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History-dependent phenomena in spin-glass mean-field models
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The microscopic mechanism of history-dependent phenomena in spin-glass mean-field models is studied by
analyzing how the applied field influences the spin-glass systems. It is found that, due to the competition
between the reaction field and the applied dc field, the spin-glass system is seriously disturbed no matter how
weak the dc field is. A field-dependent phase-transition mode spectrum is proposed to explain the essential
spin-glass feature observed in dc measurements, including the “plateau” of field-cooled susceptibility, the fully
field-dependent response in low-field regions, and characteristic history-dependent phenomena. The agreement
between theoretical prediction and experimental observation are amazing. A comparison between the present
theory and known equilibrium mean-field theory has also been made.

[. INTRODUCTION dependent phase-transition mode spectrum to understand the
history-dependent phenomena; in Sec. IV, we present a de-
The spin-glas$SG phase is usually described as effec-tailed calculation of dc susceptibility which explains history-

tively nonergodi¢=3 because of the history-dependent phe-dependent response and irreversibility. Conclusions and dis-
nomena and extremely long-time scales involved in itscussion will be given in Sec. V.
dynamics*® It is well known that effective nonergodicity is a
natural result of the complex ground-state structure of SG Il. THE COMPETITION BETWEEN REACTION FIELD
mean-field model$? even though the microscopic mecha- AND dc FIELD
nism is still unknown. The main difficulty is to find out an our startin oint is the Thouless-Anderson-Palmer
appropriate order parameter which can lead to decompositiO(Jl_AP . % P
of phase componentsUp to now, research on the micro- ) equation.
scopic mechanism of effective nonergodicity is rare though
muchl Xygrk has been done on SG dynamics in recent Hizz Jij(Sj>—ﬂ<Si>2 Jizj(l—(Sj>2), (2.7
years.”"~° On the other hand, only a few works have been J ]

done bqse;j on the Thouless-Anderson-Paln@AP)  horel s the effective field acting on sife We will discuss
Ham|Ito_n|an, which is believed to contain more physics than Sherrington-KirkpatrickSK) model?? i.e., S==+1, andJ
the replica method. The present paper is an attempt to studyiy pe chosen to satisfy the following distribution with
the effective nonergodic behaviors of the mean-field modej_,...
by the use of the TAP equatidnOur main interest is the
history-dependent phenomena observed in dc susceptibility p(JH):(zij/N)—l/Z eXF(_NJ,z_/z:jZ)_ 2.2
measurements. N B

The present study is stimulated by one of the earliest ob- |t js well known that the first term on the right side of Eq.
servations that SG systems are extremely sensitive to applid.1) is a cavity field, and the second term is the reaction
dc fields even in very low field.Experimental study on the field Hg:
effect of applied fields is rather systemdtibut the theoreti-
cal study is quite les5° even a satisfied answer to why SG 5 ,
systems are so sensitive to applied fiéldsas not yet been Hr= _18<Si>$ Jij(1_<sj> ), 23
found. In our opinion, the history-dependent phenomena just
mean that the low-temperature phase of SG systems crucialtyhich arises from the polarization of neighboring spi&)
depends on the presence of dc fields in its history. The urby the spin at sité.X® It has been shown that in SG systems
derstanding about how the applied field affects SG systems the reaction field has equal importance as the cavity fiéfd.
the precondition of understanding history-dependent pheNow we present a qualitative analysis to display the role of
nomena. The present study shows that without the help ahe reaction field in a SG phase.
nonequilibrium statistics or detailed knowledge of the com- Notice thatﬂEjJﬁ-(l—(Sj)z);O, Hg always has an op-
plex ground state, history-dependent phenomena appear agasite sign to(S;) in spite of the oscillation o8;; . Suppose
natural consequence of the competition between the reactidhat the contribution of the cavity field is positive, and it will
field and applied dc field. Our work is an attempt to providelead to a pointing-ugS;), then the contribution of the reac-
a detailed explanation for the dynamical SG transition undetion field due to the polarization of the neighboring spins by
applied dc fields. This paper is organized as follows: Sectiorthe pointing-upS;) (Ref. 13 will be negative Hg will force
Il is devoted to analysis on the competition between reactiogS;) to point down. Likewise, suppose that the contribution
field and applied dc field; in Sec. Ill, we proposed a field-of the cavity field is negative, then the reaction field will be
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positive. Since the reaction field is as strong as the cavity

