-
sis yields true low-temperature phases for a wide range of the
values ofT2 .

IV. UPPER CRITICAL FIELD

In this section we investigate the superconducting transi-
tion in a magnetic field for different orientations ofH with
respect to crystal axes and forP,Pcr . The upper critical
field is anisotropic due to the splitting of critical temperature
by crystal field in the SO~3!-invariant energy functional~2!.
To determineHc2(T) we solve the linearized GL equations
derived from~2!, omitting theE2 components and assuming
a uniform order parameter along the field. The corresponding
solutions and their critical fields depend on phenomenologi-

FIG. 2. Schematic zero-field diagram of UPt3 .
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cal parametersKi in gradient terms. The parameterK1 is
inversely proportional to the effective electron mass and
scales critical fields for all superconducting phases. We also
assumeK25K3 , because their difference is relatively small:
(K22K3);(Tc /EF)

2,40 and define a dimensionless phe-
nomenological parameterC5K2 /K15K3 /K1 . The param-
eterC determines the form of theH-T phase diagram in our
model.~In the weak-coupling approximationC52.)

A. Magnetic field along thec axis

In this case the gradient energy for theA1 andE1 repre-
sentations is

Fgrad5K1F S 11
C

3 D uDia0u21S 11
C

2 D uDia61u2

1
C

2
~D2* a21* D1a11D1* a1*D2a21!G , ~15!

where i5x,y andD65Dx6 iD y . Linearized GL equations
separate for~15! into a system of two coupled equations on
amplitudesa1 anda21 and an independent equation ona0 .
As in the ordinary case these equations can be solved by
defining the lowering and raising operators

â5S \c

4ueuH D 1/2~Dx2 iD y!, @ â,â1#51, ~16!

and expanding each component of the order parameter in a
series of Landau level functionsf n(r ), r denotes position of
the center of mass of the pair. The solution for the compo-
nent a0 with the lowest eigenvalue and the highest critical
field has the usual form

D̂~0!~k,r !5
f 0~r !

A6
~kx

21ky
222kz

2!,

l0511
C

3
, H ~0!~T!5

F0

2p

a~T02T!

K1l0
, ~17!

with F0 being the flux quantum. On the other hand, the
system of two coupled equations is satisfied by a more com-
plicated eigenstate41

D̂~1!~k,r !5 f 0~r !~kx1 iky!kz1v f 2~r !~kx2 iky!kz ,

l153S 11
C

2 D2A2C21~21C!2,

v52
A2C

5S 11
C

2 D2l1

, H ~1!~T!5
F0

2p

a~T12T!

K1l1
.

~18!

The nonfactorized dependence ofD̂(1)(k,r ) on k and r is a
consequence of the classification of eigenstates of the order
parameter atHc2 by the generalized Landau level number
N5n1m, wherem is the projection of the internal angular
momentum of the pair on the field direction.42 For the phases
~17! and ~18!, N50 and11, respectively.

In a wide range of values ofC we havel0.l1 and,
consequently, the slope of theH (1)(T) curve is larger
than that ofH (0)(T). As they start from different tempera-
tures andT0.T1 at P50, a kink should appear in the tem-
perature dependence of the upper critical fieldHc2

5max$H (0)(T),H (1)(T)%. Such a kink inHc2(T) for Hic
was not detected in early experiments on the phase diagram
of UPt3 , reflecting a small difference betweenl0 and l1 .
However, it was confirmed later by the existence of a well-
defined tetracritical point for this orientation of the field
which is formed by anintersectionof two different lines of
transitions in theH-T plane.1 This tetracritical point is situ-
ated relatively far fromTc , in the region where nonlinear
corrections to the GL approximation become significant.
Therefore, we will fit the experimental curveHc2(T) in UPt3
and find the phenomenological parameterC by data for the
another field orientationH' c.

B. Magnetic field in the basal plane

The GL functional~2! with split Tc possesses rotational
symmetry about thec axis. Therefore, the upper critical field
is isotropic in the basal plane. We assumeHi x̂. It is conve-
nient to define complex amplitudes instead ofa1 anda21 ,

a615
hx7 ihy

A2
, ~19!

which coincide with the usual expansion coefficients for the
E1 representation.

