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We develop a recursion-relation approach for calculating the failure probabilities of a fiber bundle with local
load sharing. This recursion relation is exact, so it provides a way to test the validity of the various approximate
methods. Applying the exact calculation to uniform and Weibull threshold distributions, we find that the most
probable failure load coincides with the average strength as the size of the systemN→`.

I. INTRODUCTION

Fracture and failure of materials are common but mostly
unwanted phenomena. Under external load materials un-
dergo a degradation process that inevitably leads to failure if
not stopped. Also the statistical properties of the strength of
materials with stochastically distributed elements are impor-
tant in applications. To analyze the failure in heterogeneous
materials, several simple models were proposed, among
which the fiber-bundle model1,2 has in the past few years
drawn much attention.3–12 Although these models are very
simple, they seem to contain many of the key properties of
some real fracture and failure processes. The fiber-bundle
model consists of total numberN of fibers whose strengths,
or failure thresholds are drawn from continuous distribution,

Prob~ t i,t !5P~ t !5E
0

t

p~u!du,

where t i is the threshold of an individual fiber, say, fiberi ,
and p(u) is called the threshold distribution function~or
sometimes the probability density function!.

There is also a chain-of-bundles model for fibrous com-
posites, on which extensive work has been done~see, e.g.,
Refs. 13–23!. This model considers a fibrous material as a
chain of M bundles each withN fibers. If we let
FN(s),s>0 be the distribution function for the strength of a
single bundle ofN fibers, thenHM ,N(s), the distribution
function for the strength of the composite,17 is just

HM ,N~s!512@12FN~s!#M, s>0

by the weakest link rule, because the composite is an ar-
rangement of satistically and structurally independent
bundles and its strength is that of its weakest bundle. So the
studies of the chain-of-bundles model reduce to calculating
and analyzing the behavior ofFN(s), the probability distri-
bution of the strength of a single bundle@In Ref. 17 it was
denoted withGn(x), wheren is the number of fibers in the
bundle andx is the load applied.# FN(s), which is our main
concern in this paper, is nothing but the failure probability of
a bundle ofN fibers when a loads is applied. AndFN(s) is

in fact the static failure probability. For the time-dependent
failure problem, which is not of concern in this paper, see,
e.g., Refs. 19, 20, and 23.

When certain external load is applied to the fiber bundle,
some weak fibers may break. As each fiber breaks, the load is
redistributed among surviving fibers. According to the load
redistribution rules, the models can be divided into two
types. One type of fiber-bundle model is the equal load-
sharing model,1,7 in which external load distributed equally
among all surviving fibers. The other type of fiber bundle is
local load-sharing model,8,15 in which the load of a failed
fiber is taken up by the nearest surviving neighbors of the
failed fiber. The equal load-sharing model is analytically
solvable,7,9,10while the local load-sharing model seems more
difficult to be treated analytically. In this paper, we focus on
a local load-sharing fiber-bundle model and study the failure
probabilities of the bundle. Actually some authors3 have cal-
culated the failure probabilities by using some approximate
methods. We are motivated that there should be an exact
approach to this problem which can test the results obtained
from approximate methods.

II. THE MODEL

The system we study in this paper is an array ofN fibers,
or say a one-dimensional local load-sharing fiber bundle. We
put up a question: What is the probability that the bundle
fails when an external loads is applied to the bundle. In this
paper, we speak of load on a ‘‘force per fiber’’ basis; that is,
the load is the total external force on the bundle divided by
N, the total number of fibers in the bundle.

The load-sharing rules are essential to the definition of the
model. If the load on the bundle iss ~please remember that
the total external force on the bundle isNs), a surviving
fiber carries loadKs, whereK is called a load concentration
factor.23 It can be seen that for the equal load-sharing model

K5
N

Ns
,
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whereNs is the number of surviving fibers andN is the total
number of fibers, failed and surviving, in the bundle.

For the local load-sharing model the load concentration
factor varies from one fiber to another. For a surviving fiber
we have

K511
r

2
, ~2.1!

wherer is the number of consecutive failed fibers immedi-
ately adjacent to this surviving fiber~counting on both sides!.
The local load-sharing rules means that the load of a failed
fiber is redistributed in equal portions onto its two nearest
surviving neighbors, one on each side.

