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We present a detailed theoretical study of the dielectric and magnetic response of composites containing
elongated conducting inclusions—sticks. These composites are widely used as engineering materials. They can
be also considered as a model to describe many processes occurring in nature, e.g., dielectric enhancement in
grain-saturated porous rocks. An approach is proposed that is based on the idea of a scale-dependent local
dielectric constant. We develop an effective-medium approximation and derive an equation to calculate an
effective dielectric constant of the composites in the quasistatic case and for the high frequency when there is
a strong skin effect in the conducting sticks. Our theory predicts very large values of the effective dielectric
constant in a wide range of the stick concentration. We find that the dielectric constant can exhibit various
dispersive behaviors. It can have relaxation behavior, power-law scaling behavior, or resonance dependence on
the frequency. The resonance dependence occurs when the skin effect is strong and wavelength is comparable
to the stick length. Then the real part of the dielectric constant has negative values in some frequency ranges.
The possibility of a wave localization is discussed in that case. We consider effective magnetic properties of the
conducting stick composites. We propose that the composites with nonmagnetic components will have a giant
paramagnetic response as a result of a collective interaction of the sticks with an external magnetic field.

I. INTRODUCTION AND MOTIVATION

We consider composites that contain very elongated con-
ducting inclusions, ‘‘sticks’’ embedded in a dielectric host
~see Fig. 1!. The sticks are supposed to be randomly distrib-
uted and oriented. The problem to be considered here is the
calculation of the macroscopic dielectric and magnetic re-
sponse of the conducting stick composites. The interest in
metal-dielectric composites, where conducting inclusions
have a very elongated shape, is because these systems de-
scribe physical structures occurring both in nature and tech-
nology.

There are a lot of porous rocks in nature such as sand-
stones or similar geological formations that have channel-
like or sheetlike porous structure. In spite of its great impor-
tance, there is no universal concept for rock conductivity,
permeability, and dielectric susceptibility~see discussion in
Refs. 1, 2!. Considering the sticks as a model for the rock
pores, one can reproduce the structure of porous rocks by
fitting the shape and concentration of the sticks.3 Then it is
possible to calculate the rock conductivity, permeability, and
dielectric susceptibility by the methods that we develop in
this paper. The conducting stick composites are also impor-
tant for industrial applications. Ceramic and plastic materials
reinforced by carbon or metallic fibers are becoming increas-
ingly attractive as engineering materials. The physical-
chemical and mechanical properties of such materials are the
subject of great interest~see Refs. 4, 5 and references
therein!. The dielectric properties of the materials look like
an important tool for their characterization and diagnostic.6

The results obtained in this paper may be also useful for
characterization of semicontinuous metal films. The semi-
continuous films, used to fabricate selective surfaces for so-
lar photothermal energy conversion, are usually prepared by
thermal evaporation or spattering of the metal on an insulat-
ing substrate. In Ref. 7 its structure has been studied by an

image analysis. The authors have obtained that the elemen-
tary conducting cell has an elongated shape. This circum-
stance is almost evident from the electron micrographs of the
films ~see, e.g., Refs. 8–10!. It is therefore of interest to have
a picture of the variation of the film dielectric properties with
the shape of conducting inclusions. After all, we will show in
this paper that dielectric and magnetic properties of the con-
ducting stick composites are unusual and very interesting in
their own right. We proposed that these composites can be
used to manufacture various artificial dielectrics and magnet-
ics.

The geometric properties of composites with penetrable
conducting sticks have been studied by Monte Carlo
simulation3,11–13 and analytically.14,15 It was found that the
percolation thresholdpc is inversely proportional to the stick
aspect ratiopc}b/a, whereb is the radius of a stick and 2a
is its length. The same estimationpc}b/a was obtained in
Ref. 16 by an excluded volume explanation of Archie’s law
for the porous rock permeability. This important result may
be explained as follows: A conducting stick intersects on
average withN other sticks. WhenN!1, the sticks are sepa-
rated from each other and the probability to percolate
through the conducting sticks is equal to zero. WhenN@1,
the sticks form some carpet as is shown in Fig. 1 and the
probability to percolate is equal to one. There is a critical
number of intersections,Nc , that correspond to the percola-
tion threshold. An important finding of Refs. 3, 11–15 is that
the critical numberNc is about one and it does not depend on
the stick aspect ratioa/b in the limit a@b. The averaged
number of intersections,N, can be calculated using elemen-
tary theory of probability. It appears to be proportional to the
aspect ratio and to the volume concentration of the conduct-
ing sticks: N5(4/p)p(a/b) for d52 andN52p(a/b) for
d53 ~see, e.g., Ref. 3!. Therefore we have the percolation
threshold pc5Nc2pb/(4a)}b/a for d52 and pc5Nc3b/
(2a)}b/a for d53, whereNc2 andNc3 are critical numbers
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of the stick intersections for two- and three-dimensional
composites, respectively. It follows from this result that the
percolation thresholdpc may be very small for composites
with elongated conducting inclusions. Moreover,pc tends to
zero when the aspect ratioa/b goes to infinity. Small values
of the percolation threshold is one of the distinguishing fea-
tures of the conducting stick composites. Another one is the
anomalous dielectric response of such composites.

