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The microscopic mechanism of history-dependent phenomena in spin-glass mean-field models is studied by
analyzing how the applied field influences the spin-glass systems. It is found that, due to the competition
between the reaction field and the applied dc field, the spin-glass system is seriously disturbed no matter how
weak the dc field is. A field-dependent phase-transition mode spectrum is proposed to explain the essential
spin-glass feature observed in dc measurements, including the ‘‘plateau’’ of field-cooled susceptibility, the fully
field-dependent response in low-field regions, and characteristic history-dependent phenomena. The agreement
between theoretical prediction and experimental observation are amazing. A comparison between the present
theory and known equilibrium mean-field theory has also been made.

I. INTRODUCTION

The spin-glass~SG! phase is usually described as effec-
tively nonergodic1–3 because of the history-dependent phe-
nomena and extremely long-time scales involved in its
dynamics.4,5 It is well known that effective nonergodicity is a
natural result of the complex ground-state structure of SG
mean-field models,1,3 even though the microscopic mecha-
nism is still unknown. The main difficulty is to find out an
appropriate order parameter which can lead to decomposition
of phase components.3 Up to now, research on the micro-
scopic mechanism of effective nonergodicity is rare though
much work has been done on SG dynamics in recent
years.1,4–6 On the other hand, only a few works have been
done based on the Thouless-Anderson-Palmer~TAP!
Hamiltonian,7 which is believed to contain more physics than
the replica method. The present paper is an attempt to study
the effective nonergodic behaviors of the mean-field model
by the use of the TAP equation.7 Our main interest is the
history-dependent phenomena observed in dc susceptibility
measurements.8

The present study is stimulated by one of the earliest ob-
servations that SG systems are extremely sensitive to applied
dc fields even in very low field.9 Experimental study on the
effect of applied fields is rather systematic,8 but the theoreti-
cal study is quite less,1,10 even a satisfied answer to why SG
systems are so sensitive to applied fields11 has not yet been
found. In our opinion, the history-dependent phenomena just
mean that the low-temperature phase of SG systems crucially
depends on the presence of dc fields in its history. The un-
derstanding about how the applied field affects SG systems is
the precondition of understanding history-dependent phe-
nomena. The present study shows that without the help of
nonequilibrium statistics or detailed knowledge of the com-
plex ground state, history-dependent phenomena appear as a
natural consequence of the competition between the reaction
field and applied dc field. Our work is an attempt to provide
a detailed explanation for the dynamical SG transition under
applied dc fields. This paper is organized as follows: Section
II is devoted to analysis on the competition between reaction
field and applied dc field; in Sec. III, we proposed a field-

dependent phase-transition mode spectrum to understand the
history-dependent phenomena; in Sec. IV, we present a de-
tailed calculation of dc susceptibility which explains history-
dependent response and irreversibility. Conclusions and dis-
cussion will be given in Sec. V.

II. THE COMPETITION BETWEEN REACTION FIELD
AND dc FIELD

Our starting point is the Thouless-Anderson-Palmer
~TAP! equation:7

Hi5(
j
Ji j ^Sj&2b^Si&(

j
Ji j
2 ~12^Sj&

2!, ~2.1!

hereHi is the effective field acting on sitei . We will discuss
Sherrington-Kirkpatrick~SK! model,12 i.e., Si561, andJi j
will be chosen to satisfy the following distribution with
N→`:

P~Ji j !5~2p J̃2/N!21/2 exp~2NJi j
2 /2J̃2!. ~2.2!

It is well known that the first term on the right side of Eq.
~2.1! is a cavity field, and the second term is the reaction
field HR :

HR52b^Si&(
j
Ji j
2 ~12^Sj&

2!, ~2.3!

which arises from the polarization of neighboring spins^Sj&
by the spin at sitei .13 It has been shown that in SG systems
the reaction field has equal importance as the cavity field.7,14

Now we present a qualitative analysis to display the role of
the reaction field in a SG phase.

