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We clarify elementary excitations in the chain. They are found to be “kink”-“antikink”-type domain wall
excitations to the dimer singlet ground state. The characters of a kink and an antikink are quite different in this
system: a kink has no excitation energy and is localized, while an antikink has a finite excitation energy and
propagates. The excitation energy of a kink-antikink pair consists of a finite-energy gap and a kinetic energy
due to the free motion of the antikink. Variational wave functions for an antikink are studied to clarify its
propagating states. All the numerical results are explained consistently based on this picture. At finite tempera-
tures, thermally excited antikinks are moving in regions bounded by localized kinks. The origin of the low-
temperature peak in the specific heat reported previously is explained and the peak position in the thermody-
namic limit is estimated.

known to be a dimer staf@?! One of the authorgK.K.)
examined the low-lying excitations and the specific heat in a
g)_revious paper? The numerical diagonalization study of

. . o hge Small clusters(up to 20 spins exhibited that the low-lying
|S|call(meatn-f|eld g:jound state_s exdhlblttanfmﬂr:ltet numb;er of excitation modes in the periodic chains are almost disper-
ocal continuous degeneracies due to frustratitoppy sionless. The first and the second lowest mode were revealed

systems In such a system, construction of the linear spin-y, c,nyerge to dispersionless modes with the same energy in
wave theory based on one of the classical ground states leags, thermodynamic limit. The specific heat was shown to

to at least one spin-wave mode whose frequency vanishes @56 a double peak in common with tkagonieantiferro-

all wave vectorgzero-energy mode The zero-energy mode magnet. This double peak structure was also observed re-
corresponds to local deformation of a spin configuration thagently by a Monte Carlo methdd and by a recursion
does not raise the energy. The set of the ground state comethod?*

figurations is a manifold with dimensions proportional to the  The dispersionless aspect of excitations may be consid-
system size. The classical ground state thus may be considred to imply immediately their localization and hence very
ered as disordered. We can find examples of floppy spin sysveak size-dependence of various quantities. The energy gap
tems in all dimension$lt is an interesting and a challenging obtained by numerical diagonalizatioffshowever, does ex-
problem to investigate how the quantum effects manifeshibit fairly large size dependence. Also a broad bump of the
themselves in such spin systems. The central issue is whethgpin correlation was observed between the most distant spin
quantum effects lift the ground state degeneracy and selegiirs in the lowest triplet excitatiorfs.These results suggest
some long-range order. Also the low-energy excitation specthat the excited states are not localized. We solve this puzzle
trum is of interest, since it may lead to peculiar thermody-and clarify the character of low-lying excited states in the
namic properties. following sections by mainly employing numerical diagonal-

A typical example of such systems is the antiferromag-zation of finite size systems. Elementary excitations are re-
netic HeisenbergAFH) model on thekagomelattice. Inten-  vealed to be “kink”-“antikink”-type domain walls created
sive studie$ ™ on this system have been inspired by thein the singlet dimer ground state. An antikink is shown to
experiments on théHe layer adsorbed on graphitd®and  move freely in a region bounded by kinks at both ends. The
also on the compound Srgea,0;4.1® What mainly have kinetic energy of an antikink leads to the size dependence of
been concerned with are the existence of a double peak in thbe energy gap. On the other hand, a kink is localized and
specific heat at low temperatures and whether a magnetigives the dispersionless property to a kink-antikink pair ex-
order is realized in the ground state or not. Several approxieitation mode.
mate analysé€s® have been done but they are still far from  Properties of an isolated kink and an antikink, and also
giving a common understanding on the ground state propiteractions between them will be discussed in Sec. Il. In
erty. Numerical studies on finite systems support the exist-
ence of the double pedit213

In this paper we study a simple one-dimensional floppy
system called the chain!”*® We consider that this model
shares general features of quantum floppy systems, and an Redimer Ldimer
understanding of its properties might give some insight into
that of thekagomeantiferromagnet. Theoretical interest on  FIG. 1. An excited state of the periodic chain. The up spin
the A chain itself is also enhanced by its experimentalthat has a dimer singlet pair in its triangle is what we call a “kink”
realization!® The ground state of this system is exactly and the other one is an “antikink.”

