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We have obtained the volume term and effective pair potentials for liquid transition metals using the
embedded-atom method~EAM!. The EAM embedding functions are fitted to bulk solid-state properties: the
experimental Voigt average bulk and shear moduli and sublimation energies. The same fitting procedure is used
for all the transition metals. This potential is used in conjunction with the variational modified hypernetted
chain ~VMHNC! theory of liquids to compute the static structure factors, Helmholtz free energies, internal
energies, and entropies of the 3d, 4d, and 5d liquid transition metals. There is overall good qualitative
agreement with experiment. The computed thermodynamic properties exhibit trends in accordance with ex-
periment. They also exhibit the correct behavior as a function of temperature. But the calculations also reveal
shortcomings in the interatomic potential.

I. INTRODUCTION

This paper presents a detailed study of the structure and
thermodynamic properties of liquid transition metals. We
show below that a volume term in the energy plus effective
pair potentials obtained from the embedded atom method1,2

~EAM! combined with an accurate theory of liquids, the
variational modified hypernetted chain theory3,4 ~VMHNC!
provide a sound basis for the prediction of both liquid struc-
ture and thermodynamic properties.

Recent theoretical work on liquid transition metals used
the effective pair potentials of Wills and Harrison5 ~WH!,
which are based on a separate treatment of thes-p and d
states and, in addition, take account of the effect ofs-d hy-
bridization. The use of the WH potential, in conjunction with
thermodynamic perturbation theories to describe liquid struc-
ture, led to promising results.6,7 However, when the full WH
potential is used together with accurate liquid-state
theories,8,9 it fails to produce results for the structure factor
S(q) of the 3d transition metals with half- and less-than-
half-filled d bands. Moreover, molecular dynamics~MD!
simulations9 using the WH potentials fail to produce reason-
able results for the structure of liquids Ti and V.

It has been suggested9 that the difficulties encountered
with the use of the WH potential are because of the position
and very deep first minimum of its potential well~which is
larger than the thermal energy!. These deficiencies have been
attributed to the crudeness of the WH treatment ofs-d hy-
bridization as well as the neglect of multiple-ion potentials.
Yet, potentials recently developed, using the generalized
pseudopotential theory10 ~GPT!, which include multiple-ion
contributions, encounter similar difficulties in liquid-state
calculations.11 A thorough MD study of molybdenum12

shows that, using Moriarty’s potential, the system melts at

Tm53528 K, whereas the experimental melting temperature
is Tm52883 K. Actually these multiple-ion interatomic po-
tentials obtained from first-principles GPT have potential
wells that are even deeper and placed at smaller values ofr
than the WH potentials.

Progress along the lines pioneered by Wills and Harrison
was made by developing a new simple effective pair interac-
tion for the liquid transition metals, which, following WH,
used a local form constructed by the superposition of thes-p
and d states, but with the latter deduced from an inverse
scattering approach.13 The results for the liquid structure fac-
tors, obtained using this potential, in conjunction with the
VMHNC theory of liquids,14 agree reasonably well with the
experimental x-ray diffraction for the 3d series.15 However,
when the same approach was used to calculate the thermo-
dynamic properties of the 3d liquid transition metals, the
results did not show the experimental trends.16 This result is
not unexpected, as it has long been suggested that potentials
derived from local pseudopotentials are not capable of pre-
dicting the energetics of liquid transition metals.17

A recent study of the structure of the 3d liquid transition
metals18 in which the effective pair potential has been ob-
tained by using the tight-binding cluster Bethe lattice method
where the role of thes-p electrons, including hybridization,
is treated self-consistently. The results of using this approach
for the liquid structure and electronic density of states are
promising. However, it remains to be seen whether it can
also account for the experimental trends of thermodynamic
properties and also give a satisfactory account of the proper-
ties of the 4d and 5d rows of the liquid transition metals.