To define the model, the boundary conditions also need to
be specified. Two possible boundary conditions may apply
the model. One is the cyclic boundary condition, or periodic
boundary condition, which considers fiber 1 and fiberN as
nearest neighbors for each other. This version of fiber bundle
consists ofN fibers mounted evenly on a circle. The other
boundary condition, which is our main concern in this paper,
can be called closed boundary conditions. In this case, two
imaginary fibers, fiber 0 and fiberN11, bound the whole
bundle. The two imaginary fibers are of infinite strength,
which means they can stand any load transferred from their
failed neighbors and thus they never break.

III. THE FAILURE PROBABILITIES

We have put up a question: What is the probability
FN(s) that a bundle ofN fibers fails under loads? We first
note that for each fiber there are two possibilities: failed or
surviving. Thus there are 2N possible configurations for a
bundle ofN fibers. Hereafter we use a 1 todenote a surviv-
ing fiber and a 0 todenote a failed fiber. We can then easily
write out all the 2N configurations in the form (••• 0 1 1
••• 0 1 •••)N . The subscriptN outside the right parentheses
indicates the size of the system, while the 0’s and 1’s in the
parentheses indicate the status of each fiber, failed or surviv-
ing. As examples, we list all the configurations forN51, 2,
and 3. ForN51, there are two configurations (0)1 and
(1)1 . For N52, the four configurations are: (00)2 , (01)2 ,
(10)2 and (11)2 . For N53, there are eight configurations:
(000)3 , (001)3 , (010)3 , (011)3 , (100)3 , (101)3 , (110)3 ,
and (111)3 . If there is at least one survival fiber in the
bundle after loads is applied, we say that the bundle sur-
vives the loads. In general there are 2N21 survival con-
figurations for a bundle ofN fibers. The failure configuration
is the case that all fibers in the bundle fail, which can be
denoted by (0000•••000)N . Each of these 2N21 survival
configurations is independent of each other, so the probabil-
ity SN(s) that a bundle ofN fibers survives loads can be
obtained by adding up the probabilities of all survival con-
figurations, that is

SN5( s~configuration!, ~3.1!

wheres is the probability of an individual survival configu-
ration.

With SN[SN(s) known, the failure probability
FN[FN(s) is just

FN512SN . ~3.2!

It is not difficult to write out the probability of each survival
configuration. Taking (0101)4 , for example, the probability
for this survival configuration is

s~0101!45F1W2F1W1 ,

whereWi[Wi(s) is the probability that a fiber survives
when it hasi failed fibers adjacent it. So we can define

Wi~s!512E
0

~11 i /2!s

p~x!dx, ~3.3!

wherep(x) is the threshold distribution function of the fiber.
In principle, we can calculate the probabilities for all the

survival configurations. However, asN increases, the expo-
nential increase in the number of configurations restricts the
algorithm. In fact, Leath and Duxbury3 could compute the
failure probabilities for fiber bundles ofN,20 by using this
configuration-counting method. As for fiber bundles of larger
N, they had to use an approximate method. In this paper, we
present an exact recursion relation for calculatingFN . The
expense of this method scales asN2 while the configuration-
counting method scales as 2N. The recursion relation enables
us to calculateFN for N from 1 to 103 or more. The exact
results ofFN can serve as a test of the previous approximate
results.

Before we present the recursion relation, we note that the
configurations for a bundle ofN11 fibers, can be easily
produced from that ofN. For example, (10)2 is a configura-
tion for N52. By simply adding a fiber to the right end of
the configuration, we get a configuration forN53. The
added fiber can be failed or surviving, so (10)2 produces two
configurations: (100)3 and (101)3 . In general, each configu-
ration of N produce two configurations ofN11. For this
reason it is convenient to calculate the probabilities ofN11
from that ofN. Using the same example, the probability for
the configuration (10)2 is

s~10!25W1F1 ,

while the probabilities for (100)3 and (101)3 are

s~100!35W2F2 ,

and

s~101!35W1F1W1 .

