
Spin-glass and antiferromagnet critical behavior in a diluted fcc antiferromagnet

Carsten Wengel
Institut für Theoretische Physik, Georg-August-Universita¨t, D-37073 Go¨ttingen, Germany

Christopher L. Henley
Department of Physics, Cornell University, Ithaca, New York 14853

Annette Zippelius
Institut für Theoretische Physik, Georg-August-Universita¨t, D-37073 Go¨ttingen, Germany

~Received 29 August 1995!

We report on a Monte Carlo study of a diluted Ising antiferromagnet on a fcc lattice. This is a typical model
example of a highly frustrated antiferromagnet, and we ask whether sufficient random dilution of spins does
produce a spin-glass phase. Our data strongly indicate the existence of a spin-glass transition for spin concen-
tration p,0.75: We find a divergent spin-glass susceptibility and a divergent spin-glass correlation length,
whereas the antiferromagnetic correlation length saturates in this regime. Furthermore, we find a first-order
phase transition to an antiferromagnet for 1>p.0.85, which becomes continuous in the range 0.85
.p.0.75. Finite-size scaling is employed to obtain critical exponents. We compare our results with experi-
mental systems as diluted frustrated antiferromagnets as Zn12pMnpTe.

I. INTRODUCTION

The family of diluted magnetic semiconductors~DMS! of
the general formA12p

II Mn pB
VI encompasses a wide variety

of alloys which have been under extensive investigation dur-
ing the past 15 years. These alloys form a zincblende struc-
ture, where theBVI element occupies one fcc lattice while
AII and Mn share the second fcc lattice. One fundamental
aspect of research has focused on the magnetic order of these
systems, since they offer practical examples of strongly frus-
trated, randomly diluted three-dimensional fcc Heisenberg
antiferromagnets~AFM! with dominant nearest-neighbor
interaction.1,2

In this paper we present results of a Monte Carlo study of
a diluted frustrated Ising model on a fcc lattice given by the
Hamiltonian

H52J(
^ i , j &

e ie j sisj , e i5H 1 with prob. p

0 with prob. 12p.
~1!

Here,J is the coupling constant, which we will setJ521
henceforward, andpP@0,1# is the probability that a lattice
site i is occupied with an Ising spinsi . We are interested in
the static properties of this model for different dilution re-
gimes. Besides the pure (p51) and the slightly diluted case
(p;1), that has already been studied by Monte Carlo~MC!
simulation3–5 and other methods,6,7 we concentrate our inter-
est on the strong dilution regime, which has only been inves-
tigated in experimental Heisenberg systems as mentioned
above. Although in our work we perform a simulation of an
Ising system we find that some typical DMS results can be
reproduced with our simplified model.

Neutron diffraction experiments of thin Zn12pMn pTe
films for pP@1.0,0.85# revealed a first-order phase transition
to an antiferromagnetically ordered state of ‘‘type III.’’8 At
approximately p50.85 a tricritical point is encountered,

where the phase transition becomes continuous. The antifer-
romagnetic order in the regimepP@0.75,0.85# is truly long
range, however, belowp'0.75 a transition to a short-range
ordered phase seems to appear.8,9

Below p50.7 most experimental results have led to the
view that one encounters a transition to a spin-glass-like
phase at a fairly well-defined temperatureTc . Characteristic
spin-glass features are~i! remanence effects in the frozen
state,10,11 ~ii ! a pronounced cusp in the susceptibility around
Tc ~Ref. 12! with strong frequency dependence of the cusp
temperature,11 ~iii ! absence of long-range spin order as ob-
served by magnetic neutron diffraction,9 ~iv! dynamic scal-
ing nearTc of frequency-dependent response function,13–16

and, most importantly,~v! a divergent nonlinear susceptibil-
ity around the cusp temperature.17

On the other hand, the antiferromagnetic correlation
lengthjAFM grows continuously with decreasing temperature
until it saturates at the cusp temperature to an enormously
large value as high as 70 Å atp50.7; it is only below
p50.4 that short-range AFM order disappears. In the inter-
mediate dilution rangepP(0.4,0.7) the spin-glass interpre-
tation has been questioned, and it was suggested briefly11 ~on
the basis of an ‘‘activated’’ scaling analysis! that the equilib-
rium transition atTc was to the antiferromagnetically or-
dered state of a random-field system.

This motivates a numerical study of a diluted antiferro-
magnet, in which we can observe the interplay of strong
AFM local order with spin-glass order, and can measure the
quantities now considered to be the signatures for spin-glass
transitions. Because Heisenberg model simulations demand
more computer time, and because of the more convoluted
controversies regarding the existence of a sharp phase tran-
sition for continuous spins, we adopt here an Ising model; in
addition, we have retained only the first-neighbor exchange
interaction.
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The paper is organized as follows: Section II is concerned
with the main theoretical arguments that guide our expecta-
tions for the results of our simulations in the distinct dilution
regimes. In particular, we discuss the possible universality
class of the proposed spin-glass phase. Section III describes
technical aspects of our simulations, in particular the equili-
bration criterion. In Secs. IV–VI we present representative
data for the distinct dilution regimes. In Sec. IV we concen-
trate on the pure case and on weak dilution (p;1), where
we investigate how the order of the transition is being modi-
fied by disorder in form of stochastically removing spins
from the lattice. Section V is concerned with the regime
p50.8, where a continuous phase transition with AFM or-
dering is found; critical exponents are determined by finite-
size scaling. Section VI investigates the intermediate and
strong dilution range (pP@0.3,0.7#), where the question of
the magnetic ordering is our main concern. A summary of the
results, a comparison to experimental systems, and our final
conclusions will be given in Sec. VII.

