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Evolution from the vortex state to the critical state
in a square-columnar Josephson-junction array

D.-X. Chen, J. J. Moreno, and A. Hernando
Instituto de Magnetismo Aplicado, RENFE-UCM, 28230 Las Rozas, Madrid, Spain

(Received 15 May 1995

The remanence of a 285 square-columnar Josephson-junction array with normalized maximum junction
current i, is calculated from the dc and ac Josephson equations, the rantpeorem, and the gauge
invariance. It is shown that with increasing,, the remanence changes from zero to nonzero. The field profile
in the nonzero remanence state has multiple peaks at smglldsut a single peak at greatgy,,, indicating
a transition from the vortex state to the critical state.

[. INTRODUCTION difference$ are defined in th& andy directions. Thus, when
external fieldH is applied in thez direction, the following
It is recognized that there is a Josephson vortd#x)  differential equation system for the 1200 gauge-invariant
structure in long Josephson junctiol's and large JJ ar- phase differences of all JJ's is built up based on the dc and ac

rays. Similar to the Abrikosov vorteXAV) in type-ll  Josephson equations, and the Amgptheorem:
superconductorsan ideal JV presents a field peak contain-
ing a flux quantum®, which is produced by a current vor- do;
tex.?2 Therefore, in the literature, when a critical state is T ==2mh+6;j— 6, ;11— Fj+ i1
found in a JJ systere.g., in the intergranular matrix of high-
T. superconductors®), its origin is frequently attributed to —2Tinasing;  (lsis24, j=1),
JV pinning by defects, just like the AV pinning in type-II
superconductors. do..
On the other hand, there is an advantage in the study of JJ——l=— 6, . 1 +26,— 6, ;,1— &+ &1~ V111
systems; their electromagnetic properties as a whole can be
thoroughly calculated directly from fundamental principles, + 01— 2mimasSing;  (1sis24, 2<j<24),

unlike the case of type-Il superconductors, where several
phenomenological theories have to be used for different do
artial roperties, such as thermal equilibrium ij_ _ _
%agnetiz;[t)tioﬁﬁ'8 surface barrierg,and critical cur?ent%? gt 2N Ot Ot Vi i
Compared with using an analogy between JJ systems and
type-ll superconductors, it should be more reliable to study
the critical state in JJ systems by direct calculations. In this
work, we calculate the field profile of a uniform 225 d; . ]
square-columnar JJ array in its remanence state. We will g — 27N+ 0ij = Fiv1j = i+ 0; 41— 27 maSind;
show how a vortex state can be changed to a critical state just
by increasing the JJ critical current and describe the features
of both states.

—2mimesSing;;  (1si<24, j=25),

II. MODEL AND CALCULATION dd;;
——= =i 20— OO 01y

*

The studied JJ array has the same geometry as that treatedjt
in Ref. 11. Thexy-plane cross section of an array of super- + 01— 2T maSindy;  (2<i<24, 1<j<24),
conducting grains, whose dimensions are infinitely long, ’
forms a 25<25 square lattice of parametap, each grain
being centered at ifj), with i_:1,2,. ..,25 _ and dﬁzj =—2mh— O 1+ O+ 01— 0 1)1
j=1,2,...,25. Every two nearest grains are weak-linked by dt ' ' '
a JJ, which has a constant maximum dc Josephson current
| max@nd normal resistand® per meter length? Four nearest
grains with a centered void form a square cell; the effective ) . . )
void area being, . We name the gauge-invariant phase dif- N these equations* is the normalized time to the
ferences for JJ's along theandy axes6;; andd;; , respec- nomlngl time constant of one cell andh andi ., are the
tively. The index of the phase differeniefor a JJ is defined normalizedH andl may to @/ poAy:
the same as one of the two grains weak-linked by it that has
a smalleri or j. The positive currenté&@nd the positive phase t* =t/ r=tR/IL=tR/ uAy, 2

—27iggsing; (=25, 1=j=<24). (1)
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h=uAyH/ Dy, 3 To obtain a solution for the remanence state, we start from
16;;=9;=0} ({h;j=0}), increase stepwish from 0 to a
(4 ~ maximum valuehy., and calculate the fully relaxefh;;},
and then decrease stepwiséback to 0 and calculate again
wherelL is the self-inductance of a cell per meter length andthe fully relaxed{h;;}, which is our final solution.

i max= oAV] max/ Po.»

