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We first present magnetic aftereffect measurements of an array of submicronic amorphous noninteracting Co
particles~300 nm3 200 nm330 nm!. At low temperatures, the thermal dependence of the magnetic viscosity
S5dM/d„ln(t)… exhibits an unusual behavior. Comparison with measurements performed on a single particle
allows the effects of the averaging over the statistical ensemble of the array of 23107 Co particles to be
studied experimentally. The link between both experiments is then performed by using the linear-response
theory. This formalism allows the noise,D(T), which accounts for the thermal dependence of the coupling of
switching spins to their environment, to be defined. The consistency of this description is checked by compar-
ing the noise measured in this way on the array of particle with the noise measured on the single particle
through the Arrhenius law. In both cases, the thermal dependence of the noiseD(T) has a coth(T0 /T) form.

INTRODUCTION

In the last few years, the study of the dynamical proper-
ties of magnetic nanostructures at low temperature has been
of considerable interest both from a fundamental and a tech-
nological point of view. Indeed, measurements on small sys-
tems showed some typical effects, which are relevant to the
area of physics describing phenomena between the macro-
scopic and the microscopic world, i.e., relevant to the meso-
scopic scale. An important and nontrivial question is to know
how these typical effects can be observed by measuring an
ensemble of noninteracting mesoscopic systems at the mac-
roscopic scale.

Following Van Kampen’s definition1 mesoscopic effects
occur when the fluctuations become predominant in the de-
scription of the system. Each realization of a single event,
e.g., a magnetization jump due to the switch of a magnetic
domain, accounts for the influence of the degree of freedom
of the environment acting on the path taken by the system to
realize this event. Indeed, the switching magnetic object is
not isolated and interacts with its environment~the heat bath,
impurities or surface spins!. The effect of the environment on
the system is modeled by a stochastic force whose time cor-
relation defines the noise. This stochasticity manifests itself
experimentally by a statistical distribution of the measured
values. In the case of a macroscopic sample composed by a
large set of noninteracting particles, the measure is directly
averaged over the statistical ensemble of all particles and

fluctuations around the mean value become negligible. How-
ever, fluctuations continue to play a fundamental role in dy-
namical properties and can be probed by relaxation measure-
ments. In order to compare experimentally the fluctuations
measured at both the nanoscopic and macroscopic scale, we
need to master a second averaging process: the statistical
ensemble of the set of all particles is not ideal and different
distributions of probability exist. In other words, a distribu-
tion of mean values and fluctuations must be taken into ac-
count. The following problem arises: how can the averaging
over the ensemble of particles be compared to the statistical
averaging of a single particle?

Thanks to the progress in nanotechnology it is now pos-
sible to answer this question experimentally by using mag-
netic nanostructures. This article is divided in two parts. In
an experimental report we present the relaxation measure-
ments of an array of about 107 Co particles, followed by the
report of the main results of dynamical measurements per-
formed on one individual Co particle deposited onto a planar
microbridge-dc-superconducting quantum interference de-
vice ~SQUID!. The detailed description of the measurements
on the single particle is reported elsewhere.2 In the theoreti-
cal interpretation, we present a model based on the linear-
response theory, which allows to interpret the aftereffect
measurements, performed on the macroscopic array, in terms
of distribution of response functions. The consistency of this
description is checked by comparing the magnetic noise de-
duced from aftereffect measurements on the array of particle
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with the noise measured on the single particle through an
Arrhenius-like law.

I. DYNAMICAL MAGNETIZATION MEASUREMENTS
ON SUBMICRONIC Co PARTICLES

A. Samples

We present measurements made on elliptic Co particles
defined by liftoff techniques out of sputtered films~protected
from oxidation by a 10 nm thin Si film!. X-ray diffraction
performed on the Co thin film bevor nanofabrication evi-
denced a nanocrystalline structure~5–10 nm!. The particles
have an elliptic contour with in-plane dimensions of 300 nm
by 200 nm and a thickness of 30 nm. We controlled the
particle’s shape by scanning electron microscopy. The first
sample fabricated is an array of 23107 identical Co par-
ticles. The particles are placed on a Si substrate with a 2mm
spacing~see Fig. 1!. Because of this large spacing, dipole
interaction between particles are negligible. The second
sample is an individual Co particle of the above dimensions
which is deposited on a microbridge-dc SQUID. This detec-
tor allows the dynamical behavior of the magnetization re-
versal of the particle to be studied.

