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We study the critical properties of the random field Ising model in general dimensiond using high-
temperature expansions for the susceptibility,x5( j@^s is j&T2^s i&T^s j&T#h and the structure factor,
G5( j@^s is j&T#h , where^&T indicates a canonical average at temperatureT for an arbitrary configuration of
random fields and@ #h indicates an average over random fields. We treated two distributions of random fields,
the bimodal in which eachhi56h0 and a Gaussian distribution in which eachhi has varianceh0

2 . We obtained
series forx andG in the form(n51,15an(g,d)(J/T)

n, whereJ is the exchange constant and the coefficients
an(g,d) are polynomials ing[h0

2/J2 and ind. We assume that asT approaches its critical value,Tc , one has
x;(T2Tc)

2g andG;(T2Tc)
2ḡ. For dimensions aboved52 we find a range of values ofg for which the

critical exponents obtained from our series seem not to depend ong. For large values ofg our results show a
g dependence which is attributable to either a tricritical point or a first-order transition. All our results for
critical exponents suggest thatḡ52g, in agreement with the two-exponent scaling picture. In addition we have
also constructed series for the amplitude ratio,A5(G/x2)(T2)/(gJ2). We find thatA approaches a constant
value asT→Tc ~consistent withḡ52g) with A'1. It appears thatA is somewhat larger for the bimodal than
for the Gaussian model, in agreement with a recent analysis at highd.

I. INTRODUCTION

In this paper we study the critical properties of the ran-
dom field Ising model~RFIM!. This model is defined by the
Hamiltonian

H52J(̂
i j &

s is j2(
i
his i , ~1!

where ^ i j & indicates that the sum is over pairs of nearest
neighboring sites ands i561. We consider a hypercubic
lattice ind spatial dimensions and the fieldshi are quenched
random variables with no correlations between fields on dif-
ferent sites. Quenched thermodynamic averages are defined
by

@^A&T#h[FTr„exp~2bH!A…

Tr exp~2bH! G
h

, ~2!

whereb51/T (kB51) and@ #h indicates an average over the
distribution of the random fields at all sites. A similar defi-
nition gives the quenched free energy,F, asF5@2TlnZ#h ,

whereZ[Tr exp(2bH) is the partition function associated
with the Hamiltonian of Eq.~1!. Here we consider two dis-
tributions for thehi , namely the Gaussian, for which

P~hi !5~2ph0
2!21/2exp@2hi

2/~2h0
2!# ~3!

and the bimodal, for whichhi56h0 with equal probability.
We will express results in terms of the variablesg[h0

2/J2

andK5bJ. As we shall discuss in more detail below, this
system is interesting theoretically. Experimentally, it was not
clear how one could obtain a random field whose spatial
correlations were on the length scale of a lattice constant.
However Fishman and Aharony1 showed that a physical re-
alization of the RFIM can be achieved by applying a uniform
external field to a diluted Ising antiferromagnet~DIAF!.
Other experimental realizations of the RFIM are the diluted
frustrated antiferromagnet2 and binary liquids in porous
media.3–5

The properties of the RFIM have been a subject of intense
interest and much controversy both theoretically6–30 and ex-
perimentally. We will not discuss the experimental results,
since many of them, especially those from the early 1980’s,
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are vitiated by the failure to achieve thermal
equilibrium.31–33 This phenomenon has been treated
theoretically34–36 and by simulations.37–40 Here we review
only those aspects of this model relevant to this paper. For a
more general review of the RFIM, see Ref. 41. The most
important problem is to clarify the behavior of this model in
the limit of small but nonzerog. In a seminal work, Imry and
Ma6 argued that long-range ferromagnetic order was de-
stroyed by the random field whend decreased below a criti-
cal valued, with d,52. They showed that the upper critical
dimension,d. , above which the critical behavior was mean-
field like, was 6 and they gave results of the renormalization
group e expansion to first order ine562d. Shortly there-
after, systematic studies of thee expansion7–10showed that it
predicted that the critical exponents of the random system
should be equal to those of the pure system but in a dimen-
sion lower by two (d→d22). This conclusion was earlier
obtained exactly for the special case of the spherical model.11

For a while it seemed that the problem had been solved by
this idea of dimensional reduction. But difficulties with this
picture became apparent. According to the Imry-Ma argu-
ment the lower critical dimension for the RFIM is two,
whereas according to dimensional reduction (d→d22) it
ought to be three. A careful confirmation of the Imry-Ma
result (d,52) was given in Refs. 12, 13, and 14. More
recently it has been proven rigorously by Imbrie15,16 that the
three-dimensional RFIM exhibits long-range order atT50
and by Bricmont and Kupiainen17,18 that the ordered phase
does exist for a nonzero range of low temperatures for
d53. It is commonly believed that there is no long range
order or any phase transition in two dimensions forg.0.

As we shall see, the qualitative features of the phase dia-
gram in theT-g plane are of some relevance to our work. In
an early study of the phase diagram, based on mean-field
theory, Schneider and Pytte42 considered a Gaussian distri-
bution of random fields and found that the transition re-
mained continuous along the whole phase boundary~see Fig.
1!. As h0

2 increases, they found that the transition tempera-
ture decreases until it becomes zero ath0 /zJ5A2/p, where
z is the coordination number of the lattice. Aharony43 also

used mean-field theory to show that when the random field
distribution has a relative minimum at zero field, the RFIM
undergoes a first-order transition at sufficiently low tempera-
ture, and hence that there exists a tricritical point~see Fig. 1!.
For the bimodal distribution he found that the tricritical point
occurs atbzJ53/2, tanh2(bh0)51/3. Galam and Birman44

later argued that even some distributions which had a local
maximum ath50 ~but not the Gaussian! could give rise to a
tricritical point. One would expect mean-field theory to be
valid in high dimensions. However, the bimodal distribution
on the Bethe lattice of coordination numberz53 was found
not to have a tricritical point.45 But later work of Galam and
Salinas46 showed that forz.3 the bimodal distribution on a
Bethe lattice did have a tricritical point and that its location
in the limit z→` was given by Aharony’s result.43 However,
the existence of the tricritical point in finite dimensions need
not follow the mean-field theory result.

The results of various numerical techniques~mostly for
d53! are not entirely clear. Young and Nauenberg47 studied
systems of size 643 spins with a bimodal distribution of ran-
dom fields. Because their exponents violated some exact
bounds they inferred a first order transition and suggested
that the transition remained discontinuous even in the limit
of small random fields. Ogielski and Huse48 studying sys-
tems of size up to 323 found the transition to be continuous
for the Gaussian model. They did not reach any firm conclu-
sion for the bimodal distribution. Houghtonet al.49 tried to
resolve this issue for generald by analyzing their seven-term
high-temperature series expansion, whose coefficients were
evaluated exactly in terms of the random field distribution,
so that they could studyTc as a function ofHc . They inter-
preted that ifHc ceased to increase asTc decreased, that
behavior indicated the presence of a tricritical point. Their
results based on this ansatz fitted nicely with the mean-field
results: for the bimodal distribution they found a tricritical
point in all d>3. For the Gaussian distribution they found a
tricritical point for d53, whereas for d>4 they claimed that
there was no tricritical point, but their evidence does not
seem definitive. More recently Rieger and Young50 studied
many realizations of systems of size 163 and for small values
(h050.3) of the random field~so as to make it easier to
achieve equilibrium!. From this work they concluded that the
transition for the bimodal distribution was continuous for
this value ofh0 . There have also been suggestions that at
sufficiently large random fields the system might have a
spin-glass~SG! phase. Specifically, deAlmeida and Bruinsma
~DAB! ~Ref. 51! found such a phase at larged for a DIAF in
a uniform field, which Fishman and Aharony1 had shown to
be in the same universality class as the RFIM. However, that
equivalence does not exclude the possibility that the regime
in which this happens could be different for the DIAF than
for the RFIM. Working to second order in a parameter
roughly equivalent toTc /(zT), whereTc is the transition
temperature of the pure system, DAB found a multicritical
point where antiferromagnetic~AF!, SG, and paramagnetic
phases coexist. A similar result was found numerically for
d53 in Ref. 40, for the dilute AF in a uniform field,H, but
the fact that the SG phase appears even forH50 casts some
doubt on that work.

Next we review briefly the situation with regard to critical
exponents in the regime where the transition is continuous.

FIG. 1. Mean-field phase diagram for the random field Ising
model.F (P) labels the ferromagnetic~paramagnetic! phase. For
the bimodel distribution there is a tricritical point~TCP! below
which temperature the transition becomes discontinuous, as indi-
cated by the dashed line. For the Gaussian model there is no TCP at
nonzero temperature. The dashed line parallel to theT axis indi-
cates the way the critical line is approached by a high-temperature
series.
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Although there is controversy about the nature of the scaling
at the critical point, there are some exact inequalities which
the critical exponents must obey. These inequalities are
phrased in terms of correlation functions at criticality for
n-component spins. Strictly speaking these inequalities are
obtained for a Gaussian distribution of random fields, but
they are believed to apply to other distributions, such as the
bimodal. One defines the following correlation functions and
associated critical exponents. The structure factor behaves as

S~q![@^fW q•fW 2q&T#h;q2~42h̄ !, ~4!

for q→0. HerefW q is the spatial Fourier transform of the
n-component spin variable which is the generalization of
s i in the discrete model of Eq.~1!. For small q, the
q-dependent susceptibility behaves as

xq[@^fW q•fW 2q&T2^fW q&T•^fW 2q&T#h;q2~22h!. ~5!

In this paper we will focus our attention on the
susceptibility52

x~T,g![(
j

@^s is j&T2^s i&T^s j&T#h5x~q50! ~6!

and the structure factor

G~T,g![(
j

@^s is j&T#h5S~q50!. ~7!

If one assumes a single correlation lengthj, then in the
critical regime one has

x~T,g!;uT2Tcu2g ~8!

with g5(22h)n and

G~T,g!;uT2Tcu2ḡ ~9!

with ḡ5(42h̄)n, wheren is the critical exponent defined
by j;uT2Tcu2n. Some exact inequalities among exponents
were obtained by Schwartz and Soffer.19 For the critical ex-
ponenth they found

h>
42d

2
~10!

and

h̄<2 h. ~11!