The dielectric response of the metal-dielectric composites
has attracted the attention of many researchers for a long
time. The problem to be considered is the calculation of the
macroscopic, effective dielectric constantee and magnetic
permeabilityme of the composites in terms of the dielectric
and magnetic responses of its constituents. Although the re-
sults obtained so far for the composites with spherical con-

ducting inclusions cover a wide range of methods and
approximations,6,9,17–21extensions to nonspherical inclusions
have been restricted, almost entirely, to mean-field approxi-
mations. There are two different mean-field approximations
considered in the literature: Bruggeman effective-medium
theory ~EMT! ~Refs. 6, 22, 23! and the symmetrized
Maxwell-Garnet approximation introduced by Sheng~MGS!
~Refs. 9, 24, 25!. The EMT and MGS theories reproduce, at
least qualitatively, the behavior of the effective parameters of
the composites in the entire range of the conducting compo-
nent concentrationp. It was found that the last one gives
better agreement with experimental data for the optical prop-
erties of the composites.9 There are many approximations in
the literature designed to obtain the effective parameters of
the composites in the limit of small concentrationsp or for
the case when the properties of the constituents are only
slightly different. A comprehensive list of such approxima-
tions can be found in Refs. 19–21. In Ref. 20 the authors
have suggested an extrapolation procedure that being applied
to a formula valid forp!pc gives an extension of this for-
mula to all concentrationsp. The thus obtained equations for
the effective parameters give the percolation thresholdpc
either equal to one or depending on the conductivity of the
conducting component. In Ref. 21 the same authors suggest
another symmetrization procedure that can be applied to an
approximate formula to extrapolate it to all concentrationsp
and to all values of the parameters of the composite constitu-
ents. The procedure proposed in Ref. 21 gives, in all cases
when it actually changes an original formula, the equation
for the effective conductivityse of the form s e

1/35(1
2p)s d

1/31ps m
1/3, wheresm andsd are the conductivities of

the conducting and dielectric components, respectively. This
equation implies that even forsd50 effective conductivity
remains finite for all concentrationsp of the conducting
component. That is, the percolation thresholdpc is exactly
equal to zero. Since the percolation thresholdpc for the con-
ducting stick composites is neither equal to zero nor equal to
one and the values ofpc do not depend on the stick conduc-
tivity, it is difficult to use the equations suggested in Refs.
20, 21 to find the effective parameters of the composites. For
this reason we restrict further consideration to EMT and
MGS theories, which give nontrivial values ofpc that are
independent of the conductivities of the composite compo-
nents. Nevertheless, we would like to point out that our ap-
proach is close to some extent to that proposed in Ref. 20.

The EMT and MGS theories have been developed origi-
nally to describe the properties of composites containing
spherical conducting grains. Different generalizations of
EMT have been suggested for composites with randomly ori-
ented prolate conducting inclusions.26–28 It is easy to show29

that all these approaches give a percolation threshold that is
proportional to the depolarization factor of an inclusion in
the direction of its major axispc}gi . For very elongated
inclusions the depolarization factor takes form
gi>(b/a)2 ln(a/b), where 2a andb are the stick length and
radius, respectively~see, e.g., Ref. 30, Sec. 4!. Therefore
EMT gives the percolation thresholdpc}(a/b)

2, which is in
obvious disagreement with the results of Refs. 3, 11–15. The
percolation threshold given by MGS theory for the randomly

FIG. 1. Conducting stick composite.~b! Backbone of the ‘‘infi-
nite cluster’’ that spans from top to bottom.
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oriented sticks depends on the typical shape of the dielectric
regions that is assumed in the theory.29 Since the sticks are
randomly oriented, it is quite natural to suppose that the di-
electric regions have on average a spherical shape.27,28Then
the percolation threshold given by MGS theory,pc50.46, is
independent of the stick shape.29 An alternative approach
corresponds to dielectric regions of the same shape as
sticks.6,9,26 Then it follows from the results of Ref. 29 that
MGS theory givespc}Ab/a. Therefore the results of this
theory also disagree with results for the percolation thresh-
old, pc}b/a, obtained in Refs. 3, 11–15.

