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The critical and multifractal properties of the local and global magnetizations of the zero-field ferromagnetic
q-state Potts model on hierarchical lattices of several distinct fractal dimensions~df ! are obtained and studied
by an exact recursion procedure. The critical exponentsa, b, andn, the correlation length, and thermodynamic
functions as specific heat and global magnetization are calculated for generalq and related with the Ho¨lder
exponent~aH! that describes the multifractal structure~or spectra! of the local-order parameter. The hyper-
scaling law was successfully tested for a family of lattices confirming the relationdf522a. The f ~a!-
multifractal spectra of the local magnetization at the critical point of the diamond hierarchical lattices family is
numerically obtained and studied for generalq and lattice connectivity. The domain boundaries of the
aH-Hölder exponent (aHmin ,aHmax) were analytically calculated recovering the numerical figures.

I. INTRODUCTION

The large majority of works on spin systems in dimen-
sions greater than 1 are obtained either by numerical or
through approximated analytical methods. The exact results
available in dimensions 2 or 3~or greater! are very few and
are always of recognized importance, being used many times
as a reference when some approximation, in similar prob-
lems, are made. Exact results are very important when ob-
tained in Bravais lattices, as the Onsager solution for the
Ising square lattice,1 the Baxter solution for the six-vertex
problem,2 and others~see Baxter3!. Otherwise, exact solu-
tions on non-Bravais lattices are also important tools for the
knowledge of many complicated points in the phase dia-
grams of several models. For instance, the exact solution of
spin models on the Bethe lattice are reported on the book of
Baxter3 as one of the interesting exact solutions for higher
dimensional spin systems. The Bethe lattice can be viewed as
a kind of hierarchical lattice~HL!,4–7 and the HL is a rel-
evant family of non-Bravais lattices that can be considered,
in many situations, as approximated lattices of some Bravais
ones. In fact, when the Migdal-Kadanoff8,9 approximation
~bond-moving schemes! is used for spin systems on hyper-
cubic lattices we obtain the same spin systems on HL’s, giv-
ing results that, as have been shown in several works, present
a good agreement with the results obtained for the corre-
sponding Bravais lattices by other methods~series, numeri-
cal, etc.!.9–18 Some results~specially critical frontiers and
critical exponents! are relatively simple to be obtained using
this kind of lattices,19–21and therefore they can be regarded
as a forward step after mean field and Bethe latticelike ap-

proximations to solve models on Bravais lattices~whose so-
lutions are usually extremely hard or even impossible to be
obtained!. For spin glass systems, for example, these ap-
proaches have been largely used in the past22–27and are still
being considered since the exact solutions for these systems
are far away to be reached. Nevertheless the exact calcula-
tion of thermodynamic functions~specific heat, magnetiza-
tion, etc.! are much more complicated to be obtained within
HL’s approach and we have found in the literature, some
times, the use of heuristic recipes to calculate these
functions,14,28–30almost always with obscure points and with
no general method allowing the obtention of these functions
in other similar problems. We have developed in the last few
years a method that, systematically, allows us to calculate
exactly these functions for Ising systems on a large family of
fractal hierarchical lattices.31–33 To do this we must take in
account the topology of the lattice, where the coordination
number differs from site to site depending on the hierarchy
of the lattice we are considering. This method was used to
calculate exactly several thermodynamical functions and
critical properties of the Ising model on HL’s~Refs. 31–33!
and, in one case, on a very specificq53 Potts model.34 Some
curious and unexpected multifractal aspects have been re-
vealed in these systems and some exact results for the mul-
tifractal function have been calculated.31,32Also, a very in-
terestingconnectionamong critical exponents and the Ho¨lder
exponent35 came out in some works.31,34

In this work we extend the method for the general Potts
model,36,37with an arbitrary numberq of states. Several dif-
ferents aspects appear, specially the coupling, in the recur-
rence relations, of the local magnetization with the pair cor-
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relation function, coupling that does not appear for the Ising
model. We explain in detail how to apply this method for a
large family of HL’s and exactly calculate for a subset of
them, some thermodynamical functions, critical exponents,
critical frontiers, multifractal functions, etc. For the Potts
model on these HL’s, our results for these thermodynamical
functions and multifractality are new ones. Otherwise, we are
also capable toprovethat the hyperscaling law is valid for all
HL’s we have tested, where for the dimension~in the hyper-
scaling law! we understand the fractal dimension of the lat-
tice. Our generalization of the method for Potts model also
indicates the way this method could be generalized to other
spin systems.

