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Antiferromagnet-ferromagnet transition in the one-dimensional frustrated spin model
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The one-dimensionab=3 quantum spin model with nearest-neighbor ferromagnetic and next-nearest-
neighbor antiferromagnetic interactions is considered. The behavior of the system in the vicinity of the tran-
sition point from the antiferromagnetic ground state to the ferromagnetic one is studied. The consideration is
based on the classical approximation and the regular procedure is proposed to find the corrections to the
classical energy. The dependence of the energy on Spim calculated. We obtain evidence of a phase
separation for the state with intermedi&e

I. INTRODUCTION is unstable against a creation of a magnon, energy of which
is equal to
The quantum spin models with isotropic nearest- and
next-nearest-neighbor interactions have been the subject of e(k)=(1-cok)—J(1-cosXk), 2

numerous studie$.*? If exchange integrals in these models
can be either positive or negative then the ground state cawherek is a quasimomentum of the magnon.
be ferromagnetic or antiferromagnetic depending on a rela- It follows from this equation that the maximal energy gain
tion between integrals. The study of the character of the tranef the magnon creation is
sition between these states due to the variation of the ex-
change integrals has a special interest. In particular, it is not 2 1\2 2\,
clear whether the transition from the antiferromagnetic state j) ( J- 4 - _(j> v (©)
(S=0) to the ferromagnetic on¢S=S,,,,) comes to pass
through states with intermediate valuesSbr only the two  The |owest two-magnon state is a bound one and the binding
limiting states are possible as the ground states. A similagnergy aty—0 is
problem arises in electronic systems with extremely strong
Lnt:eoroalcst_lcl)g, for example, in the Hubbard model with €= —72y° (4)
The simplest model of such a kind is the one-dimensional '
i) , ; oo At first glance, one can expect that the magnons are non-
(1D) s=3 quantum spin system given by the Hamiltonian

interacting to the accuracy of® and the total energy of
M-magnon state witls=N/2—M is

. (@

1 1
H:_; (SﬂSnJrl_Z)—’_J; (Snsn+2_‘_1 Em=—8My. )

with nearest ferromagnetic and next-nearest-neighbor antl fact,M magnons form a bound complex with the enéfgy
ferromagnetiqJ>0) interactions. )

Unfortunately, even this simple model is not solved ex- E= — 8M2+ M(M“-1)
actly. It is known that the ferromagnetic state is unstable at YT e 6 '
J=1%%and the ground state is nontrivial &t and can be

realized in a form of different phaseés. It follows from (6) that Eq.(5) is not correct for finite
First of a.", we are interested in the behavior of the System'nagnon COﬂcentratio(M/N:cons) even with an accuracy

whenJ is close toj. A spin-correlation function fory=(J— of 2. This is confirmed by an exact calculatidiEq.

7)<1 falls down very slowly(~r ~%). This allows us to use (49)]. Thus, conclusions based on the two-magnon

the classical apprOXimation for the zeroth-order state. As ibpproximatioﬁ do not give the correct thermodynamic pic_

will be shown below a regular procedure is possible to findyre in the transition region.

corrections to the energy as an expansion in powets dhe In the classical approximation the ferromagnetic state is

first three terms of this expansion have been calculated.  the ground state al<2 and a spiral with real-space period-

icity ~y 2 is formed atJ>1. When y<L1 it is natural to

use the classical approximation with spin-wave correction.

This approach allows us to construct a regular expansion in
The ground state of the Hamiltonidf) is ferromagnetic  powers of the small parameterfor the system under con-

at J<3 and S=S,,,,=N/2. (Strictly speaking, energies of sideration.

states with differen§ differ by values of order N, i.e., are It is convenient to rotate the coordinate system with origin

degenerate in the thermodynamic limitvhenJ>7 this state  at centem by an anglepn with respect to axiy (as it will

(6)

II. PERTURBATION THEORY AT y—0
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be shown below the valug must be chosen equal to an St=sin(en) &+ cog on) &
angle of the twist of the spiralThe corresponding transfor-
mation to new spiry operatorsé, has a form
In the well-known spin-wave approximation of Andersbn