A combined study of both the structure and thermody-
namic properties of the liquid transition metals has to over-
come the difficulties indicated above, and we use interatomic
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potentials derived from the EAM for these purposes. This
model stems from the density-functional-based quasiatom
model,19 in which the band structure and, in particular, thed
bands do not appear explicitly, and which also includes
multiple-ion interactions. Its possible use for the study of
liquid transition metals was suggested in the conclusion of
the first, albeit crude, detailed study of their thermodynamic
properties.20 Foiles21 was the first to have done so in a paper
where he presented MD results for the liquid structure of the
late transition and noble metals, which are in good agree-
ment with the experimental data.

There are a number of other papers that have also used
EAM potentials in MD simulations of, mainly, the liquid
structure of a number of transition metals,22–25 except for
one, which studies the thermodynamic properties of the late
3d series.26 However, to the best of our knowledge, the work
presented below is the first systematic study that encom-
passes both the structure and thermodynamics ofall the tran-
sition metals in their liquid state near melting.

Our approach is based on the premise that, given the isot-
ropy and homogeneity of the liquid state, we can use the
same parametrization for all the transition metals, irrespec-
tive of the series they are in or their parent crystallographic
solid-state structure. A systematic prescription is then used
for the determination of approximate pair potentials from the
EAM. It is these pair potentials that are used in conjunction
with the VMHNC liquid-state theory to predict both the liq-
uid structure and thermodynamic properties. We note that
once the EAM parameters have been determined from solid-
state properties, the ensuing theory is free from adjustable
parameters.

The layout of the paper is as follows. In the next section
we present in outline the fundamentals of the EAM, the pre-
scription for the determination of the pair potentials, and the
parametrization procedure used in this work. We also present
in outline the VMHNC theory and the thermodynamic rela-
tions needed in this work. In Sec. III we present the results
for the liquid structure. Then we present the results for the
thermodynamic properties~Helmholtz free energy, internal
energy, and entropy! of the 3d, 4d, and 5d liquid transition
metals near melting. We complete the paper, in Sec. IV, with
a brief discussion of our results.

II. THEORY

A. Effective pair potential approximation
from the embedded-atom method

In the EAM the energy of the metal is viewed as the
energy to embed an atom into the local electron density pro-
vided by the remaining atoms of the system. In addition,
there is a short-range core-core repulsion term. Whence the
total energy of the system is written as

E5(
i
Fi@rH~r i !#1

1

2 (
iÞ j

f~r i j !. ~1!

In this expressionFi is the embedding energy for placing an
atom into the host electron densityrH at the positionr i ; f is
a short-range doubly screened repulsive pair interaction be-
tween quasiatomsi and j separated by a distance
r i j5ur i2r j u.

The host electron density is approximated by the linear
superposition of atomic electron densities,27

rH~r i !5(
jÞ i

r j
a~r i j !, ~2!

wherer j
a is the atomic density of atomj at distancer i j from

the nucleus.
We follow Foiles21 procedure for obtaining effective pair

interactions from the EAM. This is briefly described below.
The embedding functionF~r! is replaced with a Taylor-

series expansion about the average host densityr̄, where the
electron density at sitei is written as

rH,i5 r̄1(
jÞ i

@r j
a~r i j !2d#, ~3!

d5r̄/N21, andN is the number of atoms in the system.
Expanding to second order, the EAM energy is approximated
by

E5NE~ r̄ !1
1

2 (
iÞ j

v~r i j !, ~4!

where

E~ r̄ !5F~ r̄ !2 r̄F8~ r̄ !, ~5!

and

v~r !5f~r !12F8~ r̄ !ra~r !1F9~ r̄ !@ra~r !#2 ~6!

defines the effective pair interaction used in this work. In the
above equationsF8( r̄) andF9( r̄) denote the first two deriva-
tives of the embedding energy evaluated atr̄.

We follow Foiles21 in approximatingr̄ by the average
electron density for a crystal with a lattice constant that
matches the liquid densityn. In the case of hcp crystals, we
use the relationc/a5k to obtain the atomic volume in terms
of eithera or c, with k taken from experiment.