I. INTRODUCTION

Recently, much interest is focused on systems whose cla
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Sec. Ill, we show that the size dependence of the energy gape thermodynamic limit? the lowest excited state is not

in the periodic chain agrees with that of the kinetic energy ofsuch a simple state. In fact, the above state is not an eigen-
an antikink. The specific heat due to kink-antikink excita- state and the two spins coupled to a triplet are separated
tions is discussed in Sec. IV, and the position of the low-when the Hamiltonian is operated. The average excitation
temperature peak in the thermodynamic limit is estimatedenergy may decrease if the two spins are apart as depicted in

Conclusion is given in Sec. V. Fig. 1. Each of two spins is regarded as a domain wall be-
tween anL-dimer and anR-dimer state. We show in the
Il. ELEMENTARY EXCITATIONS following that isolated domain walls are the elementary ex-
) ) - citations in this system.
A. Introduction of a kink and an antikink A domain wall which hag. dimers on the left side and

The A chain is described by the following Hamiltonian: dimers on the right has a singlet dimer in its own triangle,
and thus is the ground state of the local HamiltoriianWe

N call this type of a domain wall a “kink.” A free spin appear-
H= Izl hi, (1) ing in the ground state of the opénchain is a domain wall
of this type. Therefore the excitation energy of a kink is null.
where There is ambiguity in the definition of the position of a kink,
since ground states with different positions of the free spin
Ni=Si-1" S+ S Siv1tSi-1- S (2 are not orthogonal to each other. Let us consider a kink as a

state where a free spin is located at the top of a triangle as
depicted in Fig. 1 for a convention. Then the overlap be-
fween the states with an (gr a down-spin at theth and the
Jth(i#j) triangle is—(—2)"~Il. We treat a kink as a lo-

S is the spin with size 1/2 at the siteand N denotes the
number of triangles in the chain.

We first explain the ground state of this system and the
forward to the explanation of elementary excitations. Unde? ™ } . ; i : ) )
periodic boundary conditions, the ground state is the perfe a"z?d object since the state W'th. a k|nk_ _alon_e IS an eigen-
singlet dimer state, since the ground state of the local Hamiltunction of the system, although its position Is not a good
tonianh; is realized by pairing any two of three spins into the quantum number due to the nonorthogonality.

: . We call another type of a domain wall an “antikink,”
singlet state. The twofold degenerate ground states are writ- . ; . . !
9 9 9 which hasR dimers on the left side and dimers on the

ten as right. The state with an antikink at th¢h triangle is not a
¢'§=[1,2]®[3,4]®[5,6]® ... ®[2N—1,2N], ground state oh; as the triangle cannot accommodate a sin-
glet dimer. A finite energy is necessary to excite an antikink.
¢§=[2,3]®[4,5]®[6,7]® .. ®[2N,1]. 3) It spreads out to other triangles and propagates among them.

The energy of an antikink is lowered by this motion, which

Here [i,j] denotes the singlet dimer of the spins at the site will be discussed in the next subsection.
andj, ie., [i :j]:(aiﬁj_ﬁiaj)/\/zy where «;(8;) is the Both a kink and an antikink have a spin 1/2 as a whole,
state withS/=1/2(—1/2). They are schematically depicted and must appear alternatively. Elementary excitations in the
in Fig. 1. We call a dimer located on the lefght) side of a ~ Majumdar-Ghosh model is known as propagating domain
triangle anL dimer (R dimen and hence the Sta';li';(wg) an Walls™“" They are also kink-antikink-type domain walls.
L-dimer (R-dimen state. These two states are linearly inde-The phyS|caI.propertles of a kink and an antikink are same in
pendent but not orthogonal to each other for filite They this model, since they are transformed to each ot_her by sym-
become orthogonal in the limit whel— . The existence metry operations. Or_l 'Fhe other h_and,_ the pro_pertles of_ a kink
of the excitation energy gap above the ground state was rig?"d those of an antikink are quite different in thechain:
orously showr%2! inks are localized a_nd anfukmks move abopt in a region