Since the expressions fors(10)2 ands(101)3 contain some
common factors, it is then convenient to calculates(101)3 by
usings(10)2 , that is

s~101!35s~10!2W1 .

And s(100)3 can also be calculated throughs(10)2

s~100!35
s~10!2
W1F1

W2F2 ,

Another example, (10010)5 is a configuration forN55. It
produces two configurations forN56: (100100)6 and
(100101)6 . It can be seen that
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s~10010!55W2F2W3F1 ,

and that

s~100100!65W2F2W4F25
s~10010!5
W3F1

W4F2 ,

and

s~100101!65W2F2W3F1W15s~10010!5W1 .

Here we also useds(10010)5 to calculates(100100)6 and
s(100101)6 .

A special case should be noted here that the failure con-
figuration ofN (00•••00)N produces two configurations of
N11, one of which is the failure configuration
(00•••000)N11 and the other one is a survival configuration
(00•••001)N11 . In this survival configuration only the right
end fiber survives. The probability for this configuration is
just

s~00•••001!N115FNWN .

Based on a similar idea to generate probabilities for larger
bundles from those of smaller bundles, Harlow and
Phoenix17 have developed a recursive analysis and arrived at
matrix formulation for the problem. Now we try to obtain a
recursion relation for the calculating ofFN . For a bundle of
N fibers, the total number of the survival configurations is
2N21. The key point to get the exact recursion relation is to
classify the various survival configurations properly. We
classify these 2N21 survival configurations into different
groups. LetSN( i , j ) be the set of configurations that have the
form

u
i

u
j

~•••1 00•••0 1 00•••0 !N
,

where i and j are integers satisfying 0< i<N21 and
0< i1 j<N21. In words, there arej consecutive 0’s in the
configuration right to the right-most 1, andi consecutive 0’s
between the right-most 1 and the next 1. No matter whether
the other fibers in the bundle are failed or surviving, those
configurations with the samei and j belong to the same
groupSN( i , j ). It should be noted here that there are some
survival configurations that contain only one 1, such as
(00010)5 , (001)3 , and (1000)4 , etc. In these configurations,
j is the number of 0’s right to the 1, andi is the number of
0’s left to the 1. So (00010)5 is in groupS5(3,1), (001)3 is
in groupS3(2,0) and (1000)4 is in groupS4(0,3).

In general there areN(N11)/2 groups of survival con-
figurations for a given value ofN. As examples, we list all
the groups of configurations forN51, 2, 3, and 4.

For N51, the only group isS1(0,0)

S1~0,0!5$~1!1%

For N52 there are three groups. They are

S2~0,0!5$~11!2%,

S2~0,1!5$~10!2%,

S2~1,0!5$~01!2%.

For N53, the six groups are

S3~0,0!5$~111!3 ,~011!3%,

S3~0,1!5$~110!3%,

S3~0,2!5$~100!3%,

S3~1,0!5$~101!3%,

S3~1,1!5$~010!3%,

S3~2,0!5$~001!3%.

For N54, there are 10 groups of configurations

S4~0,0!5$~0011!4 ,~0111!4 ,~1011!4 ,~1111!4%,

S4~0,1!5$~0110!4 ,~1110!4%,

S4~0,2!5$~1100!4%,

S4~0,3!5$~1000!4%,

S4~1,0!5$~0101!4 ,~1101!4%,

S4~1,1!5$~1010!4%,

S4~1,2!5$~0100!4%,

S4~2,0!5$~1001!4%,

S4~2,1!5$~0010!4%,

S4~3,0!5$~0001!4%.

In this paper, we also useSN( i , j ) to denote the sum of
probabilities of all the configurations in the groupSN( i , j ).
Then the survival probability of the bundle can be obtained
by adding up all the group-probabilities, thus Eq.~3.1! be-
comes

SN5 (
i50

N21

(
j50

N2 i21

SN~ i , j !. ~3.4!