Notice thatbS j J i j
2 (12^Sj&

2)>0, HR always has an op-
posite sign tô Si& in spite of the oscillation ofJi j . Suppose
that the contribution of the cavity field is positive, and it will
lead to a pointing-up̂Si&, then the contribution of the reac-
tion field due to the polarization of the neighboring spins by
the pointing-up̂ Si& ~Ref. 13! will be negative,HR will force
^Si& to point down. Likewise, suppose that the contribution
of the cavity field is negative, then the reaction field will be
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positive. Since the reaction field is as strong as the cavity
field, ^Si& will be really frustrated when it tries to find a fixed
pointing direction~up or down!. In other words, the reaction
field will prevent^Si& from pointing at a fixed direction. It is
in favor with a disordered phase with^Hi&d50 ~here^ &d is
disordered average!. This conclusion agrees with the fact that
the nonzero convergent solution of the following equation:

^Si&5tanhbHi ~2.4!

has not been found when reaction field is included.15

When a dc fieldHe is applied to the system, the effective
field will be

Hi5He1(
j
Ji j ^Sj&1HR . ~2.5!

The net contribution of the cavity field and the dc field will
be positive, and a positivêSi& will be induced. The reaction
field due to this positivêSi& will be negative. This means
that the reaction field will prevent̂Si& from pointing along
the direction of the applied dc field. As a result, whether a
spontaneous magnetization will appear depends on the com-
petition between dc field and reaction field.

In the following, we present a quantitative analysis on the
competition between reaction field and applied field based on
the above conclusions. It will be shown that the competition
between reaction field and dc fields is crucially important for
understanding history-dependent response and irreversibility.

The mathematical treatments in the present paper will fol-
low the so-called mean-random-field theory16 ~MRFT! de-
veloped by Klein. Although MRFT is not a good mean-field
theory ~MFT!,12 we still choose it because of its simple
mathematical treatment and transparent physical ideas. Fol-
lowing the MRFT, the first task is to calculate a field distri-
bution P(H) including the reaction field. According to the
above analysis, the main effect of the reaction field is to keep
P(H) centering atH050 ~i.e., ^Hi&d50!. Under this con-
straint,P(H) can be approximately calculated by the follow-
ing procedure.

First, the^Si& on the right side of~2.1! should be positive
definite, so

Hi
15(

j
Ji j ^Sj&2bm(

j
Ji j
2 ~12^Sj&

2!, ~2.6!

where17

m5^u^Si&u&d5E utanh~bH !uP~H !dH, ~2.7!

which has the same meaning as the Edwards-Anderson order
parameter.11 Then a field distribution ofH i

1 can be found
by16

P~H1!5E )
j
P~Ji j !dJi j s~H12Hi

1!. ~2.8!

Secondly,̂ Si& will be negative definite, i.e.,

Hi
25(

j
Ji j ^Sj&1bm(

j
Ji j
2 ~12^Sj&

2!. ~2.9!

Likewise, one can find another distribution by

P~H2!5E )
j
P~Ji j !dJi j s~H22Hi

2!. ~2.10!

Finally, the whole field distributionP(H) including the re-
action field will be

P~H !5@P~H1!1P~H2!#/2. ~2.11!

P(H1) andP(H2) can be easily found by the mathematical
treatment of MRFT,16 and the result is found to be

P~H !5~2p J̃2q!21/2$exp@2~H1R!2/2J̃2q#

1exp@2~H2R!2/2J̃2q#%/2, ~2.12!

where

m5~2p!21/2E utanhYue2x2/2 dx, ~2.13!

q5E tanh2~bH !P~H ! dH5~2p!21/2E tanh2Ye2x2/2 dx,

~2.14!

Y5b J̃q1/2x2bR, ~2.15!

R5b J̃2m~12q!, ~2.16!

here R effectively represents the strength of the reaction
field. Magnetic susceptibility and specific heat can be found
in the same way in MRFT,16 i.e.,

x5bE sech2~bH !P~H !dH5b~12q!, ~2.17!

Cm5kBbE H2sech2~bH !P~H !dH

5A2pkBE Y2 sech2Ye2x2/2 dx, ~2.18!

whereY is given by~2.15!. The temperature dependence of
R, x, andCm can be obtained by a numerical solution com-
bining Eqs.~2.13! and~2.14!. Temperature dependence ofR
is shown in Fig. 1, where one can find thatR is a monotonic
decrease function of temperature. The temperature depen-
dence ofx andCm are found to be qualitatively the same as
that of MRFT.16

The critical point can be found by using Eq.~2.13! or
~2.14! with the approximation:q'm2 asT→Tc , the result is

Tc51.272J̃/kB . ~2.19!

