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We clarify elementary excitations in theD chain. They are found to be ‘‘kink’’-‘‘antikink’’-type domain wall
excitations to the dimer singlet ground state. The characters of a kink and an antikink are quite different in this
system: a kink has no excitation energy and is localized, while an antikink has a finite excitation energy and
propagates. The excitation energy of a kink-antikink pair consists of a finite-energy gap and a kinetic energy
due to the free motion of the antikink. Variational wave functions for an antikink are studied to clarify its
propagating states. All the numerical results are explained consistently based on this picture. At finite tempera-
tures, thermally excited antikinks are moving in regions bounded by localized kinks. The origin of the low-
temperature peak in the specific heat reported previously is explained and the peak position in the thermody-
namic limit is estimated.

I. INTRODUCTION

Recently, much interest is focused on systems whose clas-
sical ~mean-field! ground states exhibit an infinite number of
local continuous degeneracies due to frustration~‘‘floppy’’
systems!. In such a system, construction of the linear spin-
wave theory based on one of the classical ground states leads
to at least one spin-wave mode whose frequency vanishes for
all wave vectors~zero-energy mode!. The zero-energy mode
corresponds to local deformation of a spin configuration that
does not raise the energy. The set of the ground state con-
figurations is a manifold with dimensions proportional to the
system size. The classical ground state thus may be consid-
ered as disordered. We can find examples of floppy spin sys-
tems in all dimensions.1 It is an interesting and a challenging
problem to investigate how the quantum effects manifest
themselves in such spin systems. The central issue is whether
quantum effects lift the ground state degeneracy and select
some long-range order. Also the low-energy excitation spec-
trum is of interest, since it may lead to peculiar thermody-
namic properties.

A typical example of such systems is the antiferromag-
netic Heisenberg~AFH! model on thekagome´ lattice. Inten-
sive studies2–13 on this system have been inspired by the
experiments on the3He layer adsorbed on graphite14,15 and
also on the compound SrCr8Ga4O19 .

16 What mainly have
been concerned with are the existence of a double peak in the
specific heat at low temperatures and whether a magnetic
order is realized in the ground state or not. Several approxi-
mate analyses7–9 have been done but they are still far from
giving a common understanding on the ground state prop-
erty. Numerical studies on finite systems support the exist-
ence of the double peak.2,3,12,13

In this paper we study a simple one-dimensional floppy
system called theD chain.17,18We consider that this model
shares general features of quantum floppy systems, and an
understanding of its properties might give some insight into
that of thekagome´ antiferromagnet. Theoretical interest on
the D chain itself is also enhanced by its experimental
realization.19 The ground state of this system is exactly

known to be a dimer state.20,21 One of the authors~K.K.!
examined the low-lying excitations and the specific heat in a
previous paper.22 The numerical diagonalization study of
small clusters~up to 20 spins! exhibited that the low-lying
excitation modes in the periodic chains are almost disper-
sionless. The first and the second lowest mode were revealed
to converge to dispersionless modes with the same energy in
the thermodynamic limit. The specific heat was shown to
have a double peak in common with thekagome´ antiferro-
magnet. This double peak structure was also observed re-
cently by a Monte Carlo method23 and by a recursion
method.24

The dispersionless aspect of excitations may be consid-
ered to imply immediately their localization and hence very
weak size-dependence of various quantities. The energy gap
obtained by numerical diagonalizations,22 however, does ex-
hibit fairly large size dependence. Also a broad bump of the
spin correlation was observed between the most distant spin
pairs in the lowest triplet excitations.25 These results suggest
that the excited states are not localized. We solve this puzzle
and clarify the character of low-lying excited states in the
following sections by mainly employing numerical diagonal-
ization of finite size systems. Elementary excitations are re-
vealed to be ‘‘kink’’-‘‘antikink’’-type domain walls created
in the singlet dimer ground state. An antikink is shown to
move freely in a region bounded by kinks at both ends. The
kinetic energy of an antikink leads to the size dependence of
the energy gap. On the other hand, a kink is localized and
gives the dispersionless property to a kink-antikink pair ex-
citation mode.