In the EAM there are three functions to be specified,
namely, the embedding energy as a function of the local
electron density, the atomic electron density of each atom,
and the screened electrostatic repulsion between the quasia-
toms. It has been shown that, within the quasiatom approach,
the rare-gas atoms have their lowest energies in a back-
ground of vanishing charge density and that the energies are
linear in the density, while the chemically active elements
have a linear region at high densities and a single minimum
at lower densities.28Whence, we follow Daw and Baskes1 in
assuming that the embedding functionF~r! is zero for zero
density and decreases to a single minimum at a value ofr,
which is slightly larger than the average electron density of
the solid in equilibrium. The embedding functions are then
determined by choosing functional forms meeting these gen-
eral requirements and by adjusting them by fitting to some
thermodynamic properties in the solid as discussed in Sec.
III.

Turning now to our choice of the functional form ofr(r ),
we have found that electron densities obtained from Hartree-
Fock calculations are unsatisfactory for the bcc transition
metals. Adams and Foiles22 reported similar difficulties and
found the approach of Voter and Chen,29 which we adopt in
this work in its original form, more convenient for the study
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of bcc transition metals. In this approach the contribution of
each quasiatom to the total electron density is written as

r~r !5r 6@exp~2br !1512 exp~22br !#, ~7!

whereb is an adjustable parameter.
For the doubly screened electrostatic pair interactionf(r )

we choose the Born-Meyer function

f~r !5A exp~2ar !, ~8!

whereA anda are adjustable parameters. Several fitting pro-
cedures have been proposed in the literature for solid-state
calculations, some more appropriate than others for a given
crystalline structure. In this work, for the purposes of liquid-
state calculations, the same procedure is applied to the three
series of transition metals, irrespective of their parent crys-
tallographic structure, which, given the isotropy of the liquid
state, is a reasonable assumption. We lay no claim, however,
to the appropriateness of the potentials for the calculation of
solid-state properties. In fact, the embedding function has the
wrong curvature for the calculation of the solid-state proper-
ties in three cases, as we indicate in Sec. III.

B. The VMHNC theory of liquids

The variational modified hypernetted chain~VMHNC!
theory of liquids3,4 pertains to a new generation of fairly
accurate integral-equation theories of liquids. The suitability
of the VMHNC for the specific case of liquid metals has
been discussed elsewhere.30,31Like most liquid-state theories
the VMHNC solves the Ornstein-Zernike~OZ! equation,32

which relates the direct correlation functionc(r ) to the pair
distribution g(r ), within an approximate closure. The ap-
proximation is carried out at the level of the bridge function
B(r ). Specifically, we use the analytic solution of the Percus-
Yevick ~PY! equation for hard spheres,32 B(r )5BPY

HS~r ;h!,
where the packing fractionh5h(n;T) is the variational pa-
rameter, determined for each thermodynamic state by mini-
mizing the VMHNC configurational Helmholtz free energy,
f VMHNC(T,n;h).3,4 The value ofh5h(n;T) thus obtained is
used to evaluate the bridge function which, in turn, is used to
solve the OZ equation to calculateg(r ), the structure factor
S(q) and the thermodynamic properties. The Helmholtz free
energy per atom,F, can be written as

F5F ideal1E~n!1kBT f
VMHNC, ~9!

TABLE I. Input thermodynamic data: ionic number densityn and temperatureT. EAM parametersA,
a, andb and cutoff distancesr cut used in the determination of the effective pair interaction of liquid transition
metals.

Metal n ~Å23! T ~K! A ~103 eV! a ~Å21! b ~Å21! r cut ~Å!