38,39 In our notation the quadratic part of
the energy~2! is

F5a~T2T0!ua0u21a~T2T1!~ uhxu21uhyu2!1K1F S 11
C

3 D uDya0u21S 11
4

3
CD uDza0u21uDyhxu2

1~11C!~ uDzhxu21uDyhyu21uDzhyu2!2
C

2A3
~Dy*hy*Dza01Dz*hy*Dya01c.c.!G . ~20!
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The corresponding linearized GL equations separate again
into a system for thea0 andhy components and an indepen-
dent equation forhx . Because of the uniaxial symmetry,
gradients alongŷ and ẑ directions enter~20! with different
factors. As is known from the theory of anisotropic conven-
tional superconductors,43 the expressionKyDy

21KzDz
2 can

be written in an isotropic formAKyKz(Dy8
2

1Dz8
2 ) by apply-

ing the scaling transformation

y85sy, z85z/s, s5~Kz /Ky!
1/4. ~21!

With the help of this transformation one can find the follow-
ing eigenstate:

D̂~1!~k,r !5 f 0~r 8!A2kxkz , l15A11C, s15~11C!1/4,

H ~1!~T!5
F0

2p

a~T12T!

K1l1
. ~22!

The diagonal terms for thea0 andhy components, however,
cannot be written in isotropic form simultaneously, which
leads to the problem of finding the lowest eigenvalue in an
infinite-dimension system. We solve this problem numeri-
cally, developing a perturbation theory for the coupling term.
Calculations are described in more detail in the next subsec-
tion. Here we only formulate the result: ForT1,T0 it is
possible to neglect the admixture ofhy and to obtain the
second solution analytically:

D̂~0!~k,r !5
f 0~r 8!

A6
~kx

21ky
222kz

2!,

l05A~11C/3!~114C/3!, s05S 114C/3

11C/3 D 1/4,
H ~0!~T!5

F0

2p

a~T02T!

K1l0
. ~23!

Because of the difference in slopes (l0.l1 , for C.0!, the
curvesH (0)(T) andH (1)(T) intersect at the point

Tk5
T1l02T0l1

l02l1
, Hk5

F0

2p

a~T02T1!

K1~l02l1!
, ~24!

producing a kink in the temperature dependence of the upper
critical field. The quantum number different for the two
eigenstates~22! and~23! is the parity of the order parameter
under reflections in the plane perpendicular toH.

C. Arbitrary directed magnetic field

Assuming magnetic field in the x-z plane,
H5(Hsinu,0,Hcosu), we choose a coordinate frame with the
z̃ axis parallel toH and theỹ axis parallel toŷ. If we omit
gradients alongz̃, and drop the tilde over our coordinates,
the gradient energy can be written as

Fgrad5K1F S 11
C

3
1Csin2u D uDxa0u21S 11

C

3 D uDya0u21~11C!~ uDxhxu21uDyhyu2!1uDyhxu21~11Csin2u!uDxhyu2

1
C

2A3
sinu~Dx* a0*Dyhy1Dy* a0*Dxhy1c.c.!1

C

2A3
sin2u~Dx* a0*Dxhx1c.c.!1

C

2
cosu~Dx*hx*Dyhy

1Dy*hx*Dxhy1c.c.!G . ~25!

For a general direction of the field (uÞ0,p/2) there are no
quantum numbers which may be ascribed to different eigen-
states of the linear problem. Therefore, an intersection of
levels is prohibited andHc2(T) is a smooth curve.

To find a smearing of kink in a tilted magnetic field the
differential linearized GL equations derived from~25! have
to be solved. We calculate the corresponding upper critical
field numerically using the following perturbation scheme.
Turning off all three coupling terms in~25! we get three
independent equations ona0 , hx , hy . Solutions of this
zeroth-order approximation are known. They are sets of Lan-
dau level functions obtained for each component by its own
scaling transformation:y85sky, x85sk

21x, with k50,x,y.
We expand the componentsa0 , hx , hy in terms of these
three complete sets of basis functions and transform the dif-
ferential equations to an infinite-dimension algebraic system.
The off-diagonal terms in this system are given by the matrix
elements of coupling terms between eigenstates of different

components. They can be easily calculated choosing a par-
ticular gauge, e.g.,A5(2Hy,0,0). The eigenvalues of the
linearized GL equations are obtained, then, by a truncation of
the infinite matrix.

The first-order iteration is to omit all eigenstates except
the zeroth Landau level functions and, then, to diagonalize
the resulting system of three equations numerically. At the
second step we allow the admixture of the second Landau
level functions and diagonalize a system of six equations and
so on.~Odd-number Landau levels are not admixed due to
the remaining conserved quantum number, which is the par-
ity of N.42! We do not write explicitly the cumbersome ex-
pressions for the matrix elements, but present, instead, re-
sults of the first two iterations forT051, T150.9,C52, and
u545° in Fig. 3. It can be seen that the proposed iteration
procedure converges very rapidly, and an accuracy better
than 1% can be already achieved by diagonalizing the
636 matrix.
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D. Comparison with experiment

We now compare the results of this section with experi-
mental data. We choose for this purpose ultrasonic velocity
measurements17,44 which give theH-T phase diagram of
UPt3 at zero pressure for three orientations of fieldu50°,
45°, and 90°. As the experimentalHc2(T) curve forHic
shows a significant curvature, we fit first the upper critical
field for H'c ~Ref. 44! under the assumption that all transi-
tion lines are perfectly straight. Parameters derived from the
experimental values of the critical temperatures
T05Tc

15499 mK,T15476 mK,Tk5403 mK with the help
of Eq. ~24! are

l0 /l151.31, C51.34, ~26!

while K1 is chosen so as to agree with observed values of the
critical fields @Fig. 4~a!#.