The percolation threshold is an important property since it
determines the concentration of inclusions for which dra-
matic changes in the dielectric properties occur. A discrep-
ancy between the values of the percolation threshold directly
leads to a discrepancy between the dielectric data. Consider,
for example, the composites with the stick aspect ratio
a/b.102 that have been investigated in an experiment.31 The
observed values of the percolation thresholdpc}b/a are
many tens times larger thanpc}(b/a)

2 predicted by EMT
and many times smaller thanpc50.46 orpc}Ab/a given by
MGS theory. Therefore an application of the existing theo-
ries to the conducting stick composites is in question.

The percolation threshold is not a single problem with the
conducting stick composites. The effective dielectric con-
stantee of the composite with aligned conducting spheroids
has been detailed considered in Ref. 32. Suppose that the
prolate spheroids with semiaxesa andb (a.b) are aligned
with z axis. The simple scale transformationx5(b/a)1/3x* ,
y5(b/a)1/3y* , z5(a/b)2/3z* reduces the composite to the
system of anisotropic conducting spheres distributed in an
anisotropic host.33 Therefore the percolation threshold for the
composites with aligned sticks coincides with that of the
spherical particles. Nevertheless, it appears that the dielectric
response of aligned stick composites is quite different from
that of composites with spherical inclusions even for the
small concentrations considered in Ref. 32. This difference is
due to long-range correlations in the interaction of the sticks.
It is shown in Ref. 32 that long-range correlations are a dis-
tinct feature of sticks, while for spherical particles they are
negligible ~see also Ref. 34!. Another important result of
Ref. 32 is the possibility of the excitation of internal mani-
fold modes in the system. This observation corresponds to
the results of the present work. The high-frequency dielectric
properties of the aligned stick composites have been consid-
ered in Refs. 35, 36 beyond the usual quasistatic approxima-
tion.

Let us consider the interaction of randomly oriented sticks
excited by an external fieldE0. The dipole momentD of a
conducting stick may be estimated asD}a3E0 ~Ref. 30, Sec.
3!. Then the effective dielectric constant is estimated as
ee}a

3n}a3p/(ab2), wheren is the number of the sticks in
a unit volume. We can rewrite the last expression for the
dielectric constant in terms ofpc : ee}a

3n}(a/b)(p/pc).
In this paper we are interested in composites with very elon-
gated inclusions~a/b@1!. Then the dielectric constantee is
large even for concentrationsp, which are far below the
percolation thresholdpc . We can estimate the numbernint of
sticks inside the rangea of the dipole interaction as
nint}a

3n}ee . Therefore the stick dipoles start to strongly

interact as soon asee@1, which happens for sufficiently
small stick concentrationsp,pc!1.

The effective dielectric constant may be introduced for
the composite samples whose size is much larger than the
stick lengtha. But to calculate the effective parameters it is
necessary to start with scales smaller than the stick radius
b!a. The aspect ratioa/b@1 may be considered as a mini-
mal dimensionless correlation length of the problem. When
the concentrationp is increased, the correlation length is
further increased. As we have pointed out above, the sticks
usually strongly interact. Therefore the conducting stick
composite is a system with long-ranged strong interactions.
As a result, well-developed methods of the percolation
theory6,9,17,18 like renormalization group in real space or
mean-field approximations cannot be directly applied to the
system. Computer simulation of the dielectric properties of
the conducting stick composites is also difficult. To calculate
the effective dielectric constant, we have to know the elec-
tromagnetic field distribution over the system. Indeed, the
field distribution is obtained usually by solution of finite-
difference Laplas or Maxwell equations. In a very crude ap-
proximation the stick radiusb can be taken as an elementary
length. Then equations have to be solved on three-
dimensional~3D! lattices whose number of sites is much
larger than (a/b)3. Suppose, for example, that the stick as-
pect ratioa/b'102 then the number of the sites is of the
order of 109. The solution of a finite difference equation on a
such lattice is a difficult problem even for the most powerful
modern computers.

On the experimental side results of the first attempt31 to
investigate the dielectric properties of conducting stick com-
posites are in evident disagreement with the percolation
theory.6,17,18The percolation theory predicts that the dielec-
tric constant exhibits a power-law dispersive behavior
ee}(v/sm)

s/(t1s)}(v/sm)
0.3 in a small critical region

aroundpc defined byuDpu,(v/sm)
1/(t1s), where the critical

exponents are equal tot>2.0, s50.8 for d53; sm is the
conductivity of the conducting inclusions. Out of this critical
region, there should be no dispersion at all. In contrast to this
prediction, the dispersive behavior of the dielectric constant
ee has been observed in the microwave range 109–1010 Hz
for all investigated concentrations of conducting sticks.31

The dispersive behavior for sticks with conductivity
sm'1014 sec21 is similar to the Debye relaxation:
ee(v)}1/(12 ivtR),

37 where the relaxation timetR depends
on the stick length and conductivity. The frequency depen-
dence of the dielectric constantee~v! is resonance in form
for the composites with higher stick conductivitysm'1017

sec21. The real part of the dielectric constantee~v! drops
down to zero at some resonance frequencyv1 and it acquires
negative values for frequenciesv.v1. The power-law dis-
persive behavior predicted by the percolation theory had not
been observed in this experiment at all.

