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The remanence of a 25325 square-columnar Josephson-junction array with normalized maximum junction
current imax is calculated from the dc and ac Josephson equations, the Ampe`re theorem, and the gauge
invariance. It is shown that with increasingi max the remanence changes from zero to nonzero. The field profile
in the nonzero remanence state has multiple peaks at smallerimax but a single peak at greaterimax, indicating
a transition from the vortex state to the critical state.

I. INTRODUCTION

It is recognized that there is a Josephson vortex~JV!
structure in long Josephson junctions~JJ’s! and large JJ ar-
rays. Similar to the Abrikosov vortex~AV ! in type-II
superconductors,1 an ideal JV presents a field peak contain-
ing a flux quantumF0 which is produced by a current vor-
tex.2 Therefore, in the literature, when a critical state is
found in a JJ system~e.g., in the intergranular matrix of high-
Tc superconductors

3–6!, its origin is frequently attributed to
JV pinning by defects, just like the AV pinning in type-II
superconductors.

On the other hand, there is an advantage in the study of JJ
systems; their electromagnetic properties as a whole can be
thoroughly calculated directly from fundamental principles,
unlike the case of type-II superconductors, where several
phenomenological theories have to be used for different
partial properties, such as thermal equilibrium
magnetization,1,7,8 surface barriers,9 and critical currents.10

Compared with using an analogy between JJ systems and
type-II superconductors, it should be more reliable to study
the critical state in JJ systems by direct calculations. In this
work, we calculate the field profile of a uniform 25325
square-columnar JJ array in its remanence state. We will
show how a vortex state can be changed to a critical state just
by increasing the JJ critical current and describe the features
of both states.

II. MODEL AND CALCULATION

The studied JJ array has the same geometry as that treated
in Ref. 11. Thexy-plane cross section of an array of super-
conducting grains, whosez dimensions are infinitely long,
forms a 25325 square lattice of parametera0 , each grain
being centered at (i , j ), with i51,2, . . . ,25 and
j51,2, . . . ,25. Every two nearest grains are weak-linked by
a JJ, which has a constant maximum dc Josephson current
Imaxand normal resistanceR per meter length.12 Four nearest
grains with a centered void form a square cell; the effective
void area beingAV . We name the gauge-invariant phase dif-
ferences for JJ’s along thex andy axesu i j andq i j , respec-
tively. The index of the phase differencei j for a JJ is defined
the same as one of the two grains weak-linked by it that has
a smalleri or j . The positive currents~and the positive phase

differences! are defined in thex andy directions. Thus, when
external fieldH is applied in thez direction, the following
differential equation system for the 1200 gauge-invariant
phase differences of all JJ’s is built up based on the dc and ac
Josephson equations, and the Ampe`re theorem:

du i j
dt*

522ph1u i j2u i , j112q i j1q i11,j

22p imaxsinu i j ~1< i<24, j51!,

du i j
dt*

52u i , j2112u i j2u i , j112q i j1q i , j212q i11,j21

1q i11,j22p imaxsinu i j ~1< i<24, 2< j<24!,

du i j
dt*

52ph2u i , j211u i j1q i , j212q i11,j21

22p imaxsinu i j ~1< i<24, j525!,

dq i j

dt*
52ph1q i j2q i11,j2u i j1u i , j1122p imaxsinq i j

~ i51, 1< j<24!,

dq i j

dt*
52q i21,j12q i j2q i11,j2u i j1u i21,j2u i21,j11

1u i , j1122p imaxsinq i j ~2< i<24, 1< j<24!,

dq i j

dt*
522ph2q i21,j1q i j1u i21,j2u i21,j11

22p imaxsinq i j ~ i525, 1< j<24!. ~1!

In these equations,t* is the normalized timet to the
nominal time constantt of one cell andh and imax are the
normalizedH and Imax to F0 /m0AV :

t*5t/t5tR/L5tR/m0AV , ~2!
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h5m0AVH/F0 , ~3!

imax5m0AVImax/F0 , ~4!

whereL is the self-inductance of a cell per meter length and
F0 the flux quantum.12

Our aim is to calculate the field in all voids,$Hi j %, nor-
malized toF0 /m0AV whenh50:

hi j5~u i j1q i11,j2u i , j112q i j !/2p ~ i , j51,2, . . . ,24!.
~5!