Under open boundary conditions, the ground state of #ounded by two localized kinks. In the following, we study
system withN triangles is highly degenerate since a groundf|_rst an |solated_a_nt|k|nk and then the interaction between a
state consists dfl singlet dimers and one free spin. A dimer Kink and an antikink.
configuration is uniquely determined by fixing the position
of the free spin, which plays a role of a domain wall between
an L-dimer state and aR-dimer state. The number of pos-
sible positions for a free spin in the ground state is equivalent An antikink is necessarily accompanied by a kink in a
to the number of sites, and thereforbl 2 1 different dimer periodic chain and it is not easy to extract the properties of
configurations can be considered. However, thodet+2 an isolated antikink because the translational symmetry
states are linearly dependent, since only two out of threenixes the states with different positions of a kink and an
dimer configurations in a triangle are linearly independentantikink. We can solve this difficulty by considering open
The dimensions of the ground state reduce tosystems as shown in Fig(&, which we call “openA” sys-
2X (N+1):2%?1 only one positional freedom per triangle is tems. In this subsection we treat only op&rsystems.
allowed. In this system, two additional edge bonds have strong

Let us consider a simple trial excited state in a periodictendency to form dimer singlet states and they force the
chain constructed by changing one dimer singlet in thdeft(right)-hand side of the system to be in tRéL)-dimer
ground state into a triplet state. Then the expectation value daftate. Then inconsistency of the dimer configurations results
the excitation energyAE is identical to the singlet-triplet in an antikink to appear in the middle of the chain. Thus we
gap;AE=1. Since the energy gap is known A&~0.22 in  expect only an antikink to exist in the ground state of an

B. An isolated antikink
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FIG. 2. (a) “Open-A” system. (b) “Open-B” system. i

_ ) ) _ FIG. 4. (a) A basis state for the 1-spin variatiafi) A basis state
openA system. We confirm this speculation and clarify thefor the 5-spin variation.
properties of an isolated antikink through numerical and

variational analyses. The energy of an antikifk is ob-  ,jing pecomes weak and finally the phase changes at the
tained from the total enerdy of the system withN triangles  center. Since the dimers are located in the right-hand side
as 5!E=E+3(N+2)/4. . . . of the domain wall, we may conclude that there is an anti-
Figure 3 shows the nearest-neighbor spin correlatiorkink. The local magnetization oscillates extended to the
(Si-S+1) and the local magnetizatidi$;) in the lowest two  \hole system, and its amplitude has a broad maximum in the
states of an “opek” system with S’=1/2. We consider the middle of the system.
ground state first. It is seen that the spin correlations at the |n the first excited state, the profile of the magnetization
both edge bonds are very close to the value of a dimer singlgfas two bellies at about a quarter of the system size from
state— 3/4, while those of the bonds next to the edges almosgoth edges and a node at the center. If we assume that the
vanish. These features show that the both edges are almost|igtal magnetization reflects the probability of existence of an
the perfect dimer states. We notice that the state close to thentikink, the above result suggests that the wave function of
left(right) edge is approximately th&(L)-dimer state. As  an antikink is something like a sine function with a node at
the position of a bond approaches the center, the singlet coghe center. The spin correlation profile is very flat with its
value ~—0.35 in the middle region. The correlation at a
bond is averaged to be 3/8 if the probability for an antikink
Ground state to be at the left of the bond is equal to that at the right. So the
— result is consistent with a wave function of an antikink which
has a node in the center and two bellies. We see in the fol-
lowing that our speculation on the wave function is correct
by comparing the diagonalization results with those by a
simple trial functions.