field, (S) will be really frustrated when it tries to find a fixed P(H™)= f I1 P(Jij)dJj o(H"—H; ). (2.10
pointing direction(up or down. In other words, the reaction '

field will prevent(S;) from pointing at a fixed direction. Itis Finally, the whole field distributiorP(H) including the re-
in favor with a disordered phase witli;)y=0 (here( )4 is  action field will be

disordered averageThis conclusion agrees with the fact that

the nonzero convergent solution of the following equation: P(H)=[P(H")+P(H)]/2. (2.1

(S)=tanhBH; (2.4) P(H™) andP(H™) can be easily found by the mathematical

treatment of MRFE® and the result is found to be
has not been found when reaction field is includd.

When a dc fieltH,, is applied to the system, the effective P(H)=(2mJ%q)~ ¥Yexd — (H+R)%23%q]
field will be ~
+exd — (H—R)%23%q]}/2, (2.12
Hi=He+ > 3;(Sj)+Hg. (2.5  where
i
The net contribution of the cavity field and the dc field will m=(27r)‘1/2J |tanhY|e‘X2’2 dx, (2.13
be positive, and a positiws;) will be induced. The reaction

field due to this positivéS;) will be negative. This means

that the reaction field will preven(S;) from pointing along q:J tant?( BH)P(H) dH=(27-r)‘1’2J’ tankY e 2 dx
the direction of the applied dc field. As a result, whether a '

spontaneous magnetization will appear depends on the com- (2.14
petition between dc field and reaction field. % 1

In the following, we present a quantitative analysis on the Y=BJa7X—BR, (2.15
competition between reaction field and applied field based on =
the above conclusions. It will be shown that the competition R=pJ"m(1-q), (2.19

between reaction field and dc fields is crucially important forere R effectively represents the strength of the reaction

understanding history-dependent response and irreversibilitya|q. Magnetic susceptibility and specific heat can be found
The mathematical treatments in the present paper will fol the same way in MRF¥ i.e.,

low the so-called mean-random-field thefryMRFT) de-
veloped by Klein. Although MRFT is not a good mean-field )

theory (MFT),'? we sitill choose it because of its simple X:,BJ seh”(BH)P(H)dH=8(1-q), (2.17
mathematical treatment and transparent physical ideas. Fol-

lowing the MRFT, the first task is to calculate a field distri-

bution P(H) including the reaction field. According to the Cm:kB,Bf H?seh?(BH)P(H)dH

above analysis, the main effect of the reaction field is to keep
P(H) centering atHy=0 (i.e., (H;)4q=0). Under this con-
straint,P(H) can be approximately calculated by the follow-

ing procedure. L
First, the(S;) on the right side of2.1) should be positive WhereY is given by(2.15. The temperature dependence of
definite, so R, x, andC,, can be obtained by a numerical solution com-

bining Egs.(2.13 and(2.14). Temperature dependenceRf
. ) ) is shown in Fig. 1, where one can find tlis a monotonic
Hf=2 J(S)—Bm> J5(1-(S)?), (26  decrease function of temperature. The temperature depen-
. . dence ofy andC,, are found to be qualitatively the same as
wheré’ that of MRFT26
The critical point can be found by using E(.13 or

m={|(S)|)¢= f [tanh( BH)|P(H)dH 2.7) (2.14) with the approximationg~m?asT— T, the result is

which has the same meaning as the Edwards-Anderson order Te=1.272/kg. (2.19
parametet’ Then a field distribution oH;" can be found This value is higher than the common ofig,=J/kg.> The
by'® higher critical point is probably due to the approximations
used by us. Further discussions about this discrepancy will
p(H+):f IT P(Ji))dd; o(H —H). (2.9 be provided later. _ o
j When a dc field is involved, without considering the com-
petition betweerH, andHg, P(H) is expected to be

