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Spin-glass and antiferromagnet critical behavior in a diluted fcc antiferromagnet
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We report on a Monte Carlo study of a diluted Ising antiferromagnet on a fcc lattice. This is a typical model
example of a highly frustrated antiferromagnet, and we ask whether sufficient random dilution of spins does
produce a spin-glass phase. Our data strongly indicate the existence of a spin-glass transition for spin concen-
tration p<0.75: We find a divergent spin-glass susceptibility and a divergent spin-glass correlation length,
whereas the antiferromagnetic correlation length saturates in this regime. Furthermore, we find a first-order
phase transition to an antiferromagnet foef>0.85, which becomes continuous in the range 0.85
>p>0.75. Finite-size scaling is employed to obtain critical exponents. We compare our results with experi-
mental systems as diluted frustrated antiferromagnets as Em,Te.

I. INTRODUCTION where the phase transition becomes continuous. The antifer-

The family of diluted magnetic semiconductdB3MS) of romagnetic order in the regimee [0.75,0.83 is truly long
range, however, below~0.75 a transition to a short-range

the general formA]_ Mn,B"' encompasses a wide variety
of alloys which have been under extensive investigation dur9rdered phase seems to apgﬁegar.
ing the past 15 years. These alloys form a zincblende struc- B€/0W p=0.7 most experimental results have led to the
ture, where the8”' element occupies one fcc lattice while view that one encounte_rs a transition to a spm-gl:_;ls_s-llke
Al and Mn share the second fcc lattice. One fundamentdphase at a fairly well-defined temperatdre. Characteristic
aspect of research has focused on the magnetic order of the%@'”'%elllss_ features ar@) remanence effects in the frozen
systems, since they offer practical examples of strongly frusstate,” (i) a pronounced cusp in the susceptibility around
trated, randomly diluted three-dimensional fcc Heisenberd ¢ (Ref. 12 with strong frequency dependence of the cusp
antiferromagnets(AFM) with dominant nearest-neighbor temperaturé; (iii) absence of long-range spin order as ob-
interaction? served by magnetic neutron diffractiBrijv) dynamic scal-
In this paper we present results of a Monte Carlo study ofng nearT, of frequency-dependent response functioH?
a diluted frustrated Ising model on a fcc lattice given by theand, most importantlyyv) a divergent nonlinear susceptibil-
Hamiltonian ity around the cusp temperatufre.
On the other hand, the antiferromagnetic correlation
1 with prob. p length&,ry grows continuously with decreasing temperature
N until it saturates at the cusp temperature to an enormously
large value as high as 70 A @=0.7; it is only below

Here,J is the coupling constant, which we will sét —1 p=0.4 that short-range AFM order disappears. In the inter-
henceforward, ang [0,1] is the probability that a lattice Mediate dilution range e (0.4,0.7) the spin-glass interpre-
sitei is occupied with an Ising spis . We are interested in tation has been questioned, and it was suggested btiéty
the static properties of this model for different dilution re- the basis of an “activated” scaling analysihat the equilib-
gimes. Besides the pur@€ 1) and the slightly diluted case rium transition atT. was to the antiferromagnetically or-
(p~1), that has already been studied by Monte C&i&) dered state of a random-field system.
simulatiorr—° and other method’ we concentrate our inter- ~ This motivates a numerical study of a diluted antiferro-
est on the strong dilution regime, which has only been invesmagnet, in which we can observe the interplay of strong
tigated in experimental Heisenberg systems as mentione8lFM local order with spin-glass order, and can measure the
above. Although in our work we perform a simulation of an quantities now considered to be the signatures for spin-glass
Ising system we find that some typical DMS results can bdransitions. Because Heisenberg model simulations demand
reproduced with our simplified model. more computer time, and because of the more convoluted
Neutron diffraction experiments of thin Zn,Mn Te  controversies regarding the existence of a sharp phase tran-
films for pe[1.0,0.89 revealed a first-order phase transition sition for continuous spins, we adopt here an Ising model; in
to an antiferromagnetically ordered state of “type I At addition, we have retained only the first-neighbor exchange
approximately p=0.85 a tricritical point is encountered, interaction.

H=—] €SS, L= ]
UE,D CI€S% €T 0 with prob. 1-p.