Its index i j is that of the grain in the same cell with smaller
i and j .

To obtain a solution for the remanence state, we start from
$u i j5q i j50% ($hi j50%), increase stepwiseh from 0 to a
maximum valuehmax and calculate the fully relaxed$hi j %,
and then decrease stepwiseh back to 0 and calculate again
the fully relaxed$hi j %, which is our final solution.

The numerical calculations were performed using a
Runge-Kutta method with smallt* steps between 0.1 and
0.002. To ensure each result to be the fully relaxed one, the
absolute values of all the residual time derivatives of the
phase differences in Eqs.~1! were less thana imax with
a51028 to 10210. Also, as a routine check, we compared
the resulted$hi j % with itself after a 90° and 180° rotation
around the central infinite axis and after a mirror-image op-
eration respect to its midplane and diagonal plane containing

FIG. 1. The intergranular field profiles of the 25325 square-columnar Josephson-junction array at saturated remanence for different
values ofimax. In order to show clearly the profiles and to have a quantitative comparison among them, the scale factors of field are chosen
as 250 for~a!–~c!, 0.5 for ~n!–~p!, and 150, 100, 50, 25, 15, 5, 2.5, 1.5, and 1 for~d!–~m!, successively. It can be observed that JV’s have
almost the same height when their density is low@~b!–~d!#; their height increases with increasing density@~e!–~h!#; and after a central
maximum appears, the maximum field increases with increasingimax @~i!–~p!#. However, this maximum remains the same when
1< imax<1.6 @~n! and ~o!#.
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the axis; the profile has a corresponding symmetry if their
difference is very small.

III. RESULTS

The evolution of the calculatedhi j profile in the rema-
nence state is shown in Figs. 1~a!–1~p! with imax ranging
from less than 0.009 17 to 2. In order to obtain a saturated
remanence state,hmax was set to be 100, except for
imax50.17 and 0.3, wherehmax51 and 10 were used, respec-
tively. If hmax5100, one-step procedures were performed
whenh changed from 0 toh max and fromhmax to 0; but if
hmax51 and 10, many steps as small as 0.01 were used dur-
ing increasingh, although its decrease was also taken to be
one step.

When imax<0.009 17, the solution is always trivial with
hi j50 for every i and j @Fig. 1~a!#. The field profile con-
sists of peaks with practically the same height for

0.009 18< imax<0.1 @Figs. 1~b!–1~h!#. The profiles for
imax>0.17 @Figs. 1~i!–1~p!# have a maximum field at the
center, and have an overall pyramid shape ifimax>0.4 @Figs.
1~k!–1~p!#.

As studied in Ref. 11, the symmetry of the field profiles of
square-columnar JJ arrays is often not complete. Among the
profiles shown in Figs. 1, ten@Figs. 1~a!, ~d–f!, and ~h–p!#
have all four types of symmetry mentioned above. Among
the remaining six, five@Figs. 1~b!, ~c!, and ~g–i!# have 90°
and 180° rotation symmetries only, and the case of
imax50.3 has a unique 180° rotation symmetry. Since the
geometric symmetry of the model configuration requires all
the profiles to have as high degree of symmetry as possible,
we have spent very long computer time to find it. Also,
hmax for imax50.17 and 0.3 has to be reduced quite a bit from
100 for saving time and the number of field steps had to be
increased. We believe that all the plotted results correspond
to those having the highest degree of symmetry possible.

FIG. 1. ~Continued!.
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IV. VORTEX STATE

A. Vortex state

The magnetic properties of uniform JJ’s have been calcu-
lated from the sine-Gordon equation in Ref. 13. The results
can be entirely interpreted in terms of JV’s if both complete
and incomplete JV’s are considered. In other words, such JJ’s
are always in a vortex state. Different from the ideal soliton
JV defined in an infinite JJ and zero applied fieldH as a field
peak containing a flux quantumF0 produced by its current
vortex, theF0 of a complete JV in finite uniform JJ’s is
produced not only by its current vortex but also byH and the
current vortices of the incomplete JV’s on the JJ edges. If
there are several JV’s present in one state, their field peaks
are always identical with the same height and width.