= 27kg f Y2 seh?2Ye X2 dx,  (2.18

Secondly(S;) will be negative definite, i.e.,
P(H+Hg)=[P(H"+H)+P(H +H.)]/2. (2.20

H =2 J(S)+Bm> J5(1-(S)D. (29  The result is thatP(H) will move its distribution center
. . from Hy,=0 to Hy=H, and a net spontaneous magnetization
Likewise, one can find another distribution by appears that will suppress the phase transition. However, in a
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05 . . when the applied field is stronger than reaction field. In this
paper, the main interest will be the low-field condition, i.e.,
0.45r 1 HsHg, let
o Ho=(1-K)R, O0=K<1. (2.21)
o 1 In this case, the field distributioR(H +H,) will be calcu-
03r 1 lated under two constraintgl) P(H+H,) still centers at
S 008l i H,=0, and(2) the strength of the reaction field will be ef-
@ fectively reduced byH.. That is
0.2F 1
0.1} . P(H+H,) = fl:[ P(J;)dJ;j o(H—H)
0.1 1
0.s} . +f H P(J;j)dJ; a(H—H;)]/z,

[} 0.5 1
Temperature(J/kB) (2 : 22)

where
FIG. 1. Temperature dependenceRyfa quantity that effectively
represents the strength of reaction figilis a monotonic decrease Hi=H+(1-K)R, (2.23
function of T.
H; =H; —(1-K)R, (2.29

SG system,P(H+H,) cannot be simply calculated by provided thatH;” andH; are given by Eqs(2.6) and(2.9),
(2.20. As a mean-field approximation, it is suggested thatrespectively.
the movement of the distribution center will happen only In the same way one can find that

P(H+Hg) =Py (H)=(8m3%qx) Y4 exp{—[H+KBI2m(1— qx) 1%232q,} +exp{ —[H— K BI2m (1 - ) 12/232q,}),
(2.25

where reaction field. When E¢2.213 is satisfied, it means that the
applied dc field is “neutralized” by the reaction field, or the
_ 112 —x212 applied field becomes effectively null.
Mk =(2) J’ [tanhyy|e dx, 2.29 SinceK is H, dependent, both the staying state and the
differential response to applied fiejg are fully H, depen-
2.27 dent. Notice that the strength of the reaction field is rather
' weak (Rn,,=0.53, c.f. Fig. 1, this fully H.-dependent be-
. . havior holds even in the low-field regiorise., even when
yk=BIqx— K B232my(1-qy), (228  ugHJ/ksT <1 is satisfiedl Therefore, the observed re-
sponse is fullyH, dependent and nonlinear even when the
applied dc field is weak.

Q= (277)*1’2f taniy e *"2 dx,

and also

Xk=B(1—0k), (2.29
I1l. PHASE-TRANSITION MODE SPECTRUM

— 2
Ch=(2m) mksf yksehyge X2 dx. (230 Since K can vary from 0 to 1 continuously, the above
analysis implies that there exists a continuum of possible
When a dc fieldH, is involved, the staying state is char- staying states in the low-temperature regions. Also, by using

acterized by the introduced parameier the approximatiorg,~m% at T=T,, one can find a formu-
laic critical temperature from Ed2.26) or (2.27):
K=1-H./R. (2.21a

K is just a parameter which measures the degree that the Tox=[(VAKZ+1+1)/2]"2/Kg . 3.9
reaction field is reduced by the applied field. In the zero-field

condition, whereK=1, then distribution(2.25 reduces to This means that there is a critical point for a givi€n Al-
distribution (2.12. In the case oK =0, distribution(2.25  thoughT is just a formulaic critical point, botly, andC
will reduce to that found by MRF¥ where the reaction field show typical critical behaviors &f.x . Some representative
was not included. Equatiof2.219 can be considered as the xk-T curves are shown in Fig.(&), where one can find that
balance condition for two competing forces: dc fields andsharp cusps appear aiy .
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o891 FIG. 3. Depiction of bifurcation in a SG transition over the

0s; : . , critical zone. Phase-transition modes with higher critical points than

Temperature (J/kB) ’ the soft mode are suppressed by dc field, yet those with lower
critical points are suppressed by the soft mode. Bifurcation due to

Ising symmetry has not been included in this picture.

