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We study the sawtooth lattice of a coupled spin 1/2 Heisenberg system, a variant of the railroad-trestle
lattice. The ground state of this system is twofold degenerate with periodic boundary conditions and supports
kink-antikink excitations, which are distinct in this case, unlike the railroad-trestle lattice. The resulting low-
temperature thermodynamics is compared with the recently discovered delafossites YCuO2.5.

I. INTRODUCTION

Several quantum toplogical excitations have been ex-
plored in the quantum antiferromagnetic spin systems in the
past decade, expanding on the Anderson-Kubo spin waves.
These include ‘‘spinons,’’ i.e., spin 1/2 objects of Faddeev
and Takhtajan,1 a name coined by Anderson, describing the
excitations of the isotropic one-dimensional Heisenberg spin
1/2 antiferromagnet~AFM!, with a concomitant two-
parameter elementary excitation spectrum with an asymp-
totic fourfold degeneracy. The anisotropic Heisenberg AFM
in the Néel ordered, massive phase contains ‘‘domain walls’’
found by Johnson, Krinsky and McCoy2 from Baxter’s solu-
tion of the XYZ model. These domain walls separate two
regions of Ising like ordered states, and propagate as dressed
fermions3 ~again these exhibit a fourfold degeneracy!. The
domain walls would broaden out and indeed the width would
diverge with the correlation length as the isotropic point is
reached, so the limiting excitation would have a delocalized
character. It may be tempting to view the ‘‘spinons’’ as
limiting cases of the domain walls, although the AFM order
vanishes at the isotropic point. Yet another class of
excitations were introduced by Shastry and Sutherland~SS!
Ref. 4 in the context of models with broken translation
symmetry.5 These are topological quantum solitons separat-
ing two regions of broken translational symmetry and have
again a fourfold degeneracy of two-parameter excitations. In
addition, these are fairly compact objects with a width con-
sisting of a few lattice constants. In view of the theoretical
interest in these constructs, it is interesting to ask for experi-
mental realizations of such systems.

Recently a family of delafossite compounds have been
synthesized which seem to be promising from this viewpoint.
The YCuO2 lattice consists of planes of coupled Y2O4 octa-
hedra linked by twofold-coordinated bridging Cu1 ions,
which form a triangular planar array. It is possible to inter-
calate O22 ions into the Cu1 planes, forming different lat-
tice symmetries depending on the amount of intercalant. For
compositions up to and including YCuO2.5, the planar O22

form an orthorhombic structure.6 At the upper limit of this
range one has a magnetic insulator, with all of the copper
ions converted to Cu21. For compositions with additional
oxygen beyond O2.5, the structural symmetry becomes hex-

agonal and mobile hole carriers appear, rendering the CuOx
planes weakly conducting.7

Preliminary data on the structure of the orthorhombic
phase for YCuO2.5 suggests two sets of locally triangular
configuration of copper sites with O22 ions in the center of
one of the sets of triangles, providing superexchange paths
~Fig. 1!. The two sets of triangles are separated and have no
O22 ions in their midst, so we have a good possibility of
one-dimensional exchange coupled Cu21, i.e., aS51/2 sys-
tem. We have carried out NMR measurements of the rates
1/T1 ,1/T2 of

63Cu between 70 K and 230 K. It is evident
from the NMR results that there are substantial exchange
couplings between theS51/2 Cu21 spin moments in this
structure. The asymptotic low-temperature behavior ofT1 is
activated with an activation energy of;650 K. Such cou-
plings would arise between nearest neighbor spins to an
O22 ion, which would act as the conduit for 120° exchange
paths. If we presume that such couplings between nearest
neighbor and second-neighbor spins to an O22 ion are neg-
ligible (60° exchange paths!, then the system divides into a
series of parallel one-dimensional ‘‘sawtooth’’ lattices of ex-
change coupled spins, which are only weakly interacting.
Such a system, the sawtooth lattice is analyzed in this paper,
and shown to have an interesting and unique set of magnetic
excitations, namely quantum solitons very similar to the ones
discussed in SS, with a notable feature, namely the kink-
antikink symmetry in the Majumdar model is broken here.