II. MODEL

Let us consider a zero field Potts ferromagnetic on the
so-called diamond hierarchical lattice~hereafter DHL!
shown in Fig. 1~a! for df52. At thenth level, we can assign
to each site of the lattice aq-state Potts variablesi and to
each bond~nearest neighbor at thenth level! a dimensionless
coupling constant~positive! qK(K5J/kBT), T being the
temperature andJ the coupling constant. The dimensionless
Hamiltonian, at this level, is given by

Hn52qKn(̂
i j &

d~s i ,s j !; s i50,1,...,q21, ~1!

where the sum is over the nearest neighbors sites andd is the
Kroneckerd function. The partition function, at thenth level,
can be formally calculated through the expression

Zn5(̂
s&

expHn5(̂
s&

expF2qKn(̂
i j &

d~s i ,s j !G . ~2!

In order to break the global symmetry of the Potts model, we
fixed ~as boundary conditions! the spins at the roots of the
fractal lattices~open sites in Fig. 1! at a specific state, say
s50. Then, looking at a particular basic cell of thenth level
hierarchical lattice@Fig. 2~a!#, we see that if we perform a
trace over all the spins of the lattice with the exception of
those spins belonging to that basic cell, the partition function
will be expressed as a trace over the remaining spins~those
belonging to the basic cell! with the equivalent Hamiltonian
H8 given by @for the DHL shown in Fig. 2~a!#:

H85u1qK@d~s,m1!1d~s,m2!#

1qK@d~s8,m1!1d~s8,m2!#1qK8d~m1 ,m2!

1qLd~m1,0!d~m2,0!1qH1d~m1,0!1qH2d~m2,0!,

~3!

whereu, K8, L, H1, andH2 are unknown functions ofK. The
spinsm1 andm2 connect the chosen basic cell with the rest of
the lattice ands ands8 are the internal spins of the basic cell
~they are spins that appear at thenth level!. The effective
fields H1 andH2 and the coupling constantsL andK8 are
due to boundary conditions at the roots to the connections
betweenm1 andm2 through the rest of the lattice. With this
formal equivalent Hamiltonian we can calculate the local
magnetizations and the pair correlation functions of the spins
m1 andm2 as functions of the parametersK8, L, H1, andH2,
and relate them with the local magnetizations and correlation
functions involving the spinss and s8 by eliminating the
unknown parameters, obtaining so far the set of recursion
relations.

III. RECURSION RELATIONS

We define the local magnetization of a given site spin
variables by

mi5
q^d~s i ,0!&21

q21
~4!

and the special pair correlation functionDs is j
between sites

spinssi andsj by

Ds is j
[q^d~s i ,0!d~s j ,0!&2^d~s i ,s j !&, ~5!

where^ & means thermodynamical average.

FIG. 1. Construction procedure of two hierarchical lattices:~a!
up ton53 for the DHL, where one of the shortest paths connecting
the two roots~open sites! is explicated~dashed line!; ~b! Wheat-
stone Bridge hierarchical lattice~WBHL! up ton52 level.

FIG. 2. Basic cell of~a! DHL; ~b! generalized DHL.
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Now let us consider ann-level DHL and take a given
connection within the basic cell of the latest hierarchy inside
the lattice with internal site spin variables and end spin
variablesm1 andm2. The quantities defined by Eqs.~4! and
~5! that are related tom1 andm2 can be obtained by evaluat-
ing the average quantities using the Hamiltonian given by
Eq. ~3!. The result can be formally given by the following
system:

^d~m1,0!&5 f 1~K;K8,L,H1 ,H2!,

^d~m2,0!&5 f 2~K;K8,L,H1 ,H2!,

^d~m1 ,m2!&5 f 3~K;K8,L,H1 ,H2!,

^d~m1,0!d~m2,0!&5 f 4~K;K8,L,H1 ,H2!. ~6!