0163-1829/96/53.0)/654311)/$10.00 53 6543 © 1996 The American Physical Society



6544 WENGEL, HENLEY, AND ZIPPELIUS 53

The paper is organized as follows: Section Il is concerned i 1 _
with the main theoretical arguments that guide our expecta- M.=N > exp(—i ri-K,)s (2
tions for the results of our simulations in the distinct dilution '
regimes. In particular, we discuss the possible universality
class of the proposed spin-glass phase. Section Ill describéer w«=1,2,3; here the ordering wave vectors are
technical aspects of our simulations, in particular the equilik;=(7,0,0) and cyclic permutatiorisve have taken the lat-
bration criterion. In Secs. IV=VI we present representativetice constant to be unijy
data for the distinct dilution regimes. In Sec. IV we concen-
trate on the pure case and on weak dilutign-(1), where
we investigate how the order of the transition is being modi-
fied by disorder in form of stochastically removing spins  Dilution in frustrated system@vithout any external field
from the lattice. Section V is concerned with the regimecouples to the order parameter as a random field does in a
p=0.8, where a continuous phase transition with AFM or-ferromagnet>'® Take the case of rather weak dilution,
dering is found; critical exponents are determined by finite-which justifies assumingas a sort of variational statene of
size scaling. Section VI investigates the intermediate anthe six (100)-type ground states. Consider the effect of
strong dilution range [fe[0.3,0.7), where the question of strengthening ondond lying within the xy plane: it will
the magnetic ordering is our main concern. A summary of thédavor the four states wit{100) and (010 ordering wave
results, a comparison to experimental systems, and our finakectors and disfavor the two wittb01) wave vectors, since
conclusions will be given in Sec. VII. the bond in question is violated in tli@01) states. The effect
is much like a random field, except that it does not destroy
the global up/down symmetry. In our casesite dilution, the
Il. THEORETICAL BACKGROUND random-field-like effects of removing an isolated site cancel
] ) o ) each other; however, removingpair of siteshas the same
In this section, we collect the qualitative expectations forgffect as would strengthening the bond between tR.

all the different concentration regimes expected in the phase Quite generally, when the random field is sufficiently
diagram. As with the results in the subsequent sections, Wetrong, the first-order transition is converted to a continuous
begin by reviewing the pure case and proceed in the direcone?”|n the present context, since the effective random field
tion of greater dilution. The global phase diagram is qualitagrows with dilution, this argument predicts a tricritical point:
tively similar to those conjectured farector spins in Refs.  he ordering transition is first order fgr>p,; but becomes
18 and 19, except of course that distinctive collinear anggntinuous fop<py; .28
noncollinear phases cannot exist in the Ising case. For p<py; the transition from the paramagnet is expected
to be a novel universality clagélt would seem plausible if
its dynamic scaling behavior were of the “activated” type, as
in the random-field Ising model. No experiments have tested
The pure Ising antiferromagnet on a fcc lattice has beethis, however.(The materials in this concentration range,
extensively studied both analytically and with simulations.roughly 0.<p<0.85, can be grown only as thin epitaxial
Each spin has 12 nearest neighbors which in the ground stagiabs, meaning that very little signal is available for suscep-
can only satisfy eight bonds, four of them being always vio-tibility experiments) A claim was made that “activated”
lated. This effect of frustration, which follows from the tri- scaling could fit the data for lower values ofp, which we
angles in the fcc lattice, leads to a large ground-statevould identify as the spin-glass phase, but this was quickly
degenerad of the orderO(2%), whereL denotes the linear corrected-31516
extent of the system. Thus the entropy per spin is zero as When the “effective random fields” are sufficiently
L—o0, strong, the antiferromagnetic order disappears and is re-
At small temperatures in this system, thermal fluctuationglaced by spin-glass order at a critical vapie.?® Note that
generate free energy terms which have the same effect disis threshold to propagate AFM order is far above plef
ferromagnetic second-neighbor interactions: this favors thgeometrical percolation for propagating connectivity of
“type-1" AFM order, meaning that the system orders into nearest-neighbor sité8.(On the fcc latticep,=0.1953%
one of the six periodic ground states with{ H00)-type or-
dering wave vectdt. This is an example of what Villain )
called “ordering due to disorder’ C. Spin-glass phase
The discrete choice between the th¢d®0)-type direc- Any spin glass, by definition, requires random frustration.
tions suggests a similarity in behavior to the three-state PottShis can be realized by dilution of a uniformly frustrated
model, which has a weakly first-order phase transition inantiferromagnet, as in the present case, just as well as by a
three dimensions. Indeed, the-4 renormalization group random mix of ferromagnetic and antiferromagnetic
predicts a first-order phase transitidnSimulation§>**and  interaction€! Indeed, the effective coupling between two
series expansioﬁs:onfirm that the phase transition is at fi- spins may be ferromagnetic or antiferromagnetic depending
nite temperature and is of first order. on how intervening sites happen to be occupied. Of course,
The antiferromagnetic state may be handled quantitativelyhis spin-glass state is expected to show residual short-range
by constructing(in the spirit of Ref. 24 a three-component correlations as opposed to the cases of thkor Gaussian
staggered-magnetization order parameterTI(mlT,sz, random bond distributions, where symmetry implies that
m4) with components [(sis;)]=0 if i#].

B. Weak dilution: Random-field effects

A. Pure fcc Ising antiferromagnet
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It is intriguing that this “spin-glass” state, which occurs A standard criterion by Bhatt and Youtfgvas applied to
below p,, from the viewpoint of the antiferromagnetic test the equilibration of the systems throughout the whole
phase, is the same as the disordered domain state which sgnulation, where we observe a continuous phase transition.
favored by the “effective random fields” mentioned abo%e. The procedure is to obtain two estimates of the spin-glass
This state is different from the familiar random-field disor- phase indicator, the spin-glass susceptibility
dered statéand similar to the usual spin-glass sjatecause
the global up/down symmetry is preserved; consequently, for :iz [(s:5))%] &)
p<p, there is still a true phase transition in which this sym- Xsem < LSS/