So this classification give a natural way to construct a
recursion relation to calculateSN( i , j ). The exact recursion
relations can be written as

SN~N21,0!5FN21WN21 ,

SN~ i ,0!5 (
k50

N2 i22

SN21~k,i !Wi , for 0< i<N22,

SN~ i , j !5
SN21~ i , j21!

Wi1 j21F j21
Wi1 jF j ,

for 0< i<N22 and 1< j<N2 i21. ~3.5!

We note here that we have definedF0[1 when we de-
duce the above recursion relations. It can be seen that if we
use Eq.~3.1! to calculateSN the total number of adding is
2N21, while the number of adding for Eq.~3.4! is reduced
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to N(N21)11. Furthermore the recursion relation Eq.~3.5!
can be easily realized in a computer algorithm. The failure
probabilitiesFN’s can then be computed successively.

Now we apply the method to specific threshold distribu-
tion. Let us consider two forms of distributions. One is the
uniform threshold distributionp(s)51 for sP@0,1# and
p(s)50 for s.1. This form of distribution represent a class
of distributions that is in a finite region. Actually, any finite
threshold region can be mapped into@0,1#. For the uniform
distribution, theWi(s) defined in Eq.~3.3! is just

Wi~s!5H 12~11 i /2!s, if 0<~11 i /2!s<1,

0, otherwise.
~3.6!

The other form of the threshold distribution is Weibull dis-
tribution p(x) that is

E
0

s

p~x!dx512exp@2~s/ss!
m#. ~3.7!

This distribution has two adjustable parameters.ss is the
scale strength, which sets the size of the typical strength in
the distribution and,m is the Weibull modulus, which deter-
mines the scatter in the distribution of the fiber thresholds.
We simply setss51, then the Weibull distribution becomes

E
0

s

p~x!dx512exp~2sm!. ~3.8!

One advantage of the Weibull distribution is that it has no
strict upper cutoff and it has been broadly applied in some
fields. For this form of distribution

FIG. 1. A plot of FN(s) as a function ofs and N. ~a! for
uniform threshold distribution~b! for Weibull distribution with
m55.

FIG. 2. For givenN, FN(s) as a function ofs is ever increas-
ing with s. The sharp increase ofFN(s) becomes more remarkable
asN rises.~a!. Uniform distribution. The four lines from the left to
the right are forN51000, 100, 20, and 10, respectively.~b! Weibull
distribution withm51. ForN51000, 100, and 10.
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Wi~s!5e2@~11 i /2!s#m. ~3.9!

With Wi[Wi(s) known, noticing thatS1(0,0)5W0 and
F1512W0 , we can get from the recursion relation~3.5! the
failure probabilitiesFN(s)’s for anyN and anys.

IV. THE EXACT RESULTS

Using the exact method we calculated the failure prob-
abilities FN(s) for both the uniform and Weibull threshold
distributions. The results are shown in Fig. 1, which is a
three-dimensional drawing. From Fig. 1 we get a general
idea howFN(s) varies with changings andN.

For a givenN, FN(s) is a monotonic increasing function
of s. For both the uniform and Weibull threshold distribu-
tions FN(0)50; andFN(1)51 for the uniform distribution
and FN(s→`)51 for the Weibull distribution.FN(0)50
corresponds to the situation that no external load is applied

to the bundle, so that the bundle will not break anyway;
FN(1)51 or FN(s→`)51 corresponds to the other ex-
treme situation that a maximum load or an infinite load is
applied to the system, thus the bundle will fail definitely.
Typical results in Fig. 2 clearly shows thatFN has a sharp
increase at a certains.

In principle, only whens50 can the failure probability
FN(s) be exactly zero, and only whens51 for the uniform
distribution or s→` for the Weibull distribution will
FN(s) be exactly 1. However, for practical purposes, it is
convenient to introduce an ‘‘safe index’’e (0,e!1). The
physical meaning of the safe index is the following. On one
hand, whenever there is anFN(s),e, we consider it is safe
and the bundle will not fail; on the other hand, when
FN(s).12e, we consider that the bundle will fail. In our
calculations we set the safe indexe50.01.

