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The one-dimensionals5
1
2 quantum spin model with nearest-neighbor ferromagnetic and next-nearest-

neighbor antiferromagnetic interactions is considered. The behavior of the system in the vicinity of the tran-
sition point from the antiferromagnetic ground state to the ferromagnetic one is studied. The consideration is
based on the classical approximation and the regular procedure is proposed to find the corrections to the
classical energy. The dependence of the energy on spinS is calculated. We obtain evidence of a phase
separation for the state with intermediateS.

I. INTRODUCTION

The quantum spin models with isotropic nearest- and
next-nearest-neighbor interactions have been the subject of
numerous studies.1–12 If exchange integrals in these models
can be either positive or negative then the ground state can
be ferromagnetic or antiferromagnetic depending on a rela-
tion between integrals. The study of the character of the tran-
sition between these states due to the variation of the ex-
change integrals has a special interest. In particular, it is not
clear whether the transition from the antiferromagnetic state
~S50! to the ferromagnetic one~S5Smax! comes to pass
through states with intermediate values ofS or only the two
limiting states are possible as the ground states. A similar
problem arises in electronic systems with extremely strong
interaction, for example, in the Hubbard model with
u5`.13–15

The simplest model of such a kind is the one-dimensional
~1D! s51

2 quantum spin system given by the Hamiltonian

H52(
n

SSnSn112
1

4D1J(
n

SSnSn122
1

4D , ~1!

with nearest ferromagnetic and next-nearest-neighbor anti-
ferromagnetic~J.0! interactions.

Unfortunately, even this simple model is not solved ex-
actly. It is known that the ferromagnetic state is unstable at
J51

4,
5,6 and the ground state is nontrivial atJ. 1

4 and can be
realized in a form of different phases.5

First of all, we are interested in the behavior of the system
whenJ is close to1

4. A spin-correlation function forg5~J2
1
4!!1 falls down very slowly~;r2g!. This allows us to use
the classical approximation for the zeroth-order state. As it
will be shown below a regular procedure is possible to find
corrections to the energy as an expansion in powers ofg. The
first three terms of this expansion have been calculated.

II. PERTURBATION THEORY AT g˜0

The ground state of the Hamiltonian~1! is ferromagnetic
at J<1

4 andS5Smax5N/2. ~Strictly speaking, energies of
states with differentS differ by values of order 1/N, i.e., are
degenerate in the thermodynamic limit.! WhenJ. 1

4 this state

is unstable against a creation of a magnon, energy of which
is equal to

e~k!5~12cosk!2J~12cos2k!, ~2!

wherek is a quasimomentum of the magnon.
It follows from this equation that the maximal energy gain

of the magnon creation is

2S 2JD S J2
1

4D
2

52S 2JDg2. ~3!

The lowest two-magnon state is a bound one and the binding
energy atg→0 is

eb5272g3 ~4!

At first glance, one can expect that the magnons are non-
interacting to the accuracy ofg3 and the total energy of
M -magnon state withS5N/22M is

EM528Mg2. ~5!

In fact,M magnons form a bound complex with the energy16

E528Mg21eb
M ~M221!

6
. ~6!

It follows from ~6! that Eq. ~5! is not correct for finite
magnon concentration~M /N5const! even with an accuracy
of g2. This is confirmed by an exact calculation@Eq.
~49!#. Thus, conclusions based on the two-magnon
approximation5 do not give the correct thermodynamic pic-
ture in the transition region.

In the classical approximation the ferromagnetic state is
the ground state atJ, 1

4 and a spiral with real-space period-
icity ;g21/2 is formed atJ. 1

4. Wheng!1 it is natural to
use the classical approximation with spin-wave correction.
This approach allows us to construct a regular expansion in
powers of the small parameterg for the system under con-
sideration.

It is convenient to rotate the coordinate system with origin
at centern by an anglewn with respect to axisy ~as it will
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be shown below the valuew must be chosen equal to an
angle of the twist of the spiral!. The corresponding transfor-
mation to new spin-12 operatorsjn has a form

Sn
x5cos~wn!jn

x2sin~wn!jn
z , ~7!

Sn
y5jn

y ,

Sn
z5sin~wn!jn

x1cos~wn!jn
z .

In the well-known spin-wave approximation of Anderson17

for the antiferromagnetic Heisenberg model the anglew is
equal top.

