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Quantum solitons in the sawtooth lattice
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We study the sawtooth lattice of a coupled spin 1/2 Heisenberg system, a variant of the railroad-trestle
lattice. The ground state of this system is twofold degenerate with periodic boundary conditions and supports
kink-antikink excitations, which are distinct in this case, unlike the railroad-trestle lattice. The resulting low-
temperature thermodynamics is compared with the recently discovered delafossitessYCuO

. INTRODUCTION agonal and mobile hole carriers appear, rendering the,CuO
planes weakly conducting.

Several quantum toplogical excitations have been ex- Preliminary data on the structure of the orthorhombic
plored in the quantum antiferromagnetic spin systems in thphase for YCuQs suggests two sets of locally triangular
past decade, expanding on the Anderson-Kubo spin wavesonfiguration of copper sites with® ions in the center of
These include “spinons,” i.e., spin 1/2 objects of Faddeevone of the sets of triangles, providing superexchange paths
and Takhtajart,a name coined by Anderson, describing the(Fig. 1). The two sets of triangles are separated and have no
excitations of the isotropic one-dimensional Heisenberg spi®*~ ions in their midst, so we have a good possibility of
1/2 antiferromagnet(AFM), with a concomitant two- one-dimensional exchange coupled”Cu.e., aS=1/2 sys-
parameter elementary excitation spectrum with an asympem. We have carried out NMR measurements _of th_e rates
totic fourfold degeneracy. The anisotropic Heisenberg AFML/T1,1/T, of *Cu between 70 K and 230 K. It is evident
in the Neel ordered, massive phase contains “domain walls*from the NMR results that there are substantial exchange

found by Johnson, Krinsky and McCbfrom Baxter's solu- ~ cOuplings between th&=1/2 Cu?™ spin moments in this
tion of the XYZ model. These domain walls separate twoStructure. The asymptotic low-temperature behavior pfs
regions of Ising like ordered states, and propagate as dressé tivated with an activation energy 6%5.0 K, SUCh. cou-
fermions (again these exhibit a fourfold degeneracyhe p|2rlg_s WOUI.d arise between nearest ’Fe'ghb‘“ Osplns to an
domain walls would broaden out and indeed the width would®__ /" Which would act as the conduit for 120° exchange
diverge with the correlation length as the isotropic point ispa_ths. If we presume th_at such c_:oupllng§ between nearest
reached, so the limiting excitation would have a delocalize _e.|ghbor e:nd second-neighbor spins to & Oo_n are neg-
character. It may be tempting to view the “spinons” as 'g't."e (60° exchange patmsthen thf system "dlwqes Into a
limiting cases of the domain walls, although the AFM order>€"'€S of parallel ong-dlmer!smnal sawtooth Iattl_ces of ex-
vanishes at the isotropic point. Yet another class Oichange coupled spins, which are (_)nly Weakly_lnte_ractlng.
excitations were introduced by Shastry and Sutherksfi Such a system, the sav_vtooth Ifitt'ce IS an_alyzed in this paper,
Ref. 4 in the context of models with broken translation":“f'd.Sh.OWn to have an Interesting and unique set of magnetic
symmetry’ These are topological quantum solitons separat-e?(c'tat'ons’. namely quantum solitons very similar to the Ones
ing two regions of broken translational symmetry and haved's’(,:u.ssed in SS, W'th a noFabIe feature, namely the kink-
again a fourfold degeneracy of two-parameter excitations. Iﬁmt'k'nk symmetry in the Majumdar model is broken here.
addition, these are fairly compact objects with a width con-

sisting of a few lattice constants. In view of the theoretical Il. THE SAWTOOTH CHAIN: ANALYTICAL RESULTS

interest in these constructs, it is interesting to ask for experi- The Hamiltonian for the sawtooth chain may be written

mental reahzatlons' of such systems. as a sum of Hamiltonians governing triangles of spismse
Recently a family of delafossite compounds have beer|1:ig 2

synthesized which seem to be promising from this viewpoint.
The YCuQ lattice consists of planes of couplegQ, octa-

hedra linked by twofold-coordinated bridging Cuions, H:E H,,

which form a triangular planar array. It is possible to inter- n=1

calate G~ ions into the Cu planes, forming different lat- (2.1
tice symmetries depending on the amount of intercalant. For J| . - - , 3
compositions up to and including YCy@, the planar G~ Hn:§ (Son-1+SontSon+1)°— ik

form an orthorhombic structufeAt the upper limit of this

range one has a magnetic insulator, with all of the coppeHereN is the number of triangles antldenotes the antifer-
ions converted to Cti'. For compositions with additional romagnetic coupling. We may consider either open chains
oxygen beyond Qs, the structural symmetry becomes hex- (with 2N+ 1 siteg or periodic chaingwith 2N sites.
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2n+1
. . - Kink
FIG. 1. A picture of the CuO planes in YCy@from prelimi-

nary structural data. FIG. 3. A kink configuration with the free spin at site2 1.