Numerical results of opeA- systems suggest that an an-
tikink behaves like a free particle propagating in the whole
system, since the data are consistent with that the wave func-
tion of an antikink is a sine function in terms of the position.
In order to check the validity of this picture, we have made a
variational analysi€® We take the state where an antikink

(a) consists of one free spin as the first trial function. Then the
variational basis is the set @f) which consists of I+ 1)
dimer singlet pairs and the one free spin located at the top of
theith triangle as depicted in Fig(d. The dimension of the
basis isN+ 2 since the free spin may occupy the sites at the
edges. These basis functions are not orthogonal to each other
and satisfy the following relations.

1\ li=il
—5) : 4

(WD) =

3
(VIR = = ZIIN+ 2 ) = 61 (5)

(b) Here, 8 is the Kroneckew. The trial function¥ (%), which
is assumed as

FIG. 3. The nearest-neighbor spin correlations and the local N+1
magnetization in the opef-system with 11 triangle$25 sping. (D)= E C-z,b-(l) (6)
Data for the lowest two states are shown. ar s
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FIG. 5. The excitation energyE obtained by the 5-spin varia-

tion is plotted together with that by the 1-spin variation. FIG. 6. Excitation energies of the lowest three excited states of

the periodic chain in thé&=1 subspace are plotted againsN4/
together with those of the opek-system obtained by numerical

is determined as an eigenfunction of the matrigf"™| ") diagonalization and the variation.

(0=<si,j=<N+1). In the limit of infinite N we can neglect the

boundary effect, and the eigenfunction is easily obtained as )
Cix(—1)'singi with the excitation energysE, qy="5/4 We have also checked that the behaviors of the local mag

—cogy. For a finiteN, we have solved the eigenvalue prob- Netization estimated by the 1-spin variation quantitatively
lem numerically and have found that thkth state 2dree well with those of the numerically-exact results for the

(k=1,2,...) and itsantikink energy is well approximated lowest three state@ot shown in the figune The size depen-

by dence of the variational energy is shown in Fig. 6 and is
compared with the diagonalization results. All the data show
; almost linear dependence dh 2. It is seen that the slope of
- wk(i+3/2) L : :
Cix(—1) sit——— (7)  the results of the 5-spin trial function agrees very well with
N+4 the diagonalization results. Another important fact shown in
and this figure is that the behavior of the eigen energy of the

openA system agrees with that of the excitation energy of
the periodic system. A low energy excitation of the periodic

SE. . =2 —cosw—k ) system is considered to be a kink-antikink pair excitation but

Lspin™ 4 N+4" the above result implies that the excitation energy is mainly

determined by a freely moving antikink.

The variational energy gap converges d&4_q,=0.25 as

N—o. The fact that the true energy gap converges to about

0.22 implies that the above choice of the variational basis is C. Kink-antikink interaction