The upper critical field forHic calculated for the same set
of parameters is presented in Fig. 4~b!. Though the approxi-
mation of theHc2(T) curve by straight lines predicts the
intersection~kink! point at a higher temperature, the actual
difference is not very large. Moreover, our formulas repro-
duce well the observed anisotropy of the upper critical field
in the vicinity of Tc .

A common argument against theAE model is that it pre-
dicts a smearing of the kink for intermediate directions of the
magnetic field. We plot an experimental diagram for
u545° ~Ref. 17! together with our numerically calculated
Hc2(T) curve in Fig. 5. As the sample used in 45° measure-
ments is different from that used in Ref. 44, we choose new
values of the critical temperatureTc

15T0 and of the coher-
ence length (K1) in our calculations. However, the relative
differences between the critical temperatures of the two rep-
resentations (T02T1)/T050.954 and the parameterC are
kept the same.

Contrary to the statement in Ref. 17 about the clearly
observed kink in the temperature dependence of the upper
critical field, one can see that the experimental data are rea-
sonably fitted by a smooth curve. A feature of the experimen-
tal phase diagram for the field directed at 45° to thec axis is
an ‘‘intersection’’ of the inner transition lines apart from the
Hc2(T) curve. This feature was interpreted as the existence
of two critical points instead of the single tetracritical point
in theH-T plane.17 Note that this is not allowed thermody-
namically, if all lines correspond to the second-order phase
transitions.25 We can not excludea priori the possibility to
construct a model for such a splitting of the tetracritical point
into two points connected by a line of first-order transitions
for intermediate directions of the field; however, its origin is
completely unclear in the framework of theories presented so
far.2–15A more natural interpretation of this behavior of the
inner lines is a smearing of the kink point with the repulsion

FIG. 3. Subsequent iterations for critical fields of different
eigenstates in theAEmodel with magnetic field at 45° to thec axis
and parameters from the text. Dashed lines correspond to the
zeroth-order approximation.

FIG. 4. Calculated phase boundaries~solid lines! and experi-
mental data derived from ultrasonic velocity measurements~Ref.
46! for two directions of the magnetic field~a! H'c and ~b! Hic.
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of two nonintersecting levels of the linear problem, as is
expected for theAE model. The analogous smearing of the
kink exists also in theE1g model,

15 but it is expected to be
more significant forHic than for H at 45° to thec axis,
which is not confirmed by the experiment.17,44

V. PHASE TRANSITIONS INSIDE A MIXED STATE

Structural phase transitions in the flux lattice are, perhaps,
the most striking feature in a macroscopic behavior of a mul-
ticomponent superconductor. The vortex states near the
lower critical fieldHc1 were studied for the two-component
E1 order parameter using the numerical relaxation tech-
niques in Refs. 26–28. Hiranoet al.12 presented numerical
results obtained by the same method for intermediate fields
and fields close toHc2 . However, examination of vortex
lattices in the vicinity of the upper critical field admits a
significant simplification due to the fact that the spatial form
of the order parameter is determined by the linearized GL
equations. Phase transitions inside the mixed state have been
studied in this approximation by a number of authors29,30,8

~see also Ref. 42 for a review!. We calculate using the same
analytical approach, which is undoubtedly true near the tet-
racritical point in theH-T diagram of UPt3 , the inner phase
boundaries between different vortex states in our model.

The general procedure is to expand the superconducting
order parameter into the two eigenstates under consideration
@either ~17! and ~18! or ~22! and ~23!#,

D̂5m0D̂
~0!1m1e

ifD̂~1!, ~27!

and substitute this ansatz into the GL functional.

Working in the limit of large values of the GL parameter
kGL , we can neglect the contribution of superconducting
currents and write the free energy density near the upper
critical field in the universal form

F5a8l0~H2H0!m0
21a8l1~H2H1!m1

21d0m0
41d1m1

4

12d intm0
2m1

2 , ~28!

wherea852pK1 /F0 . The energetic parametersd0 andd1
are analogs of Abrikosov’s parameter for conventional
superconductors,45 while d int represents the interaction be-
tween D̂(0) and D̂(1). These parameters depend on the par-
ticular form of the eigenstates and on the fourth-order terms.
We write them explicitly forHic andH'c below. But before
that let us consider general conclusions which can be derived
from the universal two-order parameter functional~28!.