B. Hysteresis loops: Single particle and array

We studied the quasistatic magnetization reversal of the
samples by measuring the hysteresis loops. Figure 2~a!
shows the hysteresis loop of the array of 23107 Co particles
measured by a commercial SQUID magnetometer. The hys-
teresis loop of an individual Co particle of the same dimen-
sion is presented in Fig. 2~b!. These hysteresis loops are both
characterized by two magnetization jumps. Starting from
saturation, the first jump can be associated to domain-wall
nucleation and the second jump to domain-wall annihilation.
The reversible central region describes the displacement of

the domain wall through the particle.2 Figure 2~a! also com-
pares the hysteresis loops of the array of particles at 2 K
~open dots! and 250 K~black dots!. We see a weak influence
of the temperature on the hysteresis loops. The hysteresis
loops plotted in Fig. 2~a! are an average of about 23107

loops of individual particles, which a sample is plotted in
Fig. 1. The jumps observed on the individual particle are
events at a certain field changing the magnetization in a time
interval smaller than 100ms ~our time resolution!. Since par-
ticles have different mean switching fields, the two jumps in
the hysteresis loop of the array are smoothed@in an interval
of about 150 Oe as shown in Fig. 2~a!#. The slopedM/dH
accounts for the distribution of the switching fields of each
particle in the array. In the following we limit the studies on
the domain-wall nucleation.

C. Relaxation measurements of the array of Co particles

The measurements on the array of Co particles were per-
formed using a commercial Metronique Instruments SQUID
magnetometer. The resolution of this magnetometer is better
than 1027 emu. Over the extraction length~42 nm! the field
homogeneity has been found to be better than 1023. At low
temperature, an accurate regulation, within an accuracy of 5
mK, is achieved over a long time interval.

In order to start from an equilibrium state a magnetic field
of 1.5 kOe was applied. After 15 min, the field was changed
within 1 to 2 min to the final desired constant relaxation
field, comprised in the interval 40–250 Oe. The time varia-
tion of the magnetizationM (t) was then measured during 3
h. This variation is about logarithmic as shown in Fig. 3. The
rate of relaxation is given by the magnetic viscosityS
5dM(t)/d„ln(t)… which can be defined over about two de-
cades.

FIG. 1. Electron micrograph showing four Co particles~elliptic-
ity 300 nm3200 nm, thickness 35 nm! belonging to an array of step
2000 nm.

FIG. 2. ~a! Hysteresis cycles of the array of about 23107 Co
particles~300 nm3200 nm330 nm! measured at 2 K~s! and 250
K ~d!. The in-plane field is applied along the long axis of the
particles.~b! Hysteresis loop of a single Co particle of same dimen-
sion.
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Special attention has been given to the field dependence
of the magnetic viscosityS(H), which is compared to the
switching field distribution in the array, given by the slope
dM(t)/dH. In Fig. 4~a!, dM(t)/dH ~crosses! and S(H)
~open dots! vs applied fieldH are plotted on different scale at
T52 K. The magnetizationM (t) was measured during the
relaxation att51000 s. The distribution of mean switching

fields ^Hsw&, deduced from the slopedM(t)/dH, is fitted by
a Gaussian functionGHc,s(H), where the mean valueHc

5126 Oe~63 Oe! defined the coercive field of the array and
s is the variance. The magnetic viscosity is fitted by the
same Gaussian function multiplied by the applied field,
S(H)5aHGHc,s(H), wherea is the unique fitting param-
eter.