II. THE SAWTOOTH CHAIN: ANALYTICAL RESULTS

The Hamiltonian for the sawtooth chain may be written
as a sum of Hamiltonians governing triangles of spins~see
Fig. 2!
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HereN is the number of triangles andJ denotes the antifer-
romagnetic coupling. We may consider either open chains
~with 2N11 sites! or periodic chains~with 2N sites!.
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To find the ground states of~2.1!, we note thatHn is
proportional to a projection operator since its eigenvalues are
0 ~if the total spin in trianglen is 1/2) and 3J/2 ~if the total
spin is 3/2). For two sitesi and j with i, j , we denote the
singlet state mathematically by@ i , j #5(ua ib j&2ub ia j&)/
A2, and pictorially by a double line joiningi and j as indi-
cated in Figs. 3 and 4.~Herea i andb i denote spin up and
down respectively at sitei .! Then the states with total spin
1/2 in trianglen can be thought of as either@2n21,2n# with
the spin at site 2n11 free ~either a or b), or as
@2n,2n11# with the spin at 2n21 free. The other possible
pairing @2n21,2n11# is linearly dependent since

@2n,2n11#a2n5@2n21,2n#a2n111@2n,2n11#a2n21 .
~2.2!

It is now easy to show that the periodic chain has two de-
generate ground states~with energyEo50) given by

uI&5 )
n51

N

@2n21,2n#

and ~2.3!

uII &5 )
n51

N

@2n,2n11#,

whereSW 2N11[SW 1 .
4,8 The open chain has 2(N11) degener-

ate ground states~with Eo50) given by

u2n11, a or b&5S )
n51

m

@2n21,2n# D
3S )

n5m11

N

@2n,2n11# D
3a2m11 or b2m11 , ~2.4!

wherem may take any value from 0 toN. Such a state is
shown in Fig. 3. This configuration can be thought of as a
kink at site 2m11 which separates the ground state I on its
left from the ground state II on its right. Since all states in
~2.4! have the same energy~namely, zero!, a linear combina-
tion of them like

uk&5
1

AN (
m50

N

exp~ ikm!u2m11,a& ~2.5!

has the same energy for all values ofk. In the limit N→`,
~2.5! denotes a momentum eigenstate. We therefore see that
kinks in the sawtooth chain have the dispersionless spectrum
v(k)50. Further, kinks only differ from ground states I and
II at a single site.

FIG. 1. A picture of the CuO planes in YCuO2.5 from prelimi-
nary structural data.

FIG. 2. The sawtooth chain. The three sites forming trianglen
are numbered as shown.

FIG. 3. A kink configuration with the free spin at site 2n11.
The double lines indicate singlets.
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We will see below thatantikinksare quite different in that
they have a nontrivial dispersion and they do not just differ
from the states I and II at only one site. In fact, we are unable
to solve for the wave function and dispersion of antikinks
exactly. The best we can do is to variationally estimate these
quantities more and more accurately by considering antikink
configurations spread over 1 site, 5, sites and so on.

We would like to make a few comments before examining
the antikinks. First, it can be shown by induction that the
states in~2.3! and~2.4! are indeed the only ground states for
the sawtooth chain.9 Secondly, it can be proved rigorously
that there is a finite gap between the ground states and the
first excited state.10,11Our discussion of antikinks will lead to
an accurate estimate of this gap. Finally, the situation here
may be contrasted with that obtaining in the railroad trestle
which was first studied by Majumdar and co-workers.5 The
Hamiltonian for the railroad trestle differs from~1! in also
having aHn for the sites (2n,2n11,2n12). As a result, this
model only has the two ground states of types I and II~ex-
cept possibly for free spins at the ends if the chain is open!.
There is a finite gap to excited states. Kinks and antikinks are
on the same footing in the railroad trestle. They are not ex-
actly solvable but they can be shown to have identical dis-
persions.

We now study antikinks to a first approximation by con-
sidering a state like the one shown in Fig. 4~a!. This is a
configuration which has ground state II to the left of a 1-site
cluster~located at site 2n! and ground state I to its right. We
denote this state byu2n&1 . ~For simplicity of notation, we
will henceforth drop the spin index,a or b, of the free spin.!
In the limit N→`, we consider a momentum eigenstate

uk&5
1

AN (
n

exp~ ikn!u2n&1 . ~2.6!

This state has a nontrivial norm because

1^2nu2m&15~21!n2m/2un2mu. ~2.7!

Hence

^kuk&53/~514 cosk!. ~2.8!

