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Criticality and multifractality of the Potts ferromagnetic model on fractal lattices

Ladaio da Silva
Centro Brasileiro de Pesquisas $itas, Rua Dr. Xavier Sigaud 150, CEP 22290-180, Rio de Janeiro, Brazil

Evaldo Mendona Fleury Curado
Centro Brasileiro de Pesquisas $icas, Rua Dr. Xavier Sigaud 150, CEP 22290-180, Rio de Janeiro, Brazil
and International Centre of Condensed Matter Physics/UnB P.O. Box 04667, 70919-970iaBRBrswil

Segio Coutinho
Universidade Federal de Pernambuco, Departamento @ic& CEP 50670-901, Recife, Brazil

Welles Anfaio Martinez Morgado
Massachussets Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachussetts 02139
(Received 8 September 1995

The critical and multifractal properties of the local and global magnetizations of the zero-field ferromagnetic
g-state Potts model on hierarchical lattices of several distinct fractal dimensignare obtained and studied
by an exact recursion procedure. The critical exponenf andv, the correlation length, and thermodynamic
functions as specific heat and global magnetization are calculated for ggnanal related with the Hder
exponent(ay) that describes the multifractal structui@ spectra of the local-order parameter. The hyper-
scaling law was successfully tested for a family of lattices confirming the relatjer2—a. The f(w)-
multifractal spectra of the local magnetization at the critical point of the diamond hierarchical lattices family is
numerically obtained and studied for generpland lattice connectivity. The domain boundaries of the
ay-Holder exponent ¢y min»aumad Were analytically calculated recovering the numerical figures.

[. INTRODUCTION proximations to solve models on Bravais latti¢edose so-
lutions are usually extremely hard or even impossible to be
The large majority of works on spin systems in dimen-obtained. For spin glass systems, for example, these ap-
sions greater than 1 are obtained either by numerical oproaches have been largely used in the3a&tand are still
through approximated analytical methods. The exact resultiseing considered since the exact solutions for these systems
available in dimensions 2 or @r greatey are very few and are far away to be reached. Nevertheless the exact calcula-
are always of recognized importance, being used many timeson of thermodynamic functiongspecific heat, magnetiza-
as a reference when some approximation, in similar probtion, etc) are much more complicated to be obtained within
lems, are made. Exact results are very important when olHL's approach and we have found in the literature, some
tained in Bravais lattices, as the Onsager solution for théimes, the use of heuristic recipes to calculate these
Ising square latticd,the Baxter solution for the six-vertex functionst*?®-3%aimost always with obscure points and with
problem? and others(see Baxte}). Otherwise, exact solu- no general method allowing the obtention of these functions
tions on non-Bravais lattices are also important tools for then other similar problems. We have developed in the last few
knowledge of many complicated points in the phase diayears a method that, systematically, allows us to calculate
grams of several models. For instance, the exact solution adxactly these functions for Ising systems on a large family of
spin models on the Bethe lattice are reported on the book dfactal hierarchical lattice¥: >3 To do this we must take in
Baxter as one of the interesting exact solutions for higheraccount the topology of the lattice, where the coordination
dimensional spin systems. The Bethe lattice can be viewed asimber differs from site to site depending on the hierarchy
a kind of hierarchical lattic¢HL),*~" and the HL is a rel- of the lattice we are considering. This method was used to
evant family of non-Bravais lattices that can be consideredgalculate exactly several thermodynamical functions and
in many situations, as approximated lattices of some Bravaisritical properties of the Ising model on HL{Refs. 31-33
ones. In fact, when the Migdal-Kadan®dff approximation and, in one case, on a very specifie 3 Potts modef* Some
(bond-moving schemegss used for spin systems on hyper- curious and unexpected multifractal aspects have been re-
cubic lattices we obtain the same spin systems on HL's, givvealed in these systems and some exact results for the mul-
ing results that, as have been shown in several works, presetifractal function have been calculatgt? Also, a very in-
a good agreement with the results obtained for the correterestingconnectioramong critical exponents and the lder
sponding Bravais lattices by other methaderies, numeri- exponent’ came out in some work&:3*
cal, etc).>~*® Some resultgspecially critical frontiers and In this work we extend the method for the general Potts
critical exponentsare relatively simple to be obtained using model®®*” with an arbitrary numbeq of states. Several dif-
this kind of lattices;?>~>' and therefore they can be regardedferents aspects appear, specially the coupling, in the recur-
as a forward step after mean field and Bethe latticelike aprence relations, of the local magnetization with the pair cor-
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FIG. 1. Construction procedure of two hierarchical lattice&)
up ton=3 for the DHL, where one of the shortest paths connecting
the two roots(open sitesis explicated(dashed ling (b) Wheat-
stone Bridge hierarchical lattioc®/BHL) up ton=2 level.