Properties of an isolated kink and an antikink, and also
interactions between them will be discussed in Sec. II. In

FIG. 1. An excited state of the periodicD chain. The up spin
that has a dimer singlet pair in its triangle is what we call a ‘‘kink’’
and the other one is an ‘‘antikink.’’
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Sec. III, we show that the size dependence of the energy gap
in the periodic chain agrees with that of the kinetic energy of
an antikink. The specific heat due to kink-antikink excita-
tions is discussed in Sec. IV, and the position of the low-
temperature peak in the thermodynamic limit is estimated.
Conclusion is given in Sec. V.

II. ELEMENTARY EXCITATIONS

A. Introduction of a kink and an antikink

TheD chain is described by the following Hamiltonian:

H5(
i51

N

hi , ~1!

where

hi5S2i21•S2i1S2i•S2i111S2i21•S2i11 . ~2!

Si is the spin with size 1/2 at the sitei andN denotes the
number of triangles in the chain.

We first explain the ground state of this system and then
forward to the explanation of elementary excitations. Under
periodic boundary conditions, the ground state is the perfect
singlet dimer state, since the ground state of the local Hamil-
tonianhi is realized by pairing any two of three spins into the
singlet state. The twofold degenerate ground states are writ-
ten as

cg
L5@1,2# ^ @3,4# ^ @5,6# ^ •••^ @2N21,2N#,

cg
R5@2,3# ^ @4,5# ^ @6,7# ^ •••^ @2N,1#. ~3!

Here [i , j ] denotes the singlet dimer of the spins at the sitei
and j , i.e., @ i , j #5(a ib j2b ia j )/A2, wherea i(b i) is the
state withSi

z51/2(21/2). They are schematically depicted
in Fig. 1. We call a dimer located on the left~right! side of a
triangle anL dimer (R dimer! and hence the statecg

L(cg
R) an

L-dimer (R-dimer! state. These two states are linearly inde-
pendent but not orthogonal to each other for finiteN. They
become orthogonal in the limit whereN→`. The existence
of the excitation energy gap above the ground state was rig-
orously shown.20,21

Under open boundary conditions, the ground state of a
system withN triangles is highly degenerate since a ground
state consists ofN singlet dimers and one free spin. A dimer
configuration is uniquely determined by fixing the position
of the free spin, which plays a role of a domain wall between
an L-dimer state and anR-dimer state. The number of pos-
sible positions for a free spin in the ground state is equivalent
to the number of sites, and therefore 2N11 different dimer
configurations can be considered. However, those 2N11
states are linearly dependent, since only two out of three
dimer configurations in a triangle are linearly independent.
The dimensions of the ground state reduce to
23(N11);20,21 only one positional freedom per triangle is
allowed.

Let us consider a simple trial excited state in a periodic
chain constructed by changing one dimer singlet in the
ground state into a triplet state. Then the expectation value of
the excitation energyDE is identical to the singlet-triplet
gap;DE51. Since the energy gap is known asDE;0.22 in

the thermodynamic limit,22 the lowest excited state is not
such a simple state. In fact, the above state is not an eigen-
state and the two spins coupled to a triplet are separated
when the Hamiltonian is operated. The average excitation
energy may decrease if the two spins are apart as depicted in
Fig. 1. Each of two spins is regarded as a domain wall be-
tween anL-dimer and anR-dimer state. We show in the
following that isolated domain walls are the elementary ex-
citations in this system.