Sh=cog ¢n)é—sin(en)é&p, (7)  for the antiferromagnetic Heisenberg model the anglis
vy equal tor.
S=én, As a result, the Hamiltoniafil) becomes

+J cOS3 (482, ,+ EXE8, )

1
H= —COSPE(§ﬁ§ﬁ+1+Eﬁ%ﬁﬂ)—Sinqu(fﬁfﬁH—§ﬁ§ﬁ+1)—2( & i1— 2

. 1
+J SiN2p3 (Enén o= Enbnio) TIZ| &80 o~ Z) . (8
Let us represent this Hamiltonian in a form
H=Hy+V, C)
where
N NJ sz 1 sz 1
HO:Z (1—cosp)— T (1—cos2p) —cosp3,| ELEr, 1 — 2 +J cos2p3,| £FEF L o~ 7
1 + = — et J + g — &+
— 7 (1+008) S (&7 & &n ny)+ 7 (1500S2) (&7 €ni 0t & o), (10
1 + et — = J + et — e ; X ¢Z Z £X
V= Z (l_COS‘P)E(fn §n+1+§n §n+1)_ Z (1_C032P)2(§n §n+2+§n §n+2)_Sln@E(§n§n+1_§n§n+1)
+3 sin2pX (616012~ €hény2)- 1D
|
The operatoV is the perturbation ap<<1 and the ground- It is easy to check that the ground statepata is stable

state wave function?, of H, corresponds the configuration against the spin flip. The operatdr which is proportional to
having all spins pointing, for example, down. Then, thea?, can be considered in a framework of the perturbation
ground-state energy ¢, is theory.

The expectation value & in the ground state is

E N (1 ) N (1 2p) (12) N

=— (1—cosp)— — (1—cosp).

g I (WolS W)= (16
The energyE, has a minimum ap=a, wherea is the angle Equation(16) means that, is not a pure singlet state but
qf the rotation inxz plane of the classical spiral configura- ontains an admixture of states wi:0. Therefore, strictly
tion, and speaking, the wave functioW, must be projected onto the

state withS=0. However, it is clear that the weights of states
1 with S#0 are negligible aN—~ and the projection will not
cosw=_7, a=y8y, y—0 (13 influence the leading~N) contribution to the energy.

Let us calculate now the second-order term of the pertur-
bation theory. It is easy to see that the third and the fourth
terms in(11) do not give contributions to second order and
the energye@ is

and

Eo= i (14)
0 . v, |VIw 2
2J E(z) z: |< O| | H>| ' (17)
m EO Em
The energy(14) coincides with the energy of the Hamil-

. ) . . . whereV¥,, and E,, are the wave function and the energy of
tonian (1) in the classical approximation. At—0 we have m m oy

the excited two-magnon states ldf, at J=3.
In other words, the problem of the calculation Bf?
Eo=—2Ny~2. (15  reduces to the consideration of the Hamiltonian
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H=Hqy+V, 18 1
0 (18 Ni(K)=cose—J cos?a—§(1+c05a)cosk

where

J
+ > (1+cos2v)cosX,

" Z s2 1 1 Zs2 1
H0:_2<§n§n+l_z +Z£(§n§n+2_ Z)

1 J
1 1 - (1— —_ 21—
-3 2(§:§;+1+ £ et )t - 2(5: §E+2+§E§:+z)v No(K) 5 (1—cosx)cok 5 (1—cosy)cosXk, (25

(19) andX,(k) and\,(K) are the bare interactions.
As already mentioned above, these expressions must be
modified in two respects. First, we need to expand them up

2
V= % 2 [én (b= Eni)HE (61— Enia)], (20 to term_s~a4, a_nd, second, to replace(k) by the correct
scattering amplitud& (k). Then,

andE@ is given by 4

M —Rallo= S+ 2 i K +
1(K)= A (K)= 7%= sif| = | + —,
E2— _ (“_2) 22 | or(1) — ox(2)]? 2 16 2 8
8] 4 (0K) : . .
Here (Q,k) andeq (n) are the energy and the wave func- Na(K) = Ao (k)= 7 ( F(k)— 7) . 26)

tion of the two-magnon states of the Hamiltoniélr®) with i i

total quasimomentur®® and the relative quasimomentum It follows from the consideration of the two-magnon prob-
€(Q,k) and ¢q (n) are found by the standard way from lem that

the solution of the corresponding two-particle problem. We

will not present detailed expressions because they are very

cumbersome and thus we give only the final result for the

sum(21)