. . The double lines indicate singlets.
To find the ground states dR.1), we note thatH, is

proportional to a projection operator since its eigenvalues arg js now easy to show that the periodic chain has two de-

0 (if the total spin in triangle‘l is 1/2) and 3J/2 (if the total generate ground statéwith energyEozo) given by
spin is 3/2). For two sites andj with i<j, we denote the

singlet state mathematically byi,j]1=(|aiB;)—|Bia;))! N

V2, and pictorially by a double line joiningandj as indi- =11 [2n-1,2n]
cated in Figs. 3 and 4Here «; and 3; denote spin up and =t
down respectively at site) Then the states with total spin
1/2 in trianglen can be thought of as eithe2n—1,2n] with
the spin at site @+1 free (either « or B), or as N
[2(1,-2n+ 1] with the spin-at -1 free. The o_ther possible ly= H [2n,2n+1],
pairing[2n—1,2n+1] is linearly dependent since n=1

and (2.3

[2n,2n+ 1]ap=[2n—1,20]apns 1+ [ 20,20+ 1] a1 whereS,y,1=5;.%% The open chain has R(+ 1) degener-
2.2 ate ground state@vith E,=0) given by

2n |2n+1, a or B)=

IL[zn—LZH)

N
IT [2n2n+1]

n=m+1

X ami1 OF Bomt1, (2.9

wherem may take any value from O tdl. Such a state is
shown in Fig. 3. This configuration can be thought of as a
kink at site 2n+1 which separates the ground state | on its
left from the ground state Il on its right. Since all states in

n (2.4) have the same energgamely, zery a linear combina-
tion of them like

X

N

1 :
Ky=—= > explikm)|2m+1,a) (2.5
N o
2n-1 2n1 has the same energy for all valueskofin the limit N— oo,
Sawtooth Lattice (2.5 denotes a momentum eigenstate. We therefore see that

kinks in the sawtooth chain have the dispersionless spectrum

FIG. 2. The sawtooth chain. The three sites forming triamgle (k) =0. Further, kinks only differ from ground states | and
are numbered as shown. Il at a single site.
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2n
\ \ ] / / implies that
2n
3
\\\//&\v// /// (KIH[K)= 59, (2.10
2n

Our estimate of the dispersion based on this 1-cluster calcu-

lation is therefore
(€) \ /

w(k)=

3
1<2n|HI|2m>l:ZJ5nI5Im (2.9

)

g

5
Z+co§<)J. (2.1)

FIG. 4. The three antikink configurations centered about site
2n. (a) is a 1 cluster whilegb) and(c) are 5 clusters. [The kinks and antikinks in the railroad trestle have the same
dispersion as in(2.11) for the 1-cluster approximatioh.
We will see below thaantikinksare quite different in that  Equation(2.11) has a minimum ak= 7 where the antikink
they have a nontrivial dispersion and they do not just di1‘ferenergy is)/4. This is our first estimate of the gap in the open

from the states | and Il at only one site. In fact, we are unablehain and, as we will argue below, in the periodic chain also.
to solve for the wave function and dispersion of antikinks \we may now improve our estimate by considering

exactly. The best we can do is to variationally estimate thesg_c|yster configurations. Due to E(.2), however, a cluster

quantities more and more accurately by considering antikinky three neighboring sites witB=1/2 can be reduced to a

configurations spread over 1 site, 5, sites and so on. gyperposition of 1-cluster states lik2n);. So we have to
We would like to make a few comments before examiningcontinue on to 5-cluster configurations. The only two linearly

the antikinks. First, it can be shown by induction that théjngependent configurations that we need to consider are the

states in(2.3) and(2.4) are indeed the only ground states for gnes shown in Figs.(8) and 4c). We denote these two by