We can also calculate the averages involving the spins
belonging to the latest level~thenth one!, i.e.,s,

^d~s,0!&5 f ~K;K8,L,H1 ,H2!,

^d~s,m i !&5gi~K;K8,L,H1 ,H2!, i51,2. ~7!

Inverting the system given by Eqs.~6!, i.e., obtainingK8, L,
H1, andH2 as functions of the averages involvingm1 andm2
and replacing these parameters in Eq.~7!, we obtain recur-
rence relations for averages involving spinss ~latest level! as
functions of averages involving spins of previous levels@one
of the spinsm belongs to the~n21!th level and the other one
belongs to thej th level (j50,1,2,...,n22) depending on the
chosen basic cell#.

By performing these calculations we have succeeded to
obtain a coupled set of recursion relations relating the local
magnetization and the special correlation function for the site
spin variables of the latest hierarchy with the ones of previ-
ous hierarchies. This is given by

ms5C1
~n!@mm1

1mm2
#1C2

~n!Dm1m2
,

Dsm i
5C3

~n!mm i
1C4

~n!Dm1m2
~ i51,2!,

^d~s,m i !&5C3
~n!1C4

~n!^d~m1 ,m2!& ~ i51,2!, ~8!

where the expressions for the coefficientsC i
(n) are shown in

Appendix A. We can see that the first two equations of the set
~8! are coupled and they are related to the third one, which
depends only on its own previous levels. So, since we
know the model’s Hamiltonian at the zeroth level,
H05K0d(mu ,md)5K0 , wheremu andmd are the Potts vari-
ables assigned to the roots ‘‘up’’ and ‘‘down,’’ respectively
~here they are assumed to be in the zero state!, it is straight-
forward to calculate the averagesmmu

, mmd
, Dmu ,md

, and
d(mu ,md). Their values are~initial conditions!

mmu
5mmd

51 ~Z05eK0!,

Dmu ,md
5q21,

^d~mu ,md!&51. ~9!

The averages associated with the first level can be obtained
using these initial conditions in the set of Eqs.~8! together
with the values of constantsC i

(n) for n51. These constants
are functions ofKn ~i.e., K1!, which are straightforwardly
related to the Potts transmissivity variable, introduced by
Tsallis and Levy13:

tn[
12exp~2qKn!

11~q21!exp~2qKn!
. ~10!

This variable is well defined between 0 and 1 and its hierar-
chical relation, for the usual DHL, is given by

tn215
2tn

21~q22!tn
4

11~q21!tn
4 . ~11!

This allows us to obtain the critical transmissivity and the
critical temperature. With the set of Eqs.~8!, ~11! and also
the initial values formmu

, mmd
, Dmu ,md

, andd(mu ,md) given
by Eqs.~9!, we are able to calculate the local magnetization
of each site of the lattice for any level as function of the
temperature, for generalq.

IV. GLOBAL MAGNETIZATION
AND CRITICAL EXPONENTS

In order to obtain the global magnetization, i.e., the aver-
age magnetization ‘‘per site’’ at thenth level, we need to sum
over the recurrence relations for the local magnetization up
to that level. The thermodynamic limit is obtained taking
n→`. Adding up the local magnetizations of the spins at the
nth level@see the left-hand side~LHS! of the first equation of
~8!#, we will have on the RHS to sum over sites of the terms
~D’s! which are defined over bonds. Analogously, when sum-
ming the second equation of~8! for all bonds present at the
nth level, we have to sum carefully the termsmm i

and

Dm1m2
that appear on the RHS of this equation. Defining the

global magnetization as the average magnetization per site at
thenth (Ln) level

mn[S (sPLn
ms

Ns
n D , ~12!

where the sum is performed over all sites (Ns
n) of the lattice

considered at thenth level (Ln), NS
n52/3(4n12),

n50,1,2 . . . anddefining

Dn[
(bPLn

Dsn

Nb
n , ~13!

where the sum is over all bonds of the lattice at thenth level,
beingNb

n54n the total number of these bonds. We finally
obtain the recurrence relations connecting these ‘‘macro-
scopic’’ quantities for ann-level DHL with their values at
two previous levels. These equations can be written~for the
DHL! as
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mn5
Ns

~n21!