In this paper we present a comprehensive theoretical
study of the dielectric and magnetic response of conducting
stick composites. We study in all details the interaction of a
conducting stick with an external electric field. Then we de-
velop an effective medium theory for the conducting stick
composites. Our approach is based on the well-known
Bruggeman EMT. It also incorporates the idea of MGS
theory, that the local environment of an inclusion may be
different for different inclusions. We show that the dielectric
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constant is a nonlocal quantity for the considered compos-
ites. It depends on the spatial scale for scales less than the
stick length. We consider a single stick in such an environ-
ment and derive an equation to find the dielectric response of
the composites. Preliminary results of this work have been
reported earlier.38

Our theory gives the percolation thresholdpc}b/a in
agreement with the results of Refs. 3, 11–15. It also repro-
duces the dispersive behavior obtained in Ref. 31. For the
quasistatic case, when the skin effect in the sticks is negli-
gible, we obtain the relaxation behavior of the effective di-
electric constantee(v)}1/(12 ivtR), for a wide concentra-
tion range below and also above the percolation threshold.
We actually determine the relaxation timetR in this paper. It
turns out thattR depends on the stick shape and conductivity.
For frequenciesv!tR

21, the power-law dispersive behavior
predicted by the percolation theory can be observed in some
vicinity of the percolation threshold.

We extend our theory to the nonquasistatic case when it is
a strong skin effect in the conducting sticks. Then the relax-
ation behavior of the effective dielectric constantee~v!
changes to the resonance dependence of the frequency. The
real part ofee~v! can accept negative values when the skin
effect is strong. We discuss the possibility of a wave local-
ization in this case. The dependenceee(p2pc ,v) in the
critical region near the percolation threshold is also consid-
ered for the strong skin effect. It seems that this dependence
has a nonuniversal form in this case.

We consider the magnetic response of conducting stick
composites. Randomly oriented sticks form different con-
tours in this kind of composite. The typical area of such a
contour is abouta2. An external alternative magnetic field is
excited in the contour electric currentI}a2. The magnetic
moment of a such current is aboutM}a3. The effective
magnetic permeability of the composites can be estimated as
me}Mp/(ab2)}(p/pc)(a/b). Therefore conducting stick
composites can have a large magnetic response even for
small concentrations of the sticksp,pc!1. It is necessary to
stress that the magnetic response can be observed for com-
posites consisting of nonmagnetic materials.

In this paper we calculate the magnetic momentM of the
simplest contours consisting of two conducting sticks. Then
we apply the approach39 to calculate the effective magnetic
permeabilityme . The frequency dependence of the thus ob-
tained permeabilityme~v! is resonance in form. The giant
paramagnetic response can be observe in some frequency
range for the conducting stick composites.

The rest of the paper is organized as follows: In Sec. II we
develop our mean-field approach and derive the equation for
the effective dielectric constant. Then we consider the low-
frequency dielectric properties of the stick composites. It is
shown that the dispersive behavior of the composites
strongly depends on the stick’s length and conductivity. In
Sec. III we deal with the high-frequency properties of the
stick composites. At high frequency the interaction of a stick
with an electromagnetic wave has resonance character. As a
result, the composite dielectric constant is resonance in form.
We also discuss the possibility of internal modes to be ex-
cited in the composites. In Sec. IV we consider the effective
magnetic properties of the composites consisting of nonmag-
netic materials. It is shown that the magnetic permeability of

the composite can be much larger than unity in some fre-
quency range. Section V is devoted to conclusions.

II. LOW-FREQUENCY PROPERTIES OF CONDUCTING
STICK COMPOSITES

Let us consider a system of randomly oriented conducting
prolate spheroids with semiaxesa@b5c. This shape is the
amenable geometry to analysis and is a good affiliation for
the sticks. The prolate spheroid sticks are randomly embed-
ded in a dielectric matrix characterized by a dielectric con-
stanted . We neglect the direct ‘‘hard-core’’ interaction and
assume that the sticks are penetrable. Our objective is the
calculation of the effective complex dielectric constant
ee5e11 i e2 or the effective complex conductivity
se52 ivee/4p of the stick composite. To find the effective
parameters, one has to know the distribution of the electric
field E~r ! and current densityj ~r ! in the system when an
external fieldE0 is applied. The effective complex conduc-
tivity se is determined by the definition

^ j ~r !&5se^E~r !&, ~1!

where ^•••& denotes an average over the system volume. In
the real composite, both the currentj ~r ! and fieldE~r ! will be
highly inhomogeneous and statistically random, and it will
be very difficult to calculate them precisely.