Sc 0.0391 1833 0.2 1.96 2.5 5.522

Ti 0.0522 1973 0.4 2.50 2.5 4.916

V 0.0634 2173 0.4 2.49 3.0 4.650

Cr 0.0726 2173 100 5.22 2.5 4.424

Mn 0.0654 1533 0.3 2.35 2.5 4.737

Fe 0.0756 1833 0.2 2.20 3.0 4.410

Co 0.0787 1823 3 3.90 2.5 4.213

Ni 0.0792 1773 3 3.80 2.5 4.645

Cu 0.0755 1423 3 3.80 2.5 4.763

Y 0.0287 1825 0.5 2.12 2.5 6.061

Zr 0.0392 2173 1.0 2.65 2.5 5.391

Nb 0.0493 2741 15.0 4.05 2.5 5.070

Mo 0.0586 2890 15.0 3.89 2.5 4.839

Tc 0.0540 2445 15.0 3.96 2.5 4.584

Ru 0.0649 2583 20.0 4.07 2.5 4.509

Rh 0.0594 1853 15.0 3.95 2.5 5.014

Pd 0.0594 1853 8.5 3.95 2.5 5.133

Ag 0.0518 1273 5.0 3.80 2.5 5.397

La 0.0258 1243 0.05 1.32 2.5 6.291

Hf 0.0405 2500 2.0 2.83 2.5 5.312

Ta 0.0499 3269 15.0 3.87 2.5 5.070

W 0.0580 3683 9.0 3.55 2.5 4.855

Re 0.0611 3453 10.0 3.65 2.5 4.628

Os 0.0636 3318 15.0 3.83 2.5 4.556

Ir 0.0607 2683 50.0 4.33 2.5 5.067

Pt 0.0577 2053 20.0 4.27 2.5 5.172

Au 0.0526 1423 5.0 3.70 2.5 5.384
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whereF ideal is the ideal gas contribution andE(n) is given
by Eq. ~5!. The internal energy per atomU is given by

U5
3

2
kBT1E~n!12pnE

0

`

dr g~r !v~r !, ~10!

and the entropyS is written in terms ofF andU through the
thermodynamic relationF5U2TS.

III. RESULTS

A. Fitting procedure

We fitted the EAM functions to basic solid-state bulk
properties, namely, the Voigt average bulk^B&V and shear
^G&V moduli and the sublimation energyES as functions of
the lattice parametera ~and of thec/a ratio in the case of the
hcp metals!. A similar fitting procedure was used by Oh and
Johnson33 in their EAM calculations for the fcc and hcp tran-
sition metals.

Cubic splines34 were used to fit the embedding energies
F~r! with the curvatures set to zero at the end points. The
parametersb of r(r ), A anda of f(r ), and the spline knots
of F~r! were determined by searching for parameters, which
minimized the difference between calculated and experimen-
tal values.35 Since the calculation of̂B&V , ^G&V , andES
require the knowledge of all the three functionsr(r ), F~r!,
andf(r ) a number of sets of parametersA, a, andb and
spline knots were found to give comparable fits to the ex-
perimental values. Following Adams and Foiles,22 we chose
the set of parameters that gave the best value for the Helm-
holtz free energy. We call this choice the optimum set of
parameters. These values ofA, a, andb are given in Table I.
A table of values of the spline knots is available on request.

There appear to be no clear trends in the optimum set of
parameters. Whereas the parameterb has the same value 2.5
Å21 for all the transition metals, except for Fe, the param-
eters of the Born-Meyer potential exhibit large variations.
We note, however, that the embedding function can only be
determined up to a linear function ofr. Hence, different
looking sets of EAM functions may yield a similar energet-

ics, and, rather than comparing the different embedding func-
tions and pair interactions obtained by different choices of
the parameters, it is preferable to compare the resulting ef-
fective interactions.36

The embedding energies for the three representative cases
of V, Co, and Ni, which have bcc, hcp, and fcc structures,
respectively, are shown in Fig. 1. There is, however, a seri-
ous difficulty in the cases of the three cubic metals for which
the elastic constantsC12,C44, namely Cr, Rh, and Ir, which
we have not been able to overcome. Our fitting procedure
yields F9,0 at the equilibrium electron density, which is
contrary to the results of first-principles calculations.28 We
disregard this potential problem and plump for consistency
by using the same fitting procedure for the whole set of liq-
uid transition metals.