This value is higher than the common oneTc05 J̃/kB .
1 The

higher critical point is probably due to the approximations
used by us. Further discussions about this discrepancy will
be provided later.

When a dc field is involved, without considering the com-
petition betweenHe andHR , P(H) is expected to be

P~H1He!5@P~H11He!1P~H21He!#/2. ~2.20!

The result is that,P(H) will move its distribution center
from H050 toH05He and a net spontaneous magnetization
appears that will suppress the phase transition. However, in a
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SG system,P(H1He) cannot be simply calculated by
~2.20!. As a mean-field approximation, it is suggested that
the movement of the distribution center will happen only

when the applied field is stronger than reaction field. In this
paper, the main interest will be the low-field condition, i.e.,
He<HR , let

He5~12K !R, 0<K<1. ~2.21!

In this case, the field distributionP(H1He) will be calcu-
lated under two constraints:~1! P(H1He) still centers at
H050, and~2! the strength of the reaction field will be ef-
fectively reduced byHe . That is

P~H1He!5H E )
j
P~Ji j !dJi j s~H2H1

1!

1E )
j
P~Ji j !dJi j s~H2H1

2!JY2,

~2.22!

where

H1
15Hi

11~12K !R, ~2.23!

H1
25Hi

22~12K !R, ~2.24!

provided thatH i
1 andH i

2 are given by Eqs.~2.6! and~2.9!,
respectively.

In the same way one can find that

P~H1He!5PK~H !5~8p J̃2qK!21/2
„exp$2@H1Kb J̃2mK~12qK!#2/2J̃2qK%1exp$2@H2Kb J̃2mK~12qK!#2/2J̃2qK%…,

~2.25!

where

mK5~2p!21/2E utanhyKue2x2/2 dx, ~2.26!

qK5~2p!21/2E tanh2yKe
2x2/2 dx, ~2.27!

yK5b J̃qK
1/2x2Kb2J̃2mK~12qK!, ~2.28!

and also

xK5b~12qK!, ~2.29!

Cm
K5~2p!21/2kBE yK

2 sech2yKe
2x2/2 dx. ~2.30!

When a dc fieldHe is involved, the staying state is char-
acterized by the introduced parameterK:

K512He /R. ~2.21a!

K is just a parameter which measures the degree that the
reaction field is reduced by the applied field. In the zero-field
condition, whereK51, then distribution~2.25! reduces to
distribution ~2.12!. In the case ofK50, distribution ~2.25!
will reduce to that found by MRFT,16 where the reaction field
was not included. Equation~2.21a! can be considered as the
balance condition for two competing forces: dc fields and

reaction field. When Eq.~2.21a! is satisfied, it means that the
applied dc field is ‘‘neutralized’’ by the reaction field, or the
applied field becomes effectively null.

SinceK is He dependent, both the staying state and the
differential response to applied fieldxK are fully He depen-
dent. Notice that the strength of the reaction field is rather
weak ~Rmax50.5J̃, c.f. Fig. 1!, this fully He-dependent be-
havior holds even in the low-field regions~i.e., even when
mBHe/kBTc!1 is satisfied!. Therefore, the observed re-
sponse is fullyHe dependent and nonlinear even when the
applied dc field is weak.

III. PHASE-TRANSITION MODE SPECTRUM

SinceK can vary from 0 to 1 continuously, the above
analysis implies that there exists a continuum of possible
staying states in the low-temperature regions. Also, by using
the approximationqK'mK

2 at T5Tc , one can find a formu-
laic critical temperature from Eq.~2.26! or ~2.27!:

TcK5@~A4K21111!/2#1/2J̃/kB . ~3.1!

This means that there is a critical point for a givenK. Al-
thoughTcK is just a formulaic critical point, bothxK andCm

K

show typical critical behaviors atTcK . Some representative
xK-T curves are shown in Fig. 2~a!, where one can find that
sharp cusps appear atTcK .