Ns
~n! F4C1

~n!1112
C1

~n!

C1
~n21!Gmn212

Ns
~n22!

Ns
~n! F4C1

~n!12
C1

~n!

C1
~n21!Gmn2212

Nb
~n21!

Ns
~n! C2

~n!Dn21

24
Nb

~n22!

Ns
~n! C2

~n!
C1

~n!

C1
~n21! Dn22 ,

Dn54
Ns

~n21!

Nb
~n! C3

~n!mn2124
Ns

~n22!

Nb
~n! C3

~n!mn221FC4
~n!12

C3
~n!

C3
~n21!

Nb
~n21!

Nb
~n! GDn2128C4

~n21!
C3

~n!

C3
~n21!

Nb
~n22!

Nb
~n! Dn22 . ~14!

Since we know the values ofm0, m1, D0, and D1, it is
possible to calculate the global magnetization at any level.
The initial values can be obtained with the aid of the first two
equations of~8!, using the set of initial conditions~9!. In Fig.
3 we show the exact average magnetization per site versus
temperature forq52, q54, andq510 at the 100th level. We
calculate also these magnetizations for other values ofn, but
the curves are virtually the same ifn is large enough.

It is also possible to calculate exactly the critical exponent
b among others. We notice thatmn andDn have the same
asymptotic behavior nearTc , i.e., mn;l1(en)

b and
Dn;l2(en)

b where l1 and l2 are amplitudes,
en[Tc2Tn/Tc and therefore the following equation forr c

b

can be obtained:

r c
2b2FC1

~c!1C4
~c!1

1

2G r cb1C4
~c!FC1

~c!1
1

2G2
q21

2
C2

~c!C3
~c!

50, ~15!

where

r c[
]tn21

]tn
U
tc

~16!

andC i
(c) ~i51,2,3,4! are the coefficients listed in Appendix

A, calculated at the critical temperatureTc(tc). The value of
r c for DHL is

r c521
2~q22!tc

2

21~q22!tc
2 1

4~q21!tc
4

11~q22!tc
4 . ~17!

FIG. 3. DHL’s magnetization versus temperature withn5100
andq52, 4, and 10. FIG. 4. Critical exponentsb versusq for DHL and WBHL.

TABLE I. Values takes from Bleher and Zalys~Ref. 38! at first line and ours at the second one, whereNc

is the coordination number of basic cell roots.

Nc 2 4 5 10 50 100

bBleher 0.161 743 0.463 242 0.546 752 0.745 762 0.943 172 0.970 517
bexact 0.161 743 0.463 241 0.546 752 0.745 754 0.943 794 0.971 526
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Sob is easily obtained from Eq.~15! as

b5
ln@solution of Eq. ~15!#

ln~r c!
.

These exact calculations were also performed for a whole
family of DHL @see Fig. 2~b! where we vary the number of
connectionsNc , i.e., the dimensionality of the lattice# and
for the ‘‘Wheatstone Bridge hierarchical lattice’’~WBHL!
@see Fig. 1~b!#. In Fig. 4 we show the graphb versusq for
DHL and for WBHL. Our exact result forb(q) of WBHL is
unlike that obtained by Caride and Tsallis39 with exception of
the point q52 ~bWBHL50.180!. For the whole family of
DHL the value ofb~2! was exactly calculated by Bleher and
Zalys38 and we show in Table I their results and ours for
some members of that family forq52. The discrepancy ap-
pears only due to their numerical imprecision at higher di-
mensions. Our results for any other value ofq are new, as far
as we know. The expression for the local and global magne-
tization recurrence relations for the WBHL and for the fam-
ily of DHL are shown in Appendixes B and C, respectively.