metry is broker®
y Here and later, the brackets- -) denote thermal averaging

and[ - - -] configurational averaging. We obtajnyg by cal-
culating the second moment of the spin-glass order param-
In a concentration rang@{<p<p, ), the ground state is eter defined in two alternative way§) as the overlap
presumed to be a spin glass. Spin-glass investigations tend
still to be preoccupied with the issue of the existence of a
transition as a function of dimension, external field, and spin
type. Indeed, it is still unsettled whether tte=3 Ising spin
glass really has a transition at finite temperature, or wheth
it is at the lower critical dimensionalifi#*® Rather little has 1
been done to test the universality of the critical exponents, as Qe (t,to) = _E Si(to+t)si(to+t+t’). (5)
almost all simulations have used simple cuksc) lattices N4
with the discrete=J distribution of random bonds. Monte
Carlo and series studies for the fcc lattice with) bonds®
gave values of the spin-glass exponentsy, andy consis-
tent with the sctJ model; so did thaliluted +=J model on
a simple cubic lattic¥ and (modulo large error bays
Gaussian-distributed random bonds on the simple cubi
lattice3* The above results are consistent with universality. @

D. Universality

1
dudtito) = 2 87 (to+ 08 (o D) @

@nd (i) as the autocorrelatiofself-overlap

Here,s!") ands® denote two sets of spingeplicag with
the same set of occupied sites and uncorrelated initialization
andt, is the time initially used for equilibration.

With these definitions, we can compute two estimates of
¥scas follows, i.e.,
2
However, it has also been proposed thais more negative X'sg= > } (6)
and the Binder cumulant is larger for Gaussian bond random- .
ness than for= J randomnes&® presumably the diluted fcc is respectively. the four-spin correlation function
more similar to the latter model, since its discrete random!€SPECUVEY: ur-spi lon function,
1 2
<N > } (7)

ness generically allows exact degeneracy of ground states.
We now consider the approagh—p., where the spin- where(---),= (1/7) 2](---), andr=t,.
glass long-range order finally disappears. In this regime, the The equilibration timet, was raised on a logarithmic
order is just barely propagating along tortuous, effectivelyscale and we only accepted a run, if both estimateg <f
one-dimensional paths, and consequently we expgetO  agreed after this time within certain limits, typically of the
(exponentially as p— p¢.%*% order of 5% of their joint mean value. The longest runs per-
Note thatp.>p. . In frustrated models with discrete bond formed were up to X10° Monte Carlo steps per spin
distributions, such as the present case, two portions of a cofMCS). Most of the simulations were performed on HP
nected cluster might be connected ®ay two chains of workstations at the Institut fuTheoretische Physik, Gin-
bonds, each canceling the other and allowing one portion tgen and on the Intel-Paragon parallel computer at thehHo
be flipped relative to the other portion at no cost in energystleistungsrechenzentrumlidé. The program was parallel-
for propagation of order, it is as if no chain existed, i.e., theized by using Pvm 3.2 softwaré” in order to simulate many

effective concentration of bonds is lowered by the cancellasystems simultaneously.
tions.

<%(Z siP(te+1)s!? (to+1)

(b) _

X'sG= ZI Si(tot+1)si(2tg+1)

E. Theory of p; (spin glass near percolatiof

IV. FIRST-ORDER ANTIFERROMAGNETIC TRANSITION
lIl. TECHNICALITIES (WEAK DILUTION )

We use the single-spin-flip Monte Carlo Metropolis algo- In this section we investigate the pure AFM and the
rithm in our simulations. Spins are updated sequentially anglightly diluted regime, i.e.pe[0.85,1.0. We wish to de-
randomly. Periodic boundary conditions are imposed, limit-termine the order of the phase transition and how the order of
ing the possible lattice sizes to even numbers. Spins are reghe transition is changed by introducing disorder into the
resented on a cubic lattice with next-nearest-neighbor intersystem in the form of slight stochastic dilution. The magnetic
actions to obtain a fcc lattice. Therefore, every lattice oforder in this regime is clearly antiferromagnetic, consistent
linear sizeL containsN=L3/2 sites. We simulated lattice with earlier simulations, and shall be more closely examined
sizesL=4,6,8,10 withM~120 realizations of the disorder in Sec. V.
and L=16 with M=40. We investigate the model in the  The pure antiferromagnet on a fcc lattice is known
concentration rangp[0.3,1.7. to wundergo a temperature-driven first-order phase
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FIG. 1. Internal energy density versus temperature fqr= 1.
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An important quantity for a first-order phase transition is

the internal energy density

[(e)]=

=)
m & EiijiSj

2.0

2.2

as mentioned in the previous section. Early
Monte Carlo simulations by Grest and Galkds well as

GiebultowicZ® reported a change from a first order to a con-
tinuous phase transition upon dilution. Grest and Gabl lo
cated the tricritical point at a critical concentratiqm;

=0.93 using Ising spins, whereas Giebultowicz found
slightly lower p = 0.85 with a Heisenberg-spin simulation.
However, in both of those simulations, no averaging over the
disorder was performed, so that we reinvestigated this r

53

to be continuous. Apparently, a tricritical point is hard to
locate with these Monte Carlo data, since it is not clear
whether in the limit of smaller temperature steps and larger
systems the transition will turn out to be continuous or not.
In order to determine the tricritical concentration more effi-
ciently we used a method introduced by Lee and Kostefitz,
which is based on a histogram algorithm by Ferrenberg and
Swendserf?