Now we will show how the proposed phase-transition
mode spectrum works in understanding history-dependent
response and irreversibility. The mode-choosing mechanism
in two representative processes, the field-codfeg) process
and the zero-field-cooleZFC) process, will be discussed,
separately.

In a FC process, the system is cooling down with dc field
H. applied. When the system is cooled through the critical
zone, the applied field will try to construct a spontaneous
magnetization that will suppress the instability of quasi-
phase-transition modes. On the other hand, the reaction field
will act againstH and is in favor with quasi-phase-transition
modes. In the beginning, the strength of the reaction field is
rather weak, thus the suppression due to the applied field will

FIG. 2. (a) Some representativg~ T curves(from top to bot- be predominant. As the temperature further lowers, the
tom: K=0, 0.1, 0.2, ..., 0.9, and)1Sharp cusps of unsymmetric strength of the reaction field increases. At some temperatures
structures are found at the critical points of phase-transition mode$ 4 inside the critical zone, the reaction field will balance the
(the x axis has been displaced for a clear view of critical behayiors applied field, that is,

These cusps are just a reproduction of susceptibility cusps observed

in ac and neutron-scattering measuremetit) Distributions He=Rlro7, Teo=Ty<Tg. (3.2
x(K)~K at some representative temperatuffesm top to bottom: g

T=1.1, 0.9, 0.5, and 0.0/kg). It is suggested thafyx=1/T at
T>Tek-

Differential susceptibility

Consequently, the quasi-phase-transition mode with its criti-
cal point just atT, will survive. This survival mode is the

Based on the above result. we can consider that the sta%—Oft mode that will suppress all the other modes with critical

ing state characterized Ity is a quasi-phase-transition mode. oints. lower thanTg |n.further coqlmg process. Th_|s mode-
This quasi-phase-transition mode has a quasicritical poin(f.hOOSIng mechanism is schematically shown in Fig. 3..For a
T.x, and its thermodynamical properties are described b ivenHe, the chosen soft mode can b.e known from Fig. 1,
Egs. (2.26-2.30. Consequently, there is a continuum of gs.(3.), and(3.2). For example_s, takingi,=0.111, 0.18,
guasi-phase-transition modes that will be called the phasep—'z’_ and 0.239, the soft modes will b&=0.8, 06 0.4, and
transition mode spectrum. The critical points of all quasi—0 with Ty=1.20, 1.13, 1.07, and 1)fKg, respectively. Both
phase-transition modes lie over_some temperature regiotrli1e chosen S.Oﬂ mode_al’fq? areH, dependent. Dependence
(i.e., from T y=J/kg to T,;=1.272/kg) called the critical Of Tg onHe is shown in Fig. 4, where one can find th.-b.gt
zone. As a matter of fact, both order parameter and thermdjecreases all, increases. Whekl, exceeds some critical
dynamical quantities have continuous distribution in thevalue,
phase-transition mode spectrum. Distribution xfK) at -
some representative temperatures is shown in Rlg. 2 He=Rlr-1 =0.239, (3.3