FIG. 1. Temperature dependence ofR, a quantity that effectively
represents the strength of reaction field.R is a monotonic decrease
function ofT.
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Based on the above result, we can consider that the stay-
ing state characterized byK is a quasi-phase-transition mode.
This quasi-phase-transition mode has a quasicritical point
TcK , and its thermodynamical properties are described by
Eqs. ~2.26–2.30!. Consequently, there is a continuum of
quasi-phase-transition modes that will be called the phase-
transition mode spectrum. The critical points of all quasi-
phase-transition modes lie over some temperature region
~i.e., from Tc05 J̃/kB to Tc151.272J̃/kB! called the critical
zone. As a matter of fact, both order parameter and thermo-
dynamical quantities have continuous distribution in the
phase-transition mode spectrum. Distribution ofx(K) at
some representative temperatures is shown in Fig. 2~b!.

The concept of phase-transition mode and phase-
transition mode spectrum are not original ideas.18 Since the
staying state characterized byK is a thermodynamical state,
all the quasi-phase-transition modes in the present picture are
extended, but not localized as proposed by Hertz or Jacobs.18

There will be just one soft mode in the cooling process.

Now we will show how the proposed phase-transition
mode spectrum works in understanding history-dependent
response and irreversibility. The mode-choosing mechanism
in two representative processes, the field-cooled~FC! process
and the zero-field-cooled~ZFC! process, will be discussed,
separately.

In a FC process, the system is cooling down with dc field
He applied. When the system is cooled through the critical
zone, the applied field will try to construct a spontaneous
magnetization that will suppress the instability of quasi-
phase-transition modes. On the other hand, the reaction field
will act againstHe and is in favor with quasi-phase-transition
modes. In the beginning, the strength of the reaction field is
rather weak, thus the suppression due to the applied field will
be predominant. As the temperature further lowers, the
strength of the reaction field increases. At some temperatures
Tg inside the critical zone, the reaction field will balance the
applied field, that is,

He5RuT5Tg
, Tc0<Tg<Tc1 . ~3.2!

Consequently, the quasi-phase-transition mode with its criti-
cal point just atTg will survive. This survival mode is the
soft mode that will suppress all the other modes with critical
points lower thanTg in further cooling process. This mode-
choosing mechanism is schematically shown in Fig. 3. For a
givenHe , the chosen soft mode can be known from Fig. 1,
Eqs.~3.1!, and~3.2!. For examples, takingHe50.111, 0.16,
0.2, and 0.239J̃, the soft modes will beK50.8, 0.6, 0.4, and
0 with Tg51.20, 1.13, 1.07, and 1.0J̃/kB , respectively. Both
the chosen soft mode andTg areHe dependent. Dependence
of Tg on He is shown in Fig. 4, where one can find thatTg
decreases asHe increases. WhenHe exceeds some critical
value,

Hc5RuT5Tc0
50.239J̃, ~3.3!

all quasi-phase-transition modes will be suppressed and no
phase transition will occur.

Since the applied field is effectively null atT<Tg , the
system will keep staying at the soft mode in both cooling and
warming sweep atT<Tg . In other words, the chosen mode

FIG. 2. ~a! Some representativexK;T curves~from top to bot-
tom: K50, 0.1, 0.2, ... , 0.9, and 1!. Sharp cusps of unsymmetric
structures are found at the critical points of phase-transition modes
~thex axis has been displaced for a clear view of critical behaviors!.
These cusps are just a reproduction of susceptibility cusps observed
in ac and neutron-scattering measurement.~b! Distributions
x(K);K at some representative temperatures~from top to bottom:
T51.1, 0.9, 0.5, and 0.1J̃/kB!. It is suggested thatxK51/T at
T.TcK .

FIG. 3. Depiction of bifurcation in a SG transition over the
critical zone. Phase-transition modes with higher critical points than
the soft mode are suppressed by dc field, yet those with lower
critical points are suppressed by the soft mode. Bifurcation due to
Ising symmetry has not been included in this picture.
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in a FC process isT independent atT<Tg , and thus a FC
process is reversible for a fixed applied field.