A domain wall which hasL dimers on the left side andR
dimers on the right has a singlet dimer in its own triangle,
and thus is the ground state of the local Hamiltonianhi . We
call this type of a domain wall a ‘‘kink.’’ A free spin appear-
ing in the ground state of the openD chain is a domain wall
of this type. Therefore the excitation energy of a kink is null.
There is ambiguity in the definition of the position of a kink,
since ground states with different positions of the free spin
are not orthogonal to each other. Let us consider a kink as a
state where a free spin is located at the top of a triangle as
depicted in Fig. 1 for a convention. Then the overlap be-
tween the states with an up~or a down!-spin at thei th and the
j th(iÞ j ) triangle is2(22)2u i2 j u. We treat a kink as a lo-
calized object since the state with a kink alone is an eigen-
function of the system, although its position is not a good
quantum number due to the nonorthogonality.

We call another type of a domain wall an ‘‘antikink,’’
which hasR dimers on the left side andL dimers on the
right. The state with an antikink at thei th triangle is not a
ground state ofhi as the triangle cannot accommodate a sin-
glet dimer. A finite energy is necessary to excite an antikink.
It spreads out to other triangles and propagates among them.
The energy of an antikink is lowered by this motion, which
will be discussed in the next subsection.

Both a kink and an antikink have a spin 1/2 as a whole,
and must appear alternatively. Elementary excitations in the
Majumdar-Ghosh model is known as propagating domain
walls.26,27 They are also kink-antikink-type domain walls.
The physical properties of a kink and an antikink are same in
this model, since they are transformed to each other by sym-
metry operations. On the other hand, the properties of a kink
and those of an antikink are quite different in theD chain:
kinks are localized and antikinks move about in a region
bounded by two localized kinks. In the following, we study
first an isolated antikink and then the interaction between a
kink and an antikink.

B. An isolated antikink

An antikink is necessarily accompanied by a kink in a
periodic chain and it is not easy to extract the properties of
an isolated antikink because the translational symmetry
mixes the states with different positions of a kink and an
antikink. We can solve this difficulty by considering open
systems as shown in Fig. 2~a!, which we call ‘‘open-A’’ sys-
tems. In this subsection we treat only open-A systems.

In this system, two additional edge bonds have strong
tendency to form dimer singlet states and they force the
left~right!-hand side of the system to be in theR(L)-dimer
state. Then inconsistency of the dimer configurations results
in an antikink to appear in the middle of the chain. Thus we
expect only an antikink to exist in the ground state of an
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open-A system. We confirm this speculation and clarify the
properties of an isolated antikink through numerical and
variational analyses. The energy of an antikinkdE is ob-
tained from the total energyE of the system withN triangles
asdE5E13(N12)/4.

Figure 3 shows the nearest-neighbor spin correlation
^Si•Si11& and the local magnetization̂Si

z& in the lowest two
states of an ‘‘open-A’’ system withSz51/2. We consider the
ground state first. It is seen that the spin correlations at the
both edge bonds are very close to the value of a dimer singlet
state23/4, while those of the bonds next to the edges almost
vanish. These features show that the both edges are almost in
the perfect dimer states. We notice that the state close to the
left~right! edge is approximately theR(L)-dimer state. As
the position of a bond approaches the center, the singlet cou-

pling becomes weak and finally the phase changes at the
center. Since theL dimers are located in the right-hand side
of the domain wall, we may conclude that there is an anti-
kink. The local magnetization oscillates extended to the
whole system, and its amplitude has a broad maximum in the
middle of the system.

In the first excited state, the profile of the magnetization
has two bellies at about a quarter of the system size from
both edges and a node at the center. If we assume that the
local magnetization reflects the probability of existence of an
antikink, the above result suggests that the wave function of
an antikink is something like a sine function with a node at
the center. The spin correlation profile is very flat with its
value ;20.35 in the middle region. The correlation at a
bond is averaged to be23/8 if the probability for an antikink
to be at the left of the bond is equal to that at the right. So the
result is consistent with a wave function of an antikink which
has a node in the center and two bellies. We see in the fol-
lowing that our speculation on the wave function is correct
by comparing the diagonalization results with those by a
simple trial functions.