too simple to describe an antikink. We have to take into |n this subsection, we investigate the wave function of a
account of the fact that a free spin spreads out to neighboringink and the interaction between a kink and an antikink. For
triangles destroying singlet dimers nearby. this purpose we study the excited states of finite clusters as
As an improved trial function, we have employdt>)  depicted in Fig. #), which we call “openB” systems. The
which is given by Eq.(6) with 4 replaced withy{®,  L-dimer state is the unique ground state of this oBesys-
which consists of I{— 1) dimer singlet pairs and the ground tem. Hence low energy excitations in this system necessarily
state of the cluster with five spins as depicted in Fign)4 involve a kink and an antikink and the open boundary con-
We numerically diagonalized the effective Hamiltonian for ditions make each of them visible as shown below.
W) The wave functions for the lowest levels are well ap-  We first consider the first excited state. This is a triplet
proximated by the expressidi), which is consistent with State and we show the nearest-neighbor spin correlation
the numerical results of the local magnetization shown iS-S1) and the local magnetizatiof§/) in the state with
Fig. 3. There is no qualitative difference between the 1-spirf§°=1 in Fig. 7. The numerical results show that the leftmost
variational wave functions and the 5-spin ones. The variabond forms a complete triplet state for all system sizes, i.e.,
tional energy by® {3 is lower than that by#{%) for low-  (S;-S;)=1/4 (note thatS, S, commutes with the Hamil-
lying states k<N) as shown in Fig. 5. It leads to the energy tonian. The data for the three leftmost spins approach the
gapAEs g~ 0.23 in the limitN—c. The 5-spin variational limiting values when N—o as (S, §)——1/2,
energy, however, rapidly increases lasipproacheN and  (S{)=(S5)—1/3, and(S5)— —1/6. In fact the difference
exceeds the 1-spin variational energy, which implies that thé&om the limiting values is almost negligible in the data of
5-spin wave function is not a good approximation in the highthe system witiN=11 (not shown in the figude This result
momentum region. This is because we only took into accounimplies that the total wave function reduces to a direct prod-
the ground stateof the 5-spin Hamiltonian. In the high mo- uct of the wave function of these three spins given by the
mentum region the 1-spin variational function seems to be #llowing equation and that of the remainingN2- 1) spins
better approximation than the 5-spin one. in the limit N— .
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FIG. 8. The nearest-neighbor correlations of the ground state in
FIG. 7. The nearest-neighbor spin correlation and the local magth® OPenA system under the magnetic field, and those of the first

netization of the first excited state of the “op&i-system with 18  €xcited state in the ope-system withS=0 andS=1. The num-
spins. ber of spins are as denoted in the figure. The profile is depicted

from the left for theS=0 state and the opef-ground state, while

V= e ayBa— Baars) + az(alﬂg—ﬁlag)]/\/g. ©) its mirror image is depicted for th8=1 state.
Therefore a kink is localized in the leftmost triangle though8 shows the nearest-neighbor correlations of the ground state
it is a linear combination of the wave function with two of the openA system withN triangles under the magnetic
different positions of a free spin. field +0.320, that of theéS=0 excited state of the opeB-

An antikink is distributed in the rest part of the systemsystem withN+3 triangles, and the mirror image of the
which corresponds to an opénsystem withN— 2 triangles.  profile of theS=1 excited state of the opdh-system with
It also feels a magnetic field at the 4th and 5th site caused b+ 1 triangles forlN=7. They agree surprisingly well in the
a magnetizationS;)~ —1/6 of the kink at the third site. central region of the antikink. We may conclude by this evi-
Otherwise the antikink is freely propagating in this region.dence that the wave functions of an antikink in these three
The domain wall profile shown in Fig. 7 is fairly well repro- states are approximately equal.
duced by that of the opeA-system with 6 triangles and We have examined higher excited states up to the fourth
under a magnetic field- 1/6 at the site 1and 2. Aimost com- in the subspace @&’=1 (not shown in the figune We found
plete reproduction of the profile is made by adjusting thethat a kink is located in thath triangle in thenth excited
magnetic field to be- 0.225, which implies that the antikink State and the left side of that triangle is in thedimer state.
feels a larger effective field due to the overlap of the waveTherefore the wave function of threh state is nothing but a
function with that of the kink for finiteN. The antikink is  direct product of the wave function of tHe-dimer state of
pulled to the left by this effective interaction between a kinkn—1 triangles and that of the first excited state of a smaller
and an antikink. Since the leftmost triangle is occupied by eopenB system withN—(n—1) triangles.
kink, the region for the motion of an antikink in the system We have studied the interaction between a kink and an
with N triangles is same with that in a opénsystem with  antikink when only one antikink is on the right side of the
N—2 triangles. The interaction with a kink attracts the wavekink. In periodic systems and/or higher excitations, an anti-
function of an antikink, and as a result, an antikink feels akinks exists also on the left side of a kink. We expect that a
larger region for its motion. The wave function in tBe=1 kink will be localized even when antikinks exist at both
subspace roughly corresponds to that in the opesystem  sides. Its wave function, however, would be different from
with N—1 triangles. that studied above which is asymmetric with respect to the