V. INTERNAL ENERGY AND SPECIFIC HEAT

The dimensionless internal energy at zero magnetic field,
the specific heat, and its critical exponenta can be exactly
calculated with the aid of the third equation of the set~8!.
The dimensionless energy per bond is defined as

E

Nb
~n! 52^d~m,s!&,

recognizing that the average^2d~m,s!& of two nearest neigh-
bor spinsm ands at nth level is the dimensionless per bond
average energy (en),

en[
E

Jn
52

^Hn&

qJnNb
~n! ,

whereHn is the Hamiltonian. So the dimensionless internal
energy can be rewritten as2en , whereen can be expressed
as

en5C3
~n!1C4

~n!en21 . ~18!

Therefore, starting withe05^d~0,0!&51, it is possible to ob-
tain the bond average energy at any level. Forn large enough
the curves of the dimensionless internal energy versus tem-
perature have the same form shown in Fig. 5 forn5100 and
q52, 4, and 10 for the DHL. The exact adimensional specific
heat

2
1

qkBNb
~n!

]en
]T

can be obtained either by deriving Eq.~18! with respect toT
or by numerical derivation of the curve shown in Fig. 5 and
the results forq52, 4, and 10 and alson5100 are shown in
Fig. 6 for the DHL. The critical exponenta is obtained by
assuming in the neighborhood ofTc(tc) thaten can be writ-
ten as en5ec1l(en)

s, where ec5C 3
(c)/(12C 4

(c)) and
en[(Tc2Tn)/Tc . The replacement of this expression into
Eq. ~18! leads to

s5

lnS 1

C4
~c!D

ln~r c!
. ~19!

Since the specific heat is related with the derivative of the
internal energy with respect to the temperature, we have that
a512s.

Table II shows some values ofa ~for q51,2,4,10! for
some members of the family DHL and Table III does the

FIG. 5. Dimensionless internal energy versus temperature for
DHL with n5100 andq52, 4, and 10.

FIG. 6. Dimensionless specific heat versus temperature for DHL
with n5100 andq52, 4, and 10.
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same for the WBHL. They allow us to test the hyperscaling
relations in these fractal lattices. This is possible becausen
can be obtained in an independent way by the relation

n5
ln~2!

ln~r c!
.

In all these lattices the relation14

dfn522a, ~20!

wheredf is the fractal dimension of the lattice, is completely
satisfied for all values ofq, suggesting strongly that this is
the correct way the hyperscale law works for fractal lattices,
as it has been conjectured before.14

VI. MULTIFRACTAL PROFILE

Equations~8! allow us to calculate the average magneti-
zation of the Potts spins localized ateachsite of the lattice
~local magnetization!. One way to do this is to choose one of
the shortest paths connecting the two roots of the HL and
looking the local average magnetization of the spins belong-
ing to this path. One example is shown in Fig. 1 where the
chosen DHL shortest path is illustrated by the broken line.
All of the shortest paths are, obviously, equivalent. These
DHL shortest paths have 2n11 sites at thenth level. We can
locate these sites in a line using a normalized coordinate

xi
~n![

i

2n
,

where i50,...,2n. In Fig. 7 we present, at the critical tem-
perature, the local~site! magnetization~in the ordinate axis!
as function of the position of the site in the paths~repre-
sented by the coordinatex i

(n) in the abscissa!, for some val-
ues ofq andNc . Although it is not clear in this figure, we
observed that the total average magnetization per site of the
lattice is zero in the thermodynamic limit, i.e., whenn goes
to infinite ~at T5Tc!. These figures appear to be self-similar
and we will show that it is possible to define on then a
physical measure, based on the local magnetization, that is
multifractal. To do this we divide the path into boxes and
define the measure of each box as the fractional magnetiza-
tion of the box~i.e., the sum of the magnetization of all sites
belonging to the box divided by the sum of the magnetiza-
tion of all sites of the paths!. We normally use the lengthd of
the box as