Numerical results of open-A systems suggest that an an-
tikink behaves like a free particle propagating in the whole
system, since the data are consistent with that the wave func-
tion of an antikink is a sine function in terms of the position.
In order to check the validity of this picture, we have made a
variational analysis.28 We take the state where an antikink
consists of one free spin as the first trial function. Then the
variational basis is the set ofc i

(1) which consists of (N11)
dimer singlet pairs and the one free spin located at the top of
the i th triangle as depicted in Fig. 4~a!. The dimension of the
basis isN12 since the free spin may occupy the sites at the
edges. These basis functions are not orthogonal to each other
and satisfy the following relations.

^c i
~1!uc j

~1!&5S 2
1

2D
u i2 j u

, ~4!

^c i
~1!uHuc j

~1!&52
3

4
@~N12!^c i

~1!uc j
~1!&2d i j #. ~5!

Here,d i j is the Kroneckerd. The trial functionCvar
(1) , which

is assumed as

Cvar
~1![ (

i50

N11

Cic i
~1! , ~6!

FIG. 2. ~a! ‘‘Open-A’’ system. ~b! ‘‘Open-B’’ system.

FIG. 3. The nearest-neighbor spin correlations and the local
magnetization in the open-A system with 11 triangles~25 spins!.
Data for the lowest two states are shown.

FIG. 4. ~a! A basis state for the 1-spin variation.~b! A basis state
for the 5-spin variation.
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is determined as an eigenfunction of the matrix^c i
(1)uc j

(1)&
(0< i , j<N11). In the limit of infiniteN we can neglect the
boundary effect, and the eigenfunction is easily obtained as
Ci}(21)isinqi with the excitation energydE1-spin55/4
2cosq. For a finiteN, we have solved the eigenvalue prob-
lem numerically and have found that thekth state
(k51,2, . . . ) and itsantikink energy is well approximated
by

Ci}~21! i sin
pk~ i13/2!

N14
~7!

and

dE1-spin5
5

4
2cos

pk

N14
. ~8!

The variational energy gap converges todE1-spin50.25 as
N→`. The fact that the true energy gap converges to about
0.22 implies that the above choice of the variational basis is
too simple to describe an antikink. We have to take into
account of the fact that a free spin spreads out to neighboring
triangles destroying singlet dimers nearby.

As an improved trial function, we have employedCvar
(5)

which is given by Eq.~6! with c i
(1) replaced withc i

(5) ,
which consists of (N21) dimer singlet pairs and the ground
state of the cluster with five spins as depicted in Fig. 4~b!.
We numerically diagonalized the effective Hamiltonian for
Cvar

(5) . The wave functions for the lowest levels are well ap-
proximated by the expression~7!, which is consistent with
the numerical results of the local magnetization shown in
Fig. 3. There is no qualitative difference between the 1-spin
variational wave functions and the 5-spin ones. The varia-
tional energy byCvar

(5) is lower than that byCvar
(1) for low-

lying states (k!N) as shown in Fig. 5. It leads to the energy
gapDE5-spin;0.23 in the limitN→`. The 5-spin variational
energy, however, rapidly increases ask approachesN and
exceeds the 1-spin variational energy, which implies that the
5-spin wave function is not a good approximation in the high
momentum region. This is because we only took into account
the ground stateof the 5-spin Hamiltonian. In the high mo-
mentum region the 1-spin variational function seems to be a
better approximation than the 5-spin one.

We have also checked that the behaviors of the local mag-
netization estimated by the 1-spin variation quantitatively
agree well with those of the numerically-exact results for the
lowest three states~not shown in the figure!. The size depen-
dence of the variational energy is shown in Fig. 6 and is
compared with the diagonalization results. All the data show
almost linear dependence onN22. It is seen that the slope of
the results of the 5-spin trial function agrees very well with
the diagonalization results. Another important fact shown in
this figure is that the behavior of the eigen energy of the
open-A system agrees with that of the excitation energy of
the periodic system. A low energy excitation of the periodic
system is considered to be a kink-antikink pair excitation but
the above result implies that the excitation energy is mainly
determined by a freely moving antikink.