In a ZFC process, the system is cooled down with null
He , the soft mode will beK51 mode when cooling through
the critical zone. The system will keep staying at theK51
mode atT,Tc1 in zero-field condition. WhenHe is applied
at some measuring temperatureT0, theK51 mode will be-
come unstable since the balance betweenHe and reaction
field breaks. The system will be driven to another stable
modeKS , in which the applied field and reaction field bal-
ance again.KS is given according to the balance condition
~2.21a!, i.e.,

KS512He /RuT5T0
. ~3.4!

The application ofHe leads to an evolution of staying state
from theK51 to KS mode. Experimental evidences for this
evolution of staying state have been found in both dc~Ref. 8!
and ac measurement.19

Suppose that the system is warmed up toT1 by a step
changeDT, the balance betweenHR andHe will be broken
since the strength ofHR decreases asT increases. Conse-
quently, theKS mode becomes unstable atT1, and the stay-
ing state will evolve to another stable modeKS1 :KS151
2R/HeuT5T1

. As a result, the chosen mode in the warming
sweep isT dependent. When the system is warmed up above
the critical zone and then cooled down, this cooling down
process is exactly a FC process, thus the system will be
locked in the soft mode chosen by the applied field in the
cooling sweep. Depiction of this history-dependent mode-
choosing mechanism is shown in Fig. 5.

Now we turn to discuss how irreversible behaviors appear
during the warming sweep in a ZFC process.3,8 For simplic-
ity, the experimental process8 will be schematically simu-
lated in Fig. 6 by usingHe50.239J̃. Starting from 0, the
system is zero-field cooled toA(TA50.1J̃/kB), thenHe is
applied and the system is warmed toB(TB50.4J̃/kB). The
chosen modes atA andB areKS50.518 and 0.467, respec-
tively, afterHe is applied. Next an interrupting cooling down

is taken: fromB to A. Since the strength of reaction field
increases asT lowers andHe is just ‘‘neutralized’’ atB, He
will become effectively null atT<TA , as in a FC process.
Consequently, the system will be locked atKS50.467 in
both cooling (B→A) and warming (A→B) processes, that
is, irreversibility appears. When the system is warmed up
aboveB, the balance betweenHe andHR will lose again,
and the the warming process comes back to the original ZFC
process. Similar irreversible behaviors can be found by inter-
rupting cooling downs starting atC, D, andE as shown in

FIG. 4. Dependence ofTg on the applied field.Tg is a mono-
tonic decrease function ofHe and whenHe.0.239J̃, there is no
phase transition.

FIG. 5. History-dependent phenomena in dc measurements:
mode-choosing results in both FC and ZFC process for two dc
fields ofHe50.239J̃ ~top! and 0.16J̃. Reversible FC processes are
shown in full line with reversible marks, irreversible ZFC processes
are shown in dash-point line, and broken line means paramagnetic
~PM! phase.

FIG. 6. A schematic demonstration for irreversibility in a ZFC
process ofHe50.239J̃, locking modes in interrupting cooling down
are marked above the lines. WhenHe has been applied, a cooling
down followed a warming up is reversible~say,B→A→B!, yet a
warming up followed a cooling down~say,A→B→A! is irrevers-
ible. For a given set of (He ,T) ~say,He50.239J̃, T50.1 J̃/kB!, the
chosen mode is fully history dependent.
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Fig. 6. The mode-choosing mechanism shown in Fig. 6 ex-
plains the experimental observations that3,8 a cooling down
following a warming up is reversible, yet a warming-up fol-
lowing a cooling down is irreversible.

IV. HISTORY-DEPENDENT RESPONSE

In this section, the corresponding dc susceptibility will be
calculated by using the mode-choosing mechanism provided
in the last section. In a dc measurement, dc susceptibilityxdc
is found by

xdc5M /He5
1

He
E
0

He dM

dH
dH, ~4.1!

hereM is the induced magnetization by applied fieldHe .
The former analysis implies thatxdcÞdM/dH even when
mBHe/kBTc!1. In the present picture,xdc can be expressed
as

xdc5
1

He
E
1

K0
xK~dK/dHe!

21 dK, ~4.2!

whereK0 is the chosen mode,xK is the differential suscep-
tibility of the Kth mode, anddK/dHe means how the chosen
mode varies withHe . It has been shown that the mode-
choosing mechanism~i.e., dK/dHe! is history dependent,
consequently,xdc will be history dependent.