By minimization of ~28! with respect to the expansion
coefficientsm0 andm1 , the following sequence of supercon-
ducting states is found forH0.H1 . In close vicinity of the
upper critical fieldHc25H0 only one eigenstate appears with
the energy

F052a82l0
2 ~H02H !2

4d0
. ~29!

An infinite degeneracy of the order parameter is lifted by
nonlinear interactions and the form of the vortex lattice may
be determined by substitution of an arbitrary periodic solu-
tion for D̂(0) in the energy parameterd0 and its subsequent
minimization.

The vortex lattice for theD̂(0) component becomes un-
stable towards an admixture of the second eigenstateD̂(1) at

HFL5H12
H02H1

l1d0 /l0d int21
. ~30!

Below this field the superconducting phase consists of two
interpenetrating vortex lattices formed by each eigenstate.
On the phase transition line the periodic structure ofD̂(1)

should coincide with the form found previously forD̂(0),
while minimization ofd int ~in order to achieve the highest
HFL) gives the displacement between two sublattices as well
as their relative phasef. After the phase transition the free
energy density is given by

F5F02a82
~l1d02l0d int!

2

d0d12d int
2

~HFL2H !2

4d0
. ~31!

For the other relation between critical fields,H1.H0 , all
formulas may be obtained directly from Eqs.~29!–~31! by
interchange of the indices 0↔1.

A. Magnetic field along thec axis

The energetic parameters defined above are given for the
phases~17! and ~18! by

d05~b11b2!
^u f̃ 0u4&

^u f̃ 0u2&2
, ~32!

FIG. 5. Experimental phase diagram~Ref. 17! and the upper
critical field calculated in theAE model ~solid line! for the mag-
netic field directed at 45° with respect to thec axis.
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d15
b1^u f 0u41v4u f 2u4&12~b112b2!v

2^u f 0u2u f 2u2&
~11v2!2^u f 0u2&2

, ~33!

d int5
b1^u f̃ 0u2u f 0u21v2u f̃ 0u2u f 2u2&1b2v^ f̃ 0*

2f 0f 21c.c.&

~11v2!^u f 0u2&^u f̃ 0u2&
. ~34!

A tilde serves to distinguish zeroth Landau level functions for different eigenstates and brackets denote the spatial average. The
general expression for one-quantum periodic solutionsf n(r ) invariant under elementary translations ona5(a,0) and
b5(bcosa,bsina) is

f n~r !;(
m

expF2p irm21
2p

a
imx2

1

2
~y2mbsina!2GHn~y2mbsina!, ~35!

whereHn(y) is the Hermitian polynomial of thenth order
and all distances are measured in the units of magnetic
lengthl H

2 5\c/2ueuH. The form of the vortex lattice is deter-
mined by two parametersr5b/acosa and s5b/asina,
while the area of the unit cell is fixed by the flux quantization
rule absina52p. The dependence of energetic parameters
on r ands may be found by substitution of~35! in ~32!–
~34! and integration overx andy.45,42

For the phase~17! the energetic parameterd0 is identical
to what appears in the theory of conventional
superconductors.45 Its minimum valued051.160(b11b2) is
achieved for the one-quantum perfect triangular lattice with
r5 1

2 and s5 A3/2 . The energetic parameterd1 for the
phase~18! is more complicated as a consequence of the ad-
mixture of two componentsa1 and a21 simultaneously.42

The possible types of vortex structure for this phase include
perfect triangular, square, rectangular, and other lattices.
However, if the phenomenological parametersb2 andC are
not far from their weak-coupling values, the stable form is
again the perfect triangular lattice. Having the same form,
vortex lattices for the eigenstatesD̂(0) and D̂(1) differ in the
phase factors gained under rotations on 60° and in the parity
under reflections in the basal plane.42

We next investigate the vortex structure of the combined
solution. The vortex latticef̃ 0(r ) displaced from~35! by
r05(x0 ,y0) can be obtained substituting (x2x0) and
(y2y0) instead ofx andy and applying simultaneously the
gauge transformation exp(iy0x). We will measurex0 andy0
in units of (bcosa) and (bsina), respectively. The expression
for the dependence ofd int on the displacementr0 is pre-
sented in the Appendix. For the two perfect triangular lattices
there are three symmetrical relative positions shown in Fig.
6. In the first structure in Fig. 6~a!, vortices of two sublattices
coincide with each other; in the second structure in Fig. 6~b!,
vortices of the second sublattice appear at the centers of tri-
angle sides of the background lattice,x051, y050; and in
the third structure in Fig. 6~c!, vortices of the second sublat-
tice are located at the centers of triangles formed by vortices
of the first sublattice,x051, y05

1
3.