Figure 4~b! showsS(H) for different temperatures. The
maximum of the magnetic viscosityS(H) versus applied
field is about 150 Oe with about 5 Oe variation in the tem-
perature interval of 1.7 to 10 K. This temperature depen-
dence is negligible compared with the width of the curves.
The temperature dependence of the magnetic viscosityS at
fixed field is shown in Fig. 5. The magnetic viscosityS(T)
decreases as temperature increases. The relaxation above 10
K is negligibly small. Furthermore the thermal dependence
of the magnetization at a given time follows also a similar
variation~see inset of Fig. 5!. It is to notice that in common
magnetic relaxation measurements, the magnetic viscosity is
about proportional to the temperature.3

D. Relaxation measurements of an individual Co particle

In order to understand the relaxation of the array of Co
particles, we have also studied the dynamical magnetization
reversal of a single particle. We use two independent tech-
niques to access to the dynamical nucleation properties. We
will call the first approach ‘‘switching field’’ measurements2

and the second ‘‘switching time’’ measurements. In the case
of the switching field measurements, the applied field is de-
creased at a given rate and fixed temperature and the field
value is stored as soon as the sample magnetization switches,
i.e., when the domain wall nucleates. After about 100 cycles,
a switching field histogram is established, allowing to define
a mean switching field̂Hsw& and its widths.

2 We focus here
on switching time measurements. In these experiments, we
decrease at a given temperature the magnetic field until the
set point is reached~near the nucleation of the domain wall!.
Then we measure the time it takes until the domain wall
nucleates. This process is repeated again about 100 times and

FIG. 3. Relaxation of magnetization of the array of Co particles
atH5170 Oe. The slopeS5dM/d„ln(t)… defines the magnetic vis-
cosity.

FIG. 4. ~a! Field dependence of the slopedM/dH of the mag-
netization~crosses! plotted with the field dependence of the mag-
netic viscosityS(H)5dM/d„ln(t)… ~open dots!. M is taken at time
t5103 s during the relaxation. The slopedM/dH is fitted by a
GaussianGHc,s(H) and the dashed line is the functionS(H)
5aHGHc,s(H), wherea is the unique fitting parameter.~b! Field
dependence of the magnetic viscosityS(H) for several tempera-
tures, fitted byHG^H&,S(H) functions.

FIG. 5. Temperature dependence of the magnetic viscosityS
5dM/d„ln(t)… at 110 and 170 Oe. The data are fitted by a
coth(T0 /T)T dependence (T0'0.6). ~Inset! Temperature depen-
dence of the magnetizationM at t5103 s.
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we obtain a switching time histogram of the nucleation pro-
cess. The integral of this histogram gives the probability of
not switching.

Figure 6 shows examples of the measured probability of
not switching in the temperature range between 0.1 and 6 K.
A good and simple fit of the data is given by a stretched
exponential.

P~ t !5e2~gt !b
. ~1!

This fit enables the mean switching time^t&51/gc(b), with
c(b)5G(2/b)/G(1/b) expressed in terms of theG function,
to be deduced. The measurements show thatb and g are
temperature and field dependent. The fluctuations around the
mean value of the switching time are of the order of 1/~gb!.
Note that these fluctuations extend over three decades. Fig-
ure 7 shows thatb is close to 1~exponential relaxation! at all
temperature so that the factorc(b) is also about 1 and̂t&
'1/g. The variations ofg is fitted by ln@g(T,H)#5ln@a(T,0)#
1b(T)H in Fig. 8. At fixed temperature, a field variation of 5
Oe covers more than 3 decades of the mean switching time.
For a variation of the external field of 15 Oe, the mean
switching time variation covers more than three decades for
all temperatures.

II. STATISTICAL DESCRIPTION OF THE RELAXATION

In the following, we give a statistical description of the
aftereffect during a nucleation process of the array of par-
ticles by taking into account the dynamical characteristics of
the magnetization reversal of a single particle.

The studied processes are nonequilibrium and dissipative.

The small size of the magnetic particles of the array suggests
that the slow dynamics of the array are dominated by single-
particle fluctuations. Indeed, the time scale of the aftereffect
experiments on the array is of the same order than the time
fluctuations around the mean value^t& shown in Fig. 6 for a
single particle~few decades!. A simple way to deal with
fluctuations in nonequilibrium systems is linear-response
theory. Using this formalism, we are able to make a link
between the time-dependent statistical averaging of the mag-
netization ^m&(t) with the temperature-dependent noise
D(T) responsible for the relaxation. We can then study how
this parameter emerges from the aftereffect measurements
after averaging over the ensemble of particles in the array.
The consistency of this description with the more usual de-
scription in terms of activated process3 is checked by com-
paring the noiseD(T) measured on the array with the noise
measured on the single particle through an Arrhenius-like
law for the switching time.