In fact, it has been asserted21–23 that h̄52h is an exact re-
sult.

Comparing Eqs.~6! and ~7!, one sees that

G~T,g!5x~T,g!1(
j

@^s i&T^s j&T#h . ~12!

Schwartz and Soffer22 showed that with some assumptions,
the second term in Eq.~12! is equal tob2x2h0

2 . If this were
exact, then we would conclude thatG2x scales likex2, and
hence thatḡ52g. Furthermore, this would also imply that23

A[ lim
T→Tc

1
~g!

G~T,g!2x~T,g!

K2gx~T,g!2
51. ~13!

However, recent work of Bergeret al.53 shows that in high
dimensions,A is always finite and close, but not exactly
equal, to unity. As discussed below, our series confirm the
latter conclusion. The fact thatA shows no tendency to di-
verge or vanish nearTc still implies that ḡ52g. Another
exact inequality involves the critical exponent,a, for the
divergence of the specific heat:20

22a<nd2g5n~d221h!. ~14!

Next we turn to evaluations of the critical exponents.
Roughly speaking there are two classes of theories. In the
first of these classes one has so-called traditional ‘‘two-
exponent scaling,’’ in which a knowledge of two critical ex-
ponents~usually taken to ben andh) determine all the other
exponents. In the other class are theories which invoke a
third independent exponent usually associated with a droplet
picture. Many theories generate some version of dimensional
reduction, in that hyperscaling relations~which involve the
dimensionality! for the random field system contain the
shifted value (d2u) instead ofd. If u is not an independent
exponent, then one has two-exponent scaling. However, the
literature contains an open controversy concerning the expo-
nentu, which describes the singular part of the free energy,
Fj , in a correlation volume:Fj5Fjd;ju. (F is the singular
free energy per unit volume.! One can show26–28 that
u522h̄1h. Therefore, if there are three independent ex-
ponents we may take the third one to be eitheru or h̄. The
most important result of the present work, a brief summary
of which was given previously,54 is to establish that the criti-
cal point of the random field model is described by two-
exponent scaling, through the relationh̄52h.

The d→d22 dimensional reduction8–10 was the first of
the ‘‘two exponent’’ theories, since it implies a relation be-
tweenh and h̄, namelyh̄5h.55 The discrepancy between
d,52 according to the Imry-Ma argument6 andd,53 ac-
cording to thed→d22 dimensional reduction8–10 in the
Ising case led to a conjecture concerningu already given in
Ref. 8. It is maintained there thatFj behaves asgx. Since
x;j22h, this ansatz leads to the relationu522h. The re-
lation betweenu andh implies again a two exponent picture,
although now the relation betweenh̄ andh is h̄52h. The
method of equivalent annealing, developed by Schwartz21,30

yielded a modified dimensional reduction~explicitly consid-
ered for the exponenth), namely that thed85d22 rule has
to be replaced~at least forh) by

d85d221h0~d8!5d221h~d!, ~15!

whereh0 andh are the values ofh for the system in zero
random field and the random field system, respectively. The
lower critical dimension turned out to be two and four for
Ising and O(n) models, respectively, in accordance with
Imry and Ma.6 Theoretical arguments in favor ofh̄52h are
summarized in Ref. 23. As mentioned above, our results54

support this suggestion. Subsequently Vojta and Schreiber56

have analyzed a variant of the spherical model with long-
ranged interactions (Ji j;Ri j

2s) and found
h̄/25h5d122s for d,s,d12. ~For s.d12, one has
h̄52h50.)

In contrast, an alternative approach26–29 starts from a
droplet picture and maintains thatu is a new independent

6364 53GOFMAN, ADLER, AHARONY, HARRIS, AND SCHWARTZ



exponent, so that one needs three independent exponents to
describe the critical behavior. For instance, Bray and
Moore27 derived scaling laws for the RFIM, based on the
idea that the thermal phase transition is controlled by the
zero-temperature fixed point. They showed that, except for
hyperscaling, all the usual scaling laws of the pure Ising
model applied to the random field case. They claimed that
the number of independent exponents is three, that there is
no dimensional reduction, and in particular, that their theory
is inconsistent with the modified dimensional reduction of
Eq. ~15!. However, they did calculateh and h̄ in a 21e
expansion and foundh̄52h522e, to all orders ine. It was
shown30 that the modified dimensional reduction of Eq.~15!
gives exactly the same result. Bray and Moore also found
that hyperscaling is obeyed with the modified reduced di-
mension replacingd. Their claim of inconsistency with Eq.
~15! is based on a calculation ofn in 21e dimensions. Their
calculation ofn depends on an unproved assumption. Indeed,
a different assumption by Villain26 leads to a different result
for n @and one which is also not consistent with Eq.~15!#. In
any case, Bray and Moore27 actually obtain~to all orders in
e) that the number of independent exponents is two. Con-
tinuing the ideas of Bray and MacKane,24 Mezard and
Young25 have proposed a version of thee expansion to take
account of the multiple minima in the energy landscape of
the random field model. Within a replica formalism they
found an instability which has to be removed by replica sym-
metry breaking. This instability implies that the replica-
symmetric fixed point, which leads to the usual
e-expansion result (h̄5h), is unstable. Depending on the
nature of the replica symmetry breaking, their theory gives
h̄ in the rangeh,h̄<2h. The resulth̄52h corresponds to
maximal replica symmetry breaking and saturates the exact
inequality h̄<2h.

There have been a number of attempts to obtain the criti-
cal exponents numerically and those results ford53 which
are most relevant to our work are summarized in Table I.
Shapir and Aharony57 derived and analyzed the seventh-
order high-temperature series@i.e., in (J/T) and (H2/T2)# for
the susceptibility of the RFIM on the FCC and general di-
mension hypercubic lattices. Besides verifying thatdc56,
they found~from the FCC series, which was the better be-
haved one! that g51.7 for d53. Khurana et al.58 and
Houghtonet al.59,49 derived the seventh order series for the
same quantity on a hypercubic lattice in general dimension
as well. They expressed the series in terms of a series expan-

sion in powers of (J/T) whose coefficients were given as
explicit exactly evaluated functions ofh0 /T. In principle,
there should be a plateau region ing where the results are
independent ofg. However, their series were not long
enough to obtain a recognizable plateau region. As a result,
they did not obtain reliable estimates of the critical expo-
nents for dimensionsd53 andd54.

Monte Carlo simulations have been used to obtain critical
exponents for the random field system, especially in three
dimensions. As mentioned, Young and Nauenberg47 attrib-
uted the fact that their exponents violated some of the exact
bounds for a continuous transition to the fact that the transi-
tion was discontinuous. Ogielski and Huse48 found a con-
tinuous transition for the bimodal distribution and gave
h50.560.1, andh̄51.060.3. Ogielski60 obtained the criti-
cal behavior of the RFIM in three dimensions from correla-
tion functions averaged over an ensemble of exact ground
states. He foundh̄'1.1, n'1.0, andb'0.05. In work
shortly after Ref. 54, Rieger and Young50 carried out simu-
lations which yielded bothx and G and obtained
h50.6060.03 ~or 0.566 0.03! and h̄50.9760.08 ~or 1.00
6 0.06! for bh0 5 0.25~or 0.35!. Thus, although the results
of Monte Carlo simulations~for similar values ofg! sug-
gested that perhapsh̄52h, at the time of this work54 they
were not yet completely convincing.61

The numerical domain-wall renormalization group analy-
sis for the three-dimensional RFIM performed by Cheung62

gave values of the critical exponents, some of which are
listed in Table I. Dayanet al.63 applied real space renormal-
ization group~RG! analysis to the three-dimensional RFIM
and obtained 1.9<g<2.2.

In view of this history, we decided to extend the high-
temperature expansion. This extension became possible be-
cause of the existence of a tabulation of the weight factors
~or the embedding constants! for arbitrary diagrams of up to
13 bonds on a hypercubic lattice.64 Also, as we discuss in
more detail below, we developed a number of algorithms to
shorten the calculations. Normally, the determination of an
exponent likeh, which is not very large, is a difficult task.
Here we took advantage of an aspect of the problem, not
previously addressed by series, namely we focussed on test-
ing the proposed relationh̄52h, which is equivalent to the
relation ḡ52g. This involved constructing~to our knowl-
edge, for the first time! a series for the structure factor and
comparing it with the series for the susceptibility. We were
also able to construct a series for the amplitude ratio,A of

TABLE I. Critical exponents for the three-dimensional random field Ising model.

Methoda Ref. g ḡ h h̄

Series 57 1.7
Exact ground state 60 1.1
Domain-wall RG 62 1.58-1.60 0.5-0.72
Real space RG 63 1.9-2.2
Sim. DAFF 48 0.560.1 1.060.3
Sim. 47 1.760.2 0.2560.03 0.8
Sim. Gaussian 50 1.760.2 3.360.6 0.5060.05 1.0360.05
Sim. bimodal 61 2.360.3 4.860.9 0.5660.03 1.0060.06
Series This work 2.160.2 4.260.4

aSim. denotes simulation.
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Eq. ~13!. The fact that we found54 this ratio to be neither
divergent nor vanishing asT→Tc indicates thath̄52h. In
addition, the value ofA was found to be quite close to unity
in all dimensions, as was suggested on theoretical grounds.23

The purpose of this paper is to give the details of the con-
struction of these series and their analysis, the results of
which were summarized previously.54 This avenue of re-
search is presently continuing. Elsewhere53 we will describe
a study in high dimension which complements some of the
results given here. In fact, the latter study led us to find an
error in the last 2 terms of the series as reported in Ref. 54.
The correct terms are given below, and all the series were
reanalyzed yielding somewhat revised estimates for the ex-
ponents and amplitude ratio, as listed below. The corrections
do not change the basic qualitative conclusions of Ref. 54.

Briefly, this paper is organized as follows. In Sec. II we
discuss how the various series were constructed. In Sec. III
we discuss briefly the way we analyzed the various series to
get exponents and amplitude ratios. Data for the actual series
coefficients are given in a set of Appendixes. Section IV
contains a discussion of our results as a function ofg andd.
Here we obtain values of the exponentsg and ḡ, alone and
in combination, and also of the amplitude ratioA propor-
tional to (G2x)/x2. A discussion of these results is given in
Sec. V.