2
F(k)zg, k—0.

Diagonalizing the Hamiltonia24), we arrive at

_ 2
%E |(P0,k(16)(0i;),k(2)| -2 (22)
X ’ HB=E+gO VN2 = N3(K)(Be Bkt BT B, (27

Thus, the second-order quantum correcti8f? coincides
with the classical energy and total energy in this approximawhereg, are new Bose operators. The ground-state engrgy
tion is is

E=—4Ny~2. 23 ~
7 @3 E=Eot 2 [VM(K-M(k-N(0]. (29

/2
Ill. THE CALCULATION OF THE ¢ TERM The expansion 0f28) up to second order of reproduces

The calculation of the third and higher orders of the per-(23). The contribution of the term~y*? is given by the
turbation theory inV leads to infrared-divergent integrals integral
and it is necessary to sum them in all orders to obtain the
contributions proportional ta”?, v°, etc. Here we will cal- N (=
culate the term proportional tg°2. pym f dk[ \/(

The well-known regular way of summation of these di-
vergent diagrams is the construction of a bilinear
Bose-Hamiltoniart® It is necessary to keep in mind that the
bare bosonic interaction has to be replaced by an amplitude
of two-magnon scattering with zero relative quasimomen-
tum. The numerical calculation of the integral29) gives

Replacingé, by the Bose-operatob, and neglecting 4.146y°2. Thus, the ground-state energy calculated up to
terms containing four Bose-operators(B) we arrive at the terms~y*? is
Bose-Hamiltonian

at k* ak2\? ot (K2 P2
8 2 4

. 678 8/ 16

4

16

4 k4 012k2
. (29

E=—4Ny?+4.1468\y>2, (30)

Hg= Eﬁ; M(k)b;bﬁzk Nao(K) (b b +b_yby), As to the excitation spectrum it has the soundlike behav-
(24) ior and the corresponding sound velocity is

whereE, is given by(15), v=4%2 (31
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FIG. 1. The ground-state energy per spiof rings withN=8— ) o
20 forJ=0.3(y=0.5). The dotted line is the extrapolation k=co. FIG. 2. The ground-state energy given by E80) (solid ling)
and the extrapolation of numerical resulisrcles as functions

IV. NUMERICAL DIAGONALIZATION OF FINITE RINGS of y.
We have carried out Lanczos calculations on rings withfrustrated models. In this case it seems natural to choose an
N=8-20. These calculations show that the spectrum of thaverage of numerical results &ffor N=8-20 as the ex-
Hamiltonian(1) at J>3 satisfies the inequality trapolation toN—oo.
For the energies of one- and two-magnon states, which
are known exactly dil—o, this procedure gives an accuracy
E(S)<E(S+1), (32 within 5—10 %. The ground-state energy extrapolated in this
way is shown in Fig. 2 together with the ener@®0). These
two dependences are qualitatively similar. Some difference
between them is explained, on the one hand, by the approxi-
mate extrapolation and, on the other hand, by the neglecting
of terms of higher orders in Eq30).

whereE(S) is the ground-state energy of the Hamilton{an
with spinS. The inequality(32) coincides with one that takes
place ins=3 Heisenberg antiferromagnét.