The concept of phase-transition mode and phase-
transition mode spectrum are not original idé&Since the all quasi-phase-transition modes will be suppressed and no
staying state characterized Byis a thermodynamical state, phase transition will occur.
all the quasi-phase-transition modes in the present picture are Since the applied field is effectively null at<Tg, the
extended, but not localized as proposed by Hertz or Jaobs.system will keep staying at the soft mode in both cooling and
There will be just one soft mode in the cooling process.  warming sweep al <Tj. In other words, the chosen mode
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FIG. 4. Dependence of, on the applied fieldT, is a mono- I;IG.hS. Hlstory-dlepgndsnth phenorr;ena in dc measuremenc:s:
tonic decrease function dfi, and whenH,>0.23d, there is no ~mode-choosing results in both FC and ZFC process for two dc
phase transition fields of H,=0.239 (top) and 0.16. Reversible FC processes are

shown in full line with reversible marks, irreversible ZFC processes

in a FC process i§ independent aT<T,, and thus a FC are shown in dash-point line, and broken line means paramagnetic
process is reversible for a fixed appliedgfield. (PM) phase.

In a ZFC process, the system is cooled down with null, . ) .
H,, the soft mode will be&k =1 mode when cooling through S taken: fromB to A. Smce. the strength pf reaction field
the critical zone. The system will keep staying at the1  increases a3 lowers andH, is just “neutralized” atB, H.
mode aiT<T,, in zero-field condition. Wheil,, is applied Wil become effectively null af<T,, as in a FC process.
at some measuring temperaturg, the K=1 mode will be- Consequr_ently, the system W|II_ be locked KE=0.467 in
come unstable since the balance betwegnand reaction Poth cooling 8—A) and warming A—B) processes, that
field breaks. The system will be driven to another stabldS: irreversibility appears. When the system is warmed up
modeKs, in which the applied field and reaction field bal- @P0veB, the balance betweeH. and Hg will lose again,

ance againKg is given according to the balance condition and the the warming process comes back to the original ZFC
(2.213, i.e. process. Similar irreversible behaviors can be found by inter-

rupting cooling downs starting &, D, andE as shown in

KS:]'_HG/R|T:T0' (34)

The application oH, leads to an evolution of staying state 0
from theK=1 to Kg mode. Experimental evidences for this r*““‘"
evolution of staying state have been found in botliRlef. 8 1 e
and ac measuremett. A

Suppose that the system is warmed upTtoby a step hzeid o
changeAT, the balance betweddg andH, will be broken o8
since the strength ol decreases a¥ increases. Conse- £re e M
guently, theKg mode becomes unstable Bf, and the stay- go.e— gsg
ing state will evolve to another stable mode; :Kg =1 L“i—-—s

—R/Hg|t=1.. As a result, the chosen mode in the warming
1

sweep isT dependent. When the system is warmed up above :
the critical zone and then cooled down, this cooling down
process is exactly a FC process, thus the system will be ©2f ’
locked in the soft mode chosen by the applied field in the |
cooling sweep. Depiction of this history-dependent mode- || , i
choosing mechanism is shown in Fig. 5. 0 05 1

Now we turn to discuss how irreversible behaviors appear
during the warming sweep in a ZFC procé§sF.or simplic- FIG. 6. A schematic demonstration for irreversibility in a ZFC
ity, the experimental .proce%SNIll be schematically simu-  process oH,=0.239), locking modes in interrupting cooling down
lated in Fig. 6 by usingd,=0.239). Starting from O, the  4re marked above the lines. Wher has been applied, a cooling
system is zero-field cooled t&(T,=0.13/kg), thenH is  down followed a warming up is reversibleay,B—A—B), yet a
applied and the system is warmedB{Tg=0.4)/kg). The  warming up followed a cooling dowfsay, A—B—A) is irrevers-
chosen modes & andB areKs=0.518 and 0.467, respec- ible. For a given set ofl,,T) (say,H.=0.239, T=0.1J/kg), the
tively, afterH, is applied. Next an interrupting cooling down chosen mode is fully history dependent.

Temperature(./kB)
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Fig. 6. The mode-choosing mechanism shown in Fig. 6 exwhereM g« (H) is given by the following coupled equations

plains the experimental observations #faa cooling down
following a warming up is reversible, yet a warming-up fol-
lowing a cooling down is irreversible.