The characteristic feature of the vortex structure with two
displaced sublattices~27! is the breaking of translational
invariance.30,42 For example, the relative phasef between
D̂(0) and D̂(1) for the state in Fig. 6~b! changes byp under
translation onb. Thus, the vortex structure in Fig. 6~b! cor-

responds to a two-quantum lattice. The unit cell of the vortex
lattice in Fig. 6~c! contains three quanta of the magnetic flux.
Similar to antiferromagnets, the two-quantum vortex struc-
ture is still invariant under the combined transformation
T̂bRU2y , whereU2y is rotation byp around they axis. As
the operationRU2y does not change the magnetic field, this
period multiplication cannot be observed in neutron diffrac-
tion experiments~see the next subsection!.

Breaking of the translational symmetry is important in
order to understand the role of the last phase-locking term

FIG. 6. Three most symmetric locations of the second vortex
sublattice ~solid circles! appearing belowHFL(T) on the back-
ground of the first vortex sublattice~open circles!: ~a! undisplaced
structure,~b! displacement on a half of a basis vector, and~c! dis-
placement to the center of triangle. Dashed circles correspond to the
equivalent positions for vortices of the second sublattice.
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(D̂(0)2D̂(1)* 21c.c.) in d int . The phase-locking term is non-
zero, if the relative phasef changes 0 orp under transla-
tions, that is, only for the vortex structures in Figs. 6~a! and
6~b!.42 For the particular form of the interaction~34!, rota-
tional invariance makes the phase-locking term equal to zero
for the coinciding structure@Fig. 6~a!# too. As a result, the
two-quantum structure with a relative displacement between
sublattices on a half lattice basis vector has a minimal energy
for nonzerob2 in the AE model. The phase transition at
HFL is accompanied by time-reversal symmetry breaking,
i.e.,f5p/2.

The phase-locking term forHic exists also in theAB
model, and, as a consequence, the two-quantum vortex lat-
tice has been found to be energetically favorable below
HFL in a wide range of parameters, including those derived
from the experiment.30,8 This prediction for the accidental
degeneracy models is different from what is expected in the
SBF models with a two-component order parameter. The
phase-locking term is absent forHic in this case, and the
three-quantum structure is stabilized.30,42 @The opposite con-
clusion in Ref. 12 is a result of excluding the vortex configu-
ration in Fig. 6~c! from their numerical analysis.#

Evidently, the rotational symmetry of the perfect triangu-
lar lattice is broken in the two-quantum structure. Hence, a
continuous distortion of the lattice should appear below
HFL , which can result even in the stabilization of the square
lattice. The threefold rotational symmetry is preserved in the
vortex structure in Fig. 6~c! and the distortion of the lattice
does not appear below the structural phase transition at
HFL in this case. Therefore, the observation of vortex lattices
other than the perfect triangular one forHic would be im-
portant in order to distinguish between the accidental degen-
eracy models and the SBF scenarios11,12 of the splitting in
UPt3 , because the two groups of models have different vor-
tex structures belowHFL .

B. Magnetic field in the basal plane

Vortex lattices and phase transitions in our model for this
geometry are completely analogous to those in the SBF and
AB models.29,30,8 The spatial dependences of both compo-
nentsa0(r ) andhx(r ) are given by the scaled zeroth Landau
level functions~22! and ~23!. AssumingHi x̂, we construct
the following solution periodic along they axis:

f 0~r 8!;(
m

expF2p irm21
2p

a
imy2

1

2s2
~z2mbsina!2G .

~36!

The distortion parameters is equal tos0 for the a0 compo-
nent and tos1 for the hx component. The energetic param-
eters, which determine the form of the vortex lattice and
phase transition, are

d05~b11b2!
^ua0u4&
^ua0u2&2

, ~37!

d15~b11b2!
^uhxu4&
^uhxu2&2

, ~38!

d int5
b1^ua0u2uhxu2&1 1

2 b2^a0*
2hx

21c.c.&

^ua0u2&^uhxu2&
. ~39!