relation function, coupling that does not appear for the Ising
model. We explain in detail how to apply this method for a
large family of HL's and exactly calculate for a subset of
them, some thermodynamical functions, critical exponents,
critical frontiers, multifractal functions, etc. For the Potts
model on these HL's, our results for these thermodynamical (@)

functions and multifractality are new ones. Otherwise, we are

also capable tprovethat the hyperscaling law is valid for all

HL's we have tested, where for the dimensi@mthe hyper- FIG. 2. Basic cell of(a) DHL; (b) generalized DHL.
scaling law we understand the fractal dimension of the lat-

tice. Our generalization of the method for Potts model also

indicates the way this method could be generalized to other H' = 9+ qK[ 8( o, 1)+ (o, u3) ]

spin systems. . , ,
+aK[ (0", 1)+ (0", ) 1 +aK" S( 1y, m2)
Il. MODEL +qL6(11,0) 6(12,0)+qH; 6(u1,0) +qH26( 12,0,

Let us consider a zero field Potts ferromagnetic on the )
so-calle_d (_:iiamond hierarchical latticéhereafter DHI; whered, K, L, H,, andH,, are unknown functions df. The
shown in Fig. 1a) for d;=2. At thenth level, we can assign  gpins,, andu, connect the chosen basic cell with the rest of
to each site of the lattice g-state Potts variable; and 0 he |attice andr anda’ are the internal spins of the basic cell
each bondnearest neighbor at threh leve) a dimensionless (they are spins that appear at théh leve). The effective
coupling constant(positive qK(K=J/kgT), T being the  fie|ds H, and H, and the coupling constants and K’ are
temperature and the coupling constant. The dimensionlessye to houndary conditions at the roots to the connections
Hamiltonian, at this level, is given by betweenu, and u, through the rest of the lattice. With this
formal equivalent Hamiltonian we can calculate the local
magnetizations and the pair correlation functions of the spins
1 and u, as functions of the parametefs, L, H,, andH,,
and relate them with the local magnetizations and correlation
where the sum is over the nearest neighbors sitessamthe ~ functions involving the spingr and ¢’ by eliminating the
Kroneckers function. The partition function, at theth level, ~ unknown parameters, obtaining so far the set of recursion
can be formally calculated through the expression relations.

Hn=—qKn<Z> 8ai,0)); 0=01,..9-1, (1)
ij

Ill. RECURSION RELATIONS

Zn=2> exp—|n=<2 exp{—qKnZ> daoj,o))|. (2
(o o) (ij

We define the local magnetization of a given site spin

variable o by
In order to break the global symmetry of the Potts model, we
fixed (as boundary conditionghe spins at the roots of the q{8(c;,0))—1
fractal lattices(open sites in Fig. llat a specific state, say mi:q_—l (4)

o=0. Then, looking at a particular basic cell of thth level

hierarchical latticd Fig. 2(a)], we see that if we perform a and the special pair correlation functim,ioj between sites
trace over all the spins of the lattice with the exception ofspinseo; and o; by

those spins belonging to that basic cell, the partition function

will be expressed as a trace over the remaining sfilmsse Agig_zq(é(ai,O)é(oj,O»—(5(o-i i) (5)
belonging to the basic celith the equivalent Hamiltonian :

H' given by[for the DHL shown in Fig. 2a)]: where( ) means thermodynamical average.
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Now let us consider am-level DHL and take a given The averages associated with the first level can be obtained
connection within the basic cell of the latest hierarchy insideusing these initial conditions in the set of E¢8) together
the lattice with internal site spin variable and end spin  with the values of constan@ (" for n=1. These constants
variablesu, and u,. The quantities defined by Eqggl) and  are functions ofK,, (i.e., K;), which are straightforwardly
(5) that are related t@, and u, can be obtained by evaluat- related to the Potts transmissivity variable, introduced by
ing the average quantities using the Hamiltonian given byTsallis and Levy®:
Eq. (3). The result can be formally given by the following
system: 1—exp(—qK,)