the sawtooth ch_a!ﬁ.Secondly, it can be proved rigorously |2n), and|2n), respectively where 12 denotes the center of

that there is a finite gap between the ground states and thge 5 cjusters. Note thd®n), and|2n) are related to each

first excited staté**Our discussion of antikinks will lead to  giher by reflection about the siten2 We now consider a

an accurate estimate of this gap. Finally, the situation herg,omentum eigenstate with two complex variational param-

may be contrasted with that obtaining in the railroad trestlesiersa andb

which was first studied by Majumdar and co-work&fEhe

Hamiltonian for the railroad trestle differs frofd) in also L

having aH,, for the sites (&,2n+1,2n+2). As a result, this _ .

model only has the two ground states of types | antex- [k.a.b)= \/_ﬁ ; exp(ikn)[|2n),+a|2n);+b|2n)s],

cept possibly for free spins at the ends if the chain is dpen (2.12

There is a finite gap to excited states. Kinks and antikinks are

on the same footing in the railroad trestle. They are not exand minimizew(k,a,b) by varyinga andb. The computa-

actly solvable but they can be shown to have identical distion is straightforward though lengthy. We first obtain the

perSionS. - . . ' Over|aps
We now study antikinks to a first approximation by con-

sidering a state like the one shown in Figa@ This is a

configuration which has ground state Il to the left of a 1-site »(2n|2m),= — (=" m20=m i p=m+1,
cluster(located at site &) and ground state | to its right. We
denote this state bj2n),. (For simplicity of notation, we
will henceforth drop the spin index; or B, of the free spin.
In the limit N— oo, we consider a momentum eigenstate

=-1/4 if n=m, (2.13

1
=§(—1)“*m/2\n*m| if nsm-1,

1
k)= — 2, exp(ikn)|2n);. (2.6
N n
This state has a nontrivial norm because »(2n|2m),=1 if n=m,
{2n|2m),;=(—1)""m/2in-m, 2.7
=—-1/8 if [In—m|=1, (2.19
Hence
(k|lky=3/(5+4 cok). (2.9 1
— _ —(_1\n—myo|n-m| ; —ml=
Further 2( D2 i In-m[=2,
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»(2n|2mys=(—1)""m2n=m if n=m+2,
=-1/8 if n=m+1,

=—1/2 if n=m, (2.15

=1/4 if n=m—-1,

1
=Z(—1)“—m/2|“—m| if n<m-2.

All other overlaps can be obtained by using the reflection (k|H|k)= §+| 3 sikk(a—a*—b+b*)+

symmetry mentioned above. Thus
a3(2n|2m); =5(2m[2n),,
and (2.1

3(2n[2m)3=5(2n|2m),,

We therefore obtain

(k|k)= (5+4 cok)A,+ (4+2e A,

5+4 cosk[
+(4+2e%)A%],

where

1 1
A=1- Z(a+ a*+b+b*)+ Z(aa*+bb*)(4—cosk)

| =

* * 1 > —ik ik
—2(ab +ba )+§ab (2e" " —¢€')

1 . )
+ gba*(Ze'k—e"k),

and

ik
A2=T(—2—a*+2a—b+ 2b*)

ei2k
—6(—2aa*—2bb*+4ab*+ba*).

(2.17

Next we calculate the matrix elementstéf . Thus

3
—J,

2(2n—=2|Hp|2n);=— 8

3
2(2n+2|Hn|2n)1=§J,

3
2(2n—4|H,_4|2n),=— 1_6J’
(2.18

3
2<2n|Hn71|2n>2:ZJ7

3
3<2n—4|Hn_1|2n)2:1—6J,
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3
3(2n[H,_1|2n),=— gJ,

3
2(2n—4|Hn,1|2n>3=1—6J

All other matrix elements can either be obtained from the

above by translation or reflection symmetry, or are zero. We
then find that

3 3 x
4 278
3 3
X (aa*+bb*)+ gCOSZ(—Z (ab*+ba®).
(2.19

We have found that the minimum value ©fk) occurs at
k=1 if we takea=b to be real. Then

1 1+2a?

d1-aralz (2.20

w(ma)=
This has a minimum aa=(3—/17)/4= —0.2808 where
»=0.2192. [For the railroad trestle(k|k) is the same as
in (2.17) while (k|H|k) has the extra term 2@*+bb*)/4
on the right hand side g®.19. Hence

