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Failure of fiber bundles with local load sharing
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We develop a recursion-relation approach for calculating the failure probabilities of a fiber bundle with local
load sharing. This recursion relation is exact, so it provides a way to test the validity of the various approximate
methods. Applying the exact calculation to uniform and Weibull threshold distributions, we find that the most
probable failure load coincides with the average strength as the size of the $ystem

I. INTRODUCTION in fact the static failure probability. For the time-dependent

Fracture and failure of materials are common but mostlyfallure problem, which is not of concern in this paper, see,
g., Refs. 19, 20, and 23.

unwanted phenomena. Under external load materials urf ) . . .
P When certain external load is applied to the fiber bundle,

dergo a degradation process that inevitably leads to failure if X ) i
not stopped. Also the statistical properties of the strength ofoMe Weak fibers may break. As each fiber breaks, the load is

materials with stochastically distributed elements are importedistributed among surviving fibers. According to the load
tant in applications. To analyze the failure in heterogeneou&edistribution rules, the models can be divided into two
materials, several simple models were proposed, amoniyPes. One type of fiber-bundle model is the equal load-
which the fiber-bundle modef has in the past few years sharing modet;” in which external load distributed equally
drawn much attentiof:*? Although these models are very among all surviving fibers. The other type of fiber bundle is
simple, they seem to contain many of the key properties ofocal load-sharing modél}® in which the load of a failed
some real fracture and failure processes. The fiber-bundiiiber is taken up by the nearest surviving neighbors of the
model consists of total numbét of fibers whose strengths, failed fiber. The equal load-sharing model is analytically
or failure thresholds are drawn from continuous distribution,solvable’*°while the local load-sharing model seems more
difficult to be treated analytically. In this paper, we focus on
t a local load-sharing fiber-bundle model and study the failure
Prolt;<t)=P(t)= fo p(u)du, probabilities of the bundle. Actually some authbswve cal-
culated the failure probabilities by using some approximate
wheret; is the threshold of an individual fiber, say, finer ~Methods. We are motivated that there should be an exact

and p(u) is called the threshold distribution functiofor approach to this problem which can test the results obtained
sometimes the probability density functjon from approximate methods.
There is also a chain-of-bundles model for fibrous com-
posites, on which extensive work has been de®, e.g.,
Refs. 13—-23 This model considers a fibrous material as a Il. THE MODEL
chain of M bundles each withN fibers. If we let o ]
Fn(o),0=0 be the distribution function for the strength of a 1€ System we study in this paper is an arrajdibers,
single bundle ofN fibers, thenH,, n(o), the distribution or say a one-dimensional local load-sharing fiber bundle. We

function for the strength of the compostteis just put up a question: What is the probability that the bundle
fails when an external loagt is applied to the bundle. In this

paper, we speak of load on a “force per fiber” basis; that is,
the load is the total external force on the bundle divided by

by the weakest link rule because the composite is an ar- N, the total number of fibers in the bunde.
y . Tue posit The load-sharing rules are essential to the definition of the
rangement of satistically and structurally independent

bundles and its strength is that of its weakest bundle. So thggdteol tallf g(?elr?ﬁ ?or}égeo?]u?hdelebﬁrfg:zg)re?iumrss/rir:gat

studies of the chain-of-bundies model reduce to Calcu""ltin?iber carries loaK o, whereK is called a load concentration
and analyzing the behavior &iy(c), the probability distri- factor? It can be séen that for the equal load-sharing model
bution of the strength of a single bundllm Ref. 17 it was '
denoted withG,(x), wheren is the number of fibers in the
bundle andx is the load applied.Fy(o), which is our main
concern in this paper, is nothing but the failure probability of K=—,
a bundle ofN fibers when a load is applied. AndF (o) is N