II. THEORETICAL BACKGROUND

In this section, we collect the qualitative expectations for
all the different concentration regimes expected in the phase
diagram. As with the results in the subsequent sections, we
begin by reviewing the pure case and proceed in the direc-
tion of greater dilution. The global phase diagram is qualita-
tively similar to those conjectured forvector spins in Refs.
18 and 19, except of course that distinctive collinear and
noncollinear phases cannot exist in the Ising case.

A. Pure fcc Ising antiferromagnet

The pure Ising antiferromagnet on a fcc lattice has been
extensively studied both analytically and with simulations.
Each spin has 12 nearest neighbors which in the ground state
can only satisfy eight bonds, four of them being always vio-
lated. This effect of frustration, which follows from the tri-
angles in the fcc lattice, leads to a large ground-state
degeneracy20 of the orderO(2L), whereL denotes the linear
extent of the system. Thus the entropy per spin is zero as
L→`.

At small temperatures in this system, thermal fluctuations
generate free energy terms which have the same effect as
ferromagnetic second-neighbor interactions: this favors the
‘‘type-I’’ AFM order, meaning that the system orders into
one of the six periodic ground states with a^100&-type or-
dering wave vector.6 This is an example of what Villain
called ‘‘ordering due to disorder.’’21

The discrete choice between the three^100&-type direc-
tions suggests a similarity in behavior to the three-state Potts
model, which has a weakly first-order phase transition in
three dimensions. Indeed, the 42e renormalization group
predicts a first-order phase transition.22 Simulations4,5,23 and
series expansions7 confirm that the phase transition is at fi-
nite temperature and is of first order.

The antiferromagnetic state may be handled quantitatively
by constructing~in the spirit of Ref. 24! a three-component
staggered-magnetization order parameterm †5(m1

†,m2
†,

m3
†) with components

mm
†5

1

N (
j
exp~2 i r j•km!sj ~2!

for m51,2,3; here the ordering wave vectors are
k15(p,0,0) and cyclic permutations~we have taken the lat-
tice constant to be unity!.

B. Weak dilution: Random-field effects

Dilution in frustrated systems~without any external field!
couples to the order parameter as a random field does in a
ferromagnet.25,18 Take the case of rather weak dilution,
which justifies assuming~as a sort of variational state! one of
the six ^100&-type ground states. Consider the effect of
strengthening onebond lying within the xy plane: it will
favor the four states with~100! and ~010! ordering wave
vectors and disfavor the two with~001! wave vectors, since
the bond in question is violated in the~001! states. The effect
is much like a random field, except that it does not destroy
the global up/down symmetry. In our case ofsitedilution, the
random-field-like effects of removing an isolated site cancel
each other; however, removing apair of siteshas the same
effect as would strengthening the bond between them.26,25

Quite generally, when the random field is sufficiently
strong, the first-order transition is converted to a continuous
one.27 In the present context, since the effective random field
grows with dilution, this argument predicts a tricritical point:
the ordering transition is first order forp.ptri but becomes
continuous forp,ptri .

28

For p,ptri the transition from the paramagnet is expected
to be a novel universality class.27 It would seem plausible if
its dynamic scaling behavior were of the ‘‘activated’’ type, as
in the random-field Ising model. No experiments have tested
this, however.~The materials in this concentration range,
roughly 0.7,p,0.85, can be grown only as thin epitaxial
slabs, meaning that very little signal is available for suscep-
tibility experiments.! A claim was made that ‘‘activated’’
scaling could fit the data11 for lower values ofp, which we
would identify as the spin-glass phase, but this was quickly
corrected.13,15,16

When the ‘‘effective random fields’’ are sufficiently
strong, the antiferromagnetic order disappears and is re-
placed by spin-glass order at a critical valuep* .

29 Note that
this threshold to propagate AFM order is far above thepc of
geometrical percolation for propagating connectivity of
nearest-neighbor sites.30 ~On the fcc lattice,pc50.195.31!

C. Spin-glass phase

Any spin glass, by definition, requires random frustration.
This can be realized by dilution of a uniformly frustrated
antiferromagnet, as in the present case, just as well as by a
random mix of ferromagnetic and antiferromagnetic
interactions.21 Indeed, the effective coupling between two
spins may be ferromagnetic or antiferromagnetic depending
on how intervening sites happen to be occupied. Of course,
this spin-glass state is expected to show residual short-range
correlations as opposed to the cases of the6J or Gaussian
random bond distributions, where symmetry implies that
@^sisj&#50 if iÞ j .
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It is intriguing that this ‘‘spin-glass’’ state, which occurs
below p* , from the viewpoint of the antiferromagnetic
phase, is the same as the disordered domain state which is
favored by the ‘‘effective random fields’’ mentioned above.32