II. FORMULATION

We have generated high temperature series for two quan-
tities: the susceptibilityx and the structure factorG. The

techniques used to generate these series, which are discussed
below, represent an extension of those of Ref. 57.

A. Series for the susceptibility

To generate the susceptibility series, it is useful to relate it
to the free energy. It is convenient to introduce various di-
mensionless or reduced quantities. For instance, we write the
actual partition functionZ(K,$l i%) in terms of a reduced
partition function ZR(K,$l i%) via Z(K,$l i%)[ZR(K,$l i%)
3(coshK)NB)i@2cosh(bhi)#, where the product is over all
sitesi andNB is the total number of nearest–neighbor bonds
in the lattice. Then

ZR~K,$l i%!5
1

2N
TrS )̂

i , j &
~11wsisj !)

i
~11t isi ! D ,

~16!

where N is the total number of sites in the lattice,
w5tanhbJ, t i5tanhli , wherel i5bhi , and the trace is over
si561. Note that bothw andt i can be easily expanded in
powers ofb starting with a term of orderb. It is likewise
convenient to define the reduced free energy~per site! in
dimensionless form asFR(K,$l i%)5(1/N)lnZR(K,$li%).
Later onZG

R and FG
R(K,$l i%) will denote the similarly de-

fined reduced partition function and reduced free energy, re-
spectively, of a system consisting of a setG of nearest-
neighbor bonds. Also the susceptibilityx(T,g) and the
reduced susceptibility,xR(T,g) obey

x~T,g!5~1/N!(
i , j

@]2lnZ~K,$l i%!/~]l i]l j !#h5~1/N!(
i , j

@]2lnZR~K,$l i%!/~]l i]l j !#h1@sech2l i #h

5(
i , j

@]2FR~K,$l i%!/~]l i]l j !#h1@sech2l i #h[xR~T,g!1@sech2l i #h . ~17!

Note that@sech2li ] h does not depend oni , due to the con-
figurational averaging. Clearly, sincexR andx differ only by
a local quantity, they have the same critical properties. The
diagrammatics naturally produce a series forxR(T,g) which
we then convert into a series forx(T,g) using the above.

Becausesi
251 we may writeZR in the form

ZR~K,$l i%!5 (
n50

`

(
Cn

S )
iPSCn

t i Dwn, ~18!

whereCn is a configuration ofn bonds on the lattice and
SCn is the set of end points of those bonds that are common
to an odd number of bonds belonging to the configuration.
Then the reduced free energy is given by

FR~K,$l i%!5
1

N(
n51

`

(
Gn

fGn
~K,$l i%!, ~19!

where the sum overGn is over allconnecteddiagrams having
n bonds andfGn

(K,$l i%) is the weight associated with

Gn . This weight is simply the cumulant free energy associ-
ated with the set of bonds ofG:

fG~K,$l i%!5FG
c ~K,$l i%!, ~20!

where the cumulant~indicated by the superscript ‘‘c’’ ! is
defined recursively via

FG
c ~K,$l i%!5FG

R~K,$l i%!2 (
g,G

Fg
c~K,$l i%!, ~21!

where the sum is over sets of bondsg which represent proper
subsets of the bonds ofG (g5G is not allowed!. From the
property of cumulants~i.e., thatFG

c vanishes if any bond,K
in G is set equal to zero!, one can show that the series ex-
pansion ofFG

c in powers ofK begins at orderKp, wherep is
the number of bonds inG. Note thatf depends on the po-
sition and orientation of the diagram on the lattice through its
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dependence on the local fieldsl i . Thus the sum in Eq.~19!
counts separately diagrams which differ only in their location
and/or orientation on the lattice.

The reduced susceptibility is given by

xR~T,g!5 (
n51

`

(
Gn

8W~Gn!(
i , j

@]2FGn

c ~K,$l i%!/~]l i]l j !#h ,

~22!

where(8 denotes that the summation here is only over topo-
logically distinct diagrams andW(Gn) is the weak embed-
ding constant which gives the number of ways per site a
diagram topologically equivalent toG can be embedded in an
infinite lattice.~Two diagrams are topologically equivalent to
one another if their sites can be relabeled so that they both
have the same nearest neighbor bonds. Thus all self-avoiding
walks of lengthn are topologically equivalent to one an-

other.! After the average over the distribution of random
fields it is no longer necessary to sum separately over topo-
logically equivalent diagrams.

To clarify our approach, we discuss the calculations for
the diagramG shown in Fig. 2. The reduced partition func-
tion for that diagram is given by

ZG
R~K,$l i%!]511w~t1t21t2t31t3t41t2t51t4t5!1w2~t1t312 t2t41t1t512 t3t51t1t2t3t41t1t2t4t5

12 t2t3t4t5!1w3~t2t312 t1t41t3t41t2t51t4t512 t1t2t3t512 t1t3t4t5!1w4~11t1t31t1t5

1t1t2t3t41t1t2t4t5!1w5t1t2 . ~23!

Next we expandFG
R in powers of w. Eventually we want to obtain a series up to, say,pth order in K for

@]2FG
R/(]l i]l j )#h . The following points which simplify the calculation should be noted.

~a! The highest order needed in the expansion ofFG
R in w is clearlyp.

~b! As a result of the expansion ofFG
R we obtain a polynomial inw with coefficients which are polynomials in thet i ’s.

Since eacht i carries at least one factor ofl i5bhi , one sees that~keeping in mind that two derivatives with respect tol are
needed! the total number oft i ’s plus the power ofw in a term should not exceedp12.

~c! Furthermore, there is a part of the series that vanishes when all the fields are set to zero. In that part the lowest order
contribution tot i is l i . The process of averaging will yield a nonzero result ifl i appears in the product, after taking the
second derivative, an even number of times. Therefore, each term that vanishes withg in the coefficient ofwn carries at least
a factorK2 coming from thet ’s, so that if we are interested only in expanding to orderp in K, the coefficients ofwp21 and
wp can be taken withg50. Thus the coefficients ofwp21 andwp are those of the pure system.

We proceed now to calculateFG from Eq. ~23!. Since its expansion is quite complicated, and since we are interested in
showing the simplifications obtainable by deleting terms that do not survive ‘‘averaging,’’ we considerA4 , the coefficient of
w4, and work up to orderK7. ~By ‘‘averaging’’ we mean taking two derivatives with respect to thel i ’s and then averaging
over the distribution of random fields.!

We find that

A4511t1t32t1t2
2t32

t1
2t3

2

2
2t2

2t3
222 t1

2t2t424 t1t2t3t422 t2t3
2t422 t2

2t4
222 t1t3t4

22t3
2t4

21t1t5

2t1t2
2t52t1

2t3t522 t2
2t3t522 t1t3

2t524 t1t2t4t528 t2t3t4t522 t1t4
2t522 t3t4

2t52
t12t5

2

2
2t2

2t5
2

22 t1t3t5
222 t3

2t5
222 t2t4t5

22t4
2t5

2 . ~24!

In the above expression we have already deleted terms with
six or moret ’s, since such terms would contribute to order
K8 and higher. Now, terms in Eq.~24! that contain more than
two odd powers oft i ’s, such as

t1t2t3t4 ~25!

in the last expression, give zero contribution after ‘‘averag-
ing.’’ Also, terms which only differ by labeling of variables,
for example

t1t4
2t5 ,t1t3t5

2 ~26!

give the same contribution after ‘‘averaging.’’We tabulate all
the different combinations oft ’s that give nonzero contribu-
tion. For instance,

t15t it j , t25t i
2t jtk , t35t i

2t j
2 , etc., ~27!

with iÞ jÞkÞ . . . . The full list of t i ’s can be found in
Appendix A. Thus, Eq.~24! becomes

FIG. 2. A diagram for the high-temperature series.
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A45112 t1221 t229 t3 ~28!

and

(
i , j

@]2A4 /~]l i]l j !#h54~@dt i /dl i #h!
2

242@ tanh2l i #h~@dt i /dl i #h!
2

218@ tanh2l i #h@d
2t i

2/dl i
2#h .

~29!

All the quantities appearing here can easily be calculated
given the distribution of random fields and then a series ex-
pansion in powers ofb can be constructed. Therefore, the
problem is reduced to the identification of thet i ’s and calcu-
lation of the number of times eacht i appears in the expan-
sion ofF from each diagram.

The main problem now is how to construct an automatic
procedure to evaluateFG for an arbitrary diagramG. We

note that for any diagram we can writeZG in a form that is
illustrated by the following expression, for the 5-bond dia-
gram:

ZG511wc~1,2!1w2@c~2,2!1c~2,4!#1w3@c~3,2!1c~3,4!

1c~3,6!#1w4@c~4,0!1c~4,2!1c~4,4!#1w5c~5,2!,

~30!

where in c(m,n) m is the power ofw and n denotes the
number oft ’s. It should be noted thatc(m,n) is the sum of
all terms with a given number oft ’s and as such it is a
function of thet ’s that depends on the specific diagram. For
instance for the diagram shown in Fig. 2, we have

c~2,4!5t1t2t3t41t1t2t4t512t2t3t4t5 . ~31!

The point is that we can write down directly the power
series inw for FG in terms of thec(m,n)’s. Now we obtain

FG5wc~1,2!1w2S 2c~1,2!2

2
1c~2,2!1c~2,4! D1w3Fc~1,2!3

3
2c~1,2!c~2,2!2c~1,2!c~2,4!1c~3,2!1c~3,4!1c~3,6!G

1w4F2c~2,2!2

2
2c~1,2!c~3,2!1c~4,0!1c~4,2!1c~4,4!G1w5@2c~2,2!c~3,2!2c~1,2!c~4,0!2c~1,2!c~4,2!

1c~5,2!#. ~32!