Hun(o)=1-[1-Fy(a)]¥, =0
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whereNys is the number of surviving fibers amdl is the total Fv=1-Sy. (3.2

number of fibers, failed and surviving, in the bundle. ] o ) . )
For the local load-sharing model the load concentratiort is not difficult to write out the probability of each survival

factor varies from one fiber to another. For a surviving fiberconfiguration. Taking (010%) for example, the probability

we have for this survival configuration is
r 5(0101)4:F1W2F1W1,
K=1+ 7, (2.1 _ - : .
2 where Wi=W, (o) is the probability that a fiber survives

wherer is the number of consecutive failed fibers immedi-When it hasi failed fibers adjacent it. So we can define

ately adjacent to this surviving fibécounting on both sides

(1+i/2)o

The local load-sharing rules means that the load of a failed Wi(a)zl—J p(x)dx, (3.3
fiber is redistributed in equal portions onto its two nearest 0

surviving neighbors, one on each side. wherep(x) is the threshold distribution function of the fiber.

To define the model, the boundary conditions also need to | principle, we can calculate the probabilities for all the

be specified. Two possible boundary conditions may applyyryival configurations. However, & increases, the expo-
the model. One is the cyclic boundary condition, or periodichential increase in the number of configurations restricts the
boundary condition, which considers fiber 1 and fibeas algorithm. In fact, Leath and Duxbuhcould compute the
nearest neighbors for each other. This version of fiber bundlgy;re probabilities for fiber bundles ™ <20 by using this
consists ofN fibers mounted evenly on a circle. The other onfiguration-counting method. As for fiber bundles of larger
boundary condition, which is our main concern in this Papery | they had to use an approximate method. In this paper, we
can be called closed boundary conditions. In this case, tWBresent an exact recursion relation for calculatig. The
imaginary fibers, fiber 0 and fibed+1, bound the whole  oynense of this method scalesh&while the configuration-
bundle. The two imaginary fibers are of infinite strength, .o nting method scales a& 2The recursion relation enables
which means they can stand any load transferred from thejrg o calculateFy, for N from 1 to 16 or more. The exact
failed neighbors and thus they never break. results ofFy can serve as a test of the previous approximate
results.

ll. THE FAILURE PROBABILITIES Before we present the recursion relation, we note that the

configurations for a bundle d+1 fibers, can be easily

We have put up a question: What is the probability . .
: : ” ' produced from that oN. For example, (1Q)is a configura-
Fn(o) that a bundle oN fibers fails under load? We first fion for N=2. By simply adding a fiber to the right end of

note that for each fiber there are two possibilities: failed or,

surviving. Thus there are™possible configurations for a the conflguratlon, we get a cqnflguratlon for=3. The
bundle ofN fibers. Hereafter we @sa 1 todenote a surviv- added fiber can be failed or surviving, so (1@yoduces two

ing fiber am a O todenote a failed fiber. We can then easily configurations: (10Q)and (101 In general, each configu-
write out all the 2 configurations in the form-(-- 0 1 1 ration of N produce two configurations dfl+1. For this
... 01--+)y. The subscripN outside the right parentheses reason it is convenient to calculate the probabilitie®Nef 1

indicates the size of the system, while the 0's and 1's in thérom thqt OfN'. Using the same example, the probability for
parentheses indicate the status of each fiber, failed or survi\}he configuration (1Q)is

ing. As examples, we list all the configurations fé=1, 2, _

and 3. ForN=1, there are two configurations (0)nd S(10),=WiF,

(1)1. For N=2, the four configurations are: (0Q) (01),, while the probabilities for (10@)and (101} are

(10), and (11). For N=3, there are eight configurations:

(000), (001), (010)%, (011), (100)%, (101), (110), s(1003=W,F,,

and (111). If there is at least one survival fiber in the
bundle after loadr is applied, we say that the bundle sur-
\{ives t.he loado. In general_ there are’\’z_—l surviv_al con- S(101)5=W,F,W;.

figurations for a bundle df fibers. The failure configuration

is the case that all fibers in the bundle fail, which can beSince the expressions fef10), ands(101); contain some
denoted by (0000 -000)y. Each of these ®—1 survival common factors, it is then convenient to calculs£01); by

configurations is independent of each other, so the probabilisings(10),, that is

ity Sy(o) that a bundle oN fibers survives loadr can be

obtained by adding up the probabilities of all survival con- $(101)3=5(10);W;..

figurations, that is

and

And s(100); can also be calculated througfl0),
Sy=>, s(configuration, (3.2 s(10);

wheres is the probability of an individual survival configu-

ration. Another example, (10019)s a configuration foN=>5. It
With Sy=Sy(o) known, the failure probability produces two configurations foN=6: (100100} and

Fn=Fn(o) is just (100101). It can be seen that
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s(100105=W,F,W3F,
and that
s(100100¢=W,F 2W4F2—&0105 4F2,
W3F,
and
(100103 5= W,F ;W5F ;W; = 5(10010 5 W, .