A. The linear-response theory applied to an ensemble
of identical particles

In the following, the mean features of the aftereffect pro-
tocol are described in terms of linear-response theory applied
to an ideal array of identical particles, i.e., defined by a fixed
parameterg ~sinceb is close to 1, we suppose in the follow-
ing that it does not play an important role!. This ensemble is
ergodic: fluctuations measured of this ideal ensemble are
identical to the fluctuations measured in time on a single
particle. Before the initial timet50, the magnetization of the
statistical ensemble of particles is saturated by a high mag-

FIG. 6. Probability of not switching of magnetization as a func-
tion of the time at different applied fields at~b! 6 K and~a! 0.1 K.
Full lines are fits to the data with a stretched exponential as given
by formula~1!. The fitting parametersb and 1/g are indicated in the
graphs.

FIG. 7. Temperature dependence of the stretching componentsb
~for 1/g510 s! as used for fitting the probabilities of not switching
@Eq. ~1!#.

FIG. 8. Field dependence of the inverse of the damping coeffi-
cient 1/g at different temperatures. Arrows indicate the variation of
1/g for applied fieldH.
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netic field: the magnetization of the ideal array is in equilib-
rium and can be described by a stationary Hamiltonian.
Then, the applied field is reduced to the measuring fieldH.
During this process the Hamiltonian of the system is modi-
fied by a time-dependent perturbative quantityEp
5mHp(t), wherem is the magnetization of the ideal array. If
we call m0 the magnetization discontinuity due to one
domain-wall nucleation in the hysteresis loop@Fig. 2~b!#, the
magnetization of the ideal array can for instance be written
m(t)5N(t)m0 , whereN(t) is the number of particles which
contribute to the relaxation process at timet. The fieldHp
accounts for the energy dependence between the state corre-
sponding to a high positive field and the state corresponding
to the fieldH of unstable states, close to the switching field
Hsw. The energyEp is proportional to the external fieldH
~see, e.g., the Stoner-Wolfarth model4!. We suppose that the
applied field is set instantaneously with respect to the time
scale of the experiment so that at the timet50, particles are
suddenly submitted to the perturbation field. The perturba-
tion field can then be written:Hp(t)5HpQ(t) whereQ(t) is
the step function at timet50. At very long times (t→`),
the magnetization reaches a second equilibrium value, which
corresponds to the state where all particles of the ideal array
are in the reversible part after the nucleation jump in the
hysteresis loop shown in Fig. 2~b!. The dynamics of the
number of switched particles can be described by the re-
sponse to the perturbation fieldHp :

^dm&~ t !5^m&~ t→`!2^m&~ t !. ~2!

In the linear-response approximation, the response to a step
function is given by the following Kubo formula:5

^dm&~ t !5
Hp

kT
^mm~ t !& ~3!

where^mm(t)& is the time autocorrelation function at equi-
librium ~in the quantum regime this correlation function is
the Kubo-Mori product!. The empirical formula~1! gives the
time dependence of the process~the distribution of probabil-
ity of the switching times obeys the same Fokker-Planck
equation as the distribution of probability of the variable,
see, e.g., Ref. 6!. The magnetization~3! of the ideal array can
hence be written as follows:

^dm&~ t !5
Hp

kT
^m2&e2~gt !b

, ~4!

where the damping coefficientg is close to the inverse of the
mean switching timêt&. The application of the fluctuation-
dissipation theorem allows us to link the magnetic fluctua-
tions ^m2& with the noiseD(T) through the damping con-
stant g. Assuming that the process can be described by a
white noise, we have5

g5
hD~T!

^m2&
, ~5!

whereh is the temperature-independent friction coefficient,
defined in order to have a noiseD(T) in energy units@in the
case of Brownian motionD(T)5kT]. Therefore for a fixed
field, the response~4! of the ideal array of particles becomes

^dm&~ t !5hHp

D~T!

kT

e2~gt !b

g
. ~6!

B. Magnetization of the array of particles

The magnetization decay of the real array of particles
M (t) accounts for the contribution of all particles switching
during the aftereffect measurement:M (t) is then given by
the sum of those particles having switching times compatible
with the experimental time scale. In order to compare the
measurements performed on one single particle to those per-
formed on the array of particles, we first have to define in the
array, the number of different ideal arrays of particles of
identical switching time distribution. An ideal array is now
defined as the set of particles with a damping coefficientg
contained in the interval@g,g1dg#. If f gdg is the number
of such ideal arrays in the sample,f gdg^m&(t) is the time-
dependent magnetization of this subsystem. The magnetiza-
tion M (t) is then given by the summation over all ideal
arrays weighted byf g .