Further

1^2nuHl u2m&15
3

4
Jdnld lm ~2.9!

implies that

^kuHuk&5
3

4
J. ~2.10!

Our estimate of the dispersion based on this 1-cluster calcu-
lation is therefore

v~k!5S 541coskD J. ~2.11!

@The kinks and antikinks in the railroad trestle have the same
dispersion as in~2.11! for the 1-cluster approximation.#
Equation~2.11! has a minimum atk5p where the antikink
energy isJ/4. This is our first estimate of the gap in the open
chain and, as we will argue below, in the periodic chain also.

We may now improve our estimate by considering
3-cluster configurations. Due to Eq.~2.2!, however, a cluster
of three neighboring sites withS51/2 can be reduced to a
superposition of 1-cluster states likeu2n&1 . So we have to
continue on to 5-cluster configurations. The only two linearly
independent configurations that we need to consider are the
ones shown in Figs. 4~b! and 4~c!. We denote these two by
u2n&2 andu2n&3 respectively where 2n denotes the center of
the 5 clusters. Note thatu2n&2 and u2n&3 are related to each
other by reflection about the site 2n. We now consider a
momentum eigenstate with two complex variational param-
etersa andb

uk,a,b&5
1

AN (
n

exp~ ikn!@ u2n&11au2n&21bu2n&3],

~2.12!

and minimizev(k,a,b) by varyinga andb. The computa-
tion is straightforward though lengthy. We first obtain the
overlaps

2^2nu2m&152~21!n2m/2un2mu if n>m11,

521/4 if n5m, ~2.13!

5
1

2
~21!n2m/2un2mu if n<m21,

2^2nu2m&251 if n5m,

521/8 if un2mu51, ~2.14!

52
1

2
~21!n2m/2un2mu if un2mu>2,

FIG. 4. The three antikink configurations centered about site
2n. ~a! is a 1 cluster while~b! and ~c! are 5 clusters.
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2^2nu2m&35~21!n2m/2un2mu if n>m12,

521/8 if n5m11,

521/2 if n5m, ~2.15!

51/4 if n5m21,

5
1

4
~21!n2m/2un2mu if n<m22.

All other overlaps can be obtained by using the reflection
symmetry mentioned above. Thus

3^2nu2m&152^2mu2n&1 ,

and ~2.16!

3^2nu2m&352^2nu2m&2 ,

We therefore obtain

^kuk&5
1

514 cosk
@~514 cosk!A11~412e2 ik!A2

1~412eik!A2
!#,

where

A1512
1

4
~a1a!1b1b!!1

1

4
~aa!1bb!!~42cosk!

2
1

2
~ab!1ba!!1

1

8
ab!~2e2 ik2eik!

1
1

8
ba!~2eik2e2 ik!,

and

A25
eik

4
~222a!12a2b12b!!

1
ei2k

16
~22aa!22bb!14ab!1ba!!. ~2.17!

Next we calculate the matrix elements ofHn . Thus

2^2n22uHnu2n&152
3

8
J,

2^2n12uHnu2n&15
3

8
J,

2^2n24uHn21u2n&252
3

16
J,

2^2nuHn21u2n&25
3

4
J, ~2.18!

3^2n24uHn21u2n&25
3

16
J,

3^2nuHn21u2n&252
3

8
J,

2^2n24uHn21u2n&35
3

16
J.

All other matrix elements can either be obtained from the
above by translation or reflection symmetry, or are zero. We
then find that

^kuHuk&5
3

4
1 i

3

4
sink~a2a!2b1b!!1S 322

3

8
cos2kD

3~aa!1bb!!1S 38 cos2k2
3

4D ~ab!1ba!!.

~2.19!

We have found that the minimum value ofv(k) occurs at
k5p if we takea5b to be real. Then

v~p;a!5
1

4

112a2

12a1a2/2
. ~2.20!