At J<3 and for finite N the state withS=S,,,, is the
ground state. The energies of the singlet and the ferromag-
netic states are equal to each othedat. Thus, the transi-

tion from the singlet ground state to the ferromagnetic one V. THE ENERGIES OF STATES WITH S#0
occurs atl=3. However, as mentioned above, the energies of o ) )
states with different are degenerate dt<1 in the thermo- The ground state of the Hamiltonia8) is a singlet. To

dynamic limit. Therefore, the energies of states with differentcOnsider states witl=+0 it is necessary to construct the
S simultaneously go to zero at—0 andN—x satisfying the ~ Hamiltonian, the ground state of which h&¢0. This can be
inequality (32). achieved by the additional rotatidmalong with (7)] of the

Unfortunately, the problem of an extrapolation of numeri- coordinate system by angtewith respect to axi. The spin
cal results tdN—= is complicated by the oscillatory depen- OPeratorg, are transformed according to the equations
dence of energies oN. As an example, the dependence of

the ground-state enerd$=0) per spine on 1N for J=0.3 &=,
(y=0.05 is shown in Fig. 1. Such dependence differs radi-
cally from the one for the 1D Heisenberg model with &= cosfn’—sindrn?,

nearest-neighbor antiferromagnetic interactions, wl€ké

is @ monotonic function. Apparently, the nonmonotonic be- 2y ,

havior of (N) in the model under consideration does not &n=sind o+ cosh 7, . (33
depend on the choice of the boundary conditions. We have = | ) )
calculated ground-state energy of open chains and havas it will be shown below the anglé fixes nonzero spifs of
found that the dependeneéN) is similar to the one shown the ground state

in Fig. 1. We note that similar nonmonotonic behavior of

€(N) has been found earlitfor the 1D model with nearest- S= S, a3ind. (39
neighbor and next-nearest-neighbor antiferromagnetic inter-

actions in the so-called frustrated regime. Thus, the oscillabnder the transformatio33) the original Hamiltonian(1)
tory dependence(N) is caused by intrinsic properties of takes the form
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H=-3

1
(cosy coS 0+ SirP ) ninh. 1+ (cosx SirPA+cos ) nhn), . +cosenint, 1 — Z}

+J3

1
(cos2w cog 0+ sir?0) nanh . »+ (Cos2y sir? 0+ cog0) ) n’ , ,+cosy’n). 1 — Z}

sin20 2y vz J sin20 2y y 2
2| —— (L=cos) (1t e ) =~ (L1=COSZ) (770 2+ 77 0)

—sina COSH( 7y 7p+ 1= Wn7n+1) — SiNa SINO( a7 1 — M7+ 1) T3 SiN2a COSH( ) 7+ 2~ T na2)
+J sin2a sinG( s 2= 7701 2) |- (35)

Similarly to the cases=0, the perturbation theory up t¢ can be used for the calculation of the ground-state energy of
(35). It is not difficult to convince oneself that the third term(Bb) does not give the contribution to the second order (@3
reduces to the Hamiltonian

H(0)=Ho(8)+V(6), (36)
where
g 20+SiP03| i 2 20)3| oo -
Ho(8)=Eycos 6—| cosx cos 6+sin o3| nimn,1— 2 +J(cosx cos 0)2| prnhio— 1
1 . + - -+
—  LcoS o+ cosx(1+SiP0) ]S (15 7yt 7 1)
J ; + - -+
+ 7 [CoS' 0+ cos(1+SiM0) 12 (7 702 70 Tn2), (37)
1 o+ - - J + o+ - -
V= 2 C0520(1—COSa)E( M Mntr T Tn Mned) — 4 COS?B(]-_ COS2) 2 (1 Mnsot M0 Mns2) (38)
|
andE, is given by(15). The term~y>2 s calculated in the analogy with the case

The ground state dfiy(6) is the state with all spins point- S=0 taking into account thak(k) and \,(k) in Eg. (26)
ing down,£2=—1. Then, in accordance witf7) and(33) the  depend or¥. At small values ofa andk
expectation values of components of total spin in the ground

state are . ot 4 42K2
M(K)==— cogo+ —+ (1+3sirf9),
N 16 8 8

2 (SH=2(S)=0, 2 (Sh=7sing (39

n n n 2 ~ az k2 az
and the ground-state spin is given by E84). )\z(k)zcosqa(f) (3_ Z) (42

The ground-state energy bffy(6) as a function of normal- ) o )
ized spinm=S/S,, is and the corresponding contribution to the energy is
Eo(m)=(1—m?)Eq(0). (40) E®(m)=y%g(m), (43)