We assume that the effective interactions are significant
only for the first three nearest-neighbor shells and cut off
both r(r ) andf(r ) at the valuer cut, half way between the
third- and fourth-nearest neighbors for all the transition met-
als ~see Table I!. We have adopted the same cutoff procedure
as in Ref. 22, as it ensures the gradual cutoff of these func-
tions. However, the choice of cutoff procedure affects the
behavior of these functions, particularly at the nearest-
neighbor sites, where the first two derivatives are important.
Figure 2 shows that the same functionr(r ), with the same
value of the adjustable parameterb, results in somewhat dif-
ferent shapes of the function for different values ofr cut.
Hence, the specific choice we have adopted plays a signifi-
cant role in the results presented below. The effective pair
potentials obtained by using the above cutoff procedure for
liquids V, Co, and Ni are shown in Fig. 3. Once the above
parametrization has been carried out, the ensuing body of
theory for the calculation of liquid-state properties is param-
eter free.

B. Liquid structure

We present below the results for the calculations of the
liquid structureS(q) of the transition metals. These were

FIG. 1. Embedding energy functionsF~r! as a function of the
electron densityr. The energies are scaled by the sublimation en-
ergy and the density by the equilibrium density. Full line: V; dot-
ted line: Co; broken line: Ni.

FIG. 2. Effect of the cutoff distancer cut on the quasielectron
densityr(r ). In all casesb52.5 Å. Broken line: no cutoff; full line:
r cut54.0 Å; dotted line:r cut54.74 Å.

53 639STRUCTURE AND THERMODYNAMIC PROPERTIES OF LIQUID . . .



carried out, within the VMHNC, using Gillan’s algorithm.37

In all cases we used a 1024-point grid with step sizeDr
50.06 Å. The input thermodynamic data used in our calcu-
lations are included in Table I.

Since the optimum set of parameters were chosen to give
the best possible values for the Helmholtz free energy, there
is no reason that these will result in a similarly good fit to the
structure factor. It was therefore reassuring to find, as shown
in Fig. 4 for Pd, that the choice of different sets ofA, a, and
b and spline knots has little effect on the liquid structure; the

positions of the successive maxima remain almost un-
changed, but there are small variations in their heights for
different sets.

Our choice of the optimum set of parameters and the cut-
off procedure for bothr(r ) andf(r ) have implications for
the results ofS(q). Waseda and Tamaki45 noted that the ex-
perimental data for the 3d series suggested a hardening of
the repulsive effective potential cores, which they attributed
to the filling of the 3d band. This, in turn, should be reflected
as a trend in the parametersA anda, which is not present in
our case and will affect the behavior of the oscillations be-
yond the principal peak ofS(q). The asymptotic behavior of
the potential is reflected in the smallq behavior of the liquid
structure. The cutoff procedure implies an effective interac-
tion of finite range@strictly v(r )50 for a distanceR.r #,
which probably underestimates the actual range of the inter-
action in transition metals and effectively determinesS(q) at
small values of momentum transfer.

Figure 5 presents the results of the calculatedS(q) for
those liquid transition metals for which experimental data are
available.15 Figure 5~a! shows the results for the 3d series,
while Fig. 5~b! shows the results for the 4d and 5d series. In
general, we find there is overall good qualitative agreement
between calculated and experimental results. At a more de-
tailed level, however, the following comments are in order.

The calculatedS(q) for the early 3d transition metals, Sc,
Ti, and V, are rather poor when compared with experiment.
The calculatedS(q) for Sc exhibits a shift towards smaller
q’s, while for the other two the shift is towards the largerq’s.
The heights of the successive peaks are only in moderate
agreement with experiment, with Ti the worst case. Yet, with
the exception of the results in Ref. 18, which uses three
liquid structure adjustable parameters, our results are of com-
parable lack of quality as other calculations or simulations
reported in the literature. Waseda noted that, of his set of
experimental x-ray data ofS(q) for the 3d liquid transition
metals, those for Ti and V are the least accurate.15 We sug-
gest there is a case for carrying out another set of experi-
ments for liquids Ti and V.