C. Kink-antikink interaction

In this subsection, we investigate the wave function of a
kink and the interaction between a kink and an antikink. For
this purpose we study the excited states of finite clusters as
depicted in Fig. 2~b!, which we call ‘‘open-B’’ systems. The
L-dimer state is the unique ground state of this open-B sys-
tem. Hence low energy excitations in this system necessarily
involve a kink and an antikink and the open boundary con-
ditions make each of them visible as shown below.

We first consider the first excited state. This is a triplet
state and we show the nearest-neighbor spin correlation
^Si•Si11& and the local magnetization̂Si

z& in the state with
Sz51 in Fig. 7. The numerical results show that the leftmost
bond forms a complete triplet state for all system sizes, i.e.,
^S1•S2&51/4 ~note thatS1•S2 commutes with the Hamil-
tonian!. The data for the three leftmost spins approach the
limiting values when N→` as ^S2•S3&→21/2,
^S1

z&5^S2
z&→1/3, and ^S3

z&→21/6. In fact the difference
from the limiting values is almost negligible in the data of
the system withN511 ~not shown in the figure!. This result
implies that the total wave function reduces to a direct prod-
uct of the wave function of these three spins given by the
following equation and that of the remaining (2N21) spins
in the limit N→`.

FIG. 5. The excitation energydE obtained by the 5-spin varia-
tion is plotted together with that by the 1-spin variation. FIG. 6. Excitation energies of the lowest three excited states of

the periodic chain in theS51 subspace are plotted against 1/N2

together with those of the open-A system obtained by numerical
diagonalization and the variation.
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ckink5@a1~a2b32b2a3!1a2~a1b32b1a3!#/A6. ~9!

Therefore a kink is localized in the leftmost triangle though
it is a linear combination of the wave function with two
different positions of a free spin.

An antikink is distributed in the rest part of the system
which corresponds to an open-A system withN22 triangles.
It also feels a magnetic field at the 4th and 5th site caused by
a magnetization̂ S3&;21/6 of the kink at the third site.
Otherwise the antikink is freely propagating in this region.
The domain wall profile shown in Fig. 7 is fairly well repro-
duced by that of the open-A system with 6 triangles and
under a magnetic field21/6 at the site 1and 2. Almost com-
plete reproduction of the profile is made by adjusting the
magnetic field to be20.225, which implies that the antikink
feels a larger effective field due to the overlap of the wave
function with that of the kink for finiteN. The antikink is
pulled to the left by this effective interaction between a kink
and an antikink. Since the leftmost triangle is occupied by a
kink, the region for the motion of an antikink in the system
with N triangles is same with that in a open-A system with
N22 triangles. The interaction with a kink attracts the wave
function of an antikink, and as a result, an antikink feels a
larger region for its motion. The wave function in theS51
subspace roughly corresponds to that in the open-A system
with N21 triangles.

We have also obtained the lowest singlet excited state in
the subspace where the edge bond forms a triplet state. We
find that the results at the leftmost triangle is almost same
with those in the corresponding triplet states. On the other
hand, the results on the right side of the system are different
from those in the the triplet states; the domain wall profile is
shifted to the right by nearlyone trianglecompared to that in
the triplet states. This is the effect of the exchange interaction
with the kink, which acts as a repulsion in the singlet state.
The antikink in the singlet state is repelled stronger by the
kink than that in the triplet state because the state must be
orthogonal to the ground state. As a result, it is nearly pro-
hibited for the antikink to occupy the site 4 in the singlet
state. Therefore, the wave function of an antikink in theS50
subspace roughly corresponds to that in the open-A system
with N23 triangles under an adequate magnetic field. Figure

8 shows the nearest-neighbor correlations of the ground state
of the open-A system withN triangles under the magnetic
field 10.320, that of theS50 excited state of the open-B
system withN13 triangles, and the mirror image of the
profile of theS51 excited state of the open-B system with
N11 triangles forN57. They agree surprisingly well in the
central region of the antikink. We may conclude by this evi-
dence that the wave functions of an antikink in these three
states are approximately equal.