We have also obtained the lowest singlet excited state ifnversion. The ferromagnetic nature of the interaction is de-
the subspace where the edge bond forms a triplet state. Wiiced from the fact that the lowest excited state of the peri-
find that the results at the leftmost triangle is almost sam@dic systems is singlet.
with those in the corresponding triplet states. On the other

hand, the rgsults on thg right side of the system are different Ill. SIZE DEPENDENCE OF THE ENERGY GAP
from those in the the triplet states; the domain wall profile is
shifted to the right by nearlgne trianglecompared to that in In the previous section, we focused on a kink and an

the triplet states. This is the effect of the exchange interactioantikink as elementary excitations and clarified their indi-
with the kink, which acts as a repulsion in the singlet statevidual characteristics and the interaction between them. We
The antikink in the singlet state is repelled stronger by thefound that the excitation energy of the system is determined
kink than that in the triplet state because the state must bmainly by the excited antikink. The antikink is described as a
orthogonal to the ground state. As a result, it is nearly proparticle propagating freely in a region bounded by kinks
hibited for the antikink to occupy the site 4 in the singlet and/or boundaries. If the region of its motion is bounded by
state. Therefore, the wave function of an antikink in8e0  a kink, it feels an exchange field which modifies its wave
subspace roughly corresponds to that in the ofpesystem  function. The expectation value of the exchange interaction
with N— 3 triangles under an adequate magnetic field. Figurés usually very small, since the probability for a kink and an
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070 oo TABLE I. AN for the systems we considered.
[0 "Open’A {82172, k=1) '
I O Open-B (5=0, k=1) System AN
> 0.60 [ ¢ Open-B (S=1, k=1) ]
20 F % Periodic(S=0, k=1) openA 3
) [ e Periodic(S=0, k=2)
S 050fL m geriﬁcgdl), 112:%% openB (S=0) 0.8
[ + Periodic(S=1, k= _
S o Periodic(S=1, k=2) openB (5=1) 2.3
S 0.40[ 4 Periodic(S=1, k=3) Periodic 8=0k=1) -3.0
&5 [ 0-215+x/1.21 Periodic 6=0k=2) 3.0
B 030f ] Periodic 6=0k=3) -2.8
[ Periodic 8=1k=1) -0.2
0-20 G505~ 010150205503 0355 0.4 Periodic §=1k=2) -0.4
1-cos(TkIN'+1) Periodic §=1k=3) -0.5

FIG. 9. Excitation energy of all the systems considered in this
paper are plotted against —Icosak/(N’'+1). Definition of
N'=N+AN is described in the text. The least-square fitting gives
€0=0.215 andn=1.21.

Let us try to understand the above results in an intuitive
way. In openB systems, a kink occupies the leftmost tri-

angle. Then the region allowed for an antikink to move is
assumed to be equivalent to an opersystem with less tri-

antikink to be at the nearest neighbor triangles is very smal2ngles by wo. The attractive interaction elongates the effec-

The effect of the interaction appears rather as a change in tﬁla\'e fegiO” forS=1 state, and_ repulsive interaction and the
effective length of the region of motion for the antikink. We requirement of the orthogonality to the ground state shortens
it for S=0. We see from the numerical resu({f®&ble |) that

therefore postulate that the excitation energy of the system i ; _ :
given by the energy of a freely propagating antikink as a firsi e effect of the interaction amounts to 1-30.2) triangles

approximation. Then the excitation energy may be written aso" S=1(0). Itar_nounts tcfo-z.(‘3) triangle_s fok=1 and
S=1(0) states in the periodic systems, since the allowed