IV. HISTORY-DEPENDENT RESPONSE

In this section, the corresponding dc susceptibility will be
calculated by using the mode-choosing mechanism provided

in the last section. In a dc measurement, dc susceptikijity
is found by
f He dM
o dH

here M is the induced magnetization by applied fieit .
The former analysis implies thag.#dM/dH even when
peH/kgT.<1. In the present pictureyy. can be expressed
as

1

Xdc:M/He:H
e

dH, (4.1)

1 Ko
Xdc:_f xk(dK/dHe) ~t dK, (4.2)
He J1

whereK, is the chosen mode is the differential suscep-
tibility of the Kth mode, anadlK/dH, means how the chosen
mode varies withH,. It has been shown that the mode-
choosing mechanisnfi.e., dK/dH,) is history dependent,
consequentlyyy. will be history dependent.

In a ZFC process, the variation of chosen mode vith
in the warming sweep obeys E.4), this implies that

(dK/dHe)|ZFC: _1/R, (43)

substituting this result t¢4.2) and using(3.4), ZFC suscep-
tibility is found to be

1

Xzee= 1k (4.9

1
f XK dK:XKO-
Ko
Xzec IS the average susceptibility over modes fré&gto 1,
that can be found by using the results provided in Fig. 2.
In a FC process, the chosen mode varies withabove
Ty, but will be T independent belowly. This means that
dK/dH,, and thusdM/dH, will be H, dependent abovg,,
but becomesT independent belowl ;. Consequentlyec
will be T independent al <Tj, that is

Xrcd T =xecd(Tg), T<T

the well-known plateau of FC susceptibiltty.
In the temperature regions aboVg, FC susceptibility
will be calculated by

(4.9

g

Xec=(M1+Mj)/He. (4.6)
M, andM, are given by
RdM 1 —
0 0
He dM
Mzsz de:MSK(He)_MSK(R)a (4.8

as in MRFT(Ref. 16 or SK theory!?

Mgk(H)= \/Zﬂf tanh BIqY2x+ BH)e ¥2 dx,

(4.9

q= \/wa tani?(BIqY+ BH)e ¥ dx. (4.10

Consequentlyxgc aboveTy will be given by
Xrc=Msi(He)/He— A,

Ax=(Mgk(R)—Rxo)/He.

4.1)
(4.12

In the temperature regions above the critical zdne.,
T>T..), whereR=0, and thusAy=0. This implies that

Xrc=Msk(He)/He, (4.13

As a result, Curie law will be obeyed &t>T.; in low-field
regions. On the other hand, sindg>0 at T<Ty, xgc Will
be lower than that of Curie law befor€; is reached as
observed in experiments.

Some numerical results are shown in Fig&),77(b), and
7(c). Curves shown in Fig. 7 are typical history-dependent
phenomena observed in dc measurements. We have found
that, both the “plateau temperaturévhere the plateau ap-
pears in a FC processand “reversibility temperature”
(where yec and yzrc join)® decrease as dc fields increase.
Also, xzrc curves of different fields are found to be quasi-
parallel and obey

xzrc(H1) > xzrc(H2), (4.14
These results are in good agreement with experimental
observation,yet in a FC process, the following relation:

xrc(H1) <xrc(H2), (4.19

is found to hold only above the critical point, but breaks
below the critical point. The reason for this discrepancy is
unclear.

T>Te.

Hi>H,.

V. CONCLUSION AND DISCUSSION

In previous sections, a field-dependent phase-transition
mode spectrum is proposed to understand the history-
dependent phenomena and irreversibility. Theoretical predic-
tions of the present paper explains the essential SG features
observed in the dc measurements. In the present picture, the
separation of paramagnetieM) and SG phases is not just a
critical point, but over a finite temperature regi@re., the
critical zong as indicated by the experimérand computer
simulation?? Bifurcation (or tree branching in a SG
transitior? is continuous over the critical zone, the applied
field serves as a “switchman” that will switch on a specified
bifurcation (or branching when cooling through the critical
zone.