The studied uniform JJ arrays ofimax<0.1 have similar
features to uniform JJ’s, so that they are also in a vortex
state.

B. Comparison with uniform junction and slablike array

The studied square-columnar JJ array is structurally dif-
ferent from the uniform JJ treated in Ref. 13 at least in two
points: ~i! The former is a discrete system with supercon-
ducting JJ’s and normal voids, but the latter is a continuous
JJ system.~ii ! The former is mathematically two dimensional
~2D!, but the latter is one dimensional~1D!. We have studied
a finitely thick, infinitely wide and long slablike JJ array.14

That array is a discrete system like the present square-
columnar array, but its periodical structure with an infinite
width makes it a mathematically 1D system like the uniform
JJ. It will be interesting to compare the three systems in their
JV state.

In the simplest finite 1D system, the uniform JJ, the dc
Josephson equation with gauge-invariant phase difference
leads to the simplest JV structure, as described in Sec. IV A.
This 1D system is the continuous counterpart of one column
of the slablike JJ array. Therefore, the JV structure in the 1D
array should be compared with that in the uniform JJ only for
one column; in the entire array, every current vortex corre-
sponds to an infinite number ofF0 , which results from the
unrealistic infinite array width.14 Changing 1D into 2D and
keeping the same discreteness, the JV in the square-columnar
array returns to the situation of uniform JJ’s, having one
F0 each, since its flux quatization occurs along two perpen-
dicular dimensions.

If we ignore the multi-F0 character of JV in the 1D array,
and consider one column only, we will find that the JV states
in both 1D and 2D JJ arrays have the following common
feature. Defined by a field peak containing oneF0 , the bor-
der of a JV will be almost always across a number of voids,
around which the JJ currents are shared by two adjacent
JV’s. Therefore, unlike in uniform JJ, the JV’s in the array
have a collective meaning, that is, a group of JV’s contains a
number ofF0’s produced by a number of current vortices.

14

Limited by the smallimax values, another significant dif-
ference between the arrays of largeN and uniform JJ’s was
not shown in Ref. 13. It is the appearance of nonzero rema-
nence in discrete systems, which has been studied in Ref. 11
for the square-columnar array. Most profiles present in Fig. 1
are for the nonzero remanence case withimax>0.009 18. In
this sense, we can say that the discreteness extends the field

range to include H50 for JV’s to exist, and if
imax<0.009 17, the JV state in the array is more similar to
the same state in uniform JJ’s.

C. Complete and incomplete vortices

Inspecting the results in Fig. 1, we will find another fea-
ture of the square-columnar array, which is distinct from the
other two JJ systems. Let us study the details of the JV state
at remanence.

The remanence becomes nonzero atimax50.009 18 with a
four-peak profile@Fig. 1~b!#. After a slight increase inimax,
these peaks become closer to the center and surrounded by
another group of four peaks, resulting in an eight-peak con-
figuration@Fig. 1~c!#. Further increasingimax reorganizes the
eight peaks into a circular arrangement and the radius of the
circle shrinks@Figs. 1~d! and 1~e!#. Whenimax is increased to
0.035 and 0.05, a second and third circles of 8 peaks appear,
so that the total peak number becomes 16 and 24, respec-
tively @Figs. 1~f! and 1~g!#. At even greaterimax ~50.1!, the
circular configuration changes into a roughly uniform one
with 64 peaks@Fig. 1~h!#.

Each field peak can contain a complete or fractional
F0 , corresponding to a complete or incomplete JV, respec-
tively. Different from the 1D array, where all the inner JV’s
are complete and all the outer JV’s are incomplete at rema-
nence, we can only say for the 2D array that some inner JV’s
in Fig. 1 are complete and all JV’s the nearest and sometimes
the second nearest to the sides are incomplete. Without a
sudden change in configuration, the fraction increases with
increasingimax.