A. Histogram algorithm and finite-size scaling analysis method

This method® uses one long Monte Carlo run to estimate
the free energy at several temperatures closg toDuring
the runs a histogram of the internal energy densitg ac-
cumulated . This histogram serves as an estimate of the equi-
librium energy distributionafter correct normalization

1
Ps(e)= Z—ﬁeXp[S(e)—Be]- 9
Here,Z; is the partition function at the inverse temperature
B=1KkgT and S(e) is the entropy. Notice tha® z(e) (9) is
proportional to exp—BF(e)], whereF denotes the free en-

ergy. The distributiorP 5(€) can now be used to generate the
distribution [and consequently(e)] at a different inverse

atemperatureﬁ’ in the vicinity of g.

We are interested in the situation in whiEtfe) has two
minima e; ande, [i.e., (9) has maxima at these enerdies

Sthe temperature at whidh(e;,L)=F(e,,L) is taken to be

the effective critical temperature for the given slzeThen
we evaluate the “gap”AF=F(ey,)—F(e;,) between the
free energy values at those two energies and at the maximum
e in between them. From a scaling analysisAéf, one can
identify whether a phase transition is first orffer.

A state withee[e;,e,] consists of a domain of ordered

At the critical temperature, this quantity indicates a first-@nd @ domain of disordered phase coexisting, separated by a

order phase transition by a discontinutsitent heat, which

(d—1)-dimensional interface surrounding the droplet of mi-

can be seen in Fig. 1, whefée)] is plotted versus tempera- NOrity phase. Therefore, one can expand the free energy

ture T; with increasing lattice size a pronounced discontinu-
ity at the transition temperature can be observed, revealing

clearly a first-order transition.

F(e,L)=L%y(e)+LI"f,(e)+O(LI"?), (10

where the bulk free energy density is minimal and con-

In Fig. 2 we present our data of the internal energy denstant forec[e;,e,] and the surface terrf, is maximal at
sity for p=0.9. For this concentration the transition appearse; <e,,<e,. Expansion(10) is valid for any first-order
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FIG. 2. Internal energy density versus temperaturepfer0.9.

2.6

phase transition, as long as the correlation lerggth_. At

the critical temperaturé remains finite, so that for suffi-
ciently largeL the appearance of a free energy gsp in-
dicates a first-order transition; for smal ¢ the free energy

is dominated by the bulk term. As the system approaches a
tricritical point, & grows and the double minima structure can
only be seen for largk. At a tricritical point and beyond it,

the phase transition is continuous and hence there is no
double minimum structure for anly.

B. Results

To obtain good statistics, we took histogram data every
10th MCS for 6x 10° MCS, averaging over 16 realizations
of the disorder.

Figure 3 shows two histograms of the internal energy den-
sity for p=1 after normalization for two different tempera-
tures (full and dashed linge The dots were produced by
transforming thel = 1.77 data setdashed lingto the lower
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py=0.85+0.03 in accordance with Ref. 19. To determine

0014 | [ Monte Carlo T=1.770 1 the tricritical concentration more exactly would require a
—— Monte Carlo T=1.764 precise scaling analysis based on more extensive data, which
0.012 | > Ferrenberg-Swendsen ]

was beyond the scope of this work.

0.010 |
V. CONTINUOUS ANTIFERROMAGNETIC TRANSITION

g 0.008 | (p=0.9
0.006 |- In this section we concentrate on simulations performed
for p=0.8. Our aim is to check whether & the system

0.004 | orders into an antiferromagnetic state and, since we are be-
000z - low the.tric.riyical.concen_tration we measure qritical expo-

’ nents via finite-size scaling close to the continuous phase
0.000 transition that we encounter.

-2.0

A. Quantities analyzed

FIG. 3. The lines show two energy density distributid?e) For the antiferromagnetic phase, the staggered magnetiza-
Versus energy densitg for MC simulations at two different tem- tion “vector” m* [see Eq le the appropriate order param-

peraturesp=1.0 andL =16. The left peak corresponds to an anti- gter, Thus, we calculate the second moment
ferromagnetically ordered phaglew energy, the right peak to a

paramagnetic phase, divided by an energy ¢afent hegt The m2:[<m1'm1'>] (11)
points are calculated according to the Ferrenberg-Swendsen method '
from the high-temperature distribution and agree well with the full

For T>T, this is proportional to the staggered susceptibilit
line from low-temperature MC simulation. 3 prop 99 P Y

x '=Nm?, which we analyzed by using the finite-size scal-

temperatureT = 1.764. The distribution depends sensitively ing form

on the chosen temperature; the Monte Carlo data at .

T=1.764 and the transformed data frdrs 1.77 show good x(LT)=L2" 7 TLY(T-Ty)] (12
agreement, indicating that the equilibrium distribution has o -

been well estimated. The simulation temperature in Fig. 30 €xtract the critical exponentg and v and the critical
was chosen very close to the critical temperature. TherefordeMmperaturer;. o _ .

as noted above, the distribution clearly has two maxima at Since we are mainly interested in the magnetic order of
e, ande,, which are equivalently minima d(e). the d_|fferent dilution regimes, we also calcu_lated correlation

If we define the effective critical temperatufe(L) by fun_ctlons. To save computer time, we F(_)urler transform the
the equality of the two maxim®4(e;) and P 4(e,) and ex- Iatt|c_es tok space_and calculate the Fourier transformed cor-
trapolateT (L — ), we obtainT (p=1.0)=1.715). This  relation function, i.e.,
is slightly lower than the values from Ref. 5T,
=1.736(1) and Ref. 7[T.=1.746(5). This discrepancy
may be due to using different definitions of “finite-sidg”
in the respective references.