This state is different from the familiar random-field disor-
dered state~and similar to the usual spin-glass state! because
the global up/down symmetry is preserved; consequently, for
p,p* there is still a true phase transition in which this sym-
metry is broken.33

D. Universality

In a concentration range (pc8<p<p* ), the ground state is
presumed to be a spin glass. Spin-glass investigations tend
still to be preoccupied with the issue of the existence of a
transition as a function of dimension, external field, and spin
type. Indeed, it is still unsettled whether thed53 Ising spin
glass really has a transition at finite temperature, or whether
it is at the lower critical dimensionality.34,35Rather little has
been done to test the universality of the critical exponents, as
almost all simulations have used simple cubic~sc! lattices
with the discrete6J distribution of random bonds. Monte
Carlo and series studies for the fcc lattice with6J bonds36

gave values of the spin-glass exponentsh, n, andg consis-
tent with the sc6J model; so did thediluted6J model on
a simple cubic lattice37 and ~modulo large error bars!
Gaussian-distributed random bonds on the simple cubic
lattice.34 The above results are consistent with universality.
However, it has also been proposed thath is more negative
and the Binder cumulant is larger for Gaussian bond random-
ness than for6J randomness;38 presumably the diluted fcc is
more similar to the latter model, since its discrete random-
ness generically allows exact degeneracy of ground states.

E. Theory of pc8 „spin glass near percolation…

We now consider the approachp→pc8, where the spin-
glass long-range order finally disappears. In this regime, the
order is just barely propagating along tortuous, effectively
one-dimensional paths, and consequently we expectTc→0
~exponentially! asp→pc8.

39,37

Note thatpc8.pc . In frustrated models with discrete bond
distributions, such as the present case, two portions of a con-
nected cluster might be connected by~say! two chains of
bonds, each canceling the other and allowing one portion to
be flipped relative to the other portion at no cost in energy;
for propagation of order, it is as if no chain existed, i.e., the
effective concentration of bonds is lowered by the cancella-
tions.

III. TECHNICALITIES

We use the single-spin-flip Monte Carlo Metropolis algo-
rithm in our simulations. Spins are updated sequentially and
randomly. Periodic boundary conditions are imposed, limit-
ing the possible lattice sizes to even numbers. Spins are rep-
resented on a cubic lattice with next-nearest-neighbor inter-
actions to obtain a fcc lattice. Therefore, every lattice of
linear sizeL containsN5L3/2 sites. We simulated lattice
sizesL54,6,8,10 withM'120 realizations of the disorder
and L516 with M540. We investigate the model in the
concentration rangepP@0.3,1.0#.

A standard criterion by Bhatt and Young40 was applied to
test the equilibration of the systems throughout the whole
simulation, where we observe a continuous phase transition.
The procedure is to obtain two estimates of the spin-glass
phase indicator, the spin-glass susceptibility

xSG5
1

N(
i j

@^sisj&
2#. ~3!

Here and later, the brackets^•••& denote thermal averaging
and @•••# configurational averaging. We obtainxSG by cal-
culating the second moment of the spin-glass order param-
eter defined in two alternative ways,~i! as the overlap

q12~ t,t0!5
1

N(
i
si

~1!~ t01t !si
~2!~ t01t ! ~4!

and ~ii ! as the autocorrelation~self-overlap!

qt8~ t,t0!5
1

N(
i
si~ t01t !si~ t01t1t8!. ~5!

Here,si
(1) and si

(2) denote two sets of spins~replicas! with
the same set of occupied sites and uncorrelated initialization
and t0 is the time initially used for equilibration.

With these definitions, we can compute two estimates of
xSG as follows, i.e.,

x SG
~a! 5F K 1N S (i si

~1!~ t01t !si
~2!~ t01t !D 2L

t

G , ~6!

respectively, the four-spin correlation function,

x SG
~b! 5F K 1N S (i si~ t01t !si~2t01t !D 2L

t

G , ~7!

where^•••&t5 (1/t) (1
t(•••), andt5t0 .

The equilibration timet0 was raised on a logarithmic
scale and we only accepted a run, if both estimates ofxSG
agreed after this time within certain limits, typically of the
order of 5% of their joint mean value. The longest runs per-
formed were up to 23106 Monte Carlo steps per spin
~MCS!. Most of the simulations were performed on HP
workstations at the Institut fu¨r Theoretische Physik, Go¨ttin-
gen and on the Intel-Paragon parallel computer at the Ho¨ch-
stleistungsrechenzentrum Ju¨lich. The program was parallel-
ized by using PVM 3.2 software41 in order to simulate many
systems simultaneously.

IV. FIRST-ORDER ANTIFERROMAGNETIC TRANSITION
„WEAK DILUTION …

In this section we investigate the pure AFM and the
slightly diluted regime, i.e.,pP@0.85,1.0#. We wish to de-
termine the order of the phase transition and how the order of
the transition is changed by introducing disorder into the
system in the form of slight stochastic dilution. The magnetic
order in this regime is clearly antiferromagnetic, consistent
with earlier simulations, and shall be more closely examined
in Sec. V.