1 1+4a? 05
(M= 7 1-ara2’ 229

whose minimum value is 0.2344

We see that the estimate of the gap changes relatively
little on going from 1 cluster to 5 clusters. This is because of
the small correlation length in this system. We expect that
the estimate of the gap(l) from anl-cluster calculation
will differ from the true gapA(«) by terms of order
exp(=1/¢). The gap in the railroad trestle chain has been
estimated from a 9-cluster calculation in Ref. 12. From the
valuesA(1)=0.25], A(5)=0.2344), andA(9)=0.234Q,
we estimate thatt~1.1. While we have not computed
A(9) for the sawtooth chain, we expect that it will differ
very little from A(5) for a similar reason.

To summarize so far, we have seen that kinks have zero
dispersion while antikinks have a dispersion with a gap of
0.2192 atk=m. We now identify the latter figure with the
gap in the open chain. This assumes that there are no bound
states of several kinks and antikinks which have a lower
energy. For the railroad trestle, it is in fact known that there
is no bound state of a kink and an antikink which has lower
energy than a well-separated kink and antikink.

We will now argue that a periodic chain has the same gap
and, further, that it has a dispersionless spectrum for its low-
est excitation. Any excitation in a periodic chain must consist
of a succession of alternating kinks and antikinks. In the
absence of low-energy bound states, the lowest excitation in
a long periodic chain will consist of one kink well separated
from one antikink. The energy of this state is the sum

@(Q) = wk(ky) + wk(ky), (2.22
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wherek; andk, denote the momenta of the kinK} and the
antikink (K), and the total momentum of this state is
Q=k;+k,. It is now clear that sincesc(k;)=0 for all
ky, the minimum possible value ab(Q) is given by the
constant A=wy(w) since we can always choose Tr
k]_: Q_ ar.

Indeed, numerical studies of finite periodic chains upto
N=10 by Kubo had indicated the existence of a dispersion-
less spectrum witlw(Q)=0.219 for all Q.** We now have
the explanation of this striking property of the periodic saw- /
tooth as arising from the dispersionless spectrum of the kink. ;/
Further, our 5-cluster computation has already yielded an ol
estimate of the gap which is very close to the value obtained
numerically. TN

We may now use the above results to study low-
temperature thermodynamic properties of the sawtooth FIG. 5. Low-temperature magnetic susceptibility as a function
chain. For instance, we can estimate the magnetic susceptif kgT/J.
bility based on the picture of a low density of alternating xJ
kinks and antikinks which are well separated and noninter- FI,BJ
acting. In the presence of an external magnetic fizldhey ®
have the energies-2uS, and wg(k) —2uS, respectively
where w is the Bohr magneton. If we use the 1-cluster ex-
pression forw (k) given in Eqg.(11), we obtain the partition
functions for one kink and one antikink as

Jy/op?
/

0.2 0.4 0.6 0.8 1

1/2

|0(3J)exp< - Z,BJ (2.29

Note that this thermodynamic quantity exhibits a gap equal
to J/8 at very low temperature which is half the sum of the
gaps for the kinkzerg and the antikink J/4). In Fig. 5, we
show the magnetic susceptibility as a functionkg/J.

Coming back to the system YCy@, we see that the gap

_ of ~0.22], if equated to the NMR activation energy, implies
X =2 costiufB) thatJ~3000 K, which is rather too large. Indeed, the largest
Js are a factor of 2 smaller than this, as measured in the
high-T, systems, which have comparable Cu-O bond lengths
as in these compounds, nameh2 A. It then seems likely
that these systems either do not allow for a decoupling be-
tween these sawtooth lattices, forcing say a pair of these
excitations, or else there might be pairwise dimerization,
respectively, wher@= 1/kgT is the inverse temperature and which could be signalled in detailed structural studies. It
|, is a modified Bessel function. The free energy per site isvould be interesting to study these issues in detail experi-
then given by mentally, as would the ESR on these systems at elevated
temperatures, say 700 K, where the fourfold degeneracy

and (2.23

Xic=2costiu3B)! o<,8J>exp( - ZBJ) ,

1 1 would be reflected in the existence of free spin 1/2 excita-
f=- E(XKXK) ' (2.24 tions with a thermally activated density.
and the magnetic susceptibility per sje= — (9%f/9B?)g_, We recently became aware of a paper by T. Nakamura and
is K. Kubo* dealing with the excitations of the same lattice.
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