The question arises as to how the distributionf g of damp-
ing constants in the array of particles can be deduced. The
variation of the mean switching time with the applied field
H, for a single particle is shown in Fig. 8. Three decades of
the mean switching time are covered by a field variation
DH of about 15 Oe for all temperatures. In the macroscopic
array of particles, the distribution ofg is due to the distribu-
tion of mean switching field̂Hsw&, given in Fig. 4. A varia-
tion of 15 Oe is negligible with respect to the width of the
distribution in the vicinity ofHc . Then, the distribution of
switching fields can be taken as uniform, and the distribution
can be approximated by a uniform distributionf̄ over the
frequency intervalDg. The summation writes

^M &~ t !5Hph
D~T!

kT
f̄ E

Dg

e2~gt !b

g
dg. ~7!

The noiseD(T) has been taken to be independent ofg
@in Fig. 8 a field-independent noise can indeed be extracted
also through the thermal dependence of the slope of the ar-
rows in Fig. 8~Ref. 2!#.

SettingU5(gt)b in the integral, the limits of integration
becomeDU5t(gmax2gmin)

b. The upper integration limit
gmax is of the order of the inverse of the second andt is in
hours, the contribution to the integral fromtgmax to infinity
is negligible so that~7! can be written

^M &~ t !5Hph
D~T!

kT
f̄
1

bEUmin

1` e2U

U
dU. ~8!

The last integral can be rewritten using an expansion in
logarithm7

2E
Umin

1` e2U

U
dU5 ln~Umin!1«~ t !1Eu. ~9!

Eu is Euler’s constant and«(t) tends to zero whenUmin
tends to zero.
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Umin5(tgmin)
b wheret is the time of the observation. The

difference 2(1/gmin2t) accounts for the fluctuations and is
more than a decade~see Fig. 6! so that the magnetization
M (t) rewrites

^M &~ t !'2Hph
D~T!

kT
f̄ F ln~ tgmin!1

Eu

b G . ~10!

The magnetic viscosityS5ud^M &/d„ln(t)…u can be written

S~T!'Hph
D~T!

kT
f̄ . ~11!

As long asgmin is not temperature dependent,^M &(t) and
S(T) should have a similar thermal dependence. Experimen-
tally, it is observed that the magnetizationM (t5103 sec)
~inset of Fig. 5! measured during the relaxation has the same
temperature dependence as the magnetic viscosityS(T) ~Fig.
5!, which suggests thatgmin is indeed temperature indepen-
dent.

The validity of the linear-response hypothesis can be
checked by using our knowledge of the switching field dis-
tribution. Due to the ‘‘local uniformity’’ of the distribution
f̄ , the field dependence of the slopeD^M &/DH in the vicin-
ity of the applied fieldH0 is proportional to the distribution

D^M &~ t !
DH U

H5H0

} f̄ ~H0!, ~12!

the assumption of the linear-response hypothesis ‘‘Hp pro-
portional to the applied fieldH0’’ leads to Eq.~11!. Inserting
Eq. ~12!, we then have

S~H0!}H0

D^M &~ t !
DH U

H5H0

, ~13!

in agreement with the fit of Fig. 4~a!.

C. Consistency of the model with the experiments
on the single particle

The noiseD(T) can be measured independently of the
above model on a single particle and by using the usual
formalism of activated process which describes the thermal
dependence of the relaxation. If we suppose that for each
temperature and at fixed applied fieldH, the same magnetic
object relaxes over an energy barrierE, the thermal depen-
dence of the activation process is given by the mean switch-
ing time. The Kramers formula gives6

^t&~T!5^t&H
0 expS E

D~T! D , ~14!