®, the flux quantunt? The numerical calculations were performed using a
Our aim is to calculate the field in all voidét;;}, nor- ~ Runge-Kutta method with smatl steps between 0.1 and
malized to®,/u,Ay whenh=0: 0.002. To ensure each result to be the fully relaxed one, the

absolute values of all the residual time derivatives of the
hij=(0;+ 11— 61— 2w (i,j=12,...,23. phase differences in Eq4l) were less thanwi,, with

(55 a=10"°to 107 Also, as a routine check, we compared
the resultedih;;} with itself after a 90° and 180° rotation
Its indexij is that of the grain in the same cell with smaller around the central infinite axis and after a mirror-image op-
i andj. eration respect to its midplane and diagonal plane containing

A=\
ST
IS ‘

‘\ \§§§“§§
T A RO
ORI
00 S O
RIS
"0‘0’0’:‘:’:‘ >
LI

4 @\""7? W
b

‘4 A\ (4 N
LIS R
\' %“‘:’0
> / \Q“ RIS
AR

/ >
4/'/‘
0 N
NN KOO0
e
S OSIRSS
"'sz“zs“‘
SR

<>
S
v e

Xy
S\
AL\
\\\\{?j\}%‘Q

A

) AR

N
W

'S ‘\;\\‘
NI RTINS A 7)) (3
AT LN 2D IR N
TAFAL AL > v Z/ ' N7 P\ WAVAN S eSS
G LAL 2NN Y, \‘Q““'
LA ’\\ SRS, 2 XXL] XGRS
LR AN AR 27582 W) R
LA TN RIS SoS LA B NSRS
L SRS LTINS
TS HLS
0.:23&

ey

ARG A
MOCTRANSAAN,
DM

4 A

LRI
LR
ll“‘\

FIG. 1. The intergranular field profiles of the 225 square-columnar Josephson-junction array at saturated remanence for different
values ofi ,. In order to show clearly the profiles and to have a quantitative comparison among them, the scale factors of field are chosen
as 250 for(a)—(c), 0.5 for (n)—(p), and 150, 100, 50, 25, 15, 5, 2.5, 1.5, and 1(f)~(m), successively. It can be observed that JV's have
almost the same height when their density is @) —(d)]; their height increases with increasing dengi®)—(h)]; and after a central
maximum appears, the maximum field increases with increasipg [(i)—(p)]. However, this maximum remains the same when
1<ipnx=1.6[(n) and(0)].
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FIG. 1. (Continued.

the axis; the profile has a corresponding symmetry if thein.009 18<i,,,<0.1 [Figs. Xb)—1(h)]. The profiles for
difference is very small. imac0.17 [Figs. Xi)—1(p)] have a maximum field at the
center, and have an overall pyramid shapg,if=0.4 [Figs.
IIl. RESULTS 1k-1p)]. _ _
As studied in Ref. 11, the symmetry of the field profiles of
The evolution of the calculatel;; profile in the rema- square-columnar JJ arrays is often not complete. Among the
nence state is shown in Figs(al-1(p) with ina ranging  profiles shown in Figs. 1, tefFigs. 1a), (d-f), and (h—p]
from less than 0.009 17 to 2. In order to obtain a saturatethave all four types of symmetry mentioned above. Among
remanence stateh,,,, was set to be 100, except for the remaining six, fivgFigs. 1b), (c), and(g—i)] have 90°
imax=0.17 and 0.3, wherk,,,= 1 and 10 were used, respec- and 180° rotation symmetries only, and the case of
tively. If hp,—100, one-step procedures were performed ,,=0.3 has a unique 180° rotation symmetry. Since the
whenh changed from 0O td o and fromh, to O; but if  geometric symmetry of the model configuration requires all
hmax=1 and 10, many steps as small as 0.01 were used duthe profiles to have as high degree of symmetry as possible,
ing increasingh, although its decrease was also taken to beve have spent very long computer time to find it. Also,
one step. Nmax for imax=0.17 and 0.3 has to be reduced quite a bit from
Wheni,,,=0.009 17, the solution is always trivial with 100 for saving time and the number of field steps had to be
hi;=0 for everyi andj [Fig. 1(a)]. The field profile con- increased. We believe that all the plotted results correspond
sists of peaks with practically the same height forto those having the highest degree of symmetry possible.
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IV. VORTEX STATE range to include H=0 for JV's to exist, and if
imax=0.009 17, the JV state in the array is more similar to