As a result, the Hamiltonian~1! becomes

H52coswS~jn
zjn11

z 1jn
xjn11

x !2sinwS~jn
xjn11

z 2jn
zjn11

x !2SS jn
yjn11

y 2
1

4D1J cos2wS~jn
zjn12

z 1jn
xjn12

x !

1J sin2wS~jn
xjn12

z 2jn
zjn12

x !1JSS jn
yjn12

y 2
1

4D . ~8!

Let us represent this Hamiltonian in a form

H5H01V, ~9!

where

H05
N

4
~12cosw!2

NJ

4
~12cos2w!2coswSS jn

zjn11
z 2

1

4D1J cos2wSS jn
zjn12

z 2
1

4D
2
1

4
~11cosw!S~jn

1jn11
2 1jn

2jn11
1 !1

J

4
~11cos2w!S~jn

1jn12
2 1jn

2jn12
1 !, ~10!

V5
1

4
~12cosw!S~jn

1jn11
1 1jn

2jn11
2 !2

J

4
~12cos2w!S~jn

1jn12
1 1jn

2jn12
2 !2sinwS~jn

xjn11
z 2jn

zjn11
x !

1J sin2wS~jn
xjn12

z 2jn
zjn12

x !. ~11!

The operatorV is the perturbation atw!1 and the ground-
state wave functionC0 of H0 corresponds the configuration
having all spins pointing, for example, down. Then, the
ground-state energy ofH0 is

E05
N

4
~12cosw!2

NJ

4
~12cos2w!. ~12!

The energyE0 has a minimum atw5a, wherea is the angle
of the rotation inxz plane of the classical spiral configura-
tion, and

cosa5
1

4J
, a5A8g, g→0 ~13!

and

E052
Ng2

2J
. ~14!

The energy~14! coincides with the energy of the Hamil-
tonian ~1! in the classical approximation. Atg→0 we have

E0522Ng2. ~15!

It is easy to check that the ground state atw5a is stable
against the spin flip. The operatorV, which is proportional to
a2, can be considered in a framework of the perturbation
theory.

The expectation value ofS2 in the ground state is

^C0uS2uC0&5
N

2
. ~16!

Equation~16! means thatC0 is not a pure singlet state but
contains an admixture of states withSÞ0. Therefore, strictly
speaking, the wave functionC0 must be projected onto the
state withS50. However, it is clear that the weights of states
with SÞ0 are negligible atN→` and the projection will not
influence the leading~;N! contribution to the energy.

Let us calculate now the second-order term of the pertur-
bation theory. It is easy to see that the third and the fourth
terms in~11! do not give contributions to second order and
the energyE~2! is

E~2!5(
m

u^C0uVuCm&u2

E02Em
, ~17!

whereCm andEm are the wave function and the energy of
the excited two-magnon states ofH0 at J51

4.
In other words, the problem of the calculation ofE~2!

reduces to the consideration of the Hamiltonian
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H̃5H̃01Ṽ, ~18!

where

H̃052SS jn
zjn11

z 2
1

4D1
1

4
SS jn

zjn12
z 2

1

4D
2
1

2
S~jn

1jn11
2 1jn

2jn11
1 !1

1

8
S~jn

1jn12
2 1jn

2jn12
1 !,

~19!

Ṽ5
a2

8 ( @jn
1~jn11

1 2jn12
1 !1jn

2~jn11
2 2jn12

2 !#, ~20!

andE~2! is given by

E~2!52S a2

8 D 2(
k

uw0,k~1!2w0,k~2!u2

e~0,k!
. ~21!

Heree(Q,k) andwQ,k(n) are the energy and the wave func-
tion of the two-magnon states of the Hamiltonian~19! with
total quasimomentumQ and the relative quasimomentumk.

e(Q,k) andwQ,k(n) are found by the standard way from
the solution of the corresponding two-particle problem. We
will not present detailed expressions because they are very
cumbersome and thus we give only the final result for the
sum ~21!

1

N (
k

uw0,k~1!2w0,k~2!u2

e~0,k!
52. ~22!

Thus, the second-order quantum correctionE~2! coincides
with the classical energy and total energy in this approxima-
tion is

E524Ng2. ~23!

III. THE CALCULATION OF THE g5/2 TERM

The calculation of the third and higher orders of the per-
turbation theory inV leads to infrared-divergent integrals
and it is necessary to sum them in all orders to obtain the
contributions proportional tog5/2, g3, etc. Here we will cal-
culate the term proportional tog5/2.