With the exceptions of Pd, Ag, and Pt, where the calcu-
lated structure is in very good agreement with experiment,
the calculations tend to overestimate the height of the prin-
cipal peak ofS(q). Since the height and position of this peak
is the result of a delicate balance between the repulsive and
attractive contributions to the effective pair potential, this
difference may be because of either the approximate theory
of liquids VMHNC used in this work or the potential or to
the combined effects of both. MD simulations using differ-
ent EAM parametrizations show that these effective poten-
tials tend to overestimate the height of the principal peak of
S(q),21,25 whereas there is excellent agreement between the
MD simulations and our VMHNC results. This suggests that
the differences are mainly because of the effective potentials.

The overall qualititative agreement between the calculated
and observedS(q) discussed above, suggest that the liquid
structures we calculated for those cases for which there is no
experimental data may be be used with some degree of con-
fidence. TheseS(q), in tabular or graphic form, are available
on request.

FIG. 3. EAM effective pair potentials. Full line: V; dotted line:
Co; broken line: Ni.

FIG. 4. Effect of the EAM parametrization on the liquid struc-
ture S(q) of Pd. In all cases the cutoff distance isr cut55.1333
Å. Full line: A58500 eV; a54.0 Å21; b52.45
Å21. Dash-dotted line: A510 000 eV; a54.0 Å21; b52.45
Å21. Dotted line: A55000 eV;a53.8 Å21. ~The correspond-
ing embedding energy functions are available on request.! Black
circles represent the experimental data~Ref. 15!.
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C. Thermodynamic properties

We now turn to the thermodynamic properties. A good
theory of the liquid transition metals must be able to repro-
duce the well-established trends present in these properties.
This is particularly so because the thermodynamic properties
include, in addition to the effective pair potential, the impor-
tant volume term contribution,E( r̄), to E.

The results of our calculations of the Helmholtz free en-
ergy per atom, in eV, are presented in Fig. 6; 6~a! for the 3d,
6~b! for the 4d, and 6~c! for the 5d, respectively. These are
compared to the corresponding experimental data.38 The ex-
cellent agreement between the two is not unexpected, given
our choice of the optimum set of parameters. We must em-
phasize, however, that we have not fitted the parameters to
the Helmholtz free energy. As stated in Sec. III A, out of the
possible set of parameters and spline knots we have chosen
the set that best reproduces the Helmholtz free energy. This
choice of the optimum set of parameters, however, does not
guarantee that the values obtained for the free energy will
necessarily produce such an excellent agreement as shown in
Fig. 6. Moreover, it appears that this is the main reason our
calculations work in the liquid state. The results shown in
this figure are made up of contributions of the volume term,
which includeE(n) and the ideal gas contribution, and the
structure-dependent terms. We note, see Table II, that the
largest contribution toF comes fromE(n), which ranges
from about 51% in Pd to 86% in Ti. The structure-dependent
terms include contributions from bothS(q) @or g(r )# and the
potentialv(r ). Hence, there are large cancellations between
F ideal and the structure-dependent contributions toF. There
is also subtle cancellation of errors arising from the use of
finite range potentials and imperfections in theS(q) obtained
in our calculations and discussed in Sec. III B. UnlikeS(q),
the results forF are sensitive to the choice of parameters
that, in the specific case of Cr~taking A51000 eV;a53.0
Å21; b52.8 Å21!, changes the value ofF by about 15%.

Figure 7 shows the free energy per atom of liquid V as a
function of temperature. The agreement between theory and
experiment38 is very good except near the boiling point,
where the system has probably already undergone the metal-
nonmetal transition. These results cover a range of over 700
K and are predictions of our theory using only the thermo-
dynamic state as input data. We also note that our results are
in agreement with the Monte Carlo simulations of LeSar,
Najafabadi, and Srolovitz.26

We have also calculated the internal energyU for V from
the temperature derivative ofF and also, independently, by
using Eq.~10!. We find, for instance, thatU at 2300 K is
24.57 eV, whereas the value obtained by using Eq.~10! at
the same temperature is24.50 eV. This reflects the internal
consistency of our calculations.