The kernel of the present theory is the proposed phase-
transition mode spectrum which suggests an infinite number
of possible staying states in low-temperature regions. This
picture is reminiscent of the well-known ground-state struc-
ture of SG systems. In order to provide a complete descrip-
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tion for this complex ordered phase, a continuous function
g(x) with a mysterious variablg(0<x=1) is used as order
parameter in the Parisi theof¥.In the present picture, a
continuous distribution functiom(K) (0=K<1) is em-
ployed as the order parameter. This coincidence is very strik-
ing thoughq(K) has a different meaning frop(x). It is not
clear yet whetheq(K) can correspond to another “gauge”
of Sompolinsky’s theory:? The important point is that the
proposed order parametg(K) is able to make decomposi-
tion of phase components.

A quantitative comparison between the present theory and
equilibrium MFT still has some problems. One is the higher
critical point in the zero-field condition. It seems to us this
higher critical point is probably due to the approximations
used, including the proposed approximation to include the
reaction field and the mean-random-field approximatfon.
Another discrepancy comes from the comparison between
the so-called Almeida-Thoule$aT) line?® and the field de-
pendence of the critical point provided in Fig. 4. It is true
that two lines have qualitatively the same field dependence,
that is, T, decreases d3, increases. However, from a warm-
ing direction, the AT line terminates dH.=0, T.,=T.)
while our T,—H, line starts at(H,=H_., T=T). Obvi-
ously this discrepancy is due to the wrong critical point we
find in zero-field condition.

Now we turn to discuss the stability of the quasi-phase-
transition mode. Theoretical research and numerical
simulatiorf® shows that an equilibriunP(H) should have
two basic charactergl) P(H) has a minimum aH=0 and
(2) P(0)|1_0=0. However, distributior(2.25 tells that for
all K’s, P«(H) has a maximum atl =0 andPy(0)|1_ o#0.

This clearly impliesP(H) is not an equilibrium distribu-
tion, and thus all phase-transition modes are nonequilibrium.
The fact thatP(H) is not an equilibrium distribution is not

a surprise result for two reasons. The first is that MRFT is
not a good way to seek an equilibrium field distributidn.
Another reason is that the reaction field always resists a fixed
pointing direction of(S;), and thusPy(H) always has a
maximum atH =0 even wherl —0. This implies that when
T—0, approaching to equilibrium requires a vanishing reac-
tion field. This conclusion is consistent with the equilibrium
requirement of TAP theory,since T—0, 1—qx<T? means
R=BJ’m(1—q)|;_,—0. In the present theorR|;_,#0,

S0 P (0)|1_¢#0.

The nonequilibrium nature of the phase-transition mode
spectrum is consistent with recent experimental observation
that SG systems are out of nonequilibrium during
measurements® Experimental evidence for the existence of
quasi-phase-transition modes is of special interest. In prin-
ciple, the nonequilibrium quasi-phase-transition mode is not
expected to be directly observable in a static measurement
like dc measurement as assured in the present paper, e.g.,
cusps shown in Fig. 2 are smeared out in dc measurement
(cf. Fig. 7). It can be expected that the quasi-phase-transition

Here the plateau temperature is just the critical temperature of thEnode can be directly observed in dynamical measurements,
soft mode. (b) Typical history-dependent response in dc mea;surejlke ac Susceptlblllty that exaCtIy measures the differential

ments: a complete set gfc~T and xzec~T curves ofH,=0.239
(top) and 0.16 (cf. Fig. 5. (c) A demonstration of irreversibility
in a ZFC process ofl,=0.239 (cf. Fig. 6. Here one can see that,
for a given set of H,T) (say,H,=0.239, T=0.1J/kg), the mea-
sured response is fully history dependent.

susceptibility® and neutron scattering. In fact, susceptibility
cusps shown in Fig. 2 have been observed in botlRas.
27) and neutron-scatteriAfgmeasurement. Further analysis
on how SG systems respond to a varying figikk ac fields

is necessary to explain this coincidence.
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