The pure antiferromagnet on a fcc lattice is known
to undergo a temperature-driven first-order phase
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transition,3,4,23,5,7as mentioned in the previous section. Early
Monte Carlo simulations by Grest and Gabl3 as well as
Giebultowicz19 reported a change from a first order to a con-
tinuous phase transition upon dilution. Grest and Gabl lo-
cated the tricritical point at a critical concentrationp tri
50.93 using Ising spins, whereas Giebultowicz found a
slightly lower p tri50.85 with a Heisenberg-spin simulation.
However, in both of those simulations, no averaging over the
disorder was performed, so that we reinvestigated this re-
gime.

An important quantity for a first-order phase transition is
the internal energy density

@^e&#5F K 1

2N (
^ i , j &

e ie j sisj L G . ~8!

At the critical temperature, this quantity indicates a first-
order phase transition by a discontinuity~latent heat!, which
can be seen in Fig. 1, where@^e&# is plotted versus tempera-
tureT; with increasing lattice size a pronounced discontinu-
ity at the transition temperature can be observed, revealing
clearly a first-order transition.

In Fig. 2 we present our data of the internal energy den-
sity for p50.9. For this concentration the transition appears

to be continuous. Apparently, a tricritical point is hard to
locate with these Monte Carlo data, since it is not clear
whether in the limit of smaller temperature steps and larger
systems the transition will turn out to be continuous or not.
In order to determine the tricritical concentration more effi-
ciently we used a method introduced by Lee and Kosterlitz,42

which is based on a histogram algorithm by Ferrenberg and
Swendsen.43

A. Histogram algorithm and finite-size scaling analysis method

This method43 uses one long Monte Carlo run to estimate
the free energy at several temperatures close toTc . During
the runs a histogram of the internal energy densitye is ac-
cumulated . This histogram serves as an estimate of the equi-
librium energy distribution~after correct normalization!

Pb~e!5
1

Zb
exp@S~e!2be#. ~9!

Here,Zb is the partition function at the inverse temperature
b51/kBT andS(e) is the entropy. Notice thatPb(e) ~9! is
proportional to exp@2bF(e)#, whereF denotes the free en-
ergy. The distributionPb(e) can now be used to generate the
distribution @and consequentlyF(e)# at a different inverse
temperatureb8 in the vicinity of b.

We are interested in the situation in whichF(e) has two
minima e1 and e2 @i.e., ~9! has maxima at these energies#.
The temperature at whichF(e1 ,L)5F(e2 ,L) is taken to be
the effective critical temperature for the given sizeL. Then
we evaluate the ‘‘gap’’DF5F(em)2F(e1,2) between the
free energy values at those two energies and at the maximum
em in between them. From a scaling analysis ofDF, one can
identify whether a phase transition is first order.42

A state witheP@e1 ,e2# consists of a domain of ordered
and a domain of disordered phase coexisting, separated by a
(d21)-dimensional interface surrounding the droplet of mi-
nority phase. Therefore, one can expand the free energy

F~e,L !5Ldf 0~e!1Ld21f 1~e!1O~Ld22!, ~10!

where the bulk free energy densityf 0 is minimal and con-
stant foreP@e1 ,e2# and the surface termf 1 is maximal at
e1,em,e2 . Expansion ~10! is valid for any first-order
phase transition, as long as the correlation lengthj,L. At
the critical temperaturej remains finite, so that for suffi-
ciently largeL the appearance of a free energy gapDF in-
dicates a first-order transition; for smallL,j the free energy
is dominated by the bulk term. As the system approaches a
tricritical point,j grows and the double minima structure can
only be seen for largeL. At a tricritical point and beyond it,
the phase transition is continuous and hence there is no
double minimum structure for anyL.

B. Results

To obtain good statistics, we took histogram data every
10th MCS for 63106 MCS, averaging over 16 realizations
of the disorder.

Figure 3 shows two histograms of the internal energy den-
sity for p51 after normalization for two different tempera-
tures ~full and dashed line!. The dots were produced by
transforming theT51.77 data set~dashed line! to the lower

FIG. 1. Internal energy densitye versus temperature forp51.

FIG. 2. Internal energy density versus temperature forp50.9.
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temperatureT51.764. The distribution depends sensitively
on the chosen temperature; the Monte Carlo data at
T51.764 and the transformed data fromT51.77 show good
agreement, indicating that the equilibrium distribution has
been well estimated. The simulation temperature in Fig. 3
was chosen very close to the critical temperature. Therefore,
as noted above, the distribution clearly has two maxima at
e1 ande2 , which are equivalently minima ofF(e).

If we define the effective critical temperatureTc(L) by
the equality of the two maximaPb(e1) andPb(e2) and ex-
trapolateTc(L→`), we obtainTc(p51.0)51.716(5). This
is slightly lower than the values from Ref. 5@Tc
51.736(1)# and Ref. 7@Tc51.746(5)#. This discrepancy
may be due to using different definitions of ‘‘finite-sizeTc’’
in the respective references.

While for p51 the energy gap appears already at
L510, for stronger dilution it can only be seen at larger
system sizes, indicating the growing correlation length as
one approaches the tricritical point. If a gap appeared at one
system size, it continued to be present and in fact grew for
larger sizes. The scaling behavior according to Eq.~10!, i.e.,
DF(L)}L2, is fulfilled within the error margins. In the di-
luted case we found considerable fluctuations of the energy
gap size depending on the realization. Atp;0.9 for our larg-
est systems (L522) certain realizations were found that
showed none of the typical two peak structure, while others
still showed a small gap.