We have examined higher excited states up to the fourth
in the subspace ofSz51 ~not shown in the figure!. We found
that a kink is located in thenth triangle in thenth excited
state and the left side of that triangle is in theL-dimer state.
Therefore the wave function of thenth state is nothing but a
direct product of the wave function of theL-dimer state of
n21 triangles and that of the first excited state of a smaller
open-B system withN2(n21) triangles.

We have studied the interaction between a kink and an
antikink when only one antikink is on the right side of the
kink. In periodic systems and/or higher excitations, an anti-
kinks exists also on the left side of a kink. We expect that a
kink will be localized even when antikinks exist at both
sides. Its wave function, however, would be different from
that studied above which is asymmetric with respect to the
inversion. The ferromagnetic nature of the interaction is de-
duced from the fact that the lowest excited state of the peri-
odic systems is singlet.

III. SIZE DEPENDENCE OF THE ENERGY GAP

In the previous section, we focused on a kink and an
antikink as elementary excitations and clarified their indi-
vidual characteristics and the interaction between them. We
found that the excitation energy of the system is determined
mainly by the excited antikink. The antikink is described as a
particle propagating freely in a region bounded by kinks
and/or boundaries. If the region of its motion is bounded by
a kink, it feels an exchange field which modifies its wave
function. The expectation value of the exchange interaction
is usually very small, since the probability for a kink and an

FIG. 7. The nearest-neighbor spin correlation and the local mag-
netization of the first excited state of the ‘‘open-B’’ system with 18
spins.

FIG. 8. The nearest-neighbor correlations of the ground state in
the open-A system under the magnetic field, and those of the first
excited state in the open-B system withS50 andS51. The num-
ber of spins are as denoted in the figure. The profile is depicted
from the left for theS50 state and the open-A ground state, while
its mirror image is depicted for theS51 state.
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antikink to be at the nearest neighbor triangles is very small.
The effect of the interaction appears rather as a change in the
effective length of the region of motion for the antikink. We
therefore postulate that the excitation energy of the system is
given by the energy of a freely propagating antikink as a first
approximation. Then the excitation energy may be written as

dE5ea5e01
1

m S 12cos
pk

N811D . ~10!

Here ea denotes the energy of an antikink,m its mass,
k21 stands for the number of nodes in the wave function,
andN8 the effective length of the region where the antikink
propagates. The creation energye0 of an antikink is equal to
the excitation energy gap of theD chain in the thermody-
namic limit. Of course, the cosine form in Eq.~10! is an
approximate form only valid in the region where
pk/(N811) is small compared to unity. We treat only such
cases. In this section, we show that the excitation energies in
the periodic systems as well as those in the open systems
considered in the previous section are well described by Eq.
~10!. We examinedE of the ground state of the open-A
systems, the first excited state of the open-B systems with
S50 and that withS51 and the lowest three excited states
of the periodic systems withS50 and those withS51 in the
subspace with zero total momentum. We assume that Eq.
~10! with k51 expressesdE of the ground state of the
open-A systems, the first excited state of the open-B system
with S50 and that withS51. The first, the second, and the
third excited states of the periodic systems withS50 and
S51 are also assumed to be expressed by Eq.~10! with
k51,2, and 3, respectively. The parity of these states are
consistent with this assignment~parity5 even fork51 and
3; parity5 odd for k52!.

In Fig. 9, we show the plot of dE versus
12cos@pk/(N811)#, whereN85N1DN is chosen so that all
the data fall onto one curve.DN is a correction toN induced
by the boundary effect and/or the interaction with kinks. It is
remarkable that all data lie on a curve. This is a clear and
strong evidence for that the excitation energy is mainly con-
tributed by an antikink. For the open-A systems we take
DN53 for a convention. Then the best choice ofDN for
other cases are shown in Table I.