the same state in uniform JJ’s.
The magnetic properties of uniform JJ's have been calcu-

lated from the sine-Gordon equation in Ref. 13. The results

can be entirely interpreted in terms of JV's if both complete C. Complete and incomplete vortices

and incomplete JV’s are considered. In other words, such JJ’s Inspecting the results in Fig. 1, we will find another fea-
are always in a vortex state. Different from the ideal soliton; ;.o of the square-columnar array,,
JV defined in an infinite JJ and zero applied fieldas a field
peak containing a flux quantudhy produced by its current

vortex, thed, of a cpmplete JV in finite uniform JJ's is The remanence becomes nonzer,ai=0.009 18 with a
produced not only by its current vortex but alsotyand the our-peak profileFig. 1(b)]. After a slight increase iz,
current vortices of tr]e mcomplgte JV's on the ‘_]‘] _edges. I{hese peaks become closer to the center and surrounded by
there are several JV's present in one state, their field peakg,iher group of four peaks, resulting in an eight-peak con-
are always identical with the same height and width. figuration[Fig. 1(c)]. Further increasing,, reorganizes the
The studied uniform JJ arrays 0fa=0.1 have similar — gjgnt peaks into a circular arrangement and the radius of the
features to uniform JJ’s, so that they are also in a vortex; o shrinkgFigs. 1d) and Xe)]. Wheni . is increased to
state. 0.035 and 0.05, a second and third circles of 8 peaks appear,
so that the total peak number becomes 16 and 24, respec-
tively [Figs. 1f) and 1g)]. At even greater ,, (=0.1), the
The studied square-columnar JJ array is structurally difcircular configuration changes into a roughly uniform one
ferent from the uniform JJ treated in Ref. 13 at least in twowith 64 peakdFig. 1(h)].
points: (i) The former is a discrete system with supercon- Each field peak can contain a complete or fractional
ducting JJ's and normal voids, but the latter is a continuougb, corresponding to a complete or incomplete JV, respec-
JJ system(ii) The former is mathematically two dimensional tively. Different from the 1D array, where all the inner JV's
(2D), but the latter is one dimensiondID). We have studied are complete and all the outer JV's are incomplete at rema-
a finitely thick, infinitely wide and long slablike JJ arrdy. nence, we can only say for the 2D array that some inner JV’s
That array is a discrete system like the present squaren Fig. 1 are complete and all JV’s the nearest and sometimes
columnar array, but its periodical structure with an infinitethe second nearest to the sides are incomplete. Without a
width makes it a mathematically 1D system like the uniformsudden change in configuration, the fraction increases with
JJ. It will be interesting to compare the three systems in theincreasingi pax-
JV state. We give some calculated data to explain this. The fraction
In the simplest finite 1D system, the uniform JJ, the dcis 0.632 for the four-peak configuration when
Josephson equation with gauge-invariant phase differendg,,,=0.00918[Fig. 1(b)], but it is only increased to an av-
leads to the simplest JV structure, as described in Sec. IV Aeraged fraction 0.657 for the eight-peak configuration when
This 1D system is the continuous counterpart of one columm,,,,=0.009 19[Fig. 1(c)]. Thus, the inner four JV's for the
of the slablike JJ array. Therefore, the JV structure in the 1Datter cannot be complete, since otherwise the outer four will
array should be compared with that in the uniform JJ only forhave a fraction of less than 0.32, which contradicts the ap-
one column; in the entire array, every current vortex correpearance of the outer peaks. Therefore, all inner and outer
sponds to an infinite number d#,, which results from the JV’s are incomplete in Fig.(t). On the other hand, we see
unrealistic infinite array width* Changing 1D into 2D and clearly the shrink of an eight-peak configuration in Figs.
keeping the same discreteness, the JV in the square-columnbd)—1(f) with increasing .« from 0.01 to 0.35. The corre-
array returns to the situation of uniform JJ's, having onesponding average fraction increases from 0.644 at
®, each, since its flux quatization occurs along two perpent .= 0.01 to 0.883 at,5,=0.02 to 1 ati ,,,,= 0.035 for the
dicular dimensions. inner JV's. We judge the last ones to be complete since the
If we ignore the multid, character of JV in the 1D array, average fraction for all 16 peaks is as large as 0.930, and the
and consider one column only, we will find that the JV statesside of each inner JV has no way to be extended to the array
in both 1D and 2D JJ arrays have the following commonborder without passing the outer peak. The situation is simi-
feature. Defined by a field peak containing cbg, the bor- lar for the 24-peak configuration; the average fraction is
der of a JV will be almost always across a number of voids0.945 and all the inner JV's are complete. Whgg~=0.1 in
around which the JJ currents are shared by two adjaceriig. 1(h), the relative positions of the peaks are somewhat
JV’s. Therefore, unlike in uniform JJ, the JV's in the array similar to Fig. Xc), so that among the 64 JV's with an aver-
have a collective meaning, that is, a group of JV’s contains age fraction 0.791, the ones the nearest and second nearest to
number of®’s produced by a number of current vortics. the boundary are incomplete and the others are complete.
Limited by the smalli ,,,, values, another significant dif-
ference between the arrays of lafyeand uniform JJ's was
not shown in Ref. 13. It is the appearance of nonzero rema- V. CRITICAL STATE
nence in discrete systems, which has been studied in Ref. 11
for the square-columnar array. Most profiles present in Fig. 1
are for the nonzero remanence case Wjth=0.009 18. In The field profiles shown in Figs. (2—1(p) for
this sense, we can say that the discreteness extends the figjg,=0.17 are obviously different from those with smaller