We give some calculated data to explain this. The fraction
is 0.632 for the four-peak configuration when
imax50.00918@Fig. 1~b!#, but it is only increased to an av-
eraged fraction 0.657 for the eight-peak configuration when
imax50.009 19@Fig. 1~c!#. Thus, the inner four JV’s for the
latter cannot be complete, since otherwise the outer four will
have a fraction of less than 0.32, which contradicts the ap-
pearance of the outer peaks. Therefore, all inner and outer
JV’s are incomplete in Fig. 1~c!. On the other hand, we see
clearly the shrink of an eight-peak configuration in Figs.
1~d!–1~f! with increasingi max from 0.01 to 0.35. The corre-
sponding average fraction increases from 0.644 at
imax50.01 to 0.883 atimax50.02 to 1 atimax50.035 for the
inner JV’s. We judge the last ones to be complete since the
average fraction for all 16 peaks is as large as 0.930, and the
side of each inner JV has no way to be extended to the array
border without passing the outer peak. The situation is simi-
lar for the 24-peak configuration; the average fraction is
0.945 and all the inner JV’s are complete. Whenimax50.1 in
Fig. 1~h!, the relative positions of the peaks are somewhat
similar to Fig. 1~c!, so that among the 64 JV’s with an aver-
age fraction 0.791, the ones the nearest and second nearest to
the boundary are incomplete and the others are complete.

V. CRITICAL STATE

A. Bean-like critical state

The field profiles shown in Figs. 1~i!–1~p! for
imax>0.17 are obviously different from those with smaller
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imax. Instead of a number of peaks of the same height as in
Figs. 1~b!–1~h!, the field at the center has a maximum
height. Especially, ifimax>0.4, there is one peak only, which
is pyramidlike with or without superimposed oscillations on
the four sides.

The pyramid field peak is consistent with the critical-state
model proposed by Bean.15 This model assumes that the vol-
ume supercurrent flows in a hard superconductor with den-
sity J equal to the critical-current densityJc . A region or the
entire superconductor are in the critical state ifuJu5Jc holds
therein. For simplicity, Bean used a constantJc to calculate
magnetization. In this case, the field profile of a square col-
umn at its saturated remanence must be a pyramid with four
planar sides of constant slope since the gradient of field
equals the constantJc owing to the Ampere theorem. Be-
cause the field profiles of the arrays with largerimax have
similar field profiles to that predicted by Bean’s critical-state
model, we call the state in the arrays ofimax>0.4 the Bean-
like critical state.

The critical-state model considers the current to flow con-
tinuously in a critical state, whereas the currents in the array
can only flow through the discrete JJ’s, the actual field profile
in the array should be stepwise, which is not shown in the
figures for simplicity. A big difference between the Bean
critical state and the Bean-like critical state is displayed by
the superimposed field oscillations for the latter whenimax is
not integral@see the oscillations along the slope and parallel
to the border in Fig. 1~k! and parallel to the board in Fig.
1~o!#. Even if the sides are smooth whenimax is integral, the
slopes of the sides are never constant everywhere@see Figs.
1~n! and 1~p! for imax51 and 2, where the slope close to the
four edges is obviously different from that on the major part
of the sides#.

B. Stochastic transition

The significant difference in the field profiles between the
arrays withimax<0.1 andimax>0.4 implies that a transition
occurs when 0.1, imax,0.4. Actually, there is a stochastic
transition in a 1D array of N→`, occurring at
i max5 imax* 50.9716 . . . /2p'0.155.16,17 In such a 1D array,
there is not a general exact current and field periodicity like
in uniform JJ’s, and changes in profile shape can usually be
found if a large number of cells is inspected. Ifimax is very
small, the current and field profiles are quite accurately pe-
riodic within a finite section of a sufficiently large number of
cells. The period corresponds to aF0 , very similar to those
in a continuous uniform JJ, so that JV’s can be well defined.
With increasingimax, departures from such a periodicity will
occur from section to section due to disconnected stochastic-
ity, but the average current is always zero in the entire array,
i.e., the current oscillates between positive and negative over
large intervals. Whenimax is increased toi max* , connected
stochasticity starts to occur and a nonzero average current
becomes possible in the entire array. Further increasingimax
will create possibilities to have a new type of periodical cur-
rent with a nonzero average valuei c , the average critical
current. Since the nonzero-i c state is immerged among many
different possible states in a connected stochastic sea, the
transition occurring ati max5 imax* is referred to as a stochas-
tic transition.