Being expressed in scaled coordinates (y8,z8), the energy
of solution~36! in the GL approximation coincides with that
in the isotropic case and is independent of the orientation of
vortex lattice in they-z plane. This is in contrast with the
residual twofold rotational symmetry of the system. The
lower symmetry should result in the stabilization of one from
the two most symmetric orientations of the lattice with the
smallest side of the triangle either along they or z axis.
These two configurations are obtained from~36! by substi-
tution of the lattice parametersr5 1

2, s5 (A3/2)s2 and
r5 1

2, s5 (1/2A3) s2, respectively. In conventional aniso-
tropic superconductors the particular lattice orientation is de-
termined by the nonlocal next-order terms in GL functional
or by a small misorientation of the field. Besides that, in
multicomponent superconductors, the above degeneracy is
lifted at fields H,HFL by the admixture of the second
component.8

It is convenient to investigate the phase transition at
H5HFL in scaled coordinates corresponding to the eigen-
state, which has the highest critical field. Then, this solution
is given by ~36! with s51, while the second component is
described by ~36! with s5s1 /s0 for H0.H1 or with
s5s0 /s1 for H1.H0 . The phase-locking term ind int ~39!
plays again an important role in the choice between various
displacements of two sublattices. The explicit expression for
d int can be found in Ref. 8. This term is nonzero either for the
undisplaced lattices@Fig. 6~a!# or for the two-quantum struc-
ture @Fig. 6~b!#.

In contrast to the isotropic case discussed above, the cen-
ter of the triangle is not a special symmetric point. Therefore,
the structure in Fig. 6~c! is not extremal and vortices of the
second sublattice are displaced above and below the pointK,
depending on the relations.1 or s,1. The lower symmetry
lifts also the degeneracy between different displacements on
a half of a lattice basis vector. Namely, the energy of the
two-quantumM1 structure is different from the energy of the
M2 andM3 structures. They depend also on the orientation
of the first lattice, i.e., on the values5 A3/2 or
s5 1/2A3 . Numerical evaluation ofd int with parametersC
and b2 derived from the experiment~see next subsection!
gives stability of theM2 (M3) structure withs5 A3/2 for
s.1 and with s5 1/2A3 for s,1. The same structures
have been found in theAB and SBF models.8,12

Straightforward generalization of the diamagnetic contri-
bution nearHc2 in conventional superconductors

45 yields the
following expression for the magnetic field generated by su-
perconducting currents in our case:

hs52
8pueuK1

\c
~l0ua0u21l1uhxu2!. ~40!

This formula shows that though the gap function of the vor-
tex structure for two displaced sublattices is not invariant
under all elementary translations, the distribution of the mag-
netic field preserves periodicity with one quantum of the flux
per unit cell. As we have mentioned above, for theM struc-
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ture this is due to the existence of combined invariance under
the transformationT̂bRU2 . The same conclusion holds for
Hic as well. Therefore, it is the one-quantum flux lattices
which should be observed in the neutron diffraction measure-
ments in UPt3 .

22 The period multiplication in the vortex
lattice can be found only by phase sensitive techniques.

In addition, the continuous distortion of the lattice, analo-
gous to that discussed in the previous subsection, should ap-
pear belowHFL in all vortex structures, because of the dif-
ferent scaling parameterss for each component. Such an
anomalous field dependence of the anglea was observed by
Kleiman et al.22 at T550 mK for H'c. The prediction in
our model of the distorted hexagonal lattice with the long
triangle side along thez axis forH1.H0 coincides with their
experimental observation. Moreover, the anglea is predicted
to be tan2a51/3(11C), that is, a'21°, which is quite
close to the experimental value. However, we do not try to fit
their results as the experimental errors in the most interesting
range of fields nearHc2 are too large.

C. Comparison with experiment

To compare the calculated lines of phase transitions inside
a mixed state with experimental data,44 one needs to know
the additional phenomenological parameterb2 /b1 . Using
Eq. ~8! we estimate it from the experimental value ofTc

2 as
b250.233b1 . The corresponding phase boundaries forH'

c andHic are plotted in Figs. 4~a! and 4~b!. While the tran-
sition line HFL(T) at T.Tk ~the AB boundary in standard
notations! is fitted quite well for both directions, there is a
significant discrepancy between experimental and calculated
slopes ofHFL(T) at T,Tk ~theBC phase boundary!. Note
that the same discrepancy was found in the framework of the
AB and SBF models.8,12 In order to fit theBC phase bound-
ary for H'c, an additional diamagnetic term of the form
uH•hu2 was assumed for theE1u order parameter in Ref. 12.
However, this explanation seems to be doubtful because the
same discrepancy between theoretical and experimental tran-
sition lines exists also forHic, where this term does not
work.

In addition to ultrasonic data, we have fitted also the
phase diagram of UPt3 obtained from dilatometry46 and
magnetocaloric47 measurements. The derived parameters are
given in Table I. Again three phase boundaries are fitted
rather well, while the experimentalBC line lies always be-
low the calculated curve.