dn522n

if we are considering thenth generation of the lattice. Obvi-
ously, the sum over all boxes is equal to one, i.e., it is a
probabilistic measure~more generally this measure is defined
on thes algebra generated by the partition of the interval!.
As the sum of the magnetization of all sites of the path is
equal to the average magnetization of the lattice times the
number of sites of the path~equal to 2n11 at thenth gen-
eration! and callingmi the sum of the magnetization of the
sites belonging to thei th box, we can write the measure~mi!
of this box as

m i
~n![

mi

Npathmn
;dn

aH,

wheremn is the average magnetization of the lattice at the
nth generation andaH is the corresponding Ho¨lder exponent.
Therefore we can associate to each box a value ofaH and
collect the boxes with the same value ofaH ~within a small
intervalDaH! and then obtain thef (aH) function. Recently,
an efficient algorithm has been developed by Chhabra and
Jensen40,41which allows us to obtain a excellentf (aH) func-
tion. We used this algorithm to obtain for several values ofq,
at Tc , the multifractal functionf (aH). The plots of the
f (aH) functions are shown in Fig. 8. The maximum and
minimum aH values for these functions can be exactly cal-
culated. The measures with largestaH have the lowest values
and inversely, the measures with the lowestaH have the
largest values. As the measures are defined on the magneti-
zations, the existence of a continuum of values ofaH implies
the existence of a continuum of values ofb, i.e., there are
sets of sites whose magnetization scales with different expo-
nents ~a connection betweenaH and b was established in

TABLE II. Critical exponentsa for the DHL.

Nc q51 q52 q54 q510

2 21.270 559 20.676 532 20.248 321 0.143 778
4 21.682 235 21.194 450 20.750 510 20.281 103
10 22.661 275 22.363 985 21.972 557 21.396 827

TABLE III. Critical exponentsa for the WBHL.

q51 q52 q54 q510

21.314 958 20.667 034 20.202 032 0.219 558

FIG. 7. Local magnetization of the spins belonging to a path of
generalized DHL withn510, for some values ofNc and q. The
ordinate is the local magnetization and the abscissa is the relative
position to the root, starting at zero.
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Ref. 31!. Therefore, the boxes containing the measures with
the smallest value have a local magnetization that behaves~n
large! as

Mmin
~n! ;~en!

bmax,

i.e., with the maximum possible value ofb[ en[(tn2tc)/tc].
We can write the total magnetization of the profile as

l12
n~en!

b,

wherel1 is a constant andb is the magnetization critical
exponent of the whole lattice. Therefore the smallest mea-
sures can be written as

mmin
~n! ;dn

amax;
~en!

bmax

2n~en!
b ,

which implies that

mmin
~n11!

mmin
~n! 5221S en11

en
D bmax2b

.

As

en11

en
>
dtn11

dtn
Utc5221/n,

and asmmin
~0! [1 ~a constant value!, we can write

mmin
~n! ;@221/n~bmax2b!21#n;dn

aHmax
.

Remembering thatdn;22n we obtain a relationship31

among the critical exponentsb,n, the exponentbmax, and the
Hölder exponentaH

aHmax511~bmax2b!
1

n
. ~21!

The boxes containing the biggest measures are associated
with the local magnetizations that remain constant when
n→`. So, we can write

mmax
~n! ;

const

2n~en!
b .

Analogous to the calculation formmin
(n) , we obtain

mmax
~n! ;~2b/n21!n;dn

aHmin
,

leading to the exact relation for the minimum values of the
Hölder exponent:

aHmin512
b

n
. ~22!

In Fig. 9~a! we plotaHmax, aHmin, n, bmax, andb as functions
of q for the usual DHL~Nc52!. Figures 9~b! and 9~c! show
the same behavior for other lattices, sayNc54 andNc510.
We exhibit in Fig. 8 thef (aH) multifractal function for the
usual DHL, forq51.5, 4, and 10. We can also see that the
higher the value forq the wider thef (aH) function. Evi-
dence was shown by Morgadoet al.31,32 that the maximum
of the f (aH) function reaches 1~the dimension of the sup-
port set! when we increase the number of hierarchies used.