Two interesting values ofs are s0* (e) and s1* (e).
s0* (e) is the value ofs at whichFN(s0* )5e. And s1* (e),
on the other hand, is the value ofs that satisfy

FIG. 3. s0* (e) and s1* (e) divide the (N,s) space into three
regions: failure, crossover, and safe regions. The safe indexe is set
to be 0.01. AsN becomes larger, the cross region becomes nar-
rower and narrower.~a! Uniform distribution and~b! Weibull dis-
tribution withm51. In both cases the solid line is fors1* (e) while
dashed line fors0* (e).

FIG. 4. The iso-failure-probability lines in the (N,s) space for
FN(s)50.001, 0.01, 0.1, 0.9, 0.99, and 0.999. The number beside
each line indicates the value ofFN(s). ~a! Uniform distribution.~b!
Weibull distribution,m51. This figure shows how the three regions
defined in Fig. 3 change as the safe indexe is changed.
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FN(s1* )512e. The physical meanings of these two values
are the following. When a loads,s0* (e) is applied to the
system the bundle is safe and will not fail, but a load of
s>s1* (e) will destroy the system; under a load between the
two valuess0* (e),s,s1* (e) the bundle can either fail or
survive with different probabilities. Boths0* and s1* are
functions ofN. In Fig. 3 we shows0* ands1* versusN. The
solid line stands fors1* while the dashed line is drawn for
s0* . The two lines divide the (N,s) space into three regions:
Above the solid line is the failure region where the fiber
bundle can rarely survive; Below the dashed line is the safe
region, in which almost every bundle will survive; Between
the two lines is the crossover region where bundles can sur-
vive or fail. We also see that crossover region becomes nar-
rower and narrower asN increases. So asN→` we may
expect the two lines in Fig. 3 coincide, meaning that a bundle
of infinite size breaks suddenly at a point ofs, depending on
N.

Whene50, the cross over region should cover the whole

(N,s) space, and the failure region and the survive region
are only two lines in the space. So only in the sense that a
nonzero safe indexe is introduced could the failure region
and safe region occupy nonzero areas. For this reason, we
draw the iso-failure-probability lines in Fig. 4, from which
we may see how the three regions change as the safe index is
changed.

V. THE FAILURE PROBABILITY DENSITY FUNCTION

If we define

f N~s!5
dFN~s!

ds
, ~5.1!

FIG. 5. Failure probability densityf N(s). ~a! Uniform threshold
distribution, N51000,100, and 25.~b! Weibull distribution with
m51, N510, 100, and 1000.

FIG. 6. The average strength and the most probable failure load
are dependent of system sizeN. At smallN the two quantities show
apparent difference, but almost coincide asN→`. ~a! Uniform
threshold distribution. The asterisks in the plot stands for the aver-
age strength from actual simulations of 100 samples.~b! Weibull
distribution withm51. In both cases the solid lines are drawn for
the most probable failure loadsm while the dashed lines for the
average strengtĥs& defined in Eq.~5.2!.
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it can be easily understood thatf N(s) is just the failure
probability density function. The average strength of the
bundle, or say the mean failure load of the bundle can then
be calculated as

^s&5E
0

u

s f N~s!ds, ~5.2!

whereu51 for the uniform distribution andu5` for the
Weibull distribution. For not too smallN, the failure prob-
ability density function has a well-defined maximum at a
certain value ofs as shown in Fig. 5. We denote this value
of s with sm , which thus satisfies

d fN~s!

ds U
s5sm

50. ~5.3!

sm is actually the most probable failure load, meaning that
the system is most likely to break at this load. Also we found
thatsm is dependent on the system sizeN. In Fig. 6 we plot
the average strength and the most probable failure load as
functions ofN, from which we can see that at smallN, the
average strength of the bundle is apparently different from its
most probable failure loadsm(N); however asN increases,
the two lines becomes closer and closer and at last they al-
most coincide. Since in Ref. 11 we have found from large
amount of simulations that̂s&;1/logN, which implies the
average strengtĥs& →0 asN→`, we thus can expect the
most probable loadsm also goes to 0 asN→`. We note
here that we had used the cyclic boundary conditions in Ref.
11, different from the closed boundary conditions used in
this paper. But as the average strength and the most probable
failure loadsm are concerned, the two kinds of boundary
conditions make little difference.