A. Vortex state

which is distinct from the
other two JJ systems. Let us study the details of the JV state
at remanence.

B. Comparison with uniform junction and slablike array

A. Bean-like critical state
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imax- INstead of a number of peaks of the same heightasin 3 ————7—+—+—++—+——
Figs. 1b)—1(h), the field at the center has a maximum L P
height. Especially, if ,,,=0.4, there is one peak only, which )
is pyramidlike with or without superimposed oscillations on
the four sides.

The pyramid field peak is consistent with the critical-state - <
model proposed by Bedn This model assumes that the vol- ol covemesemmemes 1
ume supercurrent flows in a hard superconductor with den- i ana
sity J equal to the critical-current densifl;. A region or the -
entire superconductor are in the critical statgl|f=J. holds o
therein. For simplicity, Bean used a constdptto calculate - T s T
magnetization. In this case, the field profile of a square col- - b .
umn at its saturated remanence must be a pyramid with four |
planar sides of constant slope since the gradient of field
equals the constanl, owing to the Ampere theorem. Be- o
cause the field profiles of the arrays with lardgr, have i e )
similar field profiles to that predicted by Bean’s critical-state - [ ]
model, we call the state in the arraysigf,=0.4 the Bean- L g i
like critical state. ol®™

The critical-state model considers the current to flow con- 0 1 2 3
tinuously in a critical state, whereas the currents in the array lmax
can only flow through the discrete JJ’s, the actual field profile
in the array should be stepwise, which is not shown in the FIG. 2. The averaged critical curreiptas a function of . ®,
figures for simplicity. A big difference between the Bean calculated for infinite 1D ar_raj{Refs. 16-1%9 A, calculated from
critical state and the Bean-like critical state is displayed bymax Of 25x25 2D array using Eq(6). [, calculated froms of a
the superimposed field oscillations for the latter whgg is ~ 22<2° 2D aray using Eq(7).

not integral[see the oscillations along the slope and parallel . )
to the border in Fig. (k) and parallel to the board in Fig. Our results show that although the studied array is a 2D

1(0)]. Even if the sides are smooth whif, is integral, the ~ array with finiteN, a similar stochastic transition also occurs
slopes of the sides are never constant everywfsme Figs. When 0.Kin,<0.4. Since there can be a nonzegpwhich
1(n) and Xp) for i =1 and 2, where the slope close to the qorrequnds tal, in the critical-state model, the pyramid
four edges is obviously different from that on the major partfield profiles are expected.