While for p=1 the energy gap appears already atWe applied the fast Fourier algorithm to tkmost relevant
L=10, for stronger dilution it can only be seen at largerL=16 systems only and calculated the correlation function
system sizes, indicating the growing correlation length aslong the threé100) directions. For an antiferromagnet, the
one approaches the ftricritical point. If a gap appeared at ontaree k=7 modes ofG should yield the static staggered
system size, it continued to be present and in fact grew fosusceptibility, which we used as a consistency check. The
larger sizes. The scaling behavior according to @q), i.e.,  correlation lengthé can be extracted from the knowledge of
AF(L)=L?, is fulfilled within the error margins. In the di- the scaling form ofG, i.e.,
luted case we found considerable fluctuations of the energy
gap size depending on the realization.pAt 0.9 for our larg- 1 .
est systems L(=22) certain realizations were found that G(k)= jz=5 G (ko). (14
showed none of the typical two peak structure, while others

still showed a small gap. The scaling factorG has the following asymptotics: For

In order to determine the tricritical dilutiopy,; , we evalu- k>0 andT—T" é(kg)—>1 and forT>T, andk—0 (in
. . . . c ’ C
ated t_he percentage of reahzapons with gapY() with de- the AFM casek= 17—k’ with the limit k' — )
creasing concentration of spins. For our largest systems

(L=22), at p=0.91, Y=90% of the realizations still

showed a double peak, pt= 0.9 only 40%, ap=0.89, 10% G(k—0)~ 2{ (k&)2~7
and forp=0.88 no double peaks were found at all, i.e., all k=7
systems showed Gaussian peakd at From extrapolating 2 (T=T) "2 D= (T=Ty) 7~
(Tc(L),pyi(L)) determined by the conditioW=0.5 for dif- ¢ ¢ X-
ferent system sizegsee dots in Fig. 10 we estimated (15

1
Gl =[(Is)1= {2 expl—iry- W(sis)]. (13
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FIG. 4. Staggered susceptibility’ versus temperaturep

_os FIG. 5. Scaled heat capacit€L~ " versus LY"(T—-T,),

p=0.8. Best scaling was achieved witfi,=1.08(0.05), v

i _ =0.57(0.1), andv=0.38(0.1).
In Eq. (15) we have used the scaling form of the correlation

lengthé~(T—T,) " and the scaling law= v(2— 7). With
this knowledge of the asymptotic form @& we chose the
ansatz

half the lattice size at~ 1.2, before the critical temperature
T.=1.07. Since finite-size effects become appreciable at dis-
tances close to half the lattice size, we only included data
aboveT = 1.2 for a fit of the scaling forng~ (T—T;) ~". We
extractedv=0.55 by regression, which is in good agreement
with our previous result. From fitting the correlation function

i ) . to Eq.(16), we were also able to extract a second estimate of
that we used to fit our data of the correlation function in,- nere, we found y=—0.04 with a slow drift to

order to obtain an estimate fgrand ». The constanA has 7——0.02 forT—1.2.
been introduced as the amplitude of the correlation function.” \we do not perform a complete finite-size scaling analysis
We will quote the fit to Eq(16), even when the correlation f the correlation function in this work, because it would
length is so long as to be comparable to the system size. fpquire a substantial amount of additional data for larger lat-
should be remarked that for the determination of the expotice sizes. Therefore, our estimates for the exponents ob-
nent % only 'tho.s'e dqta points witf<L/2 were taken in  tained fromG(k) are less reliable than those obtained from
order to avoid finite-size effects. _ finite-size scaling. Nevertheless, this analysis serves as an

Finally we shall analyze the heat capacity additional consistency check and the critical exponents lie
well within the error margins of those exponents obtained via
finite-size scaling of the susceptibility.

The heat capacity shows a weak divergence at the critical
. N . - temperature gb=0.8. Figure 5 displays the best result of the
This quantity indicates a continuous phase transition to an o Eq18) with T,

. o scaling procedure according
ordered state by a weak divergence at the critical tempera- 1.08(0.05), »=0.57(0.1), ande=0.38(0.15). These ex-
ponent values satisfy the hyperscaling relation

1 - A
G(k)ZWG(ké)ZW, (16)

N
C=m2[(e?)~(e)?]. )

ture. We use the finite-size scaling form

C(L,T)=L*"CILY(T=To)] (18 dv=2-a
with »=0.54 in three dimensions.
In summary, the dilution regimp=0.8 exhibits a con-
tinuous phase transition to an antiferromagnetically ordered

Our data of the staggered magnetization show an increass_tate. We obtained critical exponents using finite-size scal-

ing m? [Eq. (11)] as T approaches the critical temperature, ing; however, sincep=0.8 is very close to the tricritical

becoming more pronounced for larger lattice sizes. This COn!_aoint and the exponents found violate the Harris criterion, it

tribution to the AEM order parameter can as well be seen irS quite possible that these are only effective exponents from
) . P oo Yhe crossover between the exponents of the disordered tric-
the divergent behavior of the staggered susceptibiig.