Here we also used(10010) to calculates(100100) and
s(100101).

A special case should be noted here that the failure con-

figuration of N (00- - - 00)y produces two configurations of
N+1, one of which is the failure configuration
(00- - -000)y . 1 and the other one is a survival configuration
(00- - -001)y+ 1 - In this survival configuration only the right

end fiber survives. The probability for this configuration is

just

S(OO i 001)N+l: FNWN .

Based on a similar idea to generate probabilities for larger
Harlow and
Phoenix’ have developed a recursive analysis and arrived at

bundles from those of smaller bundles,

matrix formulation for the problem. Now we try to obtain a
recursion relation for the calculating &f,. For a bundle of

N fibers, the total number of the survival configurations is
2N—1. The key point to get the exact recursion relation is to
classify the various survival configurations properly. We

classify these ®—1 survival configurations into different

groups. LetSy(i,j) be the set of configurations that have the

form
[ j
[ | 1 [ | 1
(-1 00---01 00---0)y
where i and j are integers satisfying 9i<N—-1 and
0<i+j=<N-1. In words, there ar¢ consecutive Qs in the
configuration right to the right-most 1, amcdtonsecutive 0's

between the right-most 1 and the next 1. No matter whether
the other fibers in the bundle are failed or surviving, those

configurations with the same and j belong to the same
group Sy(i,j).
survival configurations that contain only one 1, such as
(00010}, (001), and (1000), etc. In these configurations,

j is the number of O’s right to the 1, arids the number of
0’s left to the 1. So (0001Q)is in groupS;(3,1), (001} is

in group S3(2,0) and (1000 is in groupS,(0,3).

In general there ar®&(N+1)/2 groups of survival con-
figurations for a given value dfl. As examples, we list all
the groups of configurations f&d=1, 2, 3, and 4.

For N=1, the only group is5,(0,0)

$1(0,0={(1)4}

For N=2 there are three groups. They are
$2(0,0={(11)},
$3(0,1)={(10)3},
S3(1,00={(01)2}.

SHU-DONG ZHANG AND E-JIANG DING

For N= 3, the six groups are
S3(0,0={(111)3,(011)4},
S3(0,)={(1103},
$5(0,2={(100)3},
S3(1,0={(101)3},
S3(1,1)={(010)3},
S$3(2,00={(001)3}.

For N=4, there are 10 groups of configurations
S4(0,0={(0011,,(011D,,(101D),,(111D),},
S4(0,1)={(0110,4,(1110,},
$4(0,2={(1100 4},
S4(0,3={(1000.4},
S4(1,0={(0101)4,(1101,},
S4(1,1)={(10104},
S4(1,2={(0100 4},
S4(2,00={(1001 4},
S4(2,1)={(0010.4},
S,4(3,00={(0001) .}

In this paper, we also us8y(i,j) to denote the sum of
probabilities of all the configurations in the gro®(i,j).

Then the survival probability of the bundle can be obtained

by adding up all the group-probabilities, thus Eg.1) be-
comes

N—1 N—
=2 2 S (3.9
i=0 =0

It should be noted here that there are some

So this classification give a natural way to construct a
recursion relation to calculat8y(i,j). The exact recursion
relations can be written as

SN(N—1,0=Fy_1Wy_1,

N—i—2
Sy(i,0= >, Sy_a(k,i)W;, foro<isN-2,
k=0
Sy(iyj)= MW F.
VD= W R R

forO<i=N—-2and I=jsN-i—1. (3.5

We note here that we have definEg=1 when we de-
duce the above recursion relations. It can be seen that if we
use Eq.(3.1) to calculateSy the total number of adding is
2N—1, while the number of adding for E¢3.4) is reduced
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FIG. 2. For givenN, Fy(o) as a function ofr is ever increas-
ing with . The sharp increase &fy(o) becomes more remarkable
asN rises.(a). Uniform distribution. The four lines from the left to
the right are foN=1000, 100, 20, and 10, respectivelly) Weibull
distribution withm=1. ForN=1000, 100, and 10.