The energy(40) is the energy of the Hamiltoniafl) with ~ Where the functiorg(m) is presented in Fig. 3.
S#0 in the classical approximation. The most interesting peculiarity of the functi&{m) can

The calculation of the quantum correcti&?(6) reduces be seen from the first two terms of the expandigm) given
to the analogous problem for the Hamiltonid®), and value by Ed.(4). It follows from (41) thatd“E/dn? becomes zero
o2 in (20) is replaced bye?(1—m?). According to Eqs(15) at m=1A2. This fact signifies the thermodynamic instability
and (21) the ground-state energy ¢36) up to ordery” is of the uniform state against the phase separation. Another
manifestation of this instability is a behavior of the function
m(h) describing the response of the system to the external
E(M)=Ey(0)[1—m?+(1—m?)?]. (41)  magnetic field directed along axis For example, it turns
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g(m) E(m)=2.631Eyy*(1—m). (49)

At m>m, the system is in the two-phase state, consisting
of the ferromagnetic phase of sid(1—c) and the phase
4 with S=(N/2)m, of size Nc. Naturally, Eqs(47)—(49) can
be obtained with the help of the “Maxwell rule.”

In connection with Eq.(49) we note the following. As
5L | already mentioned above, the binding energy of two-magnon
states(4) is proportional toy> and one can expect that mag-
nons is noninteracting in the accuracygf In this case the
5 il energyE(m) would be equal to Ey(1—m) at m—1. The
difference of this energy frort49) means that this is not the
case. Therefore, the interaction of a macroscopic number of
1L i magnons is very complicated and leads to the creation of a
new phase.

0 : ' ' VI. CONCLUSION
0.0 0.2 0.4 0.6 0.8 1.0

m In this work we mainly have been interested in the tran-
o sition from the antiferromagnetic ground state to the ferro-
FIG. 3. The dependence of the functignin Eq. (43) on nor-  magnetic one. The perturbation theory based on the classical
malized spin. spin configuration has been used and the dependence of the
ground-state energy on sp#hhas been calculated. We have
out thatdm/dh<0 atm>1/2. In other words, the energy ot quelt on an important question relating to the symmetry

(41) is not minimal at giverS. This results from the fact that 5 the degeneracy of the ground state. According to the well
the rotation of the coordinate system is the same for all CeMknown Lieb-Shultz-Mattis(LSM) theorem®?! the ground

gers. A(?.Other wayhof fixings i? rtmo ri]ntroguce the ang!e(n), q state ofs=3 spin chain model with the translationally and
epending om. The state with the phase separation IS deyqationally invariant interaction is either degenerate or has

scribed by the dependence gapless excitations. It turns out that in the ground state of the
o(n)=0, 1l<n<Nj, Hamiltonian(27) the nonzero chiral order paramé’tetxists

([$hX Snsmly)~sin(my8y).

This expectation value changes the sign under the permu-
In this case tation of spins. This chiral symmetry means that the ground
state is twofold degenerate. On the other hand, the spectrum
] Ny of (27) is gapless. Thus, the ground state of the considered
m=1-c(1-sind), c=- - (49 model is degenerate but the spectrum is gapless. This con-
tradicts the LSM theorem. In fact, the expansion of the
The energye(m) for this choice off(n) can be found in  ground-state energy in small parameteris asymptotical
analogy with the uniform casg@eglecting boundary effedgts and, probably, the exponential, with respect to snpaterms

aa
e(n):E, N;<n<N. (44)

and is given by will restore a rotational symmetry and the ground state will
be nondegenerate.
E(m)=cEg[(1—x*)+(1-x?)?], (46) Our main result is that the transition from the state with
S=0 to the state witt5=S,,, occurs by passing the states
where with the intermediate spins. The depende®ds) in this
approximation testifies the instability against the phase sepa-
a1 1-m ration.
c We believe that this approach can be used for the study of
a two-dimensional version of the considered model. In addi-
The minimization of(46) with respect tac gives tion to that the scenario of the transition from the antiferro-
magnetic state to the ferromagnetic one is similar to that
3(1-m) considered for the 1D model.
c=—r. 47
(4=7)
Thus, atm<m,, where ACKNOWLEDGMENTS
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