Our results show that although the studied array is a 2D
array with finiteN, a similar stochastic transition also occurs
when 0.1, imax,0.4. Since there can be a nonzeroi c , which
corresponds toJc in the critical-state model, the pyramid
field profiles are expected.

C. Critical-current density

We now compare quantitatively the critical state in our
discrete JJ system with the continuous Bean critical state in
terms of the correlation betweeni c andJc . In the array, the
normalizedJc is j c5 i c /a0 . From Bean’s critical-state calcu-
lation, the normalized maximum field at the center of the
square-columnar array is

hmax5 j cNa0/25 i cN/2, ~6!

and the total flux normalized toF0 is

f5F/F05 i cN
3/6. ~7!

Using these two equations, we calculate the averagei c for
the array fromh max andf obtained from Eqs.~1!. The re-
sults for 0.2< imax<3 are given in Fig. 2, where thei c de-
fined as the average JJ current within one period in the infi-
nite 1D array is also plotted for comparison.16–19We can see
an overall agreement among the three cases. Detailed com-
parison reveals that in most casesi c of the finite 2D array
obtained fromf agrees well withi c of infinite 1D array, but
when imax<0.4 the former is appreciably greater.i c of the
finite 2D array obtained fromhmax is a few percent smaller
than that obtained fromf when imax>1, but they are almost
equal otherwise.

FIG. 2. The averaged critical currenti c as a function ofimax. d,
calculated for infinite 1D array~Refs. 16–19!. n, calculated from
hmax of 25325 2D array using Eq.~6!. h, calculated fromf of a
25325 2D array using Eq.~7!.

53 6583EVOLUTION FROM THE VORTEX STATE TO THE CRITICAL . . .



The perfect pyramid field profile of Bean’s critical state at
remanence is a consequence of static shielding owing to the
Lenz law with a constantJc . The imperfect pyramid field
profile of the Bean-like critical state in the JJ array is a con-
sequence of static shielding owing to the ac Josephson effect
with a roughly constant averageJc .

20 Both the total fluxf
and the maximum fieldhmax are produced by all JJ currents,
so thati c’s calculated from them are the average JJ current
over the JJ array. However, it is better to usei c calculated
from f as the average current of the entire array, since the
local field hmax is more influenced by the stepwise profile
shape. The equal field in the four central voids as seen from
Figs. 1~n!–1~p! makesi c calculated fromh max lower. Thus,
we conclude that whenimax>0.6, the average JJ current in
the 2D array agrees well withi c of the infinite 1D array.
When imax<0.4, the average current is much greater than
i c of the infinite 1D array. This is because the period of JJ
current spans many cells so that the ac Josephson effect can
choose JJ’s with larger currents to be close to the array sur-
face to realize the most effective static shielding. In this case,
obvious circumferential plateaus are present on the sides of
profile, resulting from the current oscillations of large ampli-

tudes. We should mention that if the array size is greater, the
agreement ini c for the three cases will be better forimax
>0.6.

VI. CONCLUSION

The field profile of a 25325 square-columnar Josephson-
junction array has been calculated at saturated remanence.
The profile varies with the nomalized junction critical cur-
rent imax defined by Eq.~4!. If imax<0.1, it contains peaks of
equal height, presenting a vortex state. Ifimax>0.4, it con-
sists of a single pyramid peak, indicating a critical state. The
transition from vortex to critical state in the two-dimensional
array coincides with the stochastic transition in an infinite
one-dimensional Josephson-junction array, and the averaged
critical current of the latter can be used for accurate calcula-
tions of the critical-current density of the former if
imax>0.6.
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