FIG. 7. Comparisons of exact results with the approximate results from the method of Leath and Duxbury for uniform threshold
distribution.~a! For every givenN, three lines are shown. ForN515, the line for NLF52 result and that for the exact result almost coincide
to the resolution of this figure.~b!At certains andN, NLF52 results~dashed line! show large differences from the exact results~solid line!.
s50.13, 1<N<1500.~c! The maximum errorE(N,sem) of the NLF approximate results. The upper line is for NLF51 and the lower line
for NLF52. ~d!. Comparison of average strength. The upper solid line is for the exact result, the dashed line is for the NLF52 result, and
the lower solid line is for the NLF51 result.
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VI. COMPARISON WITH PREVIOUS RESULTS

First, let us compare the exact results with the approxi-
mate results in Ref. 3 to test the reliability of the approxima-
tion method. Leath and Duxbury3 developed a recursion re-
lation for calculatingFN(s). According to thenumber of
lone fibers~NLF! that are taken account into their calcula-
tion, the approximate methods may be called NLF5 i ap-
proximation, wherei is an integer. By comparing the exact
results with the approximation results forN<20, Leath and
Duxbury concluded that NLF52 approximation is accurate
enough for calculatingFN(s). Since they did not make the
comparison for largerN, the reliability of the approximate
method is still unknown forN.20.

Now that we have developed an exact method for the
calculation of the failure probabilities, we thus can make the
comparison forN.20. In the following comparisons the
threshold distribution is chosen to be the uniform one. In Fig.

7~a! we compare the exact results with the results from
NLF51 and NLF52 approximations for several given val-
ues ofN. It can be seen from this figure that the NLF52
result is much closer to the exact one than the NLF51 result
is, especially whenN515, the NLF52 result is coincident
with the exact one to the resolution of this figure. However,
for largerN, the difference between the exact result and the
NLF52 result becomes more and more apparent. We can
also make the comparison for some given values ofs. We
find that for certainN and s the differences between the
exact results and the approximate ones are not very small.
Fig. 7~b! shows the differences between the exact result and
the NLF52 result for s50.13 and 1<N<1500. The
NLF52 approximation method givesF1500(0.13)50.5687
while the exact result isF1500(0.13)50.4828.

If we denoteE(N,s) as the difference of the failure prob-
ability between the NLF approximation result and the exact
result. For a givenN, the differenceE(N,s) approaches a
maximum value at a value ofs, which we denote bysem.
The subscriptem means maximum error. We found that
sem is actually aroundsm . In Fig. 7~c!, we show the maxi-
mum errorE(N,sem) versusN. The trend is obvious that the
maximum error becomes larger asN increases.

As far as the average strength is concerned, the NFL ap-
proximate method gives a weaker strength than the exact
one. Figure 7~d! clearly shows that asN becomes larger the
differences between the NLF results and the exact result also
become larger.

From the comparisons made above we can conclude that
in general the NLF52 approximation is a relatively good
method for the calculating ofFN(s); However, near tosm
the NLF52 approximation gives unsatisfactory results. Then
we need turn to the exact method.

Our method of calculation has three advantages. First, it is
exact so that it serves as a test of other approximate methods.
Second, the exact method scales with system sizeN asN2, a
little less amount of calculation than the NLF52 approxima-
tion methods. In our method, the number of additions for
calculatingF(s) is N22N12. While the number of addi-
tions for the NLF52 approximate method is
3N2/229N/2112. Thirdly, this exact method can be easily
realized in a computer algorithm. We made our calculations
on a SUN workstation, and we found the exact method
spends less CPU time than the NLF52 approximation
method. For example, the CPU time for calculating the exact
results in Fig. 7~b! is about 3 400 seconds, while the NLF52
calculation to obtain the dashed line in Fig. 7~b! spends
about 4 800 CPU seconds. The disadvantage of our exact
method is that it needs a larger amount of computer memory
than the approximate methods do. Our method has only been
applied to the closed boundary conditions. For other bound-
ary conditions such as the cyclic boundary condition, some
modification should be made.