The other form of the threshold distribution is Weibull dis-
tribution p(x) that is
FIG. 1. A plot of Fy(o) as a function ofe and N. (8 for

uniform threshold distribution(b) for Weibull distribution with p
m=5, j p(x)dx=1—exd —(o/as)™]. 3.7
0

to N(N—1)+ 1. Furthermore the recursion relation E8.5) R _ .
can be easily realized in a computer algorithm. The failureThis distribution has two adjustable parameters.is the

probabilitiesF’s can then be computed successively. scale strength, which sets the size of the typical strength in
Now we apply the method to specific threshold distribu-the distribution andm is the Weibull modulus, which deter-
tion. Let us consider two forms of distributions. One is themines the scatter in the distribution of the fiber thresholds.
uniform threshold distributiop(o)=1 for 0[0,1] and  We simply setos=1, then the Weibull distribution becomes
p(o)=0 for > 1. This form of distribution represent a class
of distributions that is in a finite region. Actually, any finite
threshold region can be mapped ifn@1]. For the uniform
distribution, theW, (o) defined in Eq.(3.3) is just

jgp(x)dx=l—exp(—am). 3.9
0

. . . One advantage of the Weibull distribution is that it has no
1-(1+i/2)0, FO<(1+i/2)o<1, strict upper cutoff and it has been broadly applied in some

Wilo)= 0, otherwise. (3.6 fields. For this form of distribution
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FIG. 3. o5 () and o7 (€) divide the N,o) space into three FIG. 4. The iso-failure-probability lines in theN(o") space for
regions: failure, crossover, and safe regions. The safe indeset £ (5)=0.001, 0.01, 0.1, 0.9, 0.99, and 0.999. The number beside
to be 0.01. AsN becomes larger, the cross region becomes nargach line indicates the value Bf,(c). () Uniform distribution.(b)
rower and narrowerta) Uniform distribution and(b) Weibull dis-  weibull distribution,m= 1. This figure shows how the three regions
tribution with m=1. In both cases the solid line is fof; (¢) while  §efined in Fig. 3 change as the safe indeis changed.
dashed line foiwg (€).

to the bundle, so that the bundle will not break anyway;
Wi(a-):e—[(l+i/2)<r]m_ (3.9 FN(1)=_1 or FN(a—m):l_ corresponds to t_he_ (_)ther ex-
treme situation that a maximum load or an infinite load is

With W,=W:(o) known, noticing thaiS,(0,0)=W, and appllied to the ;ystgm, thus the bundle will fail definitely.
F,=1—W,, we can get from the recursion relatihs) the  Typical results in Fig. 2 clearly shows thi} has a sharp

failure probabilitiesF(o)’s for any N and anyo-. increase at a certaia. , -
In principle, only wheno=0 can the failure probability

Fn(o) be exactly zero, and only when=1 for the uniform
distribution or o—o for the Weibull distribution will
Using the exact method we calculated the failure probFn(o) be exactly 1. However, for practical purposes, it is
abilities F (o) for both the uniform and Weibull threshold convenient to introduce an “safe index’ (0<e<1). The
distributions. The results are shown in Fig. 1, which is aphysical meaning of the safe index is the following. On one
three-dimensional drawing. From Fig. 1 we get a generahand, whenever there is &\ (o) <e, we consider it is safe
idea howF (o) varies with changingr andN. and the bundle will not fail; on the other hand, when
For a givenN, Fy(o) is a monotonic increasing function Fn(o)>1—¢, we consider that the bundle will fail. In our
of . For both the uniform and Weibull threshold distribu- calculations we set the safe index 0.01.
tions F(0)=0; andFy(1)=1 for the uniform distribution Two interesting values ofs are og(€) and o7 (e).
and Fy(o—=)=1 for the Weibull distributionF(0)=0 o (e) is the value ofo at whichFy(a§)=e€. And o7 (€),
corresponds to the situation that no external load is appliedn the other hand, is the value of that satisfy