In a ZFC process, the variation of chosen mode withHe
in the warming sweep obeys Eq.~3.4!, this implies that

~dK/dHe!uZFC521/R, ~4.3!

substituting this result to~4.2! and using~3.4!, ZFC suscep-
tibility is found to be

xZFC5
1

12K0
E
K0

1

xK dK5x̄K0
. ~4.4!

xZFC is the average susceptibility over modes fromK0 to 1,
that can be found by using the results provided in Fig. 2.

In a FC process, the chosen mode varies withHe above
Tg , but will be T independent belowTg . This means that
dK/dHe , and thusdM/dH, will be He dependent aboveTg ,
but becomesT independent belowTg . Consequently,xFC
will be T independent atT,Tg , that is

xFC~T!5xFC~Tg!, T,Tg , ~4.5!

the well-known plateau of FC susceptibility.8

In the temperature regions aboveTg , FC susceptibility
will be calculated by

xFC5~M11M2!/He . ~4.6!

M1 andM2 are given by

M15E
0

R dM

dH
dH5RE

0

1

xK dK5Rx̄0 , ~4.7!

M25E
R

He dM

dH
dH5MSK~He!2MSK~R!, ~4.8!

whereMSK(H) is given by the following coupled equations
as in MRFT~Ref. 16! or SK theory:12

MSK~H !5A2pE tanh~b J̃q1/2x1bH !e2x2/2 dx,

~4.9!

q5A2pE tanh2~b J̃q1/2x1bH !e2x2/2 dx. ~4.10!

Consequently,xFC aboveTg will be given by

xFC5MSK~He!/He2Dx, ~4.11!

Dx5„MSK~R!2Rx̄0…/He. ~4.12!

In the temperature regions above the critical zone~i.e.,
T.Tc1!, whereR50, and thusDx50. This implies that

xFC5MSK~He!/He , T.Tc1 . ~4.13!

As a result, Curie law will be obeyed atT.Tc1 in low-field
regions. On the other hand, sinceDx.0 atT,Tc1, xFC will
be lower than that of Curie law beforeTg is reached as
observed in experiments.20

Some numerical results are shown in Figs. 7~a!, 7~b!, and
7~c!. Curves shown in Fig. 7 are typical history-dependent
phenomena observed in dc measurements. We have found
that, both the ‘‘plateau temperature’’~where the plateau ap-
pears in a FC process! and ‘‘reversibility temperature’’
~wherexFC and xZFC join!8 decrease as dc fields increase.
Also, xZFC curves of different fields are found to be quasi-
parallel and obey

xZFC~H1!.xZFC~H2!, H1.H2 . ~4.14!

These results are in good agreement with experimental
observations,8 yet in a FC process, the following relation:

xFC~H1!,xFC~H2!, H1.H2 , ~4.15!

is found to hold only above the critical point, but breaks
below the critical point. The reason for this discrepancy is
unclear.

V. CONCLUSION AND DISCUSSION

In previous sections, a field-dependent phase-transition
mode spectrum is proposed to understand the history-
dependent phenomena and irreversibility. Theoretical predic-
tions of the present paper explains the essential SG features
observed in the dc measurements. In the present picture, the
separation of paramagnetic~PM! and SG phases is not just a
critical point, but over a finite temperature region~i.e., the
critical zone! as indicated by the experiment4 and computer
simulation.21 Bifurcation ~or tree branching! in a SG
transition3 is continuous over the critical zone, the applied
field serves as a ‘‘switchman’’ that will switch on a specified
bifurcation ~or branching! when cooling through the critical
zone.