Let us try to understand the above results in an intuitive
way. In open-B systems, a kink occupies the leftmost tri-
angle. Then the region allowed for an antikink to move is
assumed to be equivalent to an open-A system with less tri-
angles by two. The attractive interaction elongates the effec-
tive region forS51 state, and repulsive interaction and the
requirement of the orthogonality to the ground state shortens
it for S50. We see from the numerical results~Table I! that
the effect of the interaction amounts to 1.3(20.2) triangles
for S51(0). It amounts to20.2(23) triangles fork51 and
S51(0) states in the periodic systems, since the allowed
region for an antikink is equivalent to an open-A system with
less triangles by three. The difference of the effect of the
interaction and/or the orthogonality between the open-B sys-
tems and the periodic systems is not clarified yet at present.
The least-square extrapolation by using all the data in the
figure gives the creation energye0 in the limitN→` and the
mass of an antikinkm. They are

e050.215 ~11!

and

m51.21. ~12!

IV. THE LOW-TEMPERATURE SPECIFIC HEAT

In this section, we show that the elementary excitations
discussed in the previous sections generate the low-
temperature peak in the specific heat. First we calculate the
specific heat of a finite system by numerical diagonalization,
and examine whether the result can be reproduced by the
elementary excitation with the spectrum given by Eq.~10!
with the parameters~11! and ~12!. We consider a periodic
system with 8 triangles (N58). All the 216 states can be
diagonalized numerically, and thus the exact specific heat is
obtained as shown in Fig. 10. Now we calculate the specific
heat due to kink-antikink excitations. We take only low-lying
states into account, i.e., the ground state~doubly degenerate!,
all the states with one pair of a kink and an antikink, and
some states with two pairs. Among the states with two kink-
antikink pairs, we take those where the distance between two
kinks are largest. We treat the states with two kink-antikink
pairs as two independent pairs for simplicity.

The expectation values of energy are calculated by the
excitation energy given by Eq.~10! with the values ofe0 and
m given by Eqs.~11! and~12!. The specific heat is calculated
by differentiating the energy with respect to the temperature

FIG. 9. Excitation energy of all the systems considered in this
paper are plotted against 12cospk/(N811). Definition of
N85N1DN is described in the text. The least-square fitting gives
e050.215 andm51.21.

TABLE I. DN for the systems we considered.

System DN

open-A 3
open-B (S50) 0.8
open-B (S51) 2.3

Periodic (S50,k51) -3.0
Periodic (S50,k52) -3.0
Periodic (S50,k53) -2.8
Periodic (S51,k51) -0.2
Periodic (S51,k52) -0.4
Periodic (S51,k53) -0.5
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numerically. The result coincides with the exact specific heat
at low temperatures as shown in Fig. 10. The peak position
and the low-temperature side of the peak are correctly repro-
duced. The peak height is a little smaller than the exact
value. The approximate result gives much smaller value than
the exact one at higher temperatures because of the negli-
gence of higher excited states. We may conclude that the
low-temperature peak is caused by the low-lying kink-
antikink excitations whose spectrum is described by Eq.
~10!.

Next we estimate the specific heat in the thermodynamic
limit. We consider the system at low temperatures where the
thermal excitations are described by kinks and antikinks. Let
us first consider the case where the massm is infinite. In this
case, antikinks are localized with the excitation energye0 .
This system is thermodynamically equivalent to that where
independent kinks and antikinks have the excitation energy
e0/2, and it shows a Schottky-type specific heat with an ex-
citation energye5e0/2. If m is finite, the excitation energy
of an antikinkea depends on the lengthL of the region of the
motion and also on the levelk as e01(1/m)
3(12cos@pk/L#). In order to obtain thermodynamic quanti-
ties, we must average them over all states with possible val-
ues ofL andk. Instead of doing this summation, we estimate
the specific heat in an approximate way. We assume that the
thermal excitations of kink-antikink pairs at a temperature
T[b21 are regulated by the averaged antikink energy de-
fined by

^ea&b5
(k51
l Ekexp@2bEk#

(k51
l exp@2bEk#

, Ek5e01
1

m S 12cos
pk

l D .
~13!