=15 (q- Dexd —aKy) 10

(8(11,00)=F1(K;K',L,Hy Hyp),

o, This variable is well defined between 0 and 1 and its hierar-
(8(12,0))=Fo(K;K",L,Hq,Hyp), chical relation, for the usual DHL, is given by

oy, =f,3(K;K',L,Hy,H>),
(O(p1,m2)) =Tl 1.H2) _2tﬁ+(q—2)tﬁ

, thor =71~ (11
(8(p1,0)8(2,0) =fa(K;K' L H1 Hp).  (8) " 1+(@-Dt
We can also calculate the averages involving the spinghis allows us to obtain the critical transmissivity and the
belonging to the latest levéthe nth one, i.e., o, critical temperature. With the set of Eq®), (11) and also
the initial values formﬂu, My AMU g and&(u, ,pq) given
by Egs.(9), we are able to calculate the local magnetization
of each site of the lattice for any level as function of the

(8(0,0))=f(K;K",L,Hy,H>),

— . ! Hp—
Inverting the system given by Eg&), i.e., obtainingK’, L,
Hy, ande'as functions of the averages mvolvmg and u, IV. GLOBAL MAGNETIZATION
and replac_lng these parameters in EQ, we obtain recur- AND CRITICAL EXPONENTS
rence relations for averages involving spindatest level as
functions of averages involving spins of previous leVelse In order to obtain the global magnetization, i.e., the aver-

of the spinsu belongs to thén—1)th level and the other one age magnetization “per site” at theth level, we need to sum
belongs to theth level (=0,1,2...,n—2) depending on the over the recurrence relations for the local magnetization up
chosen basic cdll to that level. The thermodynamic limit is obtained taking
By performing these calculations we have succeeded ta—«. Adding up the local magnetizations of the spins at the
obtain a coupled set of recursion relations relating the locahth level[see the left-hand sid&HS) of the first equation of
magnetization and the special correlation function for the sité8)], we will have on the RHS to sum over sites of the terms
spin variables of the latest hierarchy with the ones of previ{A’s) which are defined over bonds. Analogously, when sum-

ous hierarchies. This is given by ming the second equation @) for all bonds present at the

nth level, we have to sum carefully the terms,, and
m,= C(ln)[m,ul_'— m,,1+CVA, ., A,.., that appear on the RHS of this equation. Defining the
global magnetization as the average magnetization per site at
A, =CP'm, +CMA, . (i=1), thenth (L,) level
(8o, p))=CP+C{MN(8(pa,p2))  (1=12,  (8) e Ms
. ) . my=| ———/, (12
where the expressions for the coefficieats” are shown in Ng

Appendix A. We can see that the first two equations of the set

(8) are coupled and they are related to the third one, whickvhere the sum is performed over all sité¢Z) of the lattice
depends only on its own previous levels. So, since weonsidered at thenth level (L,), Ng=2/3(4"+2),
know the model's Hamiltonian at the zeroth level, n=0,12... anddefining

Ho=Kgod(1y mq) =Ko, Whereg, and uy are the Potts vari-

ables assigned to the roots “up” and “down,” respectively

(here they are assumed to be in the zero stétés straight- Zper, Aoy
forward to calculate the averages, , m,, A, ., and A”ET’ (13
&y, pq)- Their values ardinitial condition9 b
where the sum is over all bonds of the lattice atnittelevel,
m, =m, =1 (Zy=e"0),

being Nj=4" the total number of these bonds. We finally
obtain the recurrence relations connecting these “macro-
Ay ng=9-1, scopic” quantities for am-level DHL with their values at

two previous levels. These equations can be writfenthe
(8(py i) =1. (9  DHL)as
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TABLE I. Values takes from Bleher and ZalyRef. 38 at first line and ours at the second one, whdge
is the coordination number of basic cell roots.