In order to determine the tricritical dilutionptri , we evalu-
ated the percentage of realizations with gap (5Y) with de-
creasing concentration of spins. For our largest systems
(L522), at p50.91, Y590% of the realizations still
showed a double peak, atp50.9 only 40%, atp50.89, 10%
and forp50.88 no double peaks were found at all, i.e., all
systems showed Gaussian peaks atTc . From extrapolating
„Tc(L),ptri(L)… determined by the conditionY50.5 for dif-
ferent system sizes~see dots in Fig. 10!, we estimated

ptri50.8560.03 in accordance with Ref. 19. To determine
the tricritical concentration more exactly would require a
precise scaling analysis based on more extensive data, which
was beyond the scope of this work.

V. CONTINUOUS ANTIFERROMAGNETIC TRANSITION
„p50.8…

In this section we concentrate on simulations performed
for p50.8. Our aim is to check whether atTc the system
orders into an antiferromagnetic state and, since we are be-
low the tricritical concentration we measure critical expo-
nents via finite-size scaling close to the continuous phase
transition that we encounter.

A. Quantities analyzed

For the antiferromagnetic phase, the staggered magnetiza-
tion ‘‘vector’’ m† @see Eq. 2# is the appropriate order param-
eter. Thus, we calculate the second moment

m25@^m †
•m †&#. ~11!

For T.Tc this is proportional to the staggered susceptibility
x †5Nm2, which we analyzed by using the finite-size scal-
ing form

x †~L,T!5L22hx̃ †@L1/n~T2Tc!# ~12!

to extract the critical exponentsh and n and the critical
temperatureTc .

Since we are mainly interested in the magnetic order of
the different dilution regimes, we also calculated correlation
functions. To save computer time, we Fourier transform the
lattices tok space and calculate the Fourier transformed cor-
relation function, i.e.,

G~ k!5@^usku2&#5
1

N(
i j

exp~2 i r i j – k!@^sisj&#. ~13!

We applied the fast Fourier algorithm to the~most relevant!
L516 systems only and calculated the correlation function
along the threê100& directions. For an antiferromagnet, the
three k5p modes ofG should yield the static staggered
susceptibility, which we used as a consistency check. The
correlation lengthj can be extracted from the knowledge of
the scaling form ofG, i.e.,

G~k!5
1

k22h G̃~kj!. ~14!

The scaling factorG̃ has the following asymptotics: For
k.0 andT→Tc

1 , G̃(kj)→1, and forT.Tc andk→0 ~in
the AFM casek5p2k8 with the limit k8→p)

G~k→0!;
1

k22h ~kj!22h

5j22h;~T2Tc!
2n~22h!5~T2Tc!

2g;x.

~15!

FIG. 3. The lines show two energy density distributionsP(e)
versus energy densitye for MC simulations at two different tem-
peratures,p51.0 andL516. The left peak corresponds to an anti-
ferromagnetically ordered phase~low energy!, the right peak to a
paramagnetic phase, divided by an energy gap~latent heat!. The
points are calculated according to the Ferrenberg-Swendsen method
from the high-temperature distribution and agree well with the full
line from low-temperature MC simulation.
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In Eq. ~15! we have used the scaling form of the correlation
lengthj;(T2Tc)

2n and the scaling lawg5n(22h). With
this knowledge of the asymptotic form ofG we chose the
ansatz

G~k!5
1

k22h G̃~kj!5
A

k22h1jh22 , ~16!

that we used to fit our data of the correlation function in
order to obtain an estimate forj andh. The constantA has
been introduced as the amplitude of the correlation function.
We will quote the fit to Eq.~16!, even when the correlation
length is so long as to be comparable to the system size. It
should be remarked that for the determination of the expo-
nent h only those data points withj,L/2 were taken in
order to avoid finite-size effects.

Finally we shall analyze the heat capacity

C5
N

T2
@^e2&2^e&2#. ~17!

This quantity indicates a continuous phase transition to an
ordered state by a weak divergence at the critical tempera-
ture. We use the finite-size scaling form

C~L,T!5La/nC̃@L1/n~T2Tc!# ~18!

to extract critical exponentsa andn as well asTc .

B. Results

Our data of the staggered magnetization show an increas-
ing m2 @Eq. ~11!# asT approaches the critical temperature,
becoming more pronounced for larger lattice sizes. This con-
tribution to the AFM order parameter can as well be seen in
the divergent behavior of the staggered susceptibility~Fig.
4!. The scaling analysis44 of the staggered susceptibility
yields Tc(p50.8)51.07(0.05), n50.51(0.1), and h
50.05(0.1). The data scale well over a wide temperature
range with the exception of theL54 data and the errors in
the exponents are within acceptable limits.

The antiferromagnetic correlation lengthjAFM is found to
grow continuously with decreasing temperature and reaches

half the lattice size atT'1.2, before the critical temperature
Tc51.07. Since finite-size effects become appreciable at dis-
tances close to half the lattice size, we only included data
aboveT51.2 for a fit of the scaling formj;(T2Tc)

2n. We
extractedn50.55 by regression, which is in good agreement
with our previous result. From fitting the correlation function
to Eq.~16!, we were also able to extract a second estimate of
h; here, we found h520.04 with a slow drift to
h→20.02 forT→1.2.