This result looks simpler than the terms of orderw4 for A4 given in Eq.~24!, because it is written in terms of thec(m,n)’s that
are functions of thet ’s. The expression may be further simplified by deleting all those terms that will obviously not survive
‘‘averaging.’’ First, terms where thec(m,n)’s appear linearly inFG with n exceeding two must vanish after ‘‘averaging.’’ The
reason is that each of thec(m,n)’s viewed as a function of one of thet ’s, sayt1 , is a monom. Namely, it is of the form
A1Bt1 , whereA and B do not depend ont1 but only on the othert ’s. Also, a product) ic(mi ,ni) must vanish after
‘‘averaging’’ if s[nk2( iÞkni.2, wherenk is the maximaln. ~The quantitys22 is the minimum number of monoms which
must remain after two derivatives with respect to the random field are taken.! After deleting the terms discussed above, we
obtain

FG
R5wc~1,2!1w2F2c~1,2!2

2
1c~2,2!G1w3Fc~1,2!3

3
2c~1,2!c~2,2!2c~1,2!c~2,4!1c~3,2!G1w4F2c~2,2!2

2
2c~1,2!c~3,2!

1c~4,0!1c~4,2!G1w5@2c~2,2!c~3,2!2c~1,2!c~4,0!2c~1,2!c~4,2!1c~5,2!#. ~33!

This result is much simpler than that of Eq.~32!. In the last stage thet ’s in the function of the specificc’s for each diagram
are identified and then after taking the second derivative with respect tol i andl j each expression is replaced by its average
to the required order ofK.

There were two stages of code development. At first theMATHEMATICA program that goes through all the stages described
above, was developed. The weakness of theMATHEMATICA program is that it is too slow when an actual calculation of the
contribution of a diagram is performed. Namely in that part where the specificc’s have to be multiplied out, written as a
function of thet ’s, t ’s are to be identified and replaced by the proper averages. Therefore, aFORTRAN program has been
written to speed up the calculations. The main idea is to introduce an array of 15 columns for eachc(m,n). Each row~of
length 15) contains ones and zeros and stands for a given product oft ’s. ~Remember that each product either contains a given
t or not.! The first number in each row shows the number of identical products. This enables simple manipulations with the
c(m,n)’s in a FORTRAN integer program. The fact that we have two different programs that perform equivalent calculations
provides us with a powerful checking tool, that was used on a number of high order diagrams. The actual series for the
susceptibility are given in Appendixes C and E for the Gaussian and bimodal distributions, respectively.
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B. Series for the structure factor

The calculation ofG involves the calculation of the correlation function

G~k,l ![^sksl&T5
Tr„skslP^ i , j &~11wsisj !P i~11t isi !…

Tr„P^ i , j &~11wsisj !P i~11t isi !…
[
N~k,l !

D
. ~34!

In principle, the correlation function can also be obtained by adding the interaction2mklsksl to the dimensionless Hamiltonian
(bH) and then taking the derivative of the free energy~19! with respect tomkl :

^sksl&T5
]

]mkl
F~mkl!U

mkl50

. ~35!

Therefore, we conclude that only connected diagrams will contribute to Eq.~34!. Furthermore the contribution from each
connected diagram can be calculated by taking the cumulant just as we did for the susceptibility. In actuality we used Eq.~34!
to evaluateG(k,l ). Consider first the numerator of this expression. It is a polynomial inw with coefficients that are polyno-
mials in thet ’s and that are monoms for eacht separately. The numerator on a five bond diagram, for example, is generally
written as

NG~k,l !5TrS sksl)̂
i , j &

~11wsisj !)
i

~11t isi ! D 5s~0,2!1w@s~1,0!1s~1,2!1s~1,4!#1w2@s~2,0!1s~2,2!1s~2,4!#

1w3@s~3,0!1s~3,2!1s~3,4!1s~3,6!#1w4@s~4,0!1s~4,2!1s~4,4!1s~4,6!#1w5@s~5,0!1s~5,2!1s~5,4!#.

~36!

Here thes(m,n)’s are the analogs of thec(m,n)’s appearing in the calculation of the partition function and of course depend
on the diagram. A specific example for the diagramG of Fig. 2 is

NG~2,3!5t2t31w~11t1t31t2t41t3t51t2t3t4t5!1w2~t1t21t1t412 t3t412 t2t51t1t2t3t512 t4t51t1t3t4t5!

1w3~11t2t412 t1t2t3t412 t1t51t3t512 t1t2t4t51t2t3t4t5!1w4~t1t21t2t31t1t41t1t2t3t5

1t1t3t4t5!1w5t1t3 . ~37!

Next we expand the numerator over the denominator as a
polynomial inw with coefficients that are functions of the
c(m,n)’s and thes(m,n)’s. In this procedure we already
discard terms that will not contribute to the desired order in
K. The simplification procedure and identification of terms
that will contribute to the average is much the same as in the
previous section. The corresponding list of contributingt
products is given in Appendix B.

The actual series for the structure factor are given in Ap-
pendixes D and F for the Gaussian and bimodal distributions,
respectively.

C. Series for the pure Ising model in general dimension

As described in the previous sections, theg-dependent
coefficients contribute only up to order (p22) in the expan-
sion to orderp in K. The (p21)th andpth order come from
the expansion of the pure system. Therefore, we required a
fifteenth order expansion inK of the pure system for general
d. We have constructed this expansion up to orderK15 using
the method proposed by Harris65 which uses only the no-
free-end~NFE! diagrams. Although the calculations for each
diagram are somewhat more complicated than in the tradi-
tional method, the amount of computer time saved is large
because there are very many fewer diagrams. For instance,
the total number of diagrams with at most 13 bonds on a
hypercubic lattice is 20724, whereas the number of the NFE

diagrams with 15 bonds is only 842. The occurrence factors
~weak embedding constants! for these diagrams are given for
general dimension in Ref. 66.

The application of this method for the calculation of the
susceptibility of the Ising model is given in Refs. 65 and 67.
There the result is written as

x5~11t !x01(
G

w~G!xc~G!, ~38!

wherex05(12st)21, s52d21, and the superscript ‘‘c’’
indicates the cumulant. The cumulant is recursively defined
by Eq. ~21!. Here the bare susceptibility,x(G) is defined to
be

x~G!5x0
2F t2(

i
zi~G!222nb~G!t~11t !G

12 (
i, jPG

g i~G!g j~G!x i j ~G!, ~39!

where zi(G) is the number of sites inG which are con-
strained to be nearest neighbors of sitei . Also
g i(G)511@z2zi(G)#tx0 and x i j (G) is the two-point sus-
ceptibility of the clusterG:
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x i j ~G!5
Tr$s is jexp@bJ(^kl&PGsks l #%

Tr$exp@bJ(^kl&PGsks l #%
. ~40!

Besides usual internal checks like cumulant subtraction,
the final check was a comparison with existing series for
square68 and simple cubic lattices69 as well as with some
earlier results in higher dimensions.70 Our results also agree
with a previous work71 specialized to 5 and 6 dimensions
which was based on the same tabulation of diagrams. These
results were reported and analyzed elsewhere72,73 without
any derivation.

III. ANALYSIS METHODS

In this section we describe briefly some of the methods of
analysis used in this work. The three series presented above
are expected to take the form74

f ~x!;A~12x/xc!
2g$11A1~12x/xc!

D11A2~12x/xc!
D2

1•••%, ~x→xc!, ~41!

except at the upper critical dimension, where the right-hand
side may involve logarithmic corrections.75 In all our meth-
ods we approximate a function of interest,h(x), by the Pade´
approximant76 [L/M ]:

h~x!;
PL~x!

QM~x!
5@L/M #5

p01p1x1•••1pLx
L

11q1x1•••1qMx
M . ~42!

The coefficients of the polynomialsP andQ are chosen so
that the expansion ofh(x) to orderN5L1M agrees with
the corresponding expansion of the approximant [L/M ]. For
example, if f (x) has an assumed singularity of the form
f (x);A(12x/xc)

2g then the Dlog Pade´ analysis considers
the functionh(x)5dlnf(x)/dx. The functionh(x) presum-
ably has a simple pole atx5xc with residue2g. Since it is
expected to be a rational function,h(x) is reasonably repre-
sented by the [L/M ] approximant of Eq.~42!. Accordingly,
the location of the physical pole and the residue of the
[L/M ] Padéapproximant provide estimates for the desired
quantities,xc andg. We also used two other methods,M1
andM2, which we now describe briefly.77,78

The M1 method. This works best whenD1 is close to 1.
We approximatef (x) by

A~12x/xc!
2g@11A1~12x/xc!

D1#, ~43!

and construct a function

H~x!5g f ~x!2~xc2x!
d f

dx
, ~44!

whose critical behavior is of the form

H~x!;BS 12
x

xc
D 2g1D1

, ~45!

whereB5D1AA1 . For trial values ofxc andg we obtain the
correspondingD1 from a Pade´ approximant [L/M ] to
(d/dx)lnH(x). Changing the trial value ofxc gives surfaces
in the (xc ,g,D1) space, each surface corresponding to a dif-

ferent [L/M ] Padé approximant. The correct estimate of
(xc ,g,D1) will be given by the intersection point of all these
surfaces.

The M2 method. In theM2 method one first transforms
the seriesf (x)5(nanx

n into a series in the variable79

y512S 12
x

xc
D D

, ~46!

whereD is now an adjustable parameter. We then derive a
series for

FD~y!5D~12y!
d

dy
lnf „x~y!…

5g2
A1D1~12y!D1 /D1•••

11A1~12y!D1 /D1•••

, ~47!

where the higher confluent corrections have been dropped.
Now g is calculated as a function ofD using different Pade´
approximants toFD(y) at y51. This construction yields a
family of g(D) curves in the (g,D) plane andg(D,xc) sur-
faces in the (xc ,D,g) space. The correct estimate of
(xc ,D1 ,g) is given by the intersection point of all these
surfaces. Note that whenD51 we recover the usual Dlog
Padémethod.