IV. THE EXACT RESULTS
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FIG. 6. The average strength and the most probable failure load
FIG. 5. Failure probability densitfy, (o). (a) Uniform threshold ~ @re dependent of system siXe At smallN the two quantities show

distribution, N=1000,100, and 25(b) Weibull distribution with ~ apparent difference, but almost coincide fs-. (a Uniform
m=1, N=10, 100, and 1000. threshold distribution. The asterisks in the plot stands for the aver-

age strength from actual simulations of 100 samp{bsWeibull
distribution withm=1. In both cases the solid lines are drawn for
the most probable failure load,, while the dashed lines for the
average strengtto) defined in Eq(5.2).

Fn(of)=1—€. The physical meanings of these two values
are the following. When a load<o7j (€) is applied to the
system the bundle is safe and will not fail, but a load of

o= o7 (€) will destroy the system; under a load between the he fail _ h . .
two valuesoj (€)<o<o7 (€) the bundle can either fail or (N, ) space, and the failure region and the survive region

survive with different probabilities. Botlwy and o} are are only two fines in the space. So only in the sense that a
) ) . * nonzero safe index is introduced could the failure region
fun.ctpns ofN. In F'g'*3 We_ShOWTO andol_versusN. The and safe region occupy nonzero areas. For this reason, we
solid line stands fow; while the dashed line is drawn for g4,y the iso-failure-probability lines in Fig. 4, from which

o5 - The two lines divide theN, o) space into three regions: e may see how the three regions change as the safe index is
Above the solid line is the failure region where the fiber changed.

bundle can rarely survive; Below the dashed line is the safe

region, in which almost every bundle will survive; Between

the two lines is the crossover region where bundles can SUr-yv THE FAILURE PROBABILITY DENSITY FEUNCTION

vive or fail. We also see that crossover region becomes nar-

rower and narrower abdl increases. So al—~ we may If we define

expect the two lines in Fig. 3 coincide, meaning that a bundle

of infinite size breaks suddenly at a pointef depending on

N dFn(o)

Whene=0, the cross over region should cover the whole fn(o)= do ’ &3
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FIG. 7. Comparisons of exact results with the approximate results from the method of Leath and Duxbury for uniform threshold
distribution.(a) For every giverN, three lines are shown. Fdr= 15, the line for NLF=2 result and that for the exact result almost coincide
to the resolution of this figurdb) At certaino andN, NLF= 2 results(dashed lingshow large differences from the exact res(slid line).
0=0.13, 1=N=<1500.(c) The maximum erroE(N, o) of the NLF approximate results. The upper line is for NLF and the lower line
for NLF=2. (d). Comparison of average strength. The upper solid line is for the exact result, the dashed line is for th2 iisElt, and
the lower solid line is for the NLE 1 result.

it can be easily understood thég(o) is just the failure ¢ is actually the most probable failure load, meaning that
probability density function. The average strength of thethe system is most likely to break at this load. Also we found
bundle, or say the mean failure load of the bundle can thefhatgm is dependent on the system sMe In Fig. 6 we plot
be calculated as the average strength and the most probable failure load as
functions ofN, from which we can see that at smal| the
[ average strength of the bundle is apparently different from its
{o)= jo otn(e)da, (5.2 most probable failure load,(N); however asN increases,
the two lines becomes closer and closer and at last they al-
whereu=1 for the uniform distribution andi=« for the = most coincide. Since in Ref. 11 we have found from large
Weibull distribution. For not too smaM, the failure prob- amount of simulations thato)~ 1/logN, which implies the
ability density function has a well-defined maximum at aaverage strengttc) —0 asN—o, we thus can expect the
certain value ofo as shown in Fig. 5. We denote this value most probable loadr,, also goes to 0 adl—o. We note