The typical correlation length of the field and current fluc-
tuations is of the order of the stick length 2a. Therefore the
effective conductivityse can be defined only for the scalel
that is larger than the stick length 2a. On the other hand, the
field and currentinside a stick are determined on a scale
corresponding to the stick radiusb!a. Then the conductiv-
ity se and other effective parameters are determined by the
field distribution in a volume larger thana3, while the field
fluctuations with volumeb3!a3 are important. As a result,
the effective parameters of the composites essentially depend
on the aspect ratioa/b, that is, on the shape of the conduct-
ing inclusions. In this situation standard methods of percola-
tion theory cannot be applied to find the effective parameters
and one has to develop new approaches. Let us illustrate the
last statement by an example of effective-medium theory.

The method widely used to calculate the effective proper-
ties of a composite is a self-consistent approach known as
effective-medium theory~EMT!.6,22,23EMT has the virtue of
relative mathematical and conceptual simplicity, and it is a
method that provides quick insight into the effective proper-
ties of metal-dielectric composites. In EMT one makes two
approximations: ~a! the metal grains as well as dielectric
are embedded in thesamehomogeneous effective medium
that will be determined self-consistently and~b! the metal
grains as well as dielectric grains are taken to have thesame
shape.

For conducting stick composites, these approximations
mean that the metal and dielectric grains are assumed to have
the same shape as prolate spheroids. The internal field inside
a spheroid embedded in the effective medium with conduc-
tivity se can be easily calculated~Ref. 30, Sec. 8!. The in-
ternal fields in the conducting and dielectric spheroids aver-
aged over all orientations are equal, respectively,38
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Ein m5 1
3Ein mi1

2
3Ein m' ,

Ein mi5
1

11gi~sm2se!/se
E0 ,

Ein m'5
1

11g'~sm2se!/se
E0 , ~2a!

Ein d5
1
3Ein di1

2
3Ein d' ,

Ein di5
1

11gi~sd2se!/se
E0 ,

Ein d'5
1

11g'~sd2se!/se
E0 , ~2b!

wheresm is the conductivity of the sticks,sd52 ived/4p is
the dielectric host conductivity, andgi andg' are the spher-
oid depolarization factors in the direction of the major axis
and in the transverse direction, respectively. For very elon-
gated inclusions,gi!1 andg'>1/2 ~Ref. 30, Sec. 4!. The
currents in the conducting and dielectric spheroids averaged
over all orientations are equal,

j in m5smEin m , j in d5sdEin d . ~3!

To find the effective conductivityse , we substitute Eqs.~2!
and ~3! in Eq. ~1! and take into account that the conducting
spheroids occupy the volume fractionp of the system. Thus
we obtain the following equation to determine the effective
conductivity:

p

3 F sm2se

se1gi~sm2se!
1

2~sm2se!

se1g'~sm2se!
G1

12p

3 F sm2se

se1gi~sm2se!
1

2~sm2se!

se1g'~sm2se!
G50. ~4!

This equation is equivalent to the condition that the space
average of polarization of the dielectric and conducting par-
ticles embedded in the ‘‘effective medium’’ shall vanish. It
has a transparent physical meaning. Namely, we choose the
effective conductivity to cause the averaged scattered field to
vanish.40 For spherical particles (gi5g'51/3), Eq. ~4! co-
incides with the usual EMT equation~see, e.g., Ref. 6! and
gives the usual EMT result that the percolation thresholdpc
is equal topc51/3.

In the general case of elongated conducting particles,
EMT, Eq. ~4!, gives the percolation threshold

pc5~523gi!gi /~119gi!. ~5!

We consider here composites where the aspect ratio of the
conducting particles is largea/b@1. Then the depolarization
factor is small,gi'(b/a)2 ln(a/b)!1 ~see the Appendix!
and the percolation threshold given by Eq.~5! is approxi-
mately equal topc55(b/a)2 ln(a/b)}(b/a)2. This result is
in contradiction topc}b/a obtained for the stick composites
in Refs. 3, 11–15 and in the experiment of Ref. 31. Therefore
EMT, Eq.~4!, cannot be used for the actual calculation of the
effective parameters of the composites.

To understand the reason for this discrepancy let us ex-
amine the basic approximations of EMT. It is obvious that
suggestion~b!, ‘‘the metal grains as well as dielectric ones
are taken to have the same shape,’’ is not correct for stick
composites. Indeed, the dielectric in such composites cannot
be considered as an aggregation of individual grains. It fills
all the space between randomly oriented conducting sticks,
and the averaged shape of the dielectric regions is more
spherical than prolate spheroid. Then the field in the dielec-
tric regions is given by6

Ein d5
3se

2se1sd
E0 , ~6!

where we suppose that the dielectric regions are surrounded
by the ‘‘effective medium’’ with conductivityse .