In what follows, we replacex andxc by K andKc . The
analysis of series at fixed values ofd and g proceeds as
follows. At first we use the conventional Dlog Pade´ analysis
to select a region in the (Kc ,g) space for closer analysis.
Then, within this region, we run theM1 andM2 routines
which prepare the data for five trial values ofKc ~five slices!
using 10–15 of the highest Pade´ approximants for several
hundred input values ofg or D1 . There are two graphical
routines which produce the output. The first one provides
three-dimensional graphics for all the five slices,78 whereas
the second one draws a two-dimensional plot for the central
value of temperature~the central slice!. It is useful to use the
two methods in conjunction with one another: both methods
should lead to the same values of the exponents. To illustrate
these analyses, we now show some examples and explain in
detail the conclusions that we draw from the graphs. Figures
3 and 4 show plots from methodsM1 andM2, respectively,
for the susceptibility series atg510 and the Gaussian distri-
bution for d58. For d.6, theory predicts thatg51 and
D15(d26)/2. Looking at the graphs, one can locate a point
of intersection~i.e., a point from which curves emanate in
various directions! in each plot. In test series, this is always
very clear. In real systems, this point is sometimes less
clearly identified. Sometimes one finds more than one inter-
section region in one of the analyses. In such cases, we use
the degree to whichM1 andM2 give consistent values for
the exponents as an indication for the uncertainty in the re-
sults. There are also some rule-of-thumb features that recur
frequently and aid in our deductions. In theM1 method, Fig.
3, we can see that in plot 3~a!, drawn at a trialKc value of
0.070 653 14, there is a nice intersection region at
g51.00260.003 andD150.9560.15. The convergence re-
gion is indicated by a box in the figure, and the estimates are
in pleasing agreement with the exact values of 1 for both
exponents. As we reduce theKc value very slightly, to
Kc50.070 645 62, we see that theM1 intersection region in
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plot 3~b! is far more symmetrical with curves facing all di-
rections, not merely to the right of the figure. In plot 3~c!, at
Kc50.070 638 10, the curves face leftwards. This change of
curve direction inM1 graphs is one rule of thumb used to
identify the correct critical point~for example, it occurs in
the exactly soluble Baxter-Wu model78 at the exact critical
point!, but here the best exponent values are seen in plot
3~a!, while the central exponent estimates deduced from 3~b!
and 3~c! are slightly lower. We conclude that the best esti-
mates forKc lie between 3~a! and 3~b!, and include the dif-
ference in the errors. In this case, sinceD151, experience

shows that theM1 analysis is of a superior quality to the
M2. TheM2 curve atKc50.070 653 14, shown in Fig. 4,
gives consistent results for comparison purposes. If we over-
lap the plots 3~a! and 4 we find that the two intersection
points overlap, givingg5D151. Since the best numbers are
seen just a little above the crossover point, this gives us an
idea of the error induced by the finite length of our series.
Overall we deduceKc50.070 64660.000 010 for this case.

A representative plot of data from a lower dimension is
given in Fig. 5, where we illustrate theM1 andM2 analyses

FIG. 3. M1 analysis of thed58, g510 Gaussian distribution
susceptibility series.~a! Kc50.070 653 14;~b! Kc50.070 645 62;
~c! Kc50.070 638 10.

FIG. 4. M2 for same series as in Fig. 3, atKc50.070 653 14.

FIG. 5. Analysis of thed54, g56 Gaussian distribution, at
Kc50.1894.~a! M1; ~b! M2.
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in Figs. 5~a! and 5~b!, respectively, ford54, g56 and a
Gaussian distribution atKc50.1894. In the former, we see a
clear intersection nearg51.44 andD150.7. In the latter
there is a broader intersection region, spread out over
1.46.g.1.42 and 0.5,D1,1.0, but sharpening near
D150.8, and a very fine one atg51.4 andD151.7. Since
only one region is common to both methods, and the left-
most region is the correct one in test-series where both re-
gions do not give the same dominant exponent, we conclude
here thatg51.4460.02 andD150.760.2 for this tempera-
ture choice.

For d.6 the series gave a sufficiently clear confirmation
of the mean field values of the exponents, so that we used the
M1 andM2 methods directly. For lowerd, to obtain results
for exponents and for the amplitude ratioA of Eq. ~13! we
proceeded in four stages. We assume that Eqs.~8! and ~9!
describe the asymptotic behavior ofx andG, respectively,
near the critical point atTc(g). Universality implies thatg
andḡ are independent ofg over the range ofg in which the
transition remains continuous. However, the finite series usu-
ally lead to parameter–dependent exponents~see, e.g., Ref.
57!.

In the first stage of analysis our goal was to find a range
of g, where this dependence of the exponents ong is very
weak. For the purpose of defining this range ing, we found
it convenient to use a method of estimating the critical ex-
ponents which avoided the uncertainties associated with the
fact that we did not have a precise determination ofKc(g).
Accordingly, we used a Dlog Pade´ analysis of series obtained
from term-by-term division80,81 of the coefficients of the se-
ries forG by those ofx. By term-by-term divided series we
mean the following. Suppose the series forx and G are
given by x5(aiK

i andG5(biK
i , respectively. Then we

define the term by term divided series,@G/x# by

@G/x#[(
bi
ai
xi;~12x!2~ ḡ2g11!. ~48!

An advantage of this analysis is that as long asx andG
diverge at the same point, the term-by-term divided series
diverge atx51. The resulting approximate estimates for
(ḡ2g) showed a very rapid increase~at g,0.1) from zero
~atg50! to values of (ḡ2g) which are close to estimates of
g found by later direct analyses~see below!. As g is in-
creased further, (ḡ2g) exhibits a very slow increase, over a
wide range ing. This range, which is almost a plateau, is
much larger than observed before with the much shorter
series.57,49At still larger g.g1 we saw a second crossover,
with an apparent rapid increase in~ḡ2g!. We have thus con-
centrated on the ‘‘plateau’’ region. It should be emphasized
that the term-by-term divided analysis was used just to ob-
tain a rough estimate of (ḡ2g) and the plateau region.

In the second stage, we combined recently developed ef-
ficient visualization methods78 with the M1 andM2 algo-
rithms ~see above! to study series forx andG in the aboveg
windows. We obtained the critical valuesKc(g) and values
of the exponents, at selectedg values in different dimen-
sions. We give a discussion for each dimension below.

In the third stage, we addressed the issue of two versus
three independent exponents,54 by studying the amplitude ra-
tio, A of Eq. ~13!. To evaluateA we obtained Pade´ approxi-
mants for Eq.~13! atKc(g) ~as obtained above!. As found in
other studies,82,83 the Pade´ estimate of such ratios, which
involve only amplitudes on the same side of the transition,
are very stable to errors inKc and to correction terms. We
found thatA also exhibited a ‘‘plateau’’ ing which was even
flatter than that found for the difference (ḡ2g) mentioned
above. The value ofA was always close to unity. As already
stated, the fact thatA neither diverges nor vanishes nearKc
implies thatḡ52g.

In the final stage, we deduced overall exponent estimates.
Having identified the range ofg values for whichA is prac-
tically constant~Gaussian distribution!, or varies slowly~bi-
modal case!, we looked back at the values ofg andḡ, mea-
sured at the second stage. The series forG contain more
correction terms@arising from corrections to Eq.~13! ~Ref.
22!# and generally behave less well than those forx. Given
our result thatA'1, we consider it established thatḡ52g,
and therefore we will quote only values forg. Eventually,
we averaged over the gradual increase in the exponents with
g, and included the appropriate range in the error bars. The
final estimates are summarized in Table II.

IV. RESULTS FROM ANALYSIS OF SERIES

A. Above six dimensions

Mean field theory predicts that above the upper critical
dimensiond.56 one hasḡ52g52 andD15(d26)/2. We
started by checking this relation ford.6. Since the series
behaved quite well, we used theM1 andM2 methods of
analysis, as illustrated in Figs. 3 and 4 and as discussed in
the previous section. Similar analyses over a range ofg val-
ues led us to the overall results

g5160.01, ḡ5260.01, D151.060.2 ~49!

TABLE II. Values of critical exponentg obtained from series.

d g

8 1.0060.01
5 1.1360.03
4 1.4560.05
3 2.160.2

TABLE III. Values of the amplitude ratioA @Eq. ~13!# for d58, g510.

d58, g510
Values of Pade´ approximants forA

g Distribution Kc @7/6# @6/7# @6/6# @5/6# @6/5#

10 Gaussian 0.0706375 1.00171 1.00171 1.00176 1.00167 1.00167
10 Bimodal 0.070865 1.06787 1.06808 1.06771 1.06773 1.06773

6372 53GOFMAN, ADLER, AHARONY, HARRIS, AND SCHWARTZ



for both Gaussian and bimodal distributions atd58, in
agreement with theoretical expectations. Some values ofKc
and the amplitude ratio,A, are presented in Table III. The
comparison of these values with the 1/d expansion will be
given elsewhere.53

B. Five and four dimensions

We commence with the results of the biased Dlog Pade´
analysis of the term-by-term divided series for the two dis-
tributions of random fields in Figs. 6 and 7 ford55 and in
Figs. 8 and 9 ford54. We deduce that the ‘‘plateau’’ region
~the region betweeng-small and g-large crossovers! is
0.1,g,15 (0.1,g,6) for the Gaussian distribution, and
0.1,g,10 (0.1,g,4) for the bimodal distribution for
d55 (d54). Tables IV and VI present the results of theM1
andM2 analysis of thex andG series. We observe that the
values ofḡ2g obtained from the independent analysis of the
x andG series are in accord with the values ofḡ2g ob-
tained from the term-by-term divided series, Eq.~48!. Tables
V and VII exhibit several near-diagonal high-order approxi-
mants forA for both distributions. Our final estimates for the
critical exponentg are given in Table II.

C. Three dimensions

The analysis of the three dimensional series was some-
what more complicated than that at higher dimensions. Ini-

tially, as above, the ‘‘plateau’’ region was established~see
Figs. 10, 11!. We found the ‘‘plateau’’ as 0.1,g,1.0 for
both distributions. A similar plateau was found for the am-
plitude ratioA and data for this region is given in Table VIII.
Preliminary analysis of 13 terms of thex andG series indi-
cated a divergence with the same exponent for both quanti-
ties. Note that ford53 the plateau occurs for smaller values
of g than in higher dimension. Also, from Eq.~12! one ob-
tains

G5x1gK2x21•••. ~50!

Thus for smallgK2, the two quantitiesG andx are nearly
the same until one gets quite close to the critical point where
all the quantities diverge. To overcome this problem we con-
structedG2x, divided outgK2, and analyzed the resulting
series. In this wayḡ'2g was recovered. A similar proce-
dure could be done in higher dimensions, but~since the
physical interest is at largerg values! we found that this was
not necessary; at higher dimensionsG andG2x exhibited
similar behavior. Since additional operations degrade conver-
gence, we did not make this the standard procedure in higher
dimensions.