1 K region for an antikink is equivalent to an opArsystem with
SE=e€=€pt E(l—cosm : (100 less triangles by three. The difference of the effect of the
interaction and/or the orthogonality between the opesys-
Here e, denotes the energy of an antikinky its mass, tems and the periodic systems is not clarified yet at present.
k—1 stands for the number of nodes in the wave functionThe least-square extrapolation by using all the data in the
andN’ the effective length of the region where the antikink figure gives the creation energy in the limit N—c and the
propagates. The creation energyof an antikink is equal to mass of an antikinkn. They are
the excitation energy gap of th#® chain in the thermody-
namic limit. Of course, the cosine form in E@LO) is an €=0.215 11
approximate form only valid in the region where g4
7wk/(N'+1) is small compared to unity. We treat only such
cases. In this section, we show that the excitation energies in m=1.21. (12
the periodic systems as well as those in the open systems
considered in the previous section are well described by Eq.
(10). We examineSE of the ground state of the opew-
systems, the first excited state of the ofesystems with In this section, we show that the elementary excitations
S=0 and that withS=1 and the lowest three excited statesdiscussed in the previous sections generate the low-
of the periodic systems wit8=0 and those witts=1 inthe  temperature peak in the specific heat. First we calculate the
subspace with zero total momentum. We assume that Egpecific heat of a finite system by numerical diagonalization,
(10) with k=1 expressesSE of the ground state of the and examine whether the result can be reproduced by the
openA systems, the first excited state of the oflesystem  elementary excitation with the spectrum given by EL)
with S=0 and that withS= 1. The first, the second, and the with the parameter$ll) and (12). We consider a periodic
third excited states of the periodic systems w@&0 and system with 8 trianglesN=8). All the 2'® states can be
S=1 are also assumed to be expressed by (B with diagonalized numerically, and thus the exact specific heat is
k=1,2, and 3, respectively. The parity of these states arebtained as shown in Fig. 10. Now we calculate the specific
consistent with this assignmefgarity = even fork=1 and  heat due to kink-antikink excitations. We take only low-lying
3; parity = odd fork=2). states into account, i.e., the ground st@®ubly degeneraje
In Fig. 9, we show the plot of E versus all the states with one pair of a kink and an antikink, and
1—cog wk/(N’'+1)], whereN’ =N+ AN is chosen so that all some states with two pairs. Among the states with two kink-
the data fall onto one curvAN is a correction toN induced  antikink pairs, we take those where the distance between two
by the boundary effect and/or the interaction with kinks. It iskinks are largest. We treat the states with two kink-antikink
remarkable that all data lie on a curve. This is a clear angbairs as two independent pairs for simplicity.
strong evidence for that the excitation energy is mainly con- The expectation values of energy are calculated by the
tributed by an antikink. For the opeh-systems we take excitation energy given by E410) with the values okg and
AN=3 for a convention. Then the best choice DN for m given by Egs(11) and(12). The specific heat is calculated
other cases are shown in Table I. by differentiating the energy with respect to the temperature

IV. THE LOW-TEMPERATURE SPECIFIC HEAT
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'% The average length which is equal to the distance between

£ 015 two antikinks, is given by
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2 0.10] I =int(exd B(ea)gl), (15)

5‘5 ] Nes: since an antikink is excited with the probability

8. oo0sH TTNGS: eotimated T een. ] exf —B(e)pl. We can solve self-consistent equatioils)

v ——Thermodynamic limit ™~ and (15) by iteration for a givenT. Then with obtained
0.00 Hwss 0.;.‘(.;.83. e e TavEm— (€a), We can calculate the specific heat at the temperature

through Eq.(14). We have employed the parameters given by
Egs.(11) and(12) and plotted the obtained specific heat in
Fig. 10. The peak position shifts from the finite-size result