N¢ 2 4 5 10 50 100
Bgleher 0.161 743 0.463 242 0.546 752 0.745 762 0.943 172 0.970 517
Bexact 0.161 743 0.463 241 0.546 752 0.745 754 0.943 794 0.971 526
NGy cy N2 cy (-1
My=—g— | 4C1" + 142 5 |Mn_1— — | 4CV+ 2 =gy |Mn_ 2+ 2~ CYVA -
n NS Cln l) n-1— NS C(n 1) n—-2 NS 2 n-1
N2) ey
_4 N(n) C2 C(n 1) An 2
(n-1 (n-2 cm NP M N2
— (n) (n) (n—=1)
An_4 Nb C mn 1 4 N(bn) C3 mn—2+ C +2C (n—1) Ng)n) An 1~ 80 C<n 1) NE)n) AH—Z' (14)

Since we know the values ahy, m;, Ay, and A4, it is 25
possible to calculate the global magnetization at any level.fc" —
The initial values can be obtained with the aid of the first two
equations of8), using the set of initial condition®). In Fig. =0, (15
3 we show the exact average magnetization per site versys

g-1
cP+cCle -——cycy

1 1
+5|re+ CEP[C(f’Jr >

temperature fog=2, q=4, andq=10 at the 100th level. We ere

calculate also these magnetizations for other values bfit a4

the curves are virtually the samerifis large enough. rCET (16)
Itis also possible to calculate exactly the critical exponent "t

p among others. We notice that, and A, have the same ;40 (j=12 34 are the coefficients listed in Appendix

asymptotic behavior nearTc, i.e., m,~X\i(€))” and A cajculated at the critical temperatuFe(t.). The value of
Ap~No(e))? where N\, and \, are amplitudes, r. for DHL is

e,=T.—T,/T. and therefore the following equation fof
can be obtained: 2(q—-2)t2  4(q-1t?

re=2+ + . 1
T 24(q-2)2  1+(g-2)t¢ a0
1.0 4
0.20 A~
i WBHL
0.8 B
c O.15——
o DHL
= 0.6 4 i
O J
N o
= = 1
[4b] . 0.10 -
C 4 .
@OA
S ]
2 4
0.2 4 0.05 +
q =2 .
0.0 s T T T T T T T T T 1 1
2 4 6 8 10 OOO LI I O O O N O (LS RO LB BRI
bT/\.J 0 5 10 15 20 25 30 35 40 45 50 55

q

FIG. 3. DHL's magnetization versus temperature wits 100
andq=2, 4, and 10. FIG. 4. Critical exponent® versusq for DHL and WBHL.
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So B is easily obtained from Eq15) as 16+
b q = 10
In[ solution of Eq.(15)] 144
- |n(rc) ’ 7
124
These exact calculations were also performed for a whole _ A q=4
family of DHL [see Fig. 2b) where we vary the number of 8 104
connectionsN,, i.e., the dimensionality of the lattiteand T
for the “Wheatstone Bridge hierarchical latticéWWBHL) O 8-
[see Fig. )]. In Fig. 4 we show the grapp versusq for = |
DHL and for WBHL. Our exact result fo8(q) of WBHL is O
unlikethat obtained by Caride and Tsafflsvith exception of L ®7
the pointq=2 (Bygn.=0.180. For the whole family of w
DHL the value of(2) was exactly calculated by Bleher and 47
Zalys® and we show in Table | their results and ours for 1
some members of that family fey=2. The discrepancy ap- 27 9=2
pears only due to their numerical imprecision at higher di- ] k L
mensions. Our results for any other valuegadre new, as far 0 . . . . , ] . T . )
as we know. The expression for the local and global magne- 0 2 ¢ 6 8 10
tization recurrence relations for the WBHL and for the fam- KbT/‘J

ily of DHL are shown in Appendixes B and C, respectively.
FIG. 6. Dimensionless specific heat versus temperature for DHL

V. INTERNAL ENERGY AND SPECIFIC HEAT with n=100 andq=2, 4, and 10.
The dimensionless internal energy at zero magnetic field, E (H,)

the specific heat, and its critical exponentan be exactly e,= 3T gIN®

calculated with the aid of the third equation of the &8t " 9 Np

The dimensionless energy per bond is defined as whereH,, is the Hamiltonian. So the dimensionless internal

energy can be rewritten ase,, wheree, can be expressed
E as
= —(8(p,0)),
Nb e, =C"+CVe,_;. (18)

recognizing that the average &u,0)) of two nearest neigh- Therefore, starting witle,=(80,0))=1, it is possible to ob-

bor spinsu and o at nth level is the dimensionless per bond tain the bond average energy at any level. fr¢targe enough
average energye(), the curves of the dimensionless internal energy versus tem-
perature have the same form shown in Fig. 5rfer100 and
—oo - ﬂ=2, 4, and 10 for the DHL. The exact adimensional specific