Since we assume that the dielectric regions have a spheri-
cal shape that is different from the shape of the conducting
sticks, there is no reason to assume that local environments
of dielectric regions and conducting sticks are the same. It
means that the first approximation~a! of the standard EMT,
‘‘the metal grains as well dielectric are embedded in the
samehomogeneous effective medium,’’ should be also re-
vised. At this point we follow the ideas of the symmetrized
Maxwell-Garnett approximation.24

Let us consider a single-well conducting stick placed in
an external fieldE0 directed along it. The field is close to
zero at the stick surface, and it recovers the valueE0 at a
distancel.a only. Clearly, the ‘‘effective medium’’ in the
distancel , b, l,a, is most important in the formation of the
internal fieldEin m in the stick. On the other hand, we can
prescribe bulk effective properties to the domain of the com-
posite, that the sizel is much larger than the stick length 2a.
For the smaller scalel , the sticks will be cut off and effective
conductivity is a function of the scalel : se5s( l ). When
l!a the conductivitys( l ) will be equal tos( l )>sd for the
stick concentration p!1 considered here. The scale-
dependent conductivitys( l ) will recover its bulk value
s( l )5se when l@a. We accept the simplest assump-
tion: A conducting stick is surrounded in the composite by
the medium with conductivity

s~ l !5sd1~se2sd!
l

a
, l,a,

s~ l !5se , l.a. ~7!

To find the internal fieldEin m in a conducting stick embed-
ded in a such ‘‘effective medium,’’ note that Eq.~2a! for the
field is obtained under very general conditions~Ref. 30, Sec.
8! and it should be true for the scale-dependent stick envi-
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ronment. We calculate the internal field for this case in the
Appendix and show thatEin m is still given by Eqs.~2a!
where the depolarization factorsgi ,g' now take the form

gi5
b2se

a2sd
lnS 11

asd

bse
D[

b2ee
a2ed

lnS 11
aed
bee

D , g'5
1

2
,

~8!

in the limit a@b. The depolarization factorgi is reduced to
the usual expressiongi5(b/a)2 ln(a/b) in the dilute case
whense>sd .

Now we would like to summarize the main assumptions
of our effective-medium theory for conducting stick compos-
ites ~EMTSC!. To obtain the EMTSC equation for the effec-
tive complex conductivity, we make two approximations.

~a* ! Each conducting stick is embedded in the effective
medium with conductivitys( l ) that depends on the scalel
by means of Eq.~7!. The conductivitys( l ) equals the effec-
tive conductivityse for l.a. The value ofse will be deter-
mined self-consistently.

~b* ! The dielectric regions are taken to have a spherical
shape and embedded in the effective medium with conduc-
tivity se .

To find the effective conductivityse , we substitute Eqs.
~2a!, ~6!, and~3! into Eq. ~1!. Thus we obtain the following
EMTSC equation to determine the effective conductivity:

p

3 F sm2se

se1gi~sm2se!
1

2~sm2se!

se1g'~sm2se!
G

1~12p!
3~sd2se!

2se1sd
50, ~9!

where the polarization factorsgi andg' are given by Eq.~8!.
Equation~9! is much simplified in the case of the high-

conducting elongated inclusions~sm@v, a@b! considered
in the paper.

~1! We are interesting in the effective conductivity for the
stick concentrationp which is below and in a vicinity of the
percolation thresholdpc}b/a!1. Therefore we neglect the
concentrationp in comparison to the one in the second term
of Eq. ~9!.

~2! Since the concentrationp!1, the effective conductiv-
ity se is much smaller than the stick conductivityse!sm .
Therefore we neglectse in comparison withsm in all terms
of Eq. ~9!.

~3! We can neglect the stick polarizability in a direction
perpendicular to an external field since it is much smaller
than the polarizability in the direction of the field. That is, we
can neglect the second term in the square brackets in Eq.~9!.

After these simplifications Eq.~9! takes the form

1

3
p

sm

se

1

11~b2sm /a
2sd!ln~11asd /bse!

13
sd2se

2se1sd

50. ~10!

This is the basic EMTSC equation for the effective param-
eters of the composite containing elongated conducting in-
clusions. Let us consider the behavior ofse obtained from
Eq. ~10! in some extreme cases.

In the static limitv→0, sd→0, the composite conductiv-
ity se decreases with decreasing the stick concentrationp
and it vanishes at the percolation threshold, which is equal to

pc5
9

2

b

a
. ~11!