of o with o,, which thus satisfies here that we had used the cyclic boundary conditions in Ref.
11, different from the closed boundary conditions used in
dfy(o) this paper. But as the average strength and the most probable
do =0. (5.3 failure load o, are concerned, the two kinds of boundary

o=0op conditions make little difference.
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7(a) we compare the exact results with the results from
NLF=1 and NLF=2 approximations for several given val-
ues ofN. It can be seen from this figure that the NER
result is much closer to the exact one than the KlFresult

is, especially whemN=15, the NLF=2 result is coincident
with the exact one to the resolution of this figure. However,
for largerN, the difference between the exact result and the
NLF=2 result becomes more and more apparent. We can
also make the comparison for some given valuesrofVe

find that for certainN and o the differences between the
exact results and the approximate ones are not very small.
Fig. 7(b) shows the differences between the exact result and
the NLF=2 result for 0=0.13 and EN=<1500. The
NLF=2 approximation method giveB5,4{0.13)=0.5687
while the exact result if 1504 0.13)= 0.4828.

—35‘nll||||||IIII|IIII|IIHHHI|IIllvrrll|1H|||||l|x|||l|||||||||lllll|l Ifwe denoteE(N a—) as the dlﬁerence Ofthe fallure prob_
=30 -25 -20 ~-15 -10 -05 00 05 . ’ . .
ability between the NLF approximation result and the exact
Ing result. For a giverN, the differenceE(N,o) approaches a

maximum value at a value af, which we denote byrgp,.
The subscriptem means maximum error. We found that
Oem IS actually aroundr,,. In Fig. 7(c), we show the maxi-
mum errorE(N, o) versusN. The trend is obvious that the
maximum error becomes larger Bsincreases.

As far as the average strength is concerned, the NFL ap-
proximate method gives a weaker strength than the exact
one. Figure @) clearly shows that akl becomes larger the
differences between the NLF results and the exact result also
become larger.

From the comparisons made above we can conclude that
in general the NLE2 approximation is a relatively good
method for the calculating dfy(o); However, near tar,
the NLF=2 approximation gives unsatisfactory results. Then
] we need turn to the exact method.

T B Our method of calculation has three advantages. First, it is
-1.8 -1.3 -0.8 -0.3 0.2 exact so that it serves as a test of other approximate methods.

Second, the exact method scales with systemI$iasN?, a

little less amount of calculation than the NER. approxima-

FIG. 8. Comparison of exact results to the asymptotic form fortlon methods. In our method, the number of additions for

. - 2 . .
Fy [Eq. (6.3 in the tex] and test of the Weibull form for the calculatingF (o) is N°—N+2. While the number of addi-

characteristic functionC(o). (@ Weibull distribution for fiber ti0r128 for ‘the NLF=2 approximate method is
threshold with Weibull modulusn=2. (b) Weibull distribution for ~ 3N*/2—9N/2+12. Thirdly, this exact method can be easily
fiber threshold with Weibull modulus=5. realized in a computer algorithm. We made our calculations

on a SUN workstation, and we found the exact method
spends less CPU time than the NEB approximation
method. For example, the CPU time for calculating the exact
First, let us compare the exact results with the approxitesults in Fig. Tb) is about 3 400 seconds, while the NER
mate results in Ref. 3 to test the reliability of the approxima-calculation to obtain the dashed line in Figlb) spends
tion method. Leath and Duxbutyleveloped a recursion re- about 4 800 CPU seconds. The disadvantage of our exact
lation for calculatingFy(o). According to thenumber of method is that it needs a larger amount of computer memory
lone fibers(NLF) that are taken account into their calcula- than the approximate methods do. Our method has only been
tion, the approximate methods may be called NiiFap- applied to the closed boundary conditions. For other bound-
proximation, wherd is an integer. By comparing the exact ary conditions such as the cyclic boundary condition, some
results with the approximation results fidi<20, Leath and ~modification should be made.
Duxbury concluded that NLF2 approximation is accurate ~ Secondly, we compare the exact results to some asymp-
enough for calculating (o). Since they did not make the totic forms resulting from previous analysis. Using a matrix
comparison for largeN, the reliability of the approximate formulation, Harlow and Phoenik obtained the bounding
method is still unknown foN>20. distribution for bundle strength of the following form
Now that we have developed an exact method for the
calculation of the failure probabilities, we thus can make the
comparison forN>20. In the following comparisons the FO(@)=1-[1-CH(o) N7 (o) + 0¥ (o)1,
threshold distribution is chosen to be the uniform one. In Fig. (6.0