In a tilted magnetic field all three components of the order
parameter appear simultaneously at the upper critical field.
This, however, does not necessarily mean the disappearance
of the phase transition in the vortex lattice belowHc2 . If the
nonzero displacement is energetically preferable, the corre-

sponding breaking of translational symmetry should occur as
a phase transition even in the absence of rotational symmetry
aboutH.

D. Magnetic phase diagram at high pressures

If a magnetic field is applied parallel to thec axis, the
phase diagrams are identical for theAE andABmodels. The
tetracritical point in the H-T plane, which exists at
P,Pcr , shifts to lower fields and higher temperatures with
increasing pressure and disappears atP5Pcr . After that the
phase diagram consists of two smooth nonintersecting lines
Hc2(T) and HFL(T) as shown schematically in Fig. 7~a!.
The extrapolated temperature, at which the curveHFL(T)
crosses theH50 axis, is given by

TABLE I. Parameters deduced from different measurements of
theH-T diagram of UPt3 for a magnetic field oriented in the basal
plane.

Parameter Ref. 46 Ref. 48 Ref. 49

C 1.34 1.27 1.45
b2 /b1 0.233 0.290 0.254

FIG. 7. Different types of the phase diagram of UPt3 at pres-
sures above the critical value:~a! in theAB model, arbitrary direc-
tion of field, and in theAE model, Hic; ~b! in the AE model,
H'c; and ~c! in theE1g model, arbitrary direction of field.
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T*5
T0d12T1d int

d12d int
. ~41!

By replacing spatial averages in expressions ford1 andd int
by 1 in a low-field region, it can be shown thatT* coincides
with the expression forTc

2 in the AB model (P.Pcr) and
with the expression for the temperature of the second transi-
tion ~14! in theAE model if the small parameterb3 is taken
into account in ~32!–~34!. This confirms the previous
assumption16 that the extrapolation of theHFL(T) curve may
be used to determine position of the fourth transition line in
theP-T plane.

The same type ofH-T diagram holds in theAB model
when a magnetic field is applied in the basal plane. However,
for theAEmodel the situation becomes more complicated. If
T1.T0 , the mixing of thehy component to the eigenstate
~23! cannot be neglected in the regionT0,T,T1 . This ad-
mixture leads to the upward curvature ofHFL(T) which goes
directly to Tc @Fig. 7~b!#. A further experimental investiga-
tion of the H-T diagrams forHic and H'c is needed in
order to choose between the two accidental degeneracy mod-
els.

As for the SBF models, the magnetic diagram at high
pressures is expected to be different for models without mix-
ing gradient terms11–14 and for the recent proposal by Park
and Joynt.15 For the latter the phase diagram is the same as
for a perfect hexagonal two-component superconductor,26,30

which is shown in Fig. 7~c!. On the other hand, SBF is used
in the former models not only to splitTc , but also to change
coefficients in gradient terms. This is necessary in order to
have different slopes of critical fields in the absence of mix-
ing gradient terms. Therefore, when the SBF disappears, the
two first solutions of the linearized GL equations for a given
direction of H have exactly the same critical fields near
Tc . Even in the absence of the SBF the diamagnetic term
uH•hu2 may again split critical fields forH directed in the
basal plane. But forHic all these models predict that theBC
transition line and theHc2(T) curve merge. This conclusion
can be modified, in principle, by turning on mixing gradient
terms. For example, in theE2u model such terms are possible
for a noncylindrical Fermi surface.11 However, the splitting
of the critical fields produced by the additional gradient
terms atP.Pcr is of the order of a splitting of the tetracriti-
cal point atP50 and should be very small. The resulting
phase diagram of theE1u andE2u scenarios with merging
transition lines is in a sharp contrast with the earlier thermal
expansion measurements,46 which yield faster suppression of
theBC transition than of theHc2(T) curve atPÞ0, as well
as with a recent direct observation of the inner transition line
for Hic by means of an ultrasonic technique.16 Thus, we
conclude that among different SBF models only the recent
proposal of theE1g order parameter by Park and Joynt15

could satisfy, in principle, theH-T diagram of UPt3 at
P.Pcr for Hic, provided a more careful experimental study
will show the phase diagram like in Fig. 7~c! in contrast to
the observation by Boukhnyet al.16

VI. DISCUSSION

To summarize, we have studied the phase diagram of
UPt3 in the model with two nearly degenerate order param-

eters corresponding to theA1 andE1 irreducible representa-
tions under the assumption of a weak effect of the crystal
lattice on superconductivity. We have reproduced the well-
known magnetic phase diagram with the tetracritical point in
theH–T plane44,46,47and interpreted experimental results on
the behavior of superconducting phases under pressure16 and
in a tilted magnetic field.17

An attractive feature of theAE model with weak-crystal-
field effects in comparison with the other theories is a
smaller number of phenomenological parameters which de-
termine the form of the phase diagram. These two parameters
C and b2 not only give the tetracritical point in theH-T
plane forHic andH'c, but also reproduce roughly the an-
isotropy of the critical fields nearTc . Non-negligible effects
on nonlinear and gradient terms in the GL functional~2!
from the crystal lattice lead to additional parameters, which
might explain the discrepancy between theory and experi-
ment in the behavior of theBC phase boundary.