' eat

1 e,
qkgN{” aT

|
©
S
|

can be obtained either by deriving E48) with respect tor
or by numerical derivation of the curve shown in Fig. 5 and
the results folg=2, 4, and 10 and also=100 are shown in
Fig. 6 for the DHL. The critical exponent is obtained by
assuming in the neighborhood f(t.) thate, can be writ-
ten as e,=e.+\(e,)’ where e,.=C{P/(1-C{) and
€n=(T.—T,)/T.. The replacement of this expression into
Eq. (18) leads to
1
e

In(re) -

Internal Energy
|

|
o
o

1

(19

o=

Since the specific heat is related with the derivative of the
KbT/ J internal energy with respect to the temperature, we have that
a=1l-o.
FIG. 5. Dimensionless internal energy versus temperature for Table Il shows some values af (for q=1,2,4,10 for
DHL with n=100 andg=2, 4, and 10. some members of the family DHL and Table Il does the
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TABLE Il. Critical exponentsa for the DHL.
N¢ g=1 q=2 q=4 g=10
2 —1.270559 -0.676532 —0.248321 0.143 778
4 —-1.682235 -1.194450 -0.750510 —0.281103
10 —2.661275 -—2.363985 —1.972557 —1.396827

same for the WBHL. They allow us to test the hyperscaling
relations in these fractal lattices. This is possible because
can be obtained in an independent way by the relation
_In(2)

n(rg)”

In all these lattices the relatih

14

div=2—a, (20

whered; is the fractal dimension of the lattice, is completely
satisfied for all values of, suggesting strongly that this is
the correct way the hyperscale law works for fractal lattices
as it has been conjectured befdfe.

VI. MULTIFRACTAL PROFILE

Equations(8) allow us to calculate the average magneti-
zation of the Potts spins localized edchsite of the lattice
(local magnetization One way to do this is to choose one of

the shortest paths connecting the two roots of the HL and

looking the local average magnetization of the spins belong

ing to this path. One example is shown in Fig. 1 where the
chosen DHL shortest path is illustrated by the broken line.

&

All of the shortest paths are, obviously, equivalent. Thes
DHL shortest paths have'2 1 sites at thenth level. We can
locate these sites in a line using a normalized coordinate

XM= 25,

I
wherei=0,...,2. In Fig. 7 we present, at the critical tem-
perature, the localsite) magnetizatior(in the ordinate axis
as function of the position of the site in the patfiepre-
sented by the coordinate™ in the abscissafor some val-

LADARIO da SILVAet al.

N,=2,q=2 N, = 2,¢ = 1000

N,=5g=2 N, = 5,¢ = 1000
w lllll[lllll’llj‘r\‘

N,=10,g=2 N, =10,q = 1000

]

FIG. 7. Local magnetization of the spins belonging to a path of
generalized DHL withn=10, for some values oN, andq. The
ordinate is the local magnetization and the abscissa is the relative
position to the root, starting at zero.

s=27"

jf we are considering thath generation of the lattice. Obvi-
ously, the sum over all boxes is equal to one, i.e., it is a
robabilistic measurémore generally this measure is defined
on theo algebra generated by the partition of the inteyval
As the sum of the magnetization of all sites of the path is
equal to the average magnetization of the lattice times the
number of sites of the patfequal to 2+1 at thenth gen-
eration) and callingm; the sum of the magnetization of the
sites belonging to th&th box, we can write the measuig;)

of this box as

m;
Npatf‘mn

(N=

Mi ~ "

n

ues ofg andN. . Although it is not clear in this figure, we \yherem, is the average magnetization of the lattice at the
observed that the total average magnetization per site of the, generation andy, is the corresponding Hder exponent.

lattice is zero in the thermodynamic limit, i.e., whargoes

to infinite (at T=T,). These figures appear to be self-similar
and we will show that it is possible to define on then a
physical measure, based on the local magnetization, that
multifractal. To do this we divide the path into boxes and