FIG. 10. Temperature dependence of the specific heat. Numertoward the low temperature and locate§at0.05. The pro-
cally exact resultgsolid line) and the approximate resuldashed file of the peak is very steep on its low-temperature side but
line) for the N= 8 periodic system are plotted together with the oneit has a tail on the other side. These features are common
estimated in the thermodynamic linfitold ling). Excitation energy  with the numerical results of finite-size systems. This agree-
in the Schottky-type specific heat=(e,)4/2 is also plotted. ment implies that above approximation is correctly taking
into account of the temperature dependencegegjz. The

numerically. The result coincides with the exact specific hea@iPproximation is based on the idea that an antikink can be
at low temperatures as shown in Fig. 10. The peak positioffeated as a localized object after averaging the kinetic en-
and the low-temperature side of the peak are correctly reprc®rgy in(ea)s. We consider that this picture is a good ap-
duced. The peak height is a little smaller than the exacProximation if the discreteness of the antikink kinetic energy
value. The approximate result gives much smaller value thai$ negligible and the motion of antikinks is well thermalized.
the exact one at higher temperatures because of the neglp fact, the average antikink energdy ,); obtained in the
gence of higher excited states. We may conclude that thabove calculation turns out to be 0.244Tat 0.05, the peak
low-temperature peak is caused by the low-lying kink-position of the specific heat. Therefore the averaged kinetic
antikink excitations whose spectrum is described by Eqenergy(e,)s— eo=0.029 is larger thaif/2=0.025, the clas-
(10). sical thermal average of the kinetic energy. The result im-
Next we estimate the specific heat in the thermodynamiglies that the phase space of thetates is well thermalized at
limit. We consider the system at low temperatures where th#his temperature. The average distance between antikinks,
thermal excitations are described by kinks and antikinks. Leis estimated as-130, which is much greater than unity. The
us first consider the case where the mass infinite. In this ~ average kinetic energy is much smaller than the creation en-
case, antikinks are localized with the excitation ene¢gy  €rgy at this temperature range. Above results indicate that
This system is thermodynamically equivalent to that whereour approximate scheme is a consistent one and is correctly
independent kinks and antikinks have the excitation energglescribing the thermodynamics of the system in the tempera-
€0/2, and it shows a Schottky-type specific heat with an exture region of the peak in the specific heat.
citation energye= €y/2. If m is finite, the excitation energy
of an antikinke, depends on the lengthof the region of the V. CONCLUSION
motion and also on the levelk as ey+(1/m) _ . .
X(1—cogmk/L]). In order to obtain thermodynamic quanti- Ih the previous secthns, we have clarified the elementary
ties, we must average them over all states with possible vafxcitations in theA chain to a great extent. They are two
ues ofL andk. Instead of doing this summation, we estimateYP€s of domain walls called a kink and an antikink. A kink

the specific heat in an approximate way. We assume that tHg €SSentially localized in a finite rangabout one triangle

thermal excitations of kink-antikink pairs at a temperature”"n @ntikink propagates with kinetic energy within a region
bounded by kinks. The dispersionless mode found

T=p3"1 are regulated by the averaged antikink energy de*
fineﬁ by g y g 9y previously? originates in the localized character of a kink.

The low-temperature peak in the specific heat is caused by
thermal excitations of kinks and antikinks. The peak position
1 k is mainly determined by the creation energy of the antikink,
Ex=¢€ot —(1—cos—). while its kinetic energy causes the size dependence of the
m I - . .
(13 exmtaﬂon_energles as well as the broadening of the peak of
the specific heat.

Above understanding of th& chain might give some
Here the integet is the average distance between two ex-insight into the properties of thkagomeantiferromagnet.
cited kinks, i.e., the length of the region where an antikinkThough the dimensionality of two systems are different, they
can move. We have neglected the effects of interactions bétave some common features. Both systems have macro-
tween kinks and antikinks. This may be justifiedl#1, scopically degenerate classical ground states and show the
which will be shown to be the case below. We assume thasecond peak in the specific heat at low temperatures. The
the specific heat is written as a Schottky-type one as low-temperature peak in the specific heat is observed in finite

T

e _ SiiEvexd - BE]
VP Si,exd —BE]
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