In the x analysis here, we had to take derivative with
respect toK twice to reconcile theKc values obtained ini-
tially from the analysis of both series.~Such a small differ-

FIG. 6. Term-by-term divided series. Gaussian distribution.
d55.

FIG. 7. Term-by-term divided series. Bimodal distribution.
d55.

FIG. 8. Term-by-term divided series. Gaussian distribution.
d54.

FIG. 9. Term-by-term divided series. Bimodal distribution.
d54.
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ence in theKc values obtained from the independent analysis
for the quantities which are known to be divergent at the
same point usually comes from a big analytic additive term
and can be eliminated by taking derivatives.! The results of
theM1-M2 analysis in dimension three are given in Table
VIII. The values of amplitude ratioA estimated at some of
theg values are given in Table IX. The critical exponentg is
listed in Table II.

V. DISCUSSION AND CONCLUSIONS

Basically, our estimates forA were always close to unity.
The fact thatA was neither zero nor infinite, proves that
ḡ52g, i.e., that there exist only two independent exponents.
The fact thatA is close to one in all dimensions may seem
like a confirmation of Eq.~13!. Indeed, this was our prelimi-
nary conclusion in Ref. 54, based on some arguments from
Ref. 22. However, although the deviations ofA from unity
are small, they are definitely nonzero, and they are larger for
the bimodal distribution as compared to the Gaussian one. As
discussed elsewhere,53 these results forA agree with those
obtained from a 1/d expansion forA in high dimensions.
Thus, A is not universal, and the arguments of Ref. 22
clearly need revision at high dimensions. The theoretical

situation at lowd ~viz. d,d.56) remains unclear.
Our results for the characterization of the second order

transition are now quite complete. In three dimensions, we
found good convergence at lowerg values compared to
where previous studies focused on. The crossover to this
behavior from the usual Ising model atg50 was very sharp
indeed. The behavior for largerg values, where the expo-
nents begin to increase withg, remains to be explained by
future studies. The simplest explanation for this may be re-
lated to the fact that we derive the coefficients in our series
as truncated power series in powers ofg. These truncations
may fail for largeg. This increase may also simply arise due
to the shortness of our series, and the large values of the
coefficients for largerg. Another possibility is that there
might be a crossover to tricritical behavior~as found in mean
field theory!. Series expansion methods do not handle tri-
critical points very easily when no low-temperature series are
avaliable. A start on developing methods suited to the analy-
sis of tricritical points has been made by Adler and
Privman,84 and some analysis using partial differential ap-
proximants will probably be required. Yet another possible
explanation for the different behavior at largeg may relate to
the approach of the critical line to the zero temperature fixed
point.85

TABLE IV. A selection of estimates of Kc , g, and ḡ for d55. Average
ḡ2g51/2@(ḡ2g)M11(ḡ2g)M2#.

Divideda

g g ḡ ḡ Average ḡ2g11 Average
g K5bJ M1 M2 M1 M2 ḡ2g M1 M2 ḡ2g

Gaussian variabled55
8 Kc50.1315 1.12 1.12 2.2 2.25 1.105 2.05 2.1 1.075
10 Kc50.136875 1.13 1.135 2.25 2.25 1.1175 2.1 2.12 1.11
12 Kc50.142813 1.14 1.14 2.32 2.32 1.18 2.16 2.16 1.16
14 Kc50.149298 1.142 1.142 2.4 2.4 1.258 2.26 2.23 1.245
15 Kc50.152844 1.144 1.144 2.45 2.45 1.306 2.3 2.28 1.29
18 Kc50.1665 1.245 1.244
20 Kc50.177 1.28 1.28
25 Kc50.213 1.30 1.36

Bimodal variabled55
5 Kc50.125313 1.0 1.08 2.15 2.1 1.085 2.07 2.12 1.095
7 Kc50.131375 1.1 1.097 2.15 2.2 1.0765 2.08 2.12 1.1
8 Kc50.134918 1.11 1.105 2.2 2.2 1.0925 2.1 2.12 1.11
9 Kc50.138875 1.11 1.11 2.25 2.25 1.14 2.13 2.13 1.13
10 Kc50.1435 1.135 1.135 2.3 2.35 1.19 2.2 2.2 1.2
11 Kc50.148813 1.15 1.15
12 Kc50.155248 1.18 1.18

a‘‘Divided’’ refers to G/x.

TABLE V. Values of the amplitude ratioA @Eq. ~13!# for selected choices ofg at d55.

d55
Values of Pade´ approximants forA

g Distribution Kc @7/6# @6/7# @6/6# @5/6# @6/5#

8 Gaussian 0.1315 1.01201 1.01201 1.01201 1.01200 1.01200
10 Gaussian 0.136875 1.01897 1.01897 1.01881 1.01836 1.01835
5 Bimodal 0.125313 1.10313 1.10313 1.10314 1.10313 1.10313
8 Bimodal 0.134918 1.18789 1.18807 1.17076 1.18681 1.18665
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In summary, our main achievements in this paper has
been to derive 15 terms in the series for bothG andx for-
general dimension andg and for both Gaussian and bimodal
field distributions, and to show that the critical behavior is
determined by only two exponents. Our analysis of these
series gave rather accurate values of the critical exponents
g and ḡ, as summarized in Table III.
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APPENDIX B: LIST OF THE CONTRIBUTING t
PRODUCTS FOR THE INTEGRATED CORRELATION
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FIG. 10. Term-by-term divided series. Gaussian distribution.
d53.

FIG. 11. Term-by-term divided series. Bimodal distribution.
d53.
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TABLE VI. A selection of estimates of Kc , g, and ḡ for d54. Average
ḡ2g51/2@(ḡ2g)M11(ḡ2g)M2#.

Divided
g g ḡ ḡ Average ḡ2g11 Average

g K5bJ M1 M2 M1 M2 ḡ2g M1 M2 ḡ2g

Gaussian variabled54
3.5 K50.170625 1.44 1.44 2.65 2.65 1.21 2.32 2.36 1.34
4 K50.1739 1.39 1.39 2.68 2.72 1.31 2.35 2.4 1.35
5 K50.1815 1.47 1.47 2.84 2.84 1.37 2.42 2.42 1.42
6 K50.1895 1.45 1.45 2.9 2.9 1.45 2.44 2.44 1.44
7 K50.199 1.52 1.52 3.05 3.05 1.53 2.52 2.54 1.53

Bimodal variabled54
3 K50.1691 1.38 1.38 2.62 2.65 1.255 2.3 2.4 1.35

TABLE VII. Values of the amplitude ratioA @Eq. ~13!# for selected choices ofg at d54.

d54
Values of Pade´ approximants forA

g Distribution Kc @7/6# @6/7# @6/6# @5/6# @6/5#

3.5 Gaussian 0.170625 0.998679 0.998757 1.00605 1.04432 1.04229
6 Gaussian 0.1895 1.03960 1.03962 1.03750 1.03708 1.03708
3 Bimodal 0.1691 1.10827 1.10901 1.10721 1.10726 1.10726

TABLE VIII. A selection of estimates of Kc , g, and ḡ for d53. Average
ḡ2g51/2@(ḡ2g)M11(ḡ2g)M2#.

Divided
g g ḡ ḡ Average ḡ2g11 Average

g K5bJ M1 M2 M1 M2 ḡ2g M1 M2 ḡ2g

Gaussian variabled53
0.15 K50.2268 1.7 3.55 1.85 2.3 1.3
0.25 K50.2305 2.1 3.7 1.6 2.32 1.32
0.50 K50.238 2.1 3.85 1.75 2.32 1.32
0.75 K50.24675 2.2 4.2 2.0 2.6 1.6
1.00 K50.25825 2.7 4.85 2.15 2.7 1.7

Bimodal variabled53
0.15 K50.2267 1.75 3.55 1.8 2.3 1.3
0.25 K50.2304 2.05 3.7 1.65 2.32 1.32
0.50 K50.238 1.95 3.8 1.85 2.36 1.36
0.75 K50.2478 2.25 4.25 2.0 2.6 1.6
1.00 K50.260 2.75 4.85 2.1 2.75 1.75

TABLE IX. Values of the amplitude ratioA @Eq. ~13!# for selected choices ofg at d53.

d53
Values of Pade´ approximants forA

g Distribution Kc @7/6# @6/7# @6/6# @5/6# @6/5#

0.15 Gaussian 0.2268 0.999905 0.999905 0.999929 0.999899 0.999899
0.75 Gaussian 0.24675 0.997862 0.997864 0.998095 0.997795 0.997791
0.15 Bimodal 0.2267 1.01017 1.00975 1.01011 1.01010 1.01010
0.75 Bimodal 0.2478 1.05644 1.06135 1.05260 1.05343 1.05334
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APPENDIX C: SERIES EXPANSION OF THE SUSCEPTIBILITY OF THE RFIM IN GENERAL DIMENSION. GAUSSIAN
DISTRIBUTION OF THE RANDOM FIELD

a~0!51, a~1!52 d, a~2!522 d14 d22g,

a~3!54 d/328 d218 d324 dg,

a~4!510d/3116d2/3224d3116d41~4 d212d2!g12 g2,

a~5!52116d/15116d2124d3264d4132d51~28 d/3124d2232d3!g110dg2,

a~6!522224d/4511748d2/45116d31272d4/32160d5164d61~220d/3220d2196d3280d4!g1~26 d

136d2!g2217g3/3,

a~7!542008d/31521856d2/513248d3/15264d4/31896d5/32384d61128d71~232d/15240d22112d31320d4

2192d5!g1~8 d/3256d21112d3!g2292dg3/3,

a~8!5108410d/632848984d2/31513096d3/511616d4/52224d51896d62896d71256d81~4448d/452176d2/5

280d321504d4/31960d52448d6!g1~224d180d22288d31320d4!g21~24 d/32120d2!g3162g4/3,

a~9!5212453836d/283512828312d2/18922916680d3/189139200d4/914928d5/921024d617552d7/322048d8

1512d91~284016d/315113504d2/1526352d3/151128d4/321920d512688d621024d7!g1~100d/3

2104d21464d321152d41864d5!g21~32d/9196d221216d3/3!g31340dg4/3,

a~10!521362578344d/1417512767426988d2/14175235302448d3/31514622224d4/945122208d5/316336d6/5