X 2 ritical point*®to whatever universality class is appropriate for
4). The scaling analyst§ of the staggered susceptibility : . - . .
yields T.(p=0.8)=1.07(0.05), »=0.51(0.1), and the continuous ordering transition. With the data at hand this

. tion has to remain n.
=0.05(0.1). The data scale well over a wide temperatureques on has to remain ope

range with the exception of thHe=4 data and the errors in
the exponents are within acceptable limits.

The antiferromagnetic correlation lengiRgy is found to Upon further dilution we encounter a dramatic change in
grow continuously with decreasing temperature and reachafe magnetic order of the system at the phase transition. We

(19
to extract critical exponents and v as well asT..

B. Results

VI. SPIN-GLASS ORDER
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really orders into a spin glass or if antiferromagnetic order-

ing can still be found. First, we introduce the spin-glass order OL=4
parameter and the spin-glass susceptibility. Then we discuss Z']::g
our data atp=0.7, and proceed with results from simula- o L=10
tions of more strongly diluted systems. 100.0 | x L=16

A. Theory and quantities measured

Besides the quantities that have been introduced in the
previous section, we also measured the standard indicator of

a spin-glass transition, the spin-glass susceptibilify [see "°o....xxfX N
Eg. (3)]. For an infinite system a spin-glass transition is sig- PODBAMAAR R R 8 0" g %

i ; b e £ -
naled by a divergence ofysg as (T—T.) 7, with vy 538 % % % %

0.0
0.5

=(2—n)v. For our scaling analysissg is computed as the
second moment of the overlap, defined by Ed$.and (6).

We analyzed our estimate of the spin-glass susceptibility by
using its finite-size scaling form

xsalL, T)=L?"Txsd L*(T=To)].

Another important quantity that is well known in the
analysis of spin-glass simulation d#ais the Binder
cumulant® of the spin-glass order parameter

FIG. 6. ' versus temperaturg=0.7.

(20 A finite-size scaling analysis of the spin-glass susceptibil-
ity is given in Fig. 7. All data forysg with the exception of
L=4 scale well withT (p=0.7)=0.83(0.05),»=1.0(0.2),
and =0.1(0.2). The fact that the spin-glass susceptibility
satisfies the above scaling for(B0) strongly suggests that

the magnetic order of this model has changed between

4
= 1 3— [(q_2>]2 ) (21) p=0.8 andp=0.7 from antiferromagnet to spin glass.
2 [{a%)] In Fig. 8 we present our data of at p=0.7. The data
It has the pleasant finite-size scaling form show the typical behavior as it has been observed in short-
range spin glasses, i.e., the data merge at approximately
gL, T)=g[L¥(T-T,)] (220 T=0.85, indicating the phase transition. There is even a

slight tendency of fanning out of the data below this inter-

with no power ofL multiplying g, which makes it very section point, which is strong evidence for the occurrence of
valuable for precise scaling analysis. The Binder cumulank phase transition. Such a fanning out is usually observed in
(21) is defined so that &g=<1, and abovel;, g(L,T)—0 uniform systems. In our system this may be due to the prox-
for L—o. In particular, the intersection of afl(L,T) curves  imity to the tricritical point or to residual short-range antifer-
at some point provides an accurate estimat& af romagnetic orde(see beloyw. The best fit was achieved with

To investigate a change of magnetic order further, we anaf ,(p=0.7)=0.83(0.05) andv=1.05(0.2), which agrees
lyzed the correlation function again, this time also the spinwell with our estimates from the scaled spin-glass suscepti-
glass correlation function bility. The stronger scattering of this quantity, especially of
the[(g*)] data, may be due to insufficient disorder averag-
ing (40 systems fot. = 16) and could probably be decreased
with additional computational power.

> exp(—ir; - K[{aia;)].

1
Gsd k) =[{a?]= N2

(23
Here, we defined;; =s{M(t +1t)s{?(t+1,). The same fitting ' r
procedure of our data was employed as in the previous sec- +1=6
tion in order to compute the respective correlation length, . R
and 7. 1o '4 x L=16
B. Results for intermediate dilution (p=0.7) o %

The (antiferromagneticstaggered susceptibility as shown _]g %
in Fig. 6 is drastically reduced in comparison to Fig. 4, and xo's | ‘@%&
shows only a small tendency to increaseéledecreases. Fur-
thermore, scaling according to Ed12) could not be iﬁ
achieved for reasonable parameters. a’étzg. A