In(—=In(1—=Fy)/N)

Ino

VI. COMPARISON WITH PREVIOUS RESULTS
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where F(Nk)(a) with 1<k=N is the bounding distribution is very very close to that dfi=1000. AsN becomes larger
function for bundle strength. Whdo=N, Ff\,N)(cr) is justthe than 100, all the data falls on a common line, indicating Eq.
failure probability Fy(o) studied in this papeiC® (o) in (6.3 is valid in this limit. We also see that the common line
Eqg. (6.1) is thecharacteristic distribution functiosuch that on which data for largé&l collapse is not straight overall, it is
only straight at its lower part, indicating the Weibull form for
limC®(0)=C(0), (6.2  C(o) is only valid in this region. Fig. &) is for the case
ke m=5, from which we notice that the line fdd=20 is al-
whereC(¢) is called the limiting characteristic distribution ready very very close to the common line on which data for
function. In Ref. 17 it was denoted a&(x). We do not N>50 collapse. Here we also see that the common line in
follow their previous notation because we have ugé@o)  Fig. 8b) is not straight and henc€(o) is not of Weibull
for another quantity' The “boundary tern‘f’,ﬂ-(k)(o-) +O§\|k) form (-)V-era”. ACtua”y, as HaﬂOW and Phoeﬂﬁ)po"]ted OL!t,
X(o)] in Eq. (6.1) is very close to unity a\ becomes it is difficult to expressC(o) in terms of the usual classical

larger. So Harlow and Phoenix considered that functions. We expect the exact results Fgg to be helpful to
test some other predictions for the form®fo) in Eq. (6.3).

Fn(o)=1-[1-C(a)]" (6.3
. . T . VIl. SUMMARY
is an accurate representation of the distribution function for
bundle strengtitfailure probability. Kuo and Phoen# later In this paper, we study the failure probability of a fiber-

developed a recursion and limit theorem which could applybundle model with local load-sharing. By classifying the
separately to static strength and time-dependent failure. The3—1 survival configurations into different groups, we in-
also recasted this theorem into a key approximation fotroduced an exact recursion relation for calculating the fail-
Fn(o), which was the same form as E(6.3). From Eg. ure probabilityF (o). One advantage of this method is that
(6.3) we easily get it scales with the system size a¢$?, roughly the same
amount of calculating as some approximate methods. We
In[—In(1—=Fn)/N]=In{=In[1-C(a)]}. (6.4  then apply this recursion relation to two form of threshold
distributions, the uniform distribution and the Weibull distri-
bution. In both cases, the average strength of the bundle al-
most coincide with the most probable failure load as
the validity of Eq.(6.3) is confirmed. In addition, iC(c) is N—>- Also we find that the average strength calculated
of the form of Weibull distribution like from failure probablhty. dens[ty is in good agreement with
C(0)~1—exp(— o”), the right-hand side of Eq6.4) then the result from actual simulatiofisee Fig. 6a)]. Some com-

becomesp Ing, and the plot of Ip—In(1—Fy)/N] versus Parisons to previous results are also made.
Ino should be a straight line. In Fig. 8, we present some
typical results. The fiber threshold distribution is chosen to
be the Weibull distribution Eq(3.8). Figure &a) is for the This work was supported by the National Nature Science
case Weibull modulugor say, shape parameten=2, from  Foundation, the National Basic Research Project “Nonlinear
which we see that the data fdf=10 show apparent devia- Science,” and the Educational Committee of the State Coun-
tion from that ofN= 1000, but asN increases to 50, the line cil through the Foundation of Doctoral Training.

The characteristic functio€( o) is independent oN, so if
we plot I —In(1—Fy)/N] versus some function of, the
data for differentN should fall onto a common line, and then
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