211264d7/3120224d8/324608d911024d101~2216820d/63198044d2/2112976d3/521312d411216d5

26592d617168d722304d8!g1~15136d/15224316d2/151312d316496d4/324000d512240d6!g2

1~3080d/921304d2/31736d323760d4/3!g31~92d1456d2!g421382g5/15,

a~11!534816841408d/15592524165970776d2/472511843744832d3/15752578662816d4/945181720704d5/945

163488d6/5160032d7/15212288d8117408d9210240d1012048d111~24907672d/28352758008d2/21

17215056d3/189260160d4/9210880d5/317040d6262720d7/3118432d825120d9!g1~2580064d/315

131248d2/52103168d3/151704d418896d5212672d615632d7!g21~216984d/4515224d2/326848d3/3

110816d4/323648d5!g31~2124d/91208d2/314792d3/3!g427448dg5/15,

a~12!5725650999576d/9355528606219416468d2/467775170193974864d3/4725259857682608d4/14175

2155226272d5/9451141207488d6/9451964352d7/451639488d8/45237376d91131072d10/3222528d11

14096d121~2725156688d/1417521729808848d2/472519032704d3/63161005472d4/945276544d5/3

2168256d6/15190880d7/3262464d8146080d9211264d10!g1~26282404d/1051799832d2/7

2292128d3/522976d422304d5133152d6237632d7113824d8!g21~21706528d/1351169808d2/9

25648d3/3288832d4/9114400d5230464d6/3!g31~27874d/318648d2/321320d3115440d4/3!g4

1~211992d/1529948d2/5!g5121844g6/45,

a~13!52101173799246512d/6081075136124101224d2/4952505539278768d3/4455132185348288d4/405
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29929337632d5/405184744704d6/45134897408d7/1351498176d8/151749056d9/152323584d10/3

1321536d11/3249152d1218192d131~269633682816d/155925110036192528d2/472522017736432d3/675

11350886592d4/94521954496d5/632346496d6/52599296d7/151112640d82178176d91112640d10

224576d11!g1~64694500d/567211903968d2/27115047888d3/272778624d4/3142464d5/3226240d6

1343040d7/32106496d8133280d9!g21~16926304d/94523633472d2/4513992224d3/452100928d4/9

2119296d5/3150944d6281920d7/3!g31~13372d/9239344d2/3141048d3/329792d4115648d5!g4

1~28776d/45211864d2/52105184d3/15!g5122858dg6/9,

a~14!5236601976116480328d/42567525196351271002572056d2/4256752527671835495928d3/3465

13368622438448d4/346524089856928d5/2721908373568d6/135190820096d7/27184656128d8/189

137376d91501760d10/32299008d111258048d122106496d13116384d141~21451301999152d/93555

1369215823568d2/103952116952256976d3/472516293255824d4/28351319012352d5/105241765888d6/135

27246336d7/4522262784d8/151381952d921469440d10/31270336d11253248d12!g1~884026688d/175

253188140356d2/47251859424248d3/10521685537488d4/9452862144d5/31226432d6/32143488d7

1370688d82290304d9178848d10!g21~144898840d/1892154544248d2/105110641808d3/151216752d4/3

264192d5/32453632d6/31498176d7/3271424d8!g31~1466248d/1526926908d2/45154016d3/3

1475792d4/92141280d5/31136640d6/3!g41~159700d/9262260d2/3210496d3/5268720d4/3!g5

1~30162d/5149828d2/5!g62929569g7/315,

a~15!51128557014030391416d/63851287521763884756260386792d2/212837625

13040840729149634352d3/2128376252265094921468288d4/222751113612045240512d5/22275

2177949117568d6/1751204767502592d7/472511901840384d8/315127362304d9/352182272d10/9

123953408d11/452802816d1211835008d13/32229376d14132768d151~202347598493024d/6081075

2783024258928d2/445511305217209808d3/4455216351895296d4/811757177792d5/15121175040d6/9

226821120d7/2724818944d8/152562176d913639296d10/321306624d111638976d122114688d13!g

1~21475499215744d/1559251192390791648d2/47252284139209216d3/472511335355744d4/35

2981436352d5/1052816256d6/514457728d7/152618496d811142784d92768000d101184320d11!g2

1~210095497464d/850511062358648d2/18924366996544d3/567195092768d4/272580928d5/9

176928d6/324893184d7/91509952d82547840d9/3!g31~277875208d/94512869792d2/5

232719648d3/451353824d4/31587584d5/32187776d61384256d7/3!g41~91784d/2251247112d2/3

21392944d3/15152160d4/32355008d5/5!g51~458776d/13511000808d2/4511560464d3/45!g6

24709644dg7/315.

APPENDIX D: SERIES EXPANSION OF THE STRUCTURE FACTOR OF THE RFIM IN GENERAL DIMENSION.
GAUSSIAN DISTRIBUTION OF THE RANDOM FIELD

a~0!51, a~1!52 d, a~2!522 d14 d2,

a~3!54 d/328 d218 d3, a~4!510d/3116d2/3224d3116d4,

a~5!52116d/15116d2124d3264d4132d522 dg2,

a~6!522224d/4511748d2/45116d31272d4/32160d5164d61~6 d212d2!g2,
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a~7!542008d/31521856d2/513248d3/15264d4/31896d5/32384d61128d71~216d/3140d2248d3!g218 dg3,

a~8!5108410d/632848984d2/31513096d3/511616d4/52224d51896d62896d71256d81~244d28 d21192d3

2160d4!g21~228d156d2!g3,

a~9!5212453836d/283512828312d2/18922916680d3/189139200d4/914928d5/921024d617552d7/322048d8

1512d91~1196d/152248d22144d31768d42480d5!g21~64d/32192d21256d3!g3292dg4/3,

a~10!521362578344d/1417512767426988d2/14175235302448d3/31514622224d4/945122208d5/316336d6/5

211264d7/3120224d8/324608d911024d101~6528d/527996d2/5272d323104d4/312720d5

21344d6!g21~872d/32232d2/321008d31960d4!g31~116d2232d2!g4,

a~11!534816841408d/15592524165970776d2/472511843744832d3/15752578662816d4/945181720704d5/945

163488d6/5160032d7/15212288d8117408d9210240d1012048d111~2832112d/31519424d2

239136d3/51960d425184d518832d623584d7!g21~26224d/1511584d21384d324480d413200d5!g3

1~2628d/912272d2/321144d3!g41128dg5,

a~12!5725650999576d/9355528606219416468d2/467775170193974864d3/4725259857682608d4/14175

2155226272d5/9451141207488d6/9451964352d7/451639488d8/45237376d91131072d10/3222528d11

14096d121~27366504d/105113240832d2/1052252448d3/527968d416336d5221504d6126880d7

29216d8!g21~2464096d/451650272d2/4521216d315184d4217600d519856d6!g31~24478d/3

12776d2/314120d3213840d4/3!g41~2500d11000d2!g5,

a~13!52101173799246512d/6081075136124101224d2/4952505539278768d3/4455132185348288d4/405

29929337632d5/405184744704d6/45134897408d7/1351498176d8/151749056d9/152323584d10/3

1321536d11/3249152d1218192d131~398195516d/28352107290336d2/189143382704d3/632262144d4

218656d5/3131360d62237568d7/3177824d8223040d9!g21~5344448d/3152345984d2/511005376d3/15

235968d4/3195744d5/3262976d6128672d7!g31~73196d/45222352d2/31424d3119648d4

216480d5!g41~736d/322912d215120d3!g5226914dg6/45,

a~14!5236601976116480328d/42567525196351271002572056d2/4256752527671835495928d3/3465

13368622438448d4/346524089856928d5/2721908373568d6/135190820096d7/27184656128d8/189

137376d91501760d10/32299008d111258048d122106496d13116384d141~26593877264d/4725

258032139468d2/472512627465896d3/31521272505648d4/94521079296d5/3246336d6/51136064d7

2268288d81216576d9256320d10!g21~28546736d/45254338896d2/4512874432d3/5135360d4257536d5

1150656d62209664d7179872d8!g31~298408d/521400788d2/15119232d32165680d4/91250400d5/3

254208d6!g41~21568d/3219664d2/3215648d3121504d4!g51~35194d/15270388d2/15!g6,

a~15!51128557014030391416d/63851287521763884756260386792d2/212837625

13040840729149634352d3/2128376252265094921468288d4/222751113612045240512d5/22275

2177949117568d6/1751204767502592d7/472511901840384d8/315127362304d9/352182272d10/9

123953408d11/452802816d1211835008d13/32229376d14132768d151~21684400264192d/155925

145522424432d2/945237204302784d3/52512676379040d4/6322699020096d5/31522390144d6/5

21062656d7/151536576d82854016d91583680d102135168d11!g21~23052769264d/2835
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1300448432d2/6321185179200d3/189124702656d4/92675712d5/92260352d611842176d7/32659456d8

1215040d9!g31~274369096d/94515444224d2/1526076064d3/151314336d4/32143808d51322432d6

2503552d7/3!g41~294784d/15131264d2210304d3278080d4180128d5!g51~2156992d/135

1103048d2/92364592d3/15!g6115736dg7/5.