Therefore we can associate to each box a value,pfind
collect the boxes with the same value ®f (within a small
interval Agyy) and then obtain thé(«) function. Recently,
Bn efficient algorithm has been developed by Chhabra and
Jenseff**which allows us to obtain a excellefta,,) func-

define the measure of each box as the fractional magnetizgy, \we used this algorithm to obtain for several valueg,of

tion of the box(i.e., the sum of the magnetization of all sites

at T., the multifractal functionf(ay). The plots of the

belonging to the box divided by the sum of the magnetiza-f(aH) functions are shown in Fig. 8. The maximum and

tion of all sites of the pathsWe normally use the lengtbiof
the box as

TABLE lll. Critical exponentsa for the WBHL.

q=1 q=2 q=4 q=10

—1.314 958 —0.667 034 —0.202 032 0.219 558

minimum « values for these functions can be exactly cal-
culated. The measures with largegt have the lowest values
and inversely, the measures with the lowegt have the
largest values. As the measures are defined on the magneti-
zations, the existence of a continuum of valuegygfimplies

the existence of a continuum of values gfi.e., there are
sets of sites whose magnetization scales with different expo-
nents(a connection between,, and 8 was established in
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1.2 : i , : where \, is a constant angB is the magnetization critical
exponent of the whole lattice. Therefore the smallest mea-
ok J sures can be written as
(5 )Bmax
L - (N __ g%max_ 27~

o8 q=1.5 Mmin™ 9y 27(e)P’
0.6 - which implies that

a 1{a) +1 _

( ) sl | wint >_ _1<6n+l)ﬁmax B
M(rr?i)n €n
0.2 ] AS
*%s .ofg o 1.1 12 €nt1 Edtnﬂ te=2",
« €n dt,

12 . l ; and asuJ,=1 (a constant valule we can write

Mg]i%w[zilh’(ﬁmaxfﬁ)*l]nw SR

n

Remembering thats,~2 " we obtain a relationship

08 1 ...
q=4 among the critical exponenfv, the exponeng,,,x, and the
o 1 Holder exponenty,,
(b) 1 1
0.4+ . apma= 1+ (Bmax— B) P (22)
0.2+ N The boxes containing the biggest measures are associated
with the local magnetizations that remain constant when
0.0 ' ! . n—o. So, we can write
0.8 0.9 1.0 1.1 1.2
a o const .
1.2 T T | max- 2N(¢. )P
ol | Analogous to the calculation fqi"). | we obtain
Wl | i (2P~ s,
q=10 , leading to the exact relation for the minimum values of the
0.6 | 4 Holder exponent:
() ,

0.4 1 T apymin=1— ; (22
021 1 In Fig. Aa) we plot aymax, aymin, v, Bnax, @andB as functions

. of g for the usual DHL(N.=2). Figures %b) and 9c) show
005 0'9 1'0 1'1 e the same behavior for other lattices, Sdy=4 andN.=10.

We exhibit in Fig. 8 thef () multifractal function for the
usual DHL, forg=1.5, 4, and 10. We can also see that the
higher the value fog the wider thef(«y) function. Evi-
FIG. 8. f(ay) multifractal function for the usual DHIN.=2)  dence was shown by Morgada al3!3? that the maximum
for (8 g=1.5; (b) g=4; (c) g=10. of the f(ay) function reaches Ithe dimension of the sup-
port sel when we increase the number of hierarchies used.
Ref. 3. Therefore, the boxes containing the measures with

the smallest value have a local magnetization that behaves VIl. CONCLUSIONS
large as
99 We showed exact results obtained by a method that allow
M~ (e)Pmax us to calculate recurrence relations for the local and global
magnetization for the zero field Potts ferromagnetic model.
i.e., with the maximum possible value Sfe,=(t,—t.)/t.]. Using these relations we also obtained exactly the critical
We can write the total magnetization of the profile as exponentsy, B, andv. Our results for the critical exponents

agree, forg=2 (Ising mode] with previous results for the
2" (en)?, DHL obtained by Ref. 32 and for other lattic&sThe possi-
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Xemin

pmox

(b)

0.5 4 g
Omin
0.0 T T T T T T T T T
0 1 2 3 4 5 6 7 8 g9 10
q
N.=10
2.0 1

1.5 1
Benex

0.5 4

Orin

0.0 T

FIG. 9. Exponentsyymax, aymin, ¥, Bnax, @ndB as function ofg
for (@) DHL (N.=2); (b) generalized DHL withN.=5; (c) gener-
alized DHL with N,=10.