On the other hand, our data reveal a divergencggfat Delye, o . .
p=0.7 of the same order of magnitude @$ for p=0.8 in T oo 20 20 o0 100
Fig. 4. This divergence becomes particularly strong for larger L"(T-T)

lattice sizes in the vicinity off =0.85. If ygg is the critical
quantity for this system then it should also scale according to FIG. 7. yscL 72 versusLY”(T—T,), p=0.7. Best scaling was
Eq. (20). achieved withT,=0.83(0.05),»=1.0(0.2), andp=0.1(0.2).
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dilution-dependent critical exponents. Also, in this regime

o8 the data of the Binder cumulant stay together belgwfor
o7 @ all sizes, as has been observed in other short-range Ising-
06 | %zgm spin-glass simulations. Unfortunately, it is increasingly diffi-
% cult in this regime to equilibrate the systems. As the concen-
05T %}iﬁ%o tration is lowered, the critical temperature decreases rapidly
04} %BQ o [as expected from our argument earlier, thatp.) =0 with
=0 o3 | X;§Z+ Yo o p.>p.=0.195, but the characteristic microscopic energy
’ Cent+ . barriers remain of order unity. Metastability becomes an in-
02 iizz o b t ot creasingly important problem and is prohibitive in large sys-
o1l AL=s TN R tems. In our simulations, fop<<0.6 we were unable to
*L=10 . xS e equilibrate the_= 16 systems sufficiently close . within
oo  xl=l6 *xx reasonable computer time.
01 . ‘ ‘ . . From analyzing the correlation function in the strong di-

04 0.6 0.8 1.2 14 1.6

lution regime we find two results: First, the spin-glass corre-
lation length shows a similar divergence close to the critical
temperature fop={0.6,0.5,0.4 as we have seen in the pre-
vious subsection, confirming again the development of long-
range spin-glass order. Second, we still find short-range an-
tiferromagnetic order, which decreases with lower
concentration: fop=0.6 £,y rises slowly wherll is low-
¥%red and af . we haveéry~4; for p=0.4 the correlation
length remains constant atyry~2 for all temperatures
{vhich we can simulatéT €[0.56,1.Q, T (p=0.4)~0.47).
Furthermore, both critical exponentsand » apparently
crease with increasing dilutiofsee the fitted values in
Table ). The generic theoretical expectation is that the ex-
onents should be universal all along the spin-glass transi-
on line, but the issue of universality is not completely
settled in diluted systenf€.In our case, we note that the drift
% the exponents is more pronounced forQp<0.7 than
for 0.5=p=0.3. Thus we suggest that this dependence is an
artifact of the antiferromagnetic correlation length, which is
large andp dependent for 0.5 p<0.7, but is quite small for
0.3<p<0.5. However, we have insufficient information to
check this proposition, and shall come back to this issue in

Additional simulations were performed for concentrationsthe conclusion.
p={0.6,0.5,0.4,08 With stronger dilution we find that the e conclude, that for the whole range=[0.3,0.7 our
spin-glass phase already encountered fier0.7 persists. simulations testify the existence of a spin-glass phase transi-

Both spin-glass susceptibility and the Binder cumulant of theion for the short-range antiferromagnetic Ising model on a
order parameter scale well in this regime with inghtnyCC lattice. Simultaneously, the model also exhibits residual

antiferromagnetic order that is relatively long ranged at
p=0.7 and saturates close to the critical temperature; it de-

10
T

FIG. 8. Binder cumulant of the spin-glass order parameter ver
sus temperaturgg=0.7.

In Fig. 9 the temperature dependence&gf andéary are
presented. While the spin-glass correlation length is ver
small for largeT but increases drastically 8—T,~0.83,
the antiferromagnetic correlation length starts at a highe
level but increases more slowly thaRrg; it ceases to in-
crease at abou=0.9 and saturates for lower temperatures.

All these results of our simulations pt=0.7 are consis-
tent with the interpretation that in this dilution regime we
witness indeed a spin-glass transition, but also encounter a
tiferromagnetic order of long butnite range being embed-
ded into long-range spin-glass order. Apparently, a change
magnetic order has taken place within the interygl
€(0.7,0.8), wherep, denotes the critical dilution, where
this change happens.

C. Results for strong dilution

10.0

creases with further dilution, showing no temperature depen-
* LR dence forp=0.4.
80 b & * &g
‘:& VII. CONCLUSION
60 | '%% In this paper we have presented a Monte Carlo simulation
Te of the diluted short-range antiferromagnetic Ising model on a
M L[]
wl * .., fcc lattice. The main purpose was to investigate the thermo-
’ * *ee. dynamic equilibrium properties of this model.
M ‘oo, . In the undiluted casep=1) we have found a first-order
20} **** L phase transition to an antiferromagnetically ordered state,
b gy ¥ % % s x consistent with earlier simulations. Upon slight dilution, the
antiferromagnetic order persists, the first-order transition be-
00,8 10 12 15 20 22 coming weaker and changing to a continuous transition at the

FIG. 9. Spin-glass correlation lengfa; (*) and antiferromag-

14 16
T

netic correlation lengtii,ry (@) versus temperatur@=0.7.

tricritical concentrationp,;=~0.85. At p=0.8 we still find
antiferromagnetic order from analysis of the correlation
function and scaling of the staggered susceptibility. Together
with scaling of the heat capacity, we find mutually consistent
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TABLE I. Critical quantities for different concentratiom from scaling of the respective susceptibility,
Binder cumulant, and analysis of the respective correlation function. Not listed are the scaling results of the
heat capacity fop=0.8. They arél .= 1.08(0.05),«=0.38(0.1), and»=0.57(0.1). With susceptibility and
correlation function we denote the relevant quantity for the respective dilution regime.