This result forpc is in best agreement with the resultpc}b/a
obtained in Refs. 3, 11–15 and in the experiment of Ref. 31.
The static conductivity vanishes near the percolation thresh-
old as

se~t!5
b

a
smt t, t>0, ~12!

where t5(p2pc)/pc is the reduced concentration of the
conducting sticks,t51. It follows from Eq.~12! thatse!sm
for concentrationst,1, in agreement with the assumption
~1! made for Eq.~10!. To understand this result, let us con-
sider sticks that belong to the backbone of an infinite cluster.
Each stick that belongs to the backbone cuts a finite number
of other backbone sticks@see Fig. 1~b!#. Therefore the back-
bone consists of segments whose length is proportional to the
stick length 2a. Since the conductance of such a segment is
proportional tob/a, we immediately obtain this small factor
in Eq. ~12!.

The EMTSC developed in this paper has disadvantages
characteristic of mean-field theories. For example, it gives
the ‘‘conductivity’’ critical exponentt51 in Eq. ~12! instead
of t>2.0 given by percolation theory.6 Nevertheless, we be-
lieve that EMTSC qualitatively reproduces the distinguishing
features of the composites. Thus the very small factorb/a
should also appear in a ‘‘true’’ scaling equation for the static
conductivity se~t! since the conductance of an elementary
bond in the backbone is proportional to this factor. We sug-
gest that the scaling equation forse~t! has the form

se~t!5
b

a
smt t, ~13!

where the critical exponentt is equal tot>2.0.
The static dielectric constantee~t! is predicted by EMTSC

to diverge whenpc is approached from either side,

ee~t!5
1

2
ed

a

b
utu2s, ~14!

where the critical exponents is equal tos51. Note that a
large factora/b@1 appears in Eq.~14!. We guess that this
factor is due to the large polarizability of a conducting stick
discussed above. As a result, the dielectric constantee~t!
achieves very large values in the critical regionutu!1 near
the percolation thresholdpc as shown in Fig. 2~the dashed
line in Fig. 2 indicates the position ofpc!. The ‘‘dielectric’’
critical exponents51 in Eq. ~14! is not far away from the
known values50.8.6 Therefore we believe that Eq.~14! may
be used for a quantitative estimation ofee~t! in the vicinity
of pc .

The dielectric constantee does not diverge at the percola-
tion threshold for finite frequencyv, but the real parte1 of
the complex dielectric constantee5e11 i e254ipse/v still
has a maximum at the percolation threshold as it follows
from the solution of Eq.~10!. Let us consider the scaling
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properties of the effective dielectric constantee~t,v! in the
critical regionutu!1, sm/v@1 near the percolation threshold.
The critical behavior ofee~t,v! for ordinary metal dielectric
composites is believed6,41,42 to be described by the scaling
expression

ee~t,v!5edutu2sfF utuS 4p ism

edv
D 1/~ t1s!G , ~15a!

where the scaling functionf(z) has the following asymp-
totic behavior:

f~z!>H 1, uzu@1, t,0,
zs, uzu!1,

zt1s11, uzu@1, t.0.
~15b!

This scaling behavior has been obtained in some experiments
and numerical simulations~see Refs. 6, 43, 44, and refer-
ences therein! that have been done for the composites with
approximately round conducting grains. Forv→0, Eqs.
~15a!, ~15b! give the asymptotic behavior of the effective
dielectric constantee>edutu2s and effective conductivity
se>smt t for t.0 that is somewhat different from the as-
ymptotic behavior of these quantities for the conducting stick
composites given by Eqs.~13! and~14!. To incorporate Eqs.
~13! and ~14! in the scaling approach, we suggest rewriting
the scaling Eq.~15a! in the form

ee~t,v!5
a

b
edutu2sfF utuS i

v* D
1/~ t1s!G , ~15c!

where the scaling functionf(z) is still given by Eq.~15b!,
while the dimensionless frequencyv*5(a/b)2(edv/4psm)
to the square of the stick aspect ratioa/b. Equation~15c! can
be considered as a generalization of Eq.~15a! to the conduct-
ing stick composites. This equation has a scaling form and
gives the asymptotics~13! and ~14!.

From Eqs.~15b!, ~15c!, it follows that when bothutu and
v/sm are small in the critical region aroundpc defined by

utu,S abD
2/~ t1s!S edv

4psm
D 1/~ t1s!

, ~16!

the complex dielectric constant exhibits a power-law disper-
sive behavior

e1~v!}e2~v!}S abD ~ t2s!/~ t1s!S v

sm
D s/~ t1s!

. ~17!