bility of exactly calculating the critical exponents makes it
possible to verify that the hyperscaling relation is success-
fully obeyed by the lattices we usdtbr a wide variety of
fractal dimensions and values as expected. It was also
possible to exactly calculate thermodynamic functions as
magnetizations, specific heat, etc. Théx,) multifractal
function showed that the measure defined as the normalized
local magnetization of a profile has a multifractal distribution
at the critical temperature, as observed for the Ising model by
Morgadoet al332 Work to verify the validity of the other
scaling laws is now in progress.
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APPENDIX A: COEFFICIENTS OF THE DHL

Defining A,,=e%", the coefficient<{™, c{V, c{", and
c{M, for the DHL, are respectively

A,—1
(n) _ n
C1'"2A,+q-2"
C(n):( q ) (An_l)z
2 la-1) (As+9-1)(2A,+q-2)’

An

M_—rqg=1) —— "
C3'=(q 1)(2An+q—2)’

ol An(Ap—1)(Ay+q—1)
4 (A2+q-1)(2A,+q-2)°

APPENDIX B: RECURRENCE EQUATIONS
FOR THE WBHL

The recurrence relations for the “site” magnetization are

m,=C\hlm, +m, 1+ CibA, .,

Ay, =Ciiam, +CliA (i=1,2,

K1k

A yor=Cls(m, +m, )+ CeA, . .

and those for the “site” average magnetization are
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(n-1) cE N2 o, N
My=—rm— | 6CWa+ 1+ 2 =15 |Mn_1— 6CIY +2 s Myt 22 CILAL
n N(n Wl n N(n) C(n ~mn=1)|""n- N(sn) n—
(bnfz (n)
2
-4 N CVCZ) C(n 1) An_2,
S
(n—1) N(n 2) N(n 1) zc(n)+c(n)
Ap=3— (2CHa+ Cllamy 13— (2CH+ Clgmy o+~ | 4CU,+ Cllet 2| 8
n N(bn) ( W,3 W,5) n—1 Nb ( wW,3 ) n—2 Nb wW,4 zcwygl)_l_cw,sl) 1
(n—2) (n) (n)
Nb 2(4c(n Dy (n 1)) M 5
NG 2+t T

where the coefficients above may be written as
m _ An(AT+An+q—2)— (3A,+9-3)
W1 2A3+2A%+(q—2)(5A,+q—3) '

C(n)_< q ) 3A,+9-3 ~ Ar+ATQ—2
W2l g—1) 2A3+4+2A%2+(q—2)(5A,+q—3) A +(q—1)(2A2+A,+q-2)’

An(Ad+A+0—2)
2A3+2A%+(g—2)(5A,+q—3)’

Cws=(q-1)

o AS+A%(q-2) AAZ+A+q—2)
WA ASH(g—1)(2A%+A,+q—2) 2A3+2A%+(q—2)(5A,+q—3)’

A-A,
2A3+2A%+(q—2)(5A,+q—3)°

Clys=(a-1)

o AS—A, 2A,—2A3
W8 AS+(q—1)(2A%+A,+q—2) 2A§+2A§+(q—2)(5An+q—3)’

whereA,,=e<",

APPENDIX C: RECURRENCE RELATIONS FOR THE GENERALIZED DIAMOND HIERARCHICAL LATTICE

The local magnetization recurrence relations are the same for this whole family as those for the usual DHL and the average
magnetizationgper hierarchy are

N1 cm (n-2) cm (n-1)
_ s (n) 1 s (n) 1 b
mn_—N(Sn) 2NCy7+ 1+ N _C(ln—l) Mph—1— —N(Sn) 2N Ci7+ N _C(ln—l)' My_2+Ng N(n) CPVA -,
EJn72) (1n)
—(N)? Cy —m=p An-2,
¢ N civ N
(-1 N2 cm NO-D c N2
_ 1
Ap=2N, N(n) CS m,_1— 2N N(n) C(3n)mn72+ Cﬁln)_l_NcWWAn 1™ Z(Nc)zc(n )C(n 1) NEJn) Ap-z.

wf(we)re N. is the number of parallel paths between the two roots Nﬁd’z[l/(ZNC—l)](Z N1*1+3N,—2) and
an :(ZNc)n-
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