Critical temperatures and exponents

Order Concentration Susceptibility Binder cumulant Correlation function
T.=1.07(0.05
AFM 0.8 v=0.51(0.10 v=0.55
7=0.05(0.15 7n=—0.04(0.05
T.=0.83(0.05 T.=0.83(0.05
SG 0.7 »=1.00(0.20 »=1.05(0.20 v=0.96
7=0.10(0.20 7=0.15(0.20
T.=0.75(0.09 T.=0.76 (0.05
SG 0.6 v=0.80(0.20 v=0.90(0.20 v=0.98
7=0.00(0.20 7=0.07(0.15
T.=0.55(0.05 T.=0.53(0.09
SG 0.5 v=0.73(0.20 v=0.73(0.20
7n=-0.30(0.25
T.=0.47(0.10 T.=0.44(0.10
SG 0.4 »=0.80(0.20 »=0.80(0.20
7=-0.35(0.20
T.=0.27(0.10 T.=0.27(0.10
SG 0.3 v=0.70(0.20 v=0.70(0.25
7n=-—0.40(0.20

critical exponents. The question of universality remains unthe same universality class. Note also that our value &f

clear; in view of the proximity tgp,;=~0.85 it seems likely
that we observe tricritical exponents at this point.

smaller than for the “classic” spin-glass simulations, roughly
v=~1.8 for pe[0.3,0.7. Additional simulations of larger

Below p=0.8 the divergence of the spin-glass correlationsystems would be desirable to confirm our result.

length as well as scaling of the spin-glass susceptibility and
the Binder cumulant of the order parameter signal spin-glass
order. This means that there must be a multicritical point at
some concentratiorp, € (0.7,0.8), where the change of
magnetic order takes place. Simultaneously, the quasi-
temperature-independent staggered magnetization and the
saturation of the antiferromagnetic correlation length suggest
the breakdown of antiferromagnetic long-range order. The

fact that the antiferromagnetic correlation length saturates 1.0}

while spin-glass correlations still grow contradicts the view
of a dynamically inhibited transition to an antiferromagnet.
Rather, our data suggest that the coexistence of antiferromag-
netic short-range order together with long-range established
spin-glass order seems to be a special phenomena of this
diluted model.

Let us now turn to the question of universality in the
spin-glass phase. In this pha@ee Sec. Vjl our scaling fits
yielded critical exponents slightly dependent on dilution
(compare Table)| we speculated, that this could be an arti-
fact of the changing antiferromagnetic correlation length
Even in unfrustrated models, there is still controversy over
the universality of exponents under dilutibhAlthough our

2.0 T T T T T T

16 |
14 | Paramagnet

12 |

08
06
04

02 Spin Glass

0.0 . . . . .
00 01 02 03 04 05 06

®) p

07 08 09 10
) (o)

FIG. 10. Phase diagram of the short-range fcc Ising antiferro-
‘magnet with dilution. We plof . versus spin concentratign We
observed a first-order phase transition to an AFM state for 1.0
=p=p,;~0.85 (long dashed ling becoming continuous for

simulations are less extensive than the MC simulations of thg .~ ,— 5 0 75 (dotted line. The x above the transition line
. . * * .
short-range Ising spin glass by Bhatt and Young and bYjenqte pointsT(L),py(L)) with the conditionY =50% (see Sec.

Ogielski, it is interesting to compare our exponents with theiry). upon further dilution p<p,) we encountered a spin-glass
values for thexJ-model ind=3. For this model, they transition(full line, being extended down to the percolation thresh-

find**4®

v~1.2 andn~—0.25. These values are just at or old p,=0.195). The lines serves only to guide the eye. The gothic

slightly out of the error margins of the present simulations,arch marks a region where the order of the system is unknown
so that it is not entirely clear whether the two models lie in(AFM, spin glass, or coexistence of bath
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It should be noted that even the best current simulation§iebultowicz et al® on Zn,_,Mn Te shows the following
on hypercubic lattices have not put to rest the basic questioagreements:(i) the AFM transition is first order forp
whether the lower critical dimension for Ising spin glasses is=[0.85,1.Q, (ii) the transition is continuougto an AFM
below 3, or equal to 32493438355t the more modest |ong-range statefor p<[0.75,0.88, (iii) the AFM order is
scale of our simulation, it cannot be decisively answerecyf |arge but finite range fop<p, ~0.75 in the spin-glass
whether the diluted fcc Ising antiferromagnet has a genuinghase, andiv) the AFM correlation length decreases with
spin-glass transition, and if so whether it has precisely théncreasing dilution forp<p, . These results together with
same exponents as the standard example d&pin glasses the measured divergence of the nonlinear susceptibility in
on hypercubic lattices. However, our data are consistent Wltlﬂ:dl_panTe (see Ref. 1¥below p, ~0.75 do support the

both of these propositions. _ view of a spin-glass phase in experimental Heisenberg sys-
Although in this work we have performed an Ising model tgms.

simulation we find striking similarities with experimental ob-
servations in DMS, which have Heisenberg-like magnetic
moments*® Not only are the respective phase diagrams
(compare Fig. 10 and Ref.) &ualitatively similar and the
various critical concentrations numerically close, but also the C.W. and A.Z. would like to thank Reiner Kree for helpful
concentration dependence éfg, in the spin-glass phase discussions and J. Holm for his assistance. C.W. and A.Z.
agrees well with experiment. To be more specific, a comparigratefully acknowledge support by SFB 345. C.L.H. is sup-
son of our simulations with intensive experimental studies byported by NSF Grant No. DMR-9214943.
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