We have also discussed the features of the phase diagram
of UPt3 which can distinguish unambiguously between dif-
ferent types of superconducting order parameter and between
different hypotheses of theTc splitting. The key experiments
include the following.

~i! Measurement of the phase diagram in a tilted field.17

The existence of the tetracritical point is not affected by a
change in the field direction for theE1u , E2u , andAB mod-
els. In contrast, a slight smearing is expected in theAE
model~see Fig. 5!. In theE1g model such a smearing is most
significant forHic.

~ii ! Measurement of theH-T phase diagram at pressures
~strains! above the critical value after the disappearance of
theTc splitting. The behavior of theHFL(T) phase boundary
for Hic is different for theE1g model on the one hand and
theAB andAE models on the other hand. This line merges
with theHc2(T) curve asP approachesPcr in the E1u and
E2u models.

~iii ! The same forH'c. The inner transition line behaves
differently for theAB andAE models at a low-field region.

~iv! Zero-field properties of the superconducting phase at
P.Pcr are also different in theAB andAE models. For the
former the time-reversal symmetry is preserved, while for
the latter, as well as for the SBF models, the time-reversal
symmetry is broken directly belowTc . A corresponding ef-
fect can be observed, e.g., by muon spin resonance (mSR!
measurements, which showed previously the existence of
spontaneous magnetic moments in the low-temperature
phase atP50.48

~v! Observation of the vortex lattice below theHFL(T)
transition line forHic by means of neutron diffraction scat-
tering. The ‘‘nontriangular’’ forms of the flux lattice would
support one of the two accidental degeneracy models.

As for the small sixfold modulation ofHc2 for magnetic
fields lying in the basal plane,23 this feature may be inter-
preted in the considered model as an interaction of theE1
components of the superconducting order parameter with the
antiferromagnetic momentsuM•hu2. In contrast to the SBF
model,14 we need not assume rotation of magnetic moments
in the basal plane for this. Modulation of the upper critical
field appears as a result of the interaction with the frozen
domain structureM (r ) with three types of antiferromagnetic
domains.
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APPENDIX

Here we calculate the spatial averages for the interaction
parameter~34!. We use the standard procedure45,42 which
consists of a substitution of periodic solutions~35! into ~34!
and an integration over a large rectangle in thex-y plane
ignoring boundary effects~see, e.g., Ref. 8 for more details!.
The interaction parameter is subdivided into two parts

d int5d int
~1!1d int

~2! , ~A1!

whered int
(1) corresponds to the first two terms in~34!, while

d int
(2) is the last phase-locking term. Measuringx0 and y0
components of the displacement betweenf 0(r ) and f̃ 0(r ) in
units ofbcosa andbsina, respectively, we obtain

d int
~1!5

b1

11v2As(
m,n

cos@2prm~n2x0!#

3exp$2ps@m21~n2y0!
2#%

3„11 1
2v2$ 3

42ps@m21~n2y0!
2#

12ps@m22~n2y0!
2#1p2s2@m22~n2y0!

2#2%….

~A2!

Written in this form the parameterd int
(1) possesses an explicit

periodicity with respect to the elementary translations ona
andb. Numerical evaluation of~A2! for two perfect triangu-
lar lattices withr5 1

2 ands5A3/2 givesd int
(1)51.153b1 for

x05y050 @the vortex structure in Fig. 6~a!#;
d int
(1)50.862b1 for x051, y050 @Fig. 6~b!#; d int

(1)50.827b1

for x051, y05
1
3 @Fig. 6~c!#.

The phase-locking term is nonzero only for the vortex
structure with the second sublattice displaced on a half of a
basis vector@Fig. 6~b!#:

d int
~2!5

b2vcos~2f!

11v2 A2s(
m,n

~21!m1ncos~2prmn!

3exp@2ps~m21n2!#@ps~m2n!22 1
2 #. ~A3!

Calculation of the sum yieldsd int
(2)520.089b1 and

f5p/2. Thus, the minimal interaction energy
d int50.774b1 and the highest critical fieldHFL ~30! are
achieved for the two-quantum vortex lattice shown in Fig.
6~b!.
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