We do not perform a complete finite-size scaling analysis
of the correlation function in this work, because it would
require a substantial amount of additional data for larger lat-
tice sizes. Therefore, our estimates for the exponents ob-
tained fromG(k) are less reliable than those obtained from
finite-size scaling. Nevertheless, this analysis serves as an
additional consistency check and the critical exponents lie
well within the error margins of those exponents obtained via
finite-size scaling of the susceptibility.

The heat capacity shows a weak divergence at the critical
temperature atp50.8. Figure 5 displays the best result of the
scaling procedure according to Eq.~18! with Tc
51.08(0.05),n50.57(0.1), anda50.38(0.15). These ex-
ponent values satisfy the hyperscaling relation

dn522a ~19!

with n50.54 in three dimensions.
In summary, the dilution regimep50.8 exhibits a con-

tinuous phase transition to an antiferromagnetically ordered
state. We obtained critical exponents using finite-size scal-
ing; however, sincep50.8 is very close to the tricritical
point and the exponents found violate the Harris criterion, it
is quite possible that these are only effective exponents from
the crossover between the exponents of the disordered tric-
ritical point45 to whatever universality class is appropriate for
the continuous ordering transition. With the data at hand this
question has to remain open.

VI. SPIN-GLASS ORDER

Upon further dilution we encounter a dramatic change in
the magnetic order of the system at the phase transition. We

FIG. 4. Staggered susceptibilityx† versus temperature,p
50.8.

FIG. 5. Scaled heat capacityCL2a/n versus L1/n(T2Tc),
p50.8. Best scaling was achieved withTc51.08(0.05), n
50.57(0.1), anda50.38(0.1).
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investigate the question whether belowp50.8 the system
really orders into a spin glass or if antiferromagnetic order-
ing can still be found. First, we introduce the spin-glass order
parameter and the spin-glass susceptibility. Then we discuss
our data atp50.7, and proceed with results from simula-
tions of more strongly diluted systems.

A. Theory and quantities measured

Besides the quantities that have been introduced in the
previous section, we also measured the standard indicator of
a spin-glass transition, the spin-glass susceptibilityxSG @see
Eq. ~3!#. For an infinite system a spin-glass transition is sig-
naled by a divergence ofxSG as (T2Tc)

2g, with g
5~22h!n. For our scaling analysis,xSG is computed as the
second moment of the overlap, defined by Eqs.~4! and ~6!.
We analyzed our estimate of the spin-glass susceptibility by
using its finite-size scaling form

xSG~L,T!5L22hx̃SG@L
1/n~T2Tc!#. ~20!

Another important quantity that is well known in the
analysis of spin-glass simulation data40 is the Binder
cumulant46 of the spin-glass order parameter

g5
1

2 S 32
@^q4&#

@^q2&#2D . ~21!

It has the pleasant finite-size scaling form

g~L,T!5g̃@L1/n~T2Tc!# ~22!

with no power ofL multiplying g̃, which makes it very
valuable for precise scaling analysis. The Binder cumulant
~21! is defined so that 0<g<1, and aboveTc , g(L,T)→0
for L→`. In particular, the intersection of allg(L,T) curves
at some point provides an accurate estimate ofTc .

To investigate a change of magnetic order further, we ana-
lyzed the correlation function again, this time also the spin-
glass correlation function

GSG~k!5@^uqku2&#5
1

N (
i , j

exp~2 i r i j •k!@^qiqj&#.

~23!

Here, we definedqi5si
(1)(t1t0)si

(2)(t1t0). The same fitting
procedure of our data was employed as in the previous sec-
tion in order to compute the respective correlation length,n
andh.

B. Results for intermediate dilution „p50.7…

The ~antiferromagnetic! staggered susceptibility as shown
in Fig. 6 is drastically reduced in comparison to Fig. 4, and
shows only a small tendency to increase asT decreases. Fur-
thermore, scaling according to Eq.~12! could not be
achieved for reasonable parameters.

On the other hand, our data reveal a divergence ofxSG at
p50.7 of the same order of magnitude asx † for p50.8 in
Fig. 4. This divergence becomes particularly strong for larger
lattice sizes in the vicinity ofT50.85. If xSG is the critical
quantity for this system then it should also scale according to
Eq. ~20!.

A finite-size scaling analysis of the spin-glass susceptibil-
ity is given in Fig. 7. All data forxSG with the exception of
L54 scale well withTc(p50.7)50.83(0.05),n51.0~0.2!,
andh50.1(0.2). The fact that the spin-glass susceptibility
satisfies the above scaling form~20! strongly suggests that
the magnetic order of this model has changed between
p50.8 andp50.7 from antiferromagnet to spin glass.

In Fig. 8 we present our data ofg at p50.7. The data
show the typical behavior as it has been observed in short-
range spin glasses, i.e., the data merge at approximately
T50.85, indicating the phase transition. There is even a
slight tendency of fanning out of the data below this inter-
section point, which is strong evidence for the occurrence of
a phase transition. Such a fanning out is usually observed in
uniform systems. In our system this may be due to the prox-
imity to the tricritical point or to residual short-range antifer-
romagnetic order~see below!. The best fit was achieved with
Tc(p50.7)50.83(0.05) andn51.05(0.2), which agrees
well with our estimates from the scaled spin-glass suscepti-
bility. The stronger scattering of this quantity, especially of
the @^q4&# data, may be due to insufficient disorder averag-
ing ~40 systems forL516) and could probably be decreased
with additional computational power.