The kernel of the present theory is the proposed phase-
transition mode spectrum which suggests an infinite number
of possible staying states in low-temperature regions. This
picture is reminiscent of the well-known ground-state struc-
ture of SG systems. In order to provide a complete descrip-
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tion for this complex ordered phase, a continuous function
q(x) with a mysterious variablex(0<x<1) is used as order
parameter in the Parisi theory.22 In the present picture, a
continuous distribution functionq(K) ~0<K<1! is em-
ployed as the order parameter. This coincidence is very strik-
ing thoughq(K) has a different meaning fromq(x). It is not
clear yet whetherq(K) can correspond to another ‘‘gauge’’
of Sompolinsky’s theory.1,23 The important point is that the
proposed order parameterq(K) is able to make decomposi-
tion of phase components.3

A quantitative comparison between the present theory and
equilibrium MFT still has some problems. One is the higher
critical point in the zero-field condition. It seems to us this
higher critical point is probably due to the approximations
used, including the proposed approximation to include the
reaction field and the mean-random-field approximation.24

Another discrepancy comes from the comparison between
the so-called Almeida-Thouless~AT! line25 and the field de-
pendence of the critical point provided in Fig. 4. It is true
that two lines have qualitatively the same field dependence,
that is,Tc decreases asHe increases. However, from a warm-
ing direction, the AT line terminates at~He50, Tc5Tc0!
while our Tc2He line starts at~He5Hc , T5Tc0!. Obvi-
ously this discrepancy is due to the wrong critical point we
find in zero-field condition.

Now we turn to discuss the stability of the quasi-phase-
transition mode. Theoretical research and numerical
simulation26 shows that an equilibriumP(H) should have
two basic characters:~1! P(H) has a minimum atH50 and
~2! P(0)uT→050. However, distribution~2.25! tells that for
all K ’s, PK(H) has a maximum atH50 andPK(0)uT→0Þ0.
This clearly impliesPK(H) is not an equilibrium distribu-
tion, and thus all phase-transition modes are nonequilibrium.
The fact thatPK(H) is not an equilibrium distribution is not
a surprise result for two reasons. The first is that MRFT is
not a good way to seek an equilibrium field distribution.12

Another reason is that the reaction field always resists a fixed
pointing direction of^Si&, and thusPK(H) always has a
maximum atH50 even whenT→0. This implies that when
T→0, approaching to equilibrium requires a vanishing reac-
tion field. This conclusion is consistent with the equilibrium
requirement of TAP theory,7 since T→0, 12q}T2 means
R5b J̃2m(12q)uT→0→0. In the present theory,RuT→0Þ0,
soPK(0)uT→0Þ0.

The nonequilibrium nature of the phase-transition mode
spectrum is consistent with recent experimental observation
that SG systems are out of nonequilibrium during
measurements.4,6 Experimental evidence for the existence of
quasi-phase-transition modes is of special interest. In prin-
ciple, the nonequilibrium quasi-phase-transition mode is not
expected to be directly observable in a static measurement
like dc measurement as assured in the present paper, e.g.,
cusps shown in Fig. 2 are smeared out in dc measurement
~cf. Fig. 7!. It can be expected that the quasi-phase-transition
mode can be directly observed in dynamical measurements,
like ac susceptibility that exactly measures the differential
susceptibility19 and neutron scattering. In fact, susceptibility
cusps shown in Fig. 2 have been observed in both ac~Ref.
27! and neutron-scattering28 measurement. Further analysis
on how SG systems respond to a varying field~like ac fields!
is necessary to explain this coincidence.

FIG. 7. ~a! Plateaux in FC susceptibility: some representative
xFC;T curves ofHe50.239, 0.2, 0.16, and 0.111J̃ ~from top to
bottom!. The Curie law is shown as a broken line for reference.
Here the plateau temperature is just the critical temperature of the
soft mode. ~b! Typical history-dependent response in dc measure-
ments: a complete set ofxFC;T andxZFC;T curves ofHe50.239J̃
~top! and 0.16J̃ ~cf. Fig. 5!. ~c! A demonstration of irreversibility
in a ZFC process ofHe50.239J̃ ~cf. Fig. 6!. Here one can see that,
for a given set of (He ,T) ~say,He50.239J̃, T50.1J̃/kB!, the mea-
sured response is fully history dependent.

53 6505HISTORY-DEPENDENT PHENOMENA IN SPIN-GLASS MEAN- . . .



Finally, I want to emphasis that the main point of the
present theory is to propose a possible way for describing an
effectively nonergodic SG phase in the mean-field model.
This is different from finding an exact solution of the mean-
field model. Further work is necessary to seek the relation
between the present picture and the known equilibrium
theory.
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