The well-known regular way of summation of these di-
vergent diagrams is the construction of a bilinear
Bose-Hamiltonian.18 It is necessary to keep in mind that the
bare bosonic interaction has to be replaced by an amplitude
of two-magnon scattering with zero relative quasimomen-
tum.

Replacingj n
1 by the Bose-operatorb n

1 and neglecting
terms containing four Bose-operators in~8! we arrive at the
Bose-Hamiltonian

HB5E01(
k

l1~k!bk
1bk1(

k
l2~k!~bk

1b2k
1 1b2kbk!,

~24!

whereE0 is given by~15!,

l1~k!5cosa2J cos2a2
1

2
~11cosa!cosk

1
J

2
~11cos2a!cos2k,

l2~k!5
1

2
~12cosa!cosk2

J

2
~12cos2a!cos2k, ~25!

andl1(k) andl2(k) are the bare interactions.
As already mentioned above, these expressions must be

modified in two respects. First, we need to expand them up
to terms;a4, and, second, to replacel2(k) by the correct
scattering amplitudeF(k). Then,

l1~k!→l̃1~k!5
a4

16
12 sin4S k2D1

a2k2

8
,

l2~k!→l̃2~k!5
a2

4 S F~k!2
a2

4 D . ~26!

It follows from the consideration of the two-magnon prob-
lem that

F~k!5
k2

2
, k→0.

Diagonalizing the Hamiltonian~24!, we arrive at

HB5E1 (
k.0

Al̃1
2~k!2l̃2

2~k!~bk
1bk1b2k

1 b2k!, ~27!

wherebk are new Bose operators. The ground-state energyE
is

E5E01 (
k.0

@Al̃1
2~k!2l̃2

2~k!2l̃1~k!#. ~28!

The expansion of~28! up to second order ofg reproduces
~23!. The contribution of the term;g5/2 is given by the
integral

N

2p E
0

`

dkHAS a4

16
1
k4

8
1

a2k2

8 D 22 a4

16 S k222
a2

4 D 2

2S a4

16
1
k4

8
1

a2k2

8 D1
a4

16J . ~29!

The numerical calculation of the integral~29! gives
4.146g5/2. Thus, the ground-state energy calculated up to
terms;g5/2 is

E524Ng214.146Ng5/2. ~30!

As to the excitation spectrum it has the soundlike behav-
ior and the corresponding sound velocity is

v54g3/2. ~31!
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IV. NUMERICAL DIAGONALIZATION OF FINITE RINGS

We have carried out Lanczos calculations on rings with
N58–20. These calculations show that the spectrum of the
Hamiltonian~1! at J.1

4 satisfies the inequality

E~S!,E~S11!, ~32!

whereE(S) is the ground-state energy of the Hamiltonian~1!
with spinS. The inequality~32! coincides with one that takes
place ins5 1

2 Heisenberg antiferromagnet.19

At J, 1
4 and for finiteN the state withS5Smax is the

ground state. The energies of the singlet and the ferromag-
netic states are equal to each other atJ51

4. Thus, the transi-
tion from the singlet ground state to the ferromagnetic one
occurs atJ51

4. However, as mentioned above, the energies of
states with differentS are degenerate atJ<1

4 in the thermo-
dynamic limit. Therefore, the energies of states with different
S simultaneously go to zero atg→0 andN→` satisfying the
inequality ~32!.

Unfortunately, the problem of an extrapolation of numeri-
cal results toN→` is complicated by the oscillatory depen-
dence of energies onN. As an example, the dependence of
the ground-state energy~S50! per spine on 1/N for J50.3
~g50.05! is shown in Fig. 1. Such dependence differs radi-
cally from the one for the 1D Heisenberg model with
nearest-neighbor antiferromagnetic interactions, wheree(N)
is a monotonic function. Apparently, the nonmonotonic be-
havior of e(N) in the model under consideration does not
depend on the choice of the boundary conditions. We have
calculated ground-state energy of open chains and have
found that the dependencee(N) is similar to the one shown
in Fig. 1. We note that similar nonmonotonic behavior of
e(N) has been found earlier4 for the 1D model with nearest-
neighbor and next-nearest-neighbor antiferromagnetic inter-
actions in the so-called frustrated regime. Thus, the oscilla-
tory dependencee(N) is caused by intrinsic properties of

frustrated models. In this case it seems natural to choose an
average of numerical results ofe for N58–20 as the ex-
trapolation toN→`.