The results of our calculations for the internal energy per
atom U and the entropy per atomS are shown in Fig.
8: 8~a! for the 3d, 8~b! for the 4d, and 8~c! for the 5d rows
near the melting points.U is evaluated by using Eq.~10!
with the optimum set of EAM parameters and the thermody-
namic state (T,n) as input data. Since there is no closed
expression forS, this property is evaluated via the thermo-
dynamic relation given at the end of Sec. II B.

The calculated values ofU follow the experimental trends
reasonably well,38,39but there are pronounced differences be-

FIG. 5. Static structure factors of the liquid transition metals
near melting~Table I!. Solid lines: this work; full circles, triangles,
and squares: experimental data~Ref. 15!. ~a! 3d row; ~b! 4d and 5d
rows. From bottom to top: Zr, Pd, Ag, La, Pt, and Au.
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tween theory and experiment, particularly around the middle
of the rows, where the effects of electron correlation on co-
hesion are believed to be important.40As in the case ofF the
main contribution comes fromE(n). The contributions due
to the correlations between the atoms@last term in Eq.~10!#
is typically around20.5 eV or less, whereas the kinetic en-
ergy contribution ranges from about 0.16 eV for La to 0.48
eV for W. Although one of the fitting parameters is the sub-
limation energyES , the difference betweenU andES is, in

all cases, larger than the kinetic energy. Given the cancella-
tion, which takes place between the kinetic energy and cor-
relation contributions, there is noa priori reason to expect
the reasonable agreement between theory and experiment
shown in Fig. 8. The atom-atom correlation contribution is
probably the most important term in deciding whether there
is a good agreement between theory and experiment. How-
ever, great care has to be exercised in the interpretation of
results. The agreement between calculated and experimental
values ofU for V and Pd is quite good. Yet only for Pd do
we find a very good agreement between calculated and ex-
perimentalS(q). This points to subtle cancellation of errors
between the contribution of the potential and the structure.
To clarify this point, we have compared our results for the
internal energy with those obtained for some metals from
MD simulations; this is shown in Fig. 9. The simulations use
different EAM parametrizations and also include the
multiple-atom contributions to the interatomic potentials.
Yet, our VMHNC results are in good agreement with, and are
bracketed by, the simulation results. Both exhibit similar dis-

FIG. 6. Helmholtz free energies per atom of the three rows of
liquid transition metals. Dots: this work; triangles: experimental
values~Ref. 38!. The solid line joining the dots and broken lines
joining the triangles are a guide to the eye.~a! 3d series;~b! 4d
series;~c! 5d series.

TABLE II. The structure-independent part of the total energy
E(n) and the Helmholtz free energyF for liquid transition metals
~three taken from each series, which have hcp, bcc, and fcc struc-
tures in the solid phase!.

Series System F/eV E(n)/eV

3d Ti 26.116 25.247

Cr 25.341 23.212

Ni 25.470 23.806

4d Zr 27.893 26.332

Mo 28.863 27.344

Pd 25.104 22.590

5d Hf 28.403 26.626

W 211.726 29.388

Pt 27.278 24.169

FIG. 7. Temperature dependence of the Helmholtz free energy
of liquid vanadium. Dots joined by full lines: this work; triangles
joined by broken lines: experiment~Ref. 38!.
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crepancies with experiment. We conclude that the differences
between theory and experiment are likely to be because of
the EAM effective potential.

Turning now to the results for the entropy per atom, in
units of kB , we note that while the calculated values follow
roughly the trends of the experimental values39 across the

series, the former are generally too small, in some case by as
much as 2kB . Normally results are presented in terms of the
excess entropy,SE5S2Sideal, but in our case usingS has
helped us to analyze the trends discussed below, and we
decided to present our results in this way. This has allowed
us to compare our results to those in Refs. 41 and 42 directly
~see below!. The calculatedSE is normally flatter compared
to the experimental results. For the 3d series, the2SE cal-
culated values vary from 2.8 for V to 3.9 for Mn, whereas the
experimental values vary from 1.6 for Mn to 3.4 for Cu. We
also note that for Pd there is also a difference between the
calculated and experimentalS even though we find excellent
agreement for bothF andU. However, the differences be-
tween the calculated and experimental values do not depend
strongly on temperature, as illustrated in Fig. 10 for vana-
dium. Hence, our results will predict reasonably good values

FIG. 8. Internal energies and entropies per atom of the three
rows of liquid transition metals. Dots: this work~full dots: internal
energy; empty dots: entropy!; triangles: experimental data@full tri-
angles: internal energy~Refs. 38 and 39!; empty triangles: entropy
~Ref. 39!#. The solid lines joining the dots and broken lines joining
the triangles are a guide to the eye.~a! 3d series;~b! 4d series;~c!
5d series.