APPENDIX E: SERIES EXPANSION OF THE SUSCEPTIBILITY OF THE RFIM IN GENERAL DIMENSION.
BIMODAL DISTRIBUTION OF THE RANDOM FIELD

a~0!51, a~1!52 d, a~2!522 d14 d22g,

a~3!54 d/328 d218 d324 dg,

a~4!510d/3116d2/3224d3116d41~4 d212d2!g12 g2/3,

a~5!52116d/15116d2124d3264d4132d51~28 d/3124d2232d3!g114dg2/3,

a~6!522224d/4511748d2/45116d31272d4/32160d5164d61~220d/3220d2196d3280d4!g1~22 d/3

120d2!g2217g3/45,

a~7!542008d/31521856d2/513248d3/15264d4/31896d5/32384d61128d71~232d/15240d22112d31320d4

2192d5!g1~28 d/9224d21208d3/3!g22188dg3/45,

a~8!5108410d/632848984d2/31513096d3/511616d4/52224d51896d62896d71256d81~4448d/452176d2/5

280d321504d4/31960d52448d6!g1~2296d/91160d2/32160d31640d4/3!g21~2232d/45

2368d2/15!g3162g4/315,

a~9!5212453836d/283512828312d2/18922916680d3/189139200d4/914928d5/921024d617552d7/322048d8

1512d91~284016d/315113504d2/1526352d3/151128d4/321920d512688d621024d7!,g1~2428d/45

2472d2/31944d3/322176d4/31608d5!g21~1424d/135264d2/1524864d3/45!g311004dg4/315,

a~10!521362578344d/1417512767426988d2/14175235302448d3/31514622224d4/945122208d5/316336d6/5

211264d7/3120224d8/324608d911024d101~2216820d/63198044d2/2112976d3/521312d411216d5

26592d617168d722304d8!g1~154016d/13521668d21616d3/3113472d4/922720d514928d6/3!g2

1~5020d/2721568d2/911744d3/1523632d4/9!g31~3028d/3151520d2/21!g421382g5/14175,

a~11!534816841408d/15592524165970776d2/472511843744832d3/15752578662816d4/945181720704d5/945

163488d6/5160032d7/15212288d8117408d9210240d1012048d111~24907672d/28352758008d2/21

17215056d3/189260160d4/9210880d5/317040d6262720d7/3118432d825120d9!g1~2296608d/135

1335248d2/452334912d3/4516848d4/916336d529088d6112800d7/3!g21~2194296d/675110136d2/9

242944d3/4518384d4/9220288d5/15!g31~221428d/94515216d2/105142808d3/315!g424424dg5/2025,

a~12!5725650999576d/9355528606219416468d2/467775170193974864d3/4725259857682608d4/14175

2155226272d5/9451141207488d6/9451964352d7/451639488d8/45237376d91131072d10/3222528d11

14096d121~2725156688d/1417521729808848d2/472519032704d3/63161005472d4/945276544d5/3

2168256d6/15190880d7/3262464d8146080d9211264d10!g1~260878036d/94517590664d2/63

257632d3214176d4/322048d5/3173088d6/3284224d7/3110752d8!g21~216040384d/2025

1875336d2/7529056d3/92555968d4/13514736d52189056d6/45!g31~2452486d/945128136d2/63
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11720d3/21138288d4/63!g41~2159772d/141752103028d2/4725!g5121844g6/467775,

a~13!52101173799246512d/6081075136124101224d2/4952505539278768d3/4455132185348288d4/405

29929337632d5/405184744704d6/45134897408d7/1351498176d8/151749056d9/152323584d10/3

1321536d11/3249152d1218192d131~269633682816d/155925110036192528d2/472522017736432d3/675

11350886592d4/94521954496d5/632346496d6/52599296d7/151112640d82178176d91112640d10

224576d11!g1~1070048188d/8505292423872d2/1891344865872d3/56727248256d4/27183872d5/9

250560d6/31778240d7/9281920d8179360d9/3!g21~184118848d/14175238050432d2/675

140513696d3/67521087424d4/135216896d51293632d6/152555008d7/45!g31~3279508d/4725

21090192d2/3151119432d3/452152896d4/3151249248d5/105!g41~1383464d/425252145448d2/1575

22076064d3/14175!g51648838dg6/467775,

a~14!5236601976116480328d/42567525196351271002572056d2/4256752527671835495928d3/3465

13368622438448d4/346524089856928d5/2721908373568d6/135190820096d7/27184656128d8/189

137376d91501760d10/32299008d111258048d122106496d13116384d141~21451301999152d/93555

1369215823568d2/103952116952256976d3/472516293255824d4/28351319012352d5/105241765888d6/135

27246336d7/4522262784d8/151381952d921469440d10/31270336d11253248d12!g

1~225719111936d/42525233296731292d2/283517915472312d3/94524812590576d4/283522892608d5/9

12723456d6/452927872d7/91862208d8/32228864d91191488d10/3!g21~1481160748d/2835

2948937792d2/945111962288d3/2512463856d4/4521012288d5/4523012224d6/4513213056d7/45

2173312d8/5!g31~389940176d/141752305236d2/711720576d3/315110660112d4/9452106784d5/21

1378944d6/45!g41~7282228d/850522396708d2/283521846976d3/472522198192d4/2835!g5

1~4960766d/4677751541172d2/31185!g62929569g7/42567525,

a~15!51128557014030391416d/63851287521763884756260386792d2/212837625

13040840729149634352d3/2128376252265094921468288d4/222751113612045240512d5/22275

2177949117568d6/1751204767502592d7/472511901840384d8/315127362304d9/352182272d10/9

123953408d11/452802816d1211835008d13/32229376d14132768d151~202347598493024d/6081075

2783024258928d2/445511305217209808d3/4455216351895296d4/811757177792d5/15121175040d6/9

226821120d7/2724818944d8/152562176d913639296d10/321306624d111638976d122114688d13!g

1~24705032378496d/4677751617317145056d2/141752908914247744d3/141751113567361632d4/2835

28872017088d5/94523834752d6/1512195200d7/921404928d8/31905216d921853440d10/3

1151552d11!g21~2112565946616d/127575111667913352d2/2835247600235008d3/85051204780128d4/81

2793664d5/272251008d6/926844928d7/2713586048d8/152846848d9/9!g31~23452242096d/99225

1955580368d2/472521165450912d3/4725141096288d4/94511537472d5/352433024d6/15

11751296d7/63!g41~2252009256d/212625120746568d2/2835283177264d3/141752474176d4/567

216538048d5/4725!g51~252442296d/1403325118472712d2/155925165701616d3/467775!g6

235397196dg7/42567525.
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APPENDIX F: SERIES EXPANSION OF THE STRUCTURE FACTOR OF THE RFIM IN GENERAL DIMENSION.
BIMODAL DISTRIBUTION OF THE RANDOM FIELD

a~0!51,

a~1!52 d,

a~2!522 d14 d2,

a~3!54 d/328 d218 d3,

a~4!510d/3116d2/3224d3116d4,

a~5!52116d/15116d2124d3264d4132d522 dg2,

a~6!522224d/4511748d2/45116d31272d4/32160d5164d61~6 d212d2!g2,

a~7!542008d/31521856d2/513248d3/15264d4/31896d5/32384d61128d71~216d/3140d2248d3!g2

18 dg3/3,

a~8!5108410d/632848984d2/31513096d3/511616d4/52224d51896d62896d71256d81~244d28 d21192d3

2160d4!g21~212d124d2!g3,

a~9!5212453836d/283512828312d2/18922916680d3/189139200d4/914928d5/921024d617552d7/322048d8

1512d91~1196d/152248d22144d31768d42480d5!g21~64d/92256d2/31128d3!g3212dg4/5,

a~10!521362578344d/1417512767426988d2/14175235302448d3/31514622224d4/945122208d5/316336d6/5

211264d7/3120224d8/324608d911024d101~6528d/527996d2/5272d323104d4/312720d5

21344d6!g21~520d/32296d2/32496d311600d4/3!g31~76d/52152d2/5!g4,

a~11!534816841408d/15592524165970776d2/472511843744832d3/15752578662816d4/945181720704d5/945

163488d6/5160032d7/15212288d8117408d9210240d1012048d111~2832112d/31519424d2

239136d3/51960d425184d518832d623584d7!g21~29104d/4512768d2/322432d411920d5!g3

1~212d/51112d221048d3/5!g411696dg5/945,

a~12!5725650999576d/9355528606219416468d2/467775170193974864d3/4725259857682608d4/14175

2155226272d5/9451141207488d6/9451964352d7/451639488d8/45237376d91131072d10/3222528d11

14096d121~27366504d/105113240832d2/1052252448d3/527968d416336d5221504d6126880d7

29216d8!g21~2307424d/451458368d2/4521408d3121824d4/9231040d5/316272d6!g31~25942d/15

16376d2/1513672d3/521072d4!g41~24804d/31519608d2/315!g5,

a~13!52101173799246512d/6081075136124101224d2/4952505539278768d3/4455132185348288d4/405

29929337632d5/405184744704d6/45134897408d7/1351498176d8/151749056d9/152323584d10/3

1321536d11/3249152d1218192d131~398195516d/28352107290336d2/189143382704d3/632262144d4

218656d5/3131360d62237568d7/3177824d8223040d9!g21~9376448d/9452660992d2/151692288d3/15

228288d4/3154272d5/3239424d6157344d7/3!g31~3892d/2528848d2/515096d3/5121568d4/5

24576d5!g41~216672d/28352108512d2/945183456d3/315!g5217014dg6/14175,

a~14!5236601976116480328d/42567525196351271002572056d2/4256752527671835495928d3/3465

13368622438448d4/346524089856928d5/2721908373568d6/135190820096d7/27184656128d8/189
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137376d91501760d10/32299008d111258048d122106496d13116384d141~26593877264d/4725

258032139468d2/472512627465896d3/31521272505648d4/94521079296d5/3246336d6/51136064d7

2268288d81216576d9256320d10!g21~9393008d/21291481872d2/10516603712d3/15114112d4

240640d5193312d62137984d7155296d8!g31~4670192d/22528153644d2/225156288d3/5232464d4/15

121984d5286464d6/5!g41~125936d/1892890672d2/9452245792d3/3151309376d4/189/!g51~6926d/525

213852d2/525!g6,

a~15!51128557014030391416d/63851287521763884756260386792d2/212837625

13040840729149634352d3/2128376252265094921468288d4/222751113612045240512d5/22275

2177949117568d6/1751204767502592d7/472511901840384d8/315127362304d9/352182272d10/9

123953408d11/452802816d1211835008d13/32229376d14132768d151~21684400264192d/155925

145522424432d2/945237204302784d3/52512676379040d4/6322699020096d5/31522390144d6/5

21062656d7/151536576d82854016d91583680d102135168d11!g21~25972743664d/8505

11845713200d2/5672838117568d3/189118411200d4/92824960d5/92530176d6/313625984d7/9

21355776d8/31153600d9!g31~28583584d/52511641296d2/1523762336d3/251154336d4/3

2535232d5/151492672d6/52299264d7/5!g41~4701152d/1417511998496d2/945264576d3/21

21673984d4/3151516352d5/63!g51~574528d/425251285592d2/283521334992d3/4725!g6

17736dg7/10395.
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