VII. CONCLUSIONS

We showed exact results obtained by a method that allow
us to calculate recurrence relations for the local and global
magnetization for the zero field Potts ferromagnetic model.
Using these relations we also obtained exactly the critical
exponentsa, b, andn. Our results for the critical exponents
agree, forq52 ~Ising model! with previous results for the
DHL obtained by Ref. 32 and for other lattices.38 The possi-

FIG. 8. f (aH) multifractal function for the usual DHL~Nc52!
for ~a! q51.5; ~b! q54; ~c! q510.

53 6351CRITICALITY AND MULTIFRACTALITY OF THE POTTS . . .



bility of exactly calculating the critical exponents makes it
possible to verify that the hyperscaling relation is success-
fully obeyed by the lattices we used~for a wide variety of
fractal dimensions andq values! as expected. It was also
possible to exactly calculate thermodynamic functions as
magnetizations, specific heat, etc. Thef (aH) multifractal
function showed that the measure defined as the normalized
local magnetization of a profile has a multifractal distribution
at the critical temperature, as observed for the Ising model by
Morgadoet al.31,32 Work to verify the validity of the other
scaling laws is now in progress.
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APPENDIX A: COEFFICIENTS OF THE DHL

DefiningAn5eqKn, the coefficientsC 1
(n), C 2

(n), C 3
(n), and

C 4
(n), for the DHL, are respectively

C1
~n!5

An21

2An1q22
,

C2
~n!5S q

q21D ~An21!2

~An
21q21!~2An1q22!

,

C3
~n!5~q21!

An

~2An1q22!
,

C4
~n!5

An~An21!~An1q21!

~An
21q21!~2An1q22!

.

APPENDIX B: RECURRENCE EQUATIONS
FOR THE WBHL

The recurrence relations for the ‘‘site’’ magnetization are

ms5CW,1
~n! @mm1

1mm2
#1CW,2

~n! Dm1m2
,

Dsm i
5CW,3

~n! mm i
1CW,4

~n! Dm1m2
~ i51,2!,

Dss85CW,5
~n! ~mm1

1mm2
!1CW,6

~n! Dm1m2
,

and those for the ‘‘site’’ average magnetization are

FIG. 9. ExponentsaHmax, aHmin, n, bmax, andb as function ofq
for ~a! DHL ~Nc52!; ~b! generalized DHL withNc55; ~c! gener-
alized DHL withNc510.
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mn5
Ns

~n21!

Ns
~n! F6CW,1

~n! 1112
CW,n

~n!

CW,1
~n21!Gmn212

Ns
~n22!

Ns
~n! F6CW,n

~n1!12
CW,1

~n!

CW,1
~n21!Gmn2212

Nb
~n21!

Ns
~n! CW,2

~n! Dn21

24
Nb

~n22!

Ns
~n! CW,2

~n2!
CW,1

~n!

CW,1
~n21! Dn22 ,

Dn53
Ns

~n21!

Nb
~n! ~2CW,3

~n! 1CW,5
~n! !mn2123

Ns
~n22!

Nb
~n! ~2CW,3

~n! 1CW,5
~n! !mn221

Nb
~n21!

Nb
~n! F4CW,4

~n! 1CW,6
~n! 12S 2CW,3

~n! 1CW,5
~n!

2CW,3
~n21!1CW,5

~n21!D GDn21

2
Nb

~n22!

Nb
~n! F2~4CW,4

~n21!1CW,6
~n21!!S 2CW,3

~n! 1CW,5
~n!

2CW,3
~n21!1CW,5

~n21!D GDn22 ,

where the coefficients above may be written as

CW,1
~n! 5

An~An
21An1q22!2~3An1q23!

2An
312An

21~q22!~5An1q23!
,

CW,2
~n! 5S q

q21D 3An1q23

2An
312An

21~q22!~5An1q23!
2

An
21An1q22

An
51~q21!~2An

21An1q22!
,

CW,3
~n! 5~q21!

An~An
21An1q22!

2An
312An

21~q22!~5An1q23!
,

CW,4
~n! 5

An
51An

2~q22!