Secondly, we compare the exact results to some asymp-
totic forms resulting from previous analysis. Using a matrix
formulation, Harlow and Phoenix17 obtained the bounding
distribution for bundle strength of the following form

FN
~k!~s!512@12C~k!~s!#N@p~k!~s!1oN

~k!~s!#,
~6.1!

FIG. 8. Comparison of exact results to the asymptotic form for
FN @Eq. ~6.3! in the text# and test of the Weibull form for the
characteristic functionC(s). ~a! Weibull distribution for fiber
threshold with Weibull modulusm52. ~b! Weibull distribution for
fiber threshold with Weibull modulusm55.
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where FN
(k)(s) with 1<k<N is the bounding distribution

function for bundle strength. Whenk5N, FN
(N)(s) is just the

failure probabilityFN(s) studied in this paper.C(k)(s) in
Eq. ~6.1! is thecharacteristic distribution functionsuch that

lim
k→`

C~k!~s!5C~s!, ~6.2!

whereC(s) is called the limiting characteristic distribution
function. In Ref. 17 it was denoted asW(x). We do not
follow their previous notation because we have usedWi(s)
for another quantity. The ‘‘boundary term’’@p (k)(s)1oN

(k)

3(s)# in Eq. ~6.1! is very close to unity asN becomes
larger. So Harlow and Phoenix considered that

FN~s!512@12C~s!#N ~6.3!

is an accurate representation of the distribution function for
bundle strength~failure probability!. Kuo and Phoenix23 later
developed a recursion and limit theorem which could apply
separately to static strength and time-dependent failure. They
also recasted this theorem into a key approximation for
FN(s), which was the same form as Eq.~6.3!. From Eq.
~6.3! we easily get

ln@2 ln~12FN!/N#5 ln$2 ln@12C~s!#%. ~6.4!

The characteristic functionC(s) is independent ofN, so if
we plot ln@2ln(12FN)/N# versus some function ofs, the
data for differentN should fall onto a common line, and then
the validity of Eq.~6.3! is confirmed. In addition, ifC(s) is
of the form of Weibull distribution like
C(s);12exp(2sr), the right-hand side of Eq.~6.4! then
becomesr lns, and the plot of ln@2ln(12FN)/N# versus
lns should be a straight line. In Fig. 8, we present some
typical results. The fiber threshold distribution is chosen to
be the Weibull distribution Eq.~3.8!. Figure 8~a! is for the
case Weibull modulus~or say, shape parameter! m52, from
which we see that the data forN510 show apparent devia-
tion from that ofN51000, but asN increases to 50, the line

is very very close to that ofN51000. AsN becomes larger
than 100, all the data falls on a common line, indicating Eq.
~6.3! is valid in this limit. We also see that the common line
on which data for largeN collapse is not straight overall, it is
only straight at its lower part, indicating the Weibull form for
C(s) is only valid in this region. Fig. 8~b! is for the case
m55, from which we notice that the line forN520 is al-
ready very very close to the common line on which data for
N.50 collapse. Here we also see that the common line in
Fig. 8~b! is not straight and henceC(s) is not of Weibull
form overall. Actually, as Harlow and Phoenix17 pointed out,
it is difficult to expressC(s) in terms of the usual classical
functions. We expect the exact results forFN to be helpful to
test some other predictions for the form ofC(s) in Eq. ~6.3!.

VII. SUMMARY

In this paper, we study the failure probability of a fiber-
bundle model with local load-sharing. By classifying the
2N21 survival configurations into different groups, we in-
troduced an exact recursion relation for calculating the fail-
ure probabilityFN(s). One advantage of this method is that
it scales with the system size asN2, roughly the same
amount of calculating as some approximate methods. We
then apply this recursion relation to two form of threshold
distributions, the uniform distribution and the Weibull distri-
bution. In both cases, the average strength of the bundle al-
most coincide with the most probable failure load as
N→`. Also we find that the average strength calculated
from failure probability density is in good agreement with
the result from actual simulations@see Fig. 6~a!#. Some com-
parisons to previous results are also made.
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