of the side$

C. Critical-current density

B. Stochastic transition We now compare quantitatively the critical state in our
The significant difference in the field profiles between thediscrete JJ system with the continuous Bean critical state in
arrays withi ,,,,<0.1 andi,=0.4 implies that a transition terms of the correlation betweepandJ.. In the array, the
occurs when 0&i,,,<0.4. Actually, there is a stochastic normalizedl. is j.=i./ao. From Bean’s critical-state calcu-
transition in a 1D array of N—o, occurring at lation, the normalized maximum field at the center of the

i max=1%54=0.9786 . .. /27~0.1552%"In such a 1D array, Square-columnar array is

there is not a general exact current and field periodicity like
in uniform JJ’s, and changes in profile shape can usually be hmax=JcNag/2=i:N/2, (6)

found if a large number of cells is inspected. |f, is very
small, the current and field profiles are quite accurately pe-
riodic within a finite section of a sufficiently large number of
cells. The period corresponds tolg, very similar to those 3
in a continuous uniform JJ, so that JV’s can be well defined. ¢=/Do=icN/6. @)

With increasing .y, departures from such a periodicity will

occur from section to section due to disconnected stochastic- Using these two equations, we calculate the averager

ity, but the average current is always zero in the entire arraythe array fromh ., and ¢ obtained from Eqgs(1). The re-

i.e., the current oscillates between positive and negative ovejults for 0.2<i,,,,<3 are given in Fig. 2, where thig de-
large intervals. When,, is increased td%,.,, connected fined as the average JJ current within one period in the infi-
stochasticity starts to occur and a nonzero average currenite 1D array is also plotted for comparistiil®wWe can see
becomes possible in the entire array. Further increaisigg an overall agreement among the three cases. Detailed com-
will create possibilities to have a new type of periodical cur-parison reveals that in most cadgsof the finite 2D array

rent with a nonzero average valiig, the average critical obtained from¢ agrees well with . of infinite 1D array, but
current. Since the nonzeig-tate is immerged among many wheni.,.<0.4 the former is appreciably greatér. of the
different possible states in a connected stochastic sea, tliimite 2D array obtained fronh,,,, is a few percent smaller
transition occurring ak .= i max IS referred to as a stochas- than that obtained frorg wheni .= 1, but they are almost

tic transition. equal otherwise.

and the total flux normalized td is
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The perfect pyramid field profile of Bean’s critical state attudes. We should mention that if the array size is greater, the
remanence is a consequence of static shielding owing to thegreement ini; for the three cases will be better foy,,y
Lenz law with a constani,. The imperfect pyramid field =0.6.
profile of the Bean-like critical state in the JJ array is a con-
sequence of static shielding owing to the ac Josephson effect VI. CONCLUSION
with a roughly constant averagk .?° Both the total flux¢
and the maximum fieldh, 5, are produced by all JJ currents,
so thati.'s calculated from them are the average JJ curre
over the JJ array. However, it is better to ugecalculated
from ¢ as the average current of the entire array, since th
local field h,,, is more influenced by the stepwise profile
shape. The equal field in the four central voids as seen fro
Figs. 1n)-1(p) makesi, calculated fromh ., lower. Thus,

The field profile of a 2% 25 square-columnar Josephson-
junction array has been calculated at saturated remanence.
he profile varies with the nomalized junction critical cur-

éentimaxdefined by Eq(4). If i h2=0.1, it contains peaks of
equal height, presenting a vortex statei }f,=0.4, it con-
ists of a single pyramid peak, indicating a critical state. The
ransition from vortex to critical state in the two-dimensional
we conclude that wheit,,=0.6, the average JJ current in array _coinci_des with the stoghast'ic transition in an infinite
one-dimensional Josephson-junction array, and the averaged

:/r\]/iezn[? arr<a%/ jgrtﬁzsa\\//frl;v‘gt%u?:emeismrfT:TJI::i 1?(9;233{['% critical current of the latter can be used for accurate calcula-
. max= - ge cu gree Nions of the critical-current density of the former if
i of the infinite 1D array. This is because the period of ‘]‘1| ~06

current spans many cells so that the ac Josephson effect cdP™*

choose JJ’s_ with larger currents to b_e clqse to the array sur- ACKNOWLEDGMENTS
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