FIG. 6. x† versus temperature,p50.7.

FIG. 7. xSGL
h22 versusL1/n(T2Tc), p50.7. Best scaling was

achieved withTc50.83(0.05),n51.0(0.2), andh50.1(0.2).
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In Fig. 9 the temperature dependence ofjSG andjAFM are
presented. While the spin-glass correlation length is very
small for largeT but increases drastically asT→Tc'0.83,
the antiferromagnetic correlation length starts at a higher
level but increases more slowly thanjSG; it ceases to in-
crease at aboutT50.9 and saturates for lower temperatures.

All these results of our simulations atp50.7 are consis-
tent with the interpretation that in this dilution regime we
witness indeed a spin-glass transition, but also encounter an-
tiferromagnetic order of long butfinite range being embed-
ded into long-range spin-glass order. Apparently, a change of
magnetic order has taken place within the intervalp*
P(0.7,0.8), wherep* denotes the critical dilution, where
this change happens.

C. Results for strong dilution

Additional simulations were performed for concentrations
p5$0.6,0.5,0.4,0.3%. With stronger dilution we find that the
spin-glass phase already encountered forp50.7 persists.
Both spin-glass susceptibility and the Binder cumulant of the
order parameter scale well in this regime with slightly

dilution-dependent critical exponents. Also, in this regime
the data of the Binder cumulant stay together belowTc for
all sizes, as has been observed in other short-range Ising-
spin-glass simulations. Unfortunately, it is increasingly diffi-
cult in this regime to equilibrate the systems. As the concen-
tration is lowered, the critical temperature decreases rapidly
@as expected from our argument earlier, thatTc(pc8)50 with
pc8.pc50.195#, but the characteristic microscopic energy
barriers remain of order unity. Metastability becomes an in-
creasingly important problem and is prohibitive in large sys-
tems. In our simulations, forp,0.6 we were unable to
equilibrate theL516 systems sufficiently close toTc within
reasonable computer time.

From analyzing the correlation function in the strong di-
lution regime we find two results: First, the spin-glass corre-
lation length shows a similar divergence close to the critical
temperature forp5$0.6,0.5,0.4% as we have seen in the pre-
vious subsection, confirming again the development of long-
range spin-glass order. Second, we still find short-range an-
tiferromagnetic order, which decreases with lower
concentration: forp50.6 jAFM rises slowly whenT is low-
ered and atTc we havejAFM'4; for p50.4 the correlation
length remains constant atjAFM'2 for all temperatures
which we can simulate„TP@0.56,1.0#,Tc(p50.4)'0.47….

Furthermore, both critical exponentsn andh apparently
decrease with increasing dilution~see the fitted values in
Table I!. The generic theoretical expectation is that the ex-
ponents should be universal all along the spin-glass transi-
tion line, but the issue of universality is not completely
settled in diluted systems.47 In our case, we note that the drift
in the exponents is more pronounced for 0.5,p,0.7 than
for 0.5>p>0.3. Thus we suggest that this dependence is an
artifact of the antiferromagnetic correlation length, which is
large andp dependent for 0.5,p,0.7, but is quite small for
0.3,p,0.5. However, we have insufficient information to
check this proposition, and shall come back to this issue in
the conclusion.

We conclude, that for the whole rangepP@0.3,0.7# our
simulations testify the existence of a spin-glass phase transi-
tion for the short-range antiferromagnetic Ising model on a
fcc lattice. Simultaneously, the model also exhibits residual
antiferromagnetic order that is relatively long ranged at
p50.7 and saturates close to the critical temperature; it de-
creases with further dilution, showing no temperature depen-
dence forp50.4.

VII. CONCLUSION

In this paper we have presented a Monte Carlo simulation
of the diluted short-range antiferromagnetic Ising model on a
fcc lattice. The main purpose was to investigate the thermo-
dynamic equilibrium properties of this model.

In the undiluted case (p51) we have found a first-order
phase transition to an antiferromagnetically ordered state,
consistent with earlier simulations. Upon slight dilution, the
antiferromagnetic order persists, the first-order transition be-
coming weaker and changing to a continuous transition at the
tricritical concentrationptri'0.85. At p50.8 we still find
antiferromagnetic order from analysis of the correlation
function and scaling of the staggered susceptibility. Together
with scaling of the heat capacity, we find mutually consistent

FIG. 8. Binder cumulant of the spin-glass order parameter ver-
sus temperature,p50.7.

FIG. 9. Spin-glass correlation lengthjSG (*) and antiferromag-
netic correlation lengthjAFM (d) versus temperature,p50.7.
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critical exponents. The question of universality remains un-
clear; in view of the proximity toptri'0.85 it seems likely
that we observe tricritical exponents at this point.