Here the integerl is the average distance between two ex-
cited kinks, i.e., the length of the region where an antikink
can move. We have neglected the effects of interactions be-
tween kinks and antikinks. This may be justified ifl@1,
which will be shown to be the case below. We assume that
the specific heat is written as a Schottky-type one as

C~T!5
~be!2exp@be#

~11exp@be#!2
, e5^ea&b/2. ~14!

The average lengthl , which is equal to the distance between
two antikinks, is given by

l5 int~exp@b^ea&b#!, ~15!

since an antikink is excited with the probability
exp@2b^ea&b#. We can solve self-consistent equations~13!
and ~15! by iteration for a givenT. Then with obtained
^ea&b , we can calculate the specific heat at the temperature
through Eq.~14!. We have employed the parameters given by
Eqs. ~11! and ~12! and plotted the obtained specific heat in
Fig. 10. The peak position shifts from the finite-size result
toward the low temperature and locates atT;0.05. The pro-
file of the peak is very steep on its low-temperature side but
it has a tail on the other side. These features are common
with the numerical results of finite-size systems. This agree-
ment implies that above approximation is correctly taking
into account of the temperature dependence of^ea&b . The
approximation is based on the idea that an antikink can be
treated as a localized object after averaging the kinetic en-
ergy in ^ea&b . We consider that this picture is a good ap-
proximation if the discreteness of the antikink kinetic energy
is negligible and the motion of antikinks is well thermalized.
In fact, the average antikink energy^e a&b obtained in the
above calculation turns out to be 0.244 atT;0.05, the peak
position of the specific heat. Therefore the averaged kinetic
energy^ea&b2e050.029 is larger thanT/250.025, the clas-
sical thermal average of the kinetic energy. The result im-
plies that the phase space of thel states is well thermalized at
this temperature. The average distance between antikinks,l ,
is estimated as;130, which is much greater than unity. The
average kinetic energy is much smaller than the creation en-
ergy at this temperature range. Above results indicate that
our approximate scheme is a consistent one and is correctly
describing the thermodynamics of the system in the tempera-
ture region of the peak in the specific heat.

V. CONCLUSION

In the previous sections, we have clarified the elementary
excitations in theD chain to a great extent. They are two
types of domain walls called a kink and an antikink. A kink
is essentially localized in a finite range~about one triangle!.
An antikink propagates with kinetic energy within a region
bounded by kinks. The dispersionless mode found
previously22 originates in the localized character of a kink.
The low-temperature peak in the specific heat is caused by
thermal excitations of kinks and antikinks. The peak position
is mainly determined by the creation energy of the antikink,
while its kinetic energy causes the size dependence of the
excitation energies as well as the broadening of the peak of
the specific heat.

Above understanding of theD chain might give some
insight into the properties of thekagome´ antiferromagnet.
Though the dimensionality of two systems are different, they
have some common features. Both systems have macro-
scopically degenerate classical ground states and show the
second peak in the specific heat at low temperatures. The
low-temperature peak in the specific heat is observed in finite

FIG. 10. Temperature dependence of the specific heat. Numeri-
cally exact results~solid line! and the approximate results~dashed
line! for theN58 periodic system are plotted together with the one
estimated in the thermodynamic limit~bold line!. Excitation energy
in the Schottky-type specific heate5^ea&b/2 is also plotted.
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kagome´ antiferromagnets.2,11–13 The uniform susceptibility
seems to decrease suddenly at the same temperature.11,13 In
theD chain, the spin gap corresponds to the first excitation
gap. Above similarities suggest that the elementary excita-
tions with a spin gap in both systems may have common
characters that create the second peak of the specific heat.
Recently, Zeng and Elser12 investigated thekagome´ antifer-
romagnet by dimer calculations. Their results support this
speculation, but further investigation on thekagome´ antifer-
romagnet is necessary for a concrete understanding of the
system.
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