FIG. 9. Comparison between the internal energies calculated in
this work and those obtained from ML simulations for a few tran-
sition elements. In all cases the EAM has been used. Triangles and
full lines: this work; circles and broken lines: Ref. 21; crosses and
dash-dotted lines: Ref. 25.

FIG. 10. Same caption as Fig. 7 but for the entropy per atom.
The experimental data shown are taken from Ref. 39.
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for the heat capacity at constant pressureCP . In fact we have
estimated that for V, atT52350 K,CP>7.6 cal K21 mol21,
whereas the experimental value is 9.7 cal K21 mol21. We
argue below that, at least in part, the differences between the
calculated and experimental values of the entropy are be-
cause we ignore the electronic contribution to the entropy.
Our argument has to be moderated by the fact that, in some
cases, such as Ni in the 3d series considered below, the
magnitude of the difference between calculated and experi-
mental entropies is larger thanSE.

Mayer, Stott, and Young41 ~MSY! and Itami and Shimoji42

~IS! have shown that the electronic contribution to the en-
tropy,Sel , of liquid transition metals is not negligible.Sel is
proportional to the density of the extended electron states at
the Fermi level, and both MSY and IS made estimates of the
contributions ofSel to the total entropy of the 3d row. These
values are shown in Table III. We note that the deficits in our
calculated entropies, which are also shown in Table III, are
bracketed between the IS and MSY results. Recent calcula-
tions of the density of states of Mn, Fe, Co, and Ni,18,43

which are in good agreement with those deduced from the
experimental data,44 give values ofSel nearer to IS. More-
over, revisiting the temperature dependence of the entropy
deficit for V, illustrated in Fig. 10, we observe thatDS}T,
which is in accord with the interpretation ofDS as the elec-
tronic contribution to the entropy, ignored in our calcula-
tions. The results in Fig. 10 are consistent with the density of
states at the Fermi level'20 electrons/atom Ry.

IV. DISCUSSION AND CONCLUSIONS

The results presented in the preceding section are in rea-
sonably good qualitative agreement with the experimental
structures, free and internal energies, and entropies of the
three series of the liquid transition metals. The calculations
were carried out using EAM-derived effective pair potentials
with parameters fitted to solid-state data together with the

VMHNC theory of liquids, in a formalism otherwise free of
adjustable parameters. The EAM parametrization we have
adopted in this work has some problems; these were dis-
cussed in Sec. III A. However, even if there were no prob-
lems, parametrizing to solid-state data does not guarantee
good effective pair potentials for the liquid state. For in-
stance, the careful parametrization procedure used in Ref. 22,
predicts an amorphous rather than liquid structure for vana-
dium in the liquid state near melting. Ideally we would wish
to produce a theory that gives effective potentials capable of
predicting with reasonable accuracy both solid- and liquid-
state properties. Unfortunately we have not reached this level
of understanding of transition metals. Whereas solid-state
properties are calculated with reference to the bottom of the
potential well, liquid-state properties depend on a delicate
balance between the kinetic and potential energy contribu-
tions, and a detailed knowledge of the effective potential is
required. The choices of parametrization are dictated by this
fundamental consideration.

Comparison between the results of the VMHNC theory
and MD simulations for equivalent potentials show that the
former is very accurate for the study of liquid transition met-
als. Since the simulations normally include multiatom con-
tributions to the effective potential, our results suggest that
the effective pair potential is a very good approximation for
the study of liquid-state properties. This is in agreement with
Moriarty’s conclusions using GPT effective potentials.12
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