Below p50.8 the divergence of the spin-glass correlation
length as well as scaling of the spin-glass susceptibility and
the Binder cumulant of the order parameter signal spin-glass
order. This means that there must be a multicritical point at
some concentrationp*P(0.7,0.8), where the change of
magnetic order takes place. Simultaneously, the quasi-
temperature-independent staggered magnetization and the
saturation of the antiferromagnetic correlation length suggest
the breakdown of antiferromagnetic long-range order. The
fact that the antiferromagnetic correlation length saturates
while spin-glass correlations still grow contradicts the view
of a dynamically inhibited transition to an antiferromagnet.
Rather, our data suggest that the coexistence of antiferromag-
netic short-range order together with long-range established
spin-glass order seems to be a special phenomena of this
diluted model.

Let us now turn to the question of universality in the
spin-glass phase. In this phase~see Sec. VI! our scaling fits
yielded critical exponents slightly dependent on dilution
~compare Table I!; we speculated, that this could be an arti-
fact of the changing antiferromagnetic correlation length.
Even in unfrustrated models, there is still controversy over
the universality of exponents under dilution.47 Although our
simulations are less extensive than the MC simulations of the
short-range Ising spin glass by Bhatt and Young and by
Ogielski, it is interesting to compare our exponents with their
values for the6J–model in d53. For this model, they
find40,49 n'1.2 andh'20.25. These values are just at or
slightly out of the error margins of the present simulations,
so that it is not entirely clear whether the two models lie in

the same universality class. Note also that our value ofg is
smaller than for the ‘‘classic’’ spin-glass simulations, roughly
g'1.8 for pP@0.3,0.7#. Additional simulations of larger
systems would be desirable to confirm our result.

FIG. 10. Phase diagram of the short-range fcc Ising antiferro-
magnet with dilution. We plotTc versus spin concentrationp. We
observed a first-order phase transition to an AFM state for 1.0
>p>ptri'0.85 ~long dashed line!, becoming continuous for
ptri>p>p*'0.75 ~dotted line!. The 3 above the transition line
denote points„Tc(L),ptri(L)… with the conditionY550% ~see Sec.
IV !. Upon further dilution (p<p* ) we encountered a spin-glass
transition~full line, being extended down to the percolation thresh-
old pc50.195). The lines serves only to guide the eye. The gothic
arch marks a region where the order of the system is unknown
~AFM, spin glass, or coexistence of both!.

TABLE I. Critical quantities for different concentrationp from scaling of the respective susceptibility,
Binder cumulant, and analysis of the respective correlation function. Not listed are the scaling results of the
heat capacity forp50.8. They areTc51.08(0.05),a50.38(0.1), andn50.57(0.1). With susceptibility and
correlation function we denote the relevant quantity for the respective dilution regime.

Critical temperatures and exponents
Order Concentration Susceptibility Binder cumulant Correlation function

Tc51.07 ~0.05!
AFM 0.8 n50.51 ~0.10! n50.55

h50.05 ~0.15! h520.04 ~0.05!
Tc50.83 ~0.05! Tc50.83 ~0.05!

SG 0.7 n51.00 ~0.20! n51.05 ~0.20! n50.96
h50.10 ~0.20! h50.15 ~0.20!
Tc50.75 ~0.05! Tc50.76 ~0.05!

SG 0.6 n50.80 ~0.20! n50.90 ~0.20! n50.98
h50.00 ~0.20! h50.07 ~0.15!
Tc50.55 ~0.05! Tc50.53 ~0.05!

SG 0.5 n50.73 ~0.20! n50.73 ~0.20!
h520.30 ~0.25!
Tc50.47 ~0.10! Tc50.44 ~0.10!

SG 0.4 n50.80 ~0.20! n50.80 ~0.20!
h520.35 ~0.20!
Tc50.27 ~0.10! Tc50.27 ~0.10!

SG 0.3 n50.70 ~0.20! n50.70 ~0.25!
h520.40 ~0.20!
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It should be noted that even the best current simulations
on hypercubic lattices have not put to rest the basic question
whether the lower critical dimension for Ising spin glasses is
below 3, or equal to 3.40,49,34–36,38,50At the more modest
scale of our simulation, it cannot be decisively answered
whether the diluted fcc Ising antiferromagnet has a genuine
spin-glass transition, and if so whether it has precisely the
same exponents as the standard example of6J spin glasses
on hypercubic lattices. However, our data are consistent with
both of these propositions.

Although in this work we have performed an Ising model
simulation we find striking similarities with experimental ob-
servations in DMS, which have Heisenberg-like magnetic
moments.48 Not only are the respective phase diagrams
~compare Fig. 10 and Ref. 8! qualitatively similar and the
various critical concentrations numerically close, but also the
concentration dependence ofjAFM in the spin-glass phase
agrees well with experiment. To be more specific, a compari-
son of our simulations with intensive experimental studies by

Giebultowiczet al.8 on Zn12pMn pTe shows the following
agreements:~i! the AFM transition is first order forp
P@0.85,1.0#, ~ii ! the transition is continuous~to an AFM
long-range state! for pP@0.75,0.85#, ~iii ! the AFM order is
of large but finite range forp,p*'0.75 in the spin-glass
phase, and~iv! the AFM correlation length decreases with
increasing dilution forp,p* . These results together with
the measured divergence of the nonlinear susceptibility in
Cd12pMn pTe ~see Ref. 17! below p*'0.75 do support the
view of a spin-glass phase in experimental Heisenberg sys-
tems.
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