For the energies of one- and two-magnon states, which
are known exactly atN→`, this procedure gives an accuracy
within 5–10 %. The ground-state energy extrapolated in this
way is shown in Fig. 2 together with the energy~30!. These
two dependences are qualitatively similar. Some difference
between them is explained, on the one hand, by the approxi-
mate extrapolation and, on the other hand, by the neglecting
of terms of higher orders in Eq.~30!.

V. THE ENERGIES OF STATES WITH SÞ0

The ground state of the Hamiltonian~8! is a singlet. To
consider states withSÞ0 it is necessary to construct the
Hamiltonian, the ground state of which hasSÞ0. This can be
achieved by the additional rotation@along with ~7!# of the
coordinate system by angleu with respect to axisx. The spin
operatorjn are transformed according to the equations

jn
x5hn

x ,

jn
y5cosuhn

y2sinuhn
z ,

jn
z5sinuhn

y1cosuhn
z . ~33!

As it will be shown below the angleu fixes nonzero spinS of
the ground state

S5Smaxsinu. ~34!

Under the transformation~33! the original Hamiltonian~1!
takes the form

FIG. 1. The ground-state energy per spin« of rings withN58–
20 for J50.3 ~g50.5!. The dotted line is the extrapolation toN⇒`. FIG. 2. The ground-state energy given by Eq.~30! ~solid line!

and the extrapolation of numerical results~circles! as functions
of g.
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H52SF ~cosa cos2u1sin2u!hn
zhn11

z 1~cosa sin2u1cos2u!hn
yhn11

y 1cosahn
xhn11

x 2
1

4G
1JSF ~cos2a cos2u1sin2u!hn

zhn12
z 1~cos2a sin2u1cos2u!hn

yhn12
y 1cos2ahn

xhn11
x 2

1

4G
1SFsin2u2

~12cosa!~hn
zhn11

y 1hn
yhn11

z !2
J sin2u

2
~12cos2a!~hn

zhn12
y 1hn

yhn11
z !

2sina cosu~hn
xhn11

z 2hn
zhn11

x !2sina sinu~hn
xhn11

y 2hn
yhn11

x !1J sin2a cosu~hn
xhn12

z 2hn
zhn12

x !

1J sin2a sinu~hn
xhn12

y 2hn
yhn12

x !G . ~35!

Similarly to the caseS50, the perturbation theory up tog2 can be used for the calculation of the ground-state energy of
~35!. It is not difficult to convince oneself that the third term in~35! does not give the contribution to the second order and~35!
reduces to the Hamiltonian

H~u!5H0~u!1V~u!, ~36!

where

H0~u!5E0cos
2u2S cosa cos2u1sin2uSS hn

zhn11
z 2

1

4D1J~cos2a cos2u!SS hn
zhn12

z 2
1

4D
2
1

4
@cos2u1cosa~11sin2u!#S~hn

1hn11
2 1hn

2hn11
1 !

1
J

4
@cos2u1cos2a~11sin2u!#S~hn

1hn12
2 1hn

2hn12
1 !, ~37!

V5
1

4
cos2u~12cosa!S~hn

1hn11
1 1hn

2hn11
2 !2

J

4
cos2u~12cos2a!S~hn

1hn12
1 1hn

2hn12
2 !, ~38!

andE0 is given by~15!.
The ground state ofH0~u! is the state with all spins point-

ing down,j n
z521

2. Then, in accordance with~7! and~33! the
expectation values of components of total spin in the ground
state are

(
n

^Sn
z&5(

n
^Sn

x&50, (
n

^Sn
y&5

N

2
sinu ~39!

and the ground-state spin is given by Eq.~34!.
The ground-state energy ofH0~u! as a function of normal-

ized spinm5S/Smax is

E0~m!5~12m2!E0~0!. ~40!

The energy~40! is the energy of the Hamiltonian~1! with
SÞ0 in the classical approximation.

The calculation of the quantum correctionE~2!~u! reduces
to the analogous problem for the Hamiltonian~18!, and value
a2 in ~20! is replaced bya2~12m2!. According to Eqs.~15!
and ~21! the ground-state energy of~36! up to orderg2 is

E~m!5E0~0!@12m21~12m2!2#. ~41!