where the prefactor̂t&H
0 is the switching time in the limit

where E/D(T) tends to zero. The diffusion coefficient
D(T) has been identified with the noise defined in~5!
through the fluctuation-dissipation theorem.8 The measured
temperature dependence of ln(1/g)5 ln(1/g0)1E/D(T) has
been plotted in Fig. 9 where some points have been extrapo-
lated from the arrows of Fig. 8 at fixed fieldH. At each
external field, experimental data are fitted by tanh(T0 /T)
curve. The low-temperature deviation from the usual white

noise Dcl(T)5kBT at low temperature has already been
measured in various magnetic nanostructures.9,10

Note that in the usual approach in terms of activation
processes,3 the relaxation function~1! with 1/g given by~14!
is integrated over a distribution of energy barriersE. This
procedure leads to a result formally identical to the integral
~8!,

^M &~ t !'M ~0!D~T! f̄ E ln~ tgmin!, ~15!

with the exception of the thermal dependence contained in
the prefactorM (0)D(T) which cannot be described in this
approach without more statistical arguments about the initial
state.

Equation~11! predicts a thermal dependence of the vis-
cosityS(T) in the formD(T)/T. We have plotted in Fig. 10
the thermal dependenceD(T)/T deduced from the fits of
Fig. 9 ~curve atH5100 Oe!. In the left scale, data of the
magnetic viscosity taken atH5110 Oe has been plotted.
Both data points are fitted by 1/T coth(T0 /T) curves: both
thermal variations are qualitatively in agreement. The tem-
peratureT0 is of the order of 1 K.

CONCLUSION

Relaxation measurements on magnetic Co particles at low
temperature have been performed at two different scales

FIG. 9. Arrhenius plot of the system for various values of the
external fields. The logarithm of the mean switching time is plotted
versus the inverse of the temperature in order to evidence the shift
from the noiseD(T)5kBT occurring at low temperature. Some of
the points are obtained from extrapolations of the arrows of Fig. 8.
All the curves are fitted by a tanh(T0 /T) function whereT0 is vary-
ing from 0.4 to 2.

FIG. 10. The thermal dependence ofD(T)/T, deduced from the
fit of Fig. 9 ~curve atH5100 Oe!, is plotted~left scale! together
with the data of the magnetic viscosityS taken atH5110 Oe and
H5170 Oe ~right scale!. Both sets of data points are fitted to
coth(T0 /T)/T whereT0 is varying from 1 to 3.
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~single nanoparticle and array of independent particles!. The
comparison of the experimental results show that two levels
of statistic distributions must be taken into account. The
switching process of the magnetization measured on a single
particle is stochastic and accounts for the intrinsic fluctua-
tions. The time dependence of the relaxation process, mea-
sured statistically, shows that the mean switching time fol-
lows an Arrhenius-like law with an effective noiseD(T) of
the form coth(T0 /T). The measurements performed on the
array of the noninteracting particles confirm the existence of
a distribution of mean values~mean switching time, mean
switching field! of the individual particles. The magnetiza-
tion of the array has been described by applying the linear-
response theory, and using our knowledge of the statistical
parameters of the sample. This model predicts aD(T)/T
thermal dependence of the array’s magnetic viscosityS
5dM/d„ln(t)…, which has been observed experimentally. In
a previous work9 two types of responses of magnetic systems
have been described; the response to an external excitation
field, which is relevant here, and the response to a thermal
excitation. It seems that this last situation cannot be observed
in the present nanostructured sample, because the coupling to
the heat bath is performed at a nanoscopic scale. However, if
the sample were thermally excited at timet50, the linear-

response formalism would lead to an equation similar to~11!
where the prefactorHp /kT is replaced by a Lagrange mul-
tiplier l, which does not usually depend on the temperature.
The thermal dependence of the viscosity may then be iden-
tical to the thermal dependence of the noiseD(T), and may
lead to a coth(T0 /T) profile ~proportional to T when T
@T0). It seems that this last situation has been observed by
aftereffect measurements in various systems and interpreted
in the framework of the theory of the macroscopic quantum
tunneling of the magnetization.11,12

Although the physical interpretation of the noiseD(T)
}coth(T0 /T) has not been completely clarified in the present
work, especially the quantum nature ofD(T),9 our results
show that the magnetic aftereffect process at low-
temperature reduces essentially to dissipative phenomena.
These phenomena, related to the investigation field of quan-
tum stochastic and quantum noise, have to be better under-
stood before concluding about macroscopic quantum tunnel-
ing of the magnetization.13,14
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