This has a minimum ata5(32A17)/4520.2808 where
v50.2192J. @For the railroad trestle,̂kuk& is the same as
in ~2.17! while ^kuHuk& has the extra term 3(aa!1bb!)/4
on the right hand side of~2.19!. Hence

v~p;a!5
1

4

114a2

12a1a2/2
, ~2.21!

whose minimum value is 0.2344J.#
We see that the estimate of the gap changes relatively

little on going from 1 cluster to 5 clusters. This is because of
the small correlation lengthj in this system. We expect that
the estimate of the gapD( l ) from an l -cluster calculation
will differ from the true gapD(`) by terms of order
exp(2l/j). The gap in the railroad trestle chain has been
estimated from a 9-cluster calculation in Ref. 12. From the
valuesD(1)50.25J, D(5)50.2344J, andD(9)50.2340J,
we estimate thatj;1.1. While we have not computed
D(9) for the sawtooth chain, we expect that it will differ
very little from D(5) for a similar reason.

To summarize so far, we have seen that kinks have zero
dispersion while antikinks have a dispersion with a gap of
0.2192J at k5p. We now identify the latter figure with the
gap in the open chain. This assumes that there are no bound
states of several kinks and antikinks which have a lower
energy. For the railroad trestle, it is in fact known that there
is no bound state of a kink and an antikink which has lower
energy than a well-separated kink and antikink.4

We will now argue that a periodic chain has the same gap
and, further, that it has a dispersionless spectrum for its low-
est excitation. Any excitation in a periodic chain must consist
of a succession of alternating kinks and antikinks. In the
absence of low-energy bound states, the lowest excitation in
a long periodic chain will consist of one kink well separated
from one antikink. The energy of this state is the sum

v~Q!5vK~k1!1v K̄~k2!, ~2.22!
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wherek1 andk2 denote the momenta of the kink (K) and the
antikink (K̄), and the total momentum of this state is
Q5k11k2 . It is now clear that sincevK(k1)50 for all
k1 , the minimum possible value ofv(Q) is given by the
constant D[v K̄(p) since we can always choose
k15Q2p.

Indeed, numerical studies of finite periodic chains upto
N510 by Kubo had indicated the existence of a dispersion-
less spectrum withv(Q).0.219J for all Q.13 We now have
the explanation of this striking property of the periodic saw-
tooth as arising from the dispersionless spectrum of the kink.
Further, our 5-cluster computation has already yielded an
estimate of the gap which is very close to the value obtained
numerically.

We may now use the above results to study low-
temperature thermodynamic properties of the sawtooth
chain. For instance, we can estimate the magnetic suscepti-
bility based on the picture of a low density of alternating
kinks and antikinks which are well separated and noninter-
acting. In the presence of an external magnetic fieldB, they
have the energies22mSz and v K̄(k)22mSz respectively
wherem is the Bohr magneton. If we use the 1-cluster ex-
pression forv K̄(k) given in Eq.~11!, we obtain the partition
functions for one kink and one antikink as

xK52 cosh~mbB!

and ~2.23!

xK̄52cosh~mbB!I o~bJ!expS 2
5

4
bJD ,

respectively, whereb51/kBT is the inverse temperature and
I o is a modified Bessel function. The free energy per site is
then given by

f52
1

b
~xKxK̄!1/2, ~2.24!

and the magnetic susceptibility per sitex52(]2f /]B2)B50
is

xJ

2m2 5bJF I o~bJ!expS 2
5

4
bJD G1/2. ~2.25!

Note that this thermodynamic quantity exhibits a gap equal
to J/8 at very low temperature which is half the sum of the
gaps for the kink~zero! and the antikink (J/4). In Fig. 5, we
show the magnetic susceptibility as a function ofkBT/J.

Coming back to the system YCuO2.5, we see that the gap
of ;0.22J, if equated to the NMR activation energy, implies
thatJ;3000 K, which is rather too large. Indeed, the largest
J’s are a factor of 2 smaller than this, as measured in the
high-Tc systems, which have comparable Cu-O bond lengths
as in these compounds, namely;2 Å. It then seems likely
that these systems either do not allow for a decoupling be-
tween these sawtooth lattices, forcing say a pair of these
excitations, or else there might be pairwise dimerization,
which could be signalled in detailed structural studies. It
would be interesting to study these issues in detail experi-
mentally, as would the ESR on these systems at elevated
temperatures, say 700 K, where the fourfold degeneracy
would be reflected in the existence of free spin 1/2 excita-
tions with a thermally activated density.

We recently became aware of a paper by T. Nakamura and
K. Kubo,14 dealing with the excitations of the same lattice.
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FIG. 5. Low-temperature magnetic susceptibility as a function
of kBT/J.
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