The term;g5/2 is calculated in the analogy with the case
S50 taking into account thatl̃1~k! and l̃2~k! in Eq. ~26!
depend onu. At small values ofa andk

l̃1~k!5
a4

16
cos2u1

k4

8
1

a2k2

8
~113 sin2u!,

l̃2~k!5cos2uS a2

4 D S k222
a2

4 D , ~42!

and the corresponding contribution to the energy is

E~3!~m!5g5/2g~m!, ~43!

where the functiong(m) is presented in Fig. 3.
The most interesting peculiarity of the functionE(m) can

be seen from the first two terms of the expansionE(m) given
by Eq.~41!. It follows from ~41! thatd2E/dm2 becomes zero
atm51/&. This fact signifies the thermodynamic instability
of the uniform state against the phase separation. Another
manifestation of this instability is a behavior of the function
m(h) describing the response of the system to the external
magnetic field directed along axisy. For example, it turns
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out thatdm/dh,0 atm.1/&. In other words, the energy
~41! is not minimal at givenS. This results from the fact that
the rotation of the coordinate system is the same for all cen-
ters. Another way of fixingS is to introduce the angleu(n),
depending onn. The state with the phase separation is de-
scribed by the dependence

u~n!5u, 1,n,N1 ,

u~n!5
p

2
, N1,n,N. ~44!

In this case

m512c~12sinu!, c5
N1

N
. ~45!

The energyE(m) for this choice ofu(n) can be found in
analogy with the uniform case~neglecting boundary effects!
and is given by

E~m!5cE0@~12x2!1~12x2!2#, ~46!

where

x512
12m

c
.

The minimization of~46! with respect toc gives

c5
3~12m!

~42A7!
. ~47!

Thus, atm,m0 , where

m05
A721

3
.0.5485, ~48!

Eq. ~41! is correct but atm.m0 the energy is

E~m!52.6311E0g
2~12m!. ~49!

At m.m0 the system is in the two-phase state, consisting
of the ferromagnetic phase of sizeN(12c) and the phase
with S5(N/2)m0 of sizeNc. Naturally, Eqs.~47!–~49! can
be obtained with the help of the ‘‘Maxwell rule.’’

In connection with Eq.~49! we note the following. As
already mentioned above, the binding energy of two-magnon
states~4! is proportional tog3 and one can expect that mag-
nons is noninteracting in the accuracy ofg2. In this case the
energyE(m) would be equal to 2E0(12m) at m→1. The
difference of this energy from~49! means that this is not the
case. Therefore, the interaction of a macroscopic number of
magnons is very complicated and leads to the creation of a
new phase.

VI. CONCLUSION

In this work we mainly have been interested in the tran-
sition from the antiferromagnetic ground state to the ferro-
magnetic one. The perturbation theory based on the classical
spin configuration has been used and the dependence of the
ground-state energy on spinS has been calculated. We have
not dwelt on an important question relating to the symmetry
and the degeneracy of the ground state. According to the well
known Lieb-Shultz-Mattis~LSM! theorem20,21 the ground
state ofs5 1

2 spin chain model with the translationally and
rotationally invariant interaction is either degenerate or has
gapless excitations. It turns out that in the ground state of the
Hamiltonian~27! the nonzero chiral order parameter5 exists

^@Sn3Sn1m#y&;sin~mA8g!.

This expectation value changes the sign under the permu-
tation of spins. This chiral symmetry means that the ground
state is twofold degenerate. On the other hand, the spectrum
of ~27! is gapless. Thus, the ground state of the considered
model is degenerate but the spectrum is gapless. This con-
tradicts the LSM theorem. In fact, the expansion of the
ground-state energy in small parameterg is asymptotical
and, probably, the exponential, with respect to smallg, terms
will restore a rotational symmetry and the ground state will
be nondegenerate.

Our main result is that the transition from the state with
S50 to the state withS5Smax occurs by passing the states
with the intermediate spins. The dependenceE(S) in this
approximation testifies the instability against the phase sepa-
ration.

We believe that this approach can be used for the study of
a two-dimensional version of the considered model. In addi-
tion to that the scenario of the transition from the antiferro-
magnetic state to the ferromagnetic one is similar to that
considered for the 1D model.
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FIG. 3. The dependence of the functiong in Eq. ~43! on nor-
malized spin.
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