An
51~q21!~2An

21An1q22!
2

An~An
21An1q22!

2An
312An

21~q22!~5An1q23!
,

CW,5
~n! 5~q21!

An
32An

2An
312An

21~q22!~5An1q23!
,

CW,6
~n! 5

An
52An

An
51~q21!~2An

21An1q22!
1

2An22An
3

2An
312An

21~q22!~5An1q23!
,

whereAn5eqKn.

APPENDIX C: RECURRENCE RELATIONS FOR THE GENERALIZED DIAMOND HIERARCHICAL LATTICE

The local magnetization recurrence relations are the same for this whole family as those for the usual DHL and the average
magnetizations~per hierarchy! are

mn5
Ns

~n21!

Ns
~n! F2NcC1

~n!111Nc

C1
~n!

C1
~n21!Gmn212

Ns
~n22!

Ns
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~n21! Dn22 ,

Dn52Nc
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~n22!
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where Nc is the number of parallel paths between the two roots andNs
(n)5[1/(2Nc21)](2nN c

n1113Nc22) and
Nb

(n)5(2Nc)
n.
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14H. O. Mártin and C. Tsallis, J. Phys. C14, 5645~1981!.
15E. M. F. Curado, C. Tsallis, S. V. F. Levy, and M. J. Oliveira,

Phys. Rev. B23, 1419~1981!.
16P. M. C. Oliveira, C. Tsallis, and G. Schwachheim, Phys. Rev. B

29, 2755~1984!.
17C. Tsallis, J. Phys. C18, 6581~1985!.
18M. Kaufman and R. B. Griffiths, Phys. Rev. B26, 5282~1982!.
19R. Riera, J. Phys. A19, 3395~1986!.
20E. P. da Silva and C. Tsallis, Physica A167, 347 ~1990!.
21F. S. de Menezes and A. C. N. de Magalha˜es, Phys. Rev. B46,

11 642~1992!.
22B. W. Southern, A. P. Young, and P. Pfeuty, J. Phys. C10, 2179

~1977!.
23B. W. Southern, A. P. Young, and P. Pfeuty, J. Phys. C12, 683

~1979!.

24A. Benyoussef and N. Boccara, Phys. Lett. A93, 351 ~1983!.
25A. Benyoussef and N. Boccara, J. Phys. C16, 1901~1983!.
26E. M. F. Curado and J. L. Meunier, Physica A149, 164 ~1987!.
27J. R. Banavar and A. J. Bray, Phys. Rev. B35, 8888~1987!.
28A. Chame and C. Tsallis, J. Phys. C1, 10 129~1989!.
29M. Kaufman and R. B. Griffiths, Phys. Rev. B28, 3864~1983!.
30M. Kaufman and K. K. Mon, Phys. Rev. B29, 1451~1984!.
31W. A. M. Morgado, S. Coutinho, and E. M. F. Curado, Rev. Bras.

Fı́z. 21, 247 ~1991!.
32W. A. Morgado, S. Coutinho, and E. M. F. Curado, J. Stat. Phys.

61, 913 ~1991!.
33O. Donato da Silva Neto, MSc. thesis, Universidade Federal de

Pernambuco, 1992.
34J. A. Redinz, A. C. N. de Magalha˜es, and E. M. F. Curado, Phys.

Rev. B49, 6689~1994!.
35T. Tél, Z. Naturforsch.43a, 1154~1988!.
36F. Y. Wu, Rev. Mod. Phys.54, 235 ~1982!.
37F. Y. Wu, J. Appl. Phys.55, 2421~1984!.
38P. M. Bleher and E. Zallys, Commun. Math. Phys.67, 17 ~1979!.
39A. O. Caride and C. Tsallis, J. Phys. A20, L665 ~1987!.
40A. B. Chhabra and R. V. Jensen, Phys. Rev. Lett.62, 1327~1989!.
41A. B. Chhabra, C. Meneveau, R. V. Jensen, and K. R.

Sreenivasan, Phys. Rev. A40, 5484~1989!.
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