Note that the concentration range where the dielectric con-
stant has the scaling dispersive behavior~17! increases by a
factor (a/b)2/(t1s) for the composites containing elongated
conducting inclusions with the aspect ratioa/b@1. Consider,
for example, a hypothetical composite prepared from indus-
trial carbon fibers with a thickness of about 1mm that are cut
into sticks with length 1 mm. The typical conductivity of
such carbon fibers is aboutsm>1014 sec21. Therefore the
dimensionless frequency in Eq.~15c! is of the order 109

sec21/v. Suppose that we measure the dielectric constant in
the vicinity utu,0.1 of the percolation threshold. Then the
power-law dispersive behavior given by Eq.~17! should be
observed in the frequency band 100 kHz,n,100 MHz,
wheren[v/2p. One can compare this frequency band with
the band for the scaling dispersion, 1011 Hz,n,1014 Hz,
given by the usual scaling expression~15a!. We believe that
the conducting stick composites can be used as a convenient
reference system to verifyquantitativelythe predictions of
the percolation theory, e.g., Eqs.~15! as well as some mod-
ern approaches~see, e.g., Ref. 45!.

Consider now the behavior of the dielectric constantee for
concentrationsp below the percolation threshold out of the
critical region. We will still suppose thatueeu/ed@1 ~see Fig.
2! and neglected in comparison withee in the second term of
Eq. ~10!. Then Eq.~10! takes the form

ee~p,v!5ed
2

9
p

a2

b2 ln~a/b!

3
1

ln@aed /bee~p,v!#/ ln~a/b!2 iv*
, ~18!

where we introduce the dimensionless frequency

v*5S abD
2 ued /emu
ln~a/b!

5S abD
2 edv

4psm ln~a/b!
. ~19!

It is interesting to note that the thus obtained dimensionless
frequencyv* coincides up to a factor 1/ln(a/b) with dimen-
sionless frequency which emerges in the scaling Eq.~15c!,
which has been obtained in the different concentration
ranges. The dimensionless frequencyv* is an important pa-
rameter that determines, as we show below, the dependence
ee(p,v) for the entire range of concentration. One can re-
write Eq. ~19! for the dimensionless frequency asv*5vtR ,
wheretR is the stick relaxation time. Electric charges some-
how distributed over a stick will relax to their stationary
distribution in timetR . For spherical particles the relaxation
time coincides with Maxwell’s time 1/~4psm! and is negli-
gibly small usually. The relaxation timetR}(a/b)2/(4psm)
for the conducting sticks may be many orders of magnitude
larger than Maxwell’s time. This is the origin of the relax-
ation behavior of the effective dielectric constant obtained in
the experiment of Ref. 31 and discussed below.

For the stick concentrationp,pc out of the critical range,
Eq. ~18! yields thatuee(p)u,(a/b)ed . To make an estima-
tion of ee , we use a crude approximation neglecting
ln(ed/ee) in comparison with ln(a/b) in Eq. ~18!. Thus we
obtain an explicit form of the effective dielectric constant:

FIG. 2. Static dielectric constant of the conducting stick com-
posite as a function of the stick concentrationp; the stick aspect
ratio and dielectric constant of the host are chosen to bea/b51000
anded52, respectively. The dashed line signifies the position of the
percolation thresholdpc .
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ee~p,v!>ed
2

9
p

a2

b2 lna/b

1

12 iv*
. ~20!

It follows from Eq. ~20! that the dielectric constantee takes
large values even for the concentrationp!pc due to the
large aspect ratioa/b@1. Since the dielectric constantee
achieves sufficiently large value far below the percolation
threshold~see Fig. 2!, this effect is not connected to the
formation of large, critical conducting clusters considered in
percolation theory.6,17,18Therefore it is easy to reproduce the
large valuesee in a real experiment.31 This is one of the
interesting features of the stick composites that may be im-
portant for engineering applications. We propose that these
composites can be used to prepare an artificial dielectric with
a high dielectric constant.

Another interesting feature of Eqs.~18! and ~20! is that
they give dispersive behavior of the effective dielectric con-
stantee(p,v* ) that is close to the relaxation behavior. This
relaxation behavior cannot be obtain from the usual percola-
tion theory6 and is closer to that given by the Maxwell-
Garnet approximation.9 The fact that the behavior of com-
posites with elongated conducting inclusions is better
described by the Maxwell-Garnet approximation is discussed
in the literature~see, e.g., Ref. 9!, but until now has no
proper explanation. Note that the relaxation behavior give by
Eqs. ~18!–~20! should be observed for the concentration
range (b/a)2,p,b/a, that is, in a wide concentration range
below the percolation threshold. This prediction of the theory
is in the bestqualitativeagreement with experiment.31 A de-
tailed comparison with experiment will be present elsewhere.

To obtain the behavior of the effective dielectric constant
in entire range of the concentrations, we solve the EMTSC
equation~10! numerically. Thus the calculated reale1~t! and
imaginarye2~t! parts of the dielectric constant we present in
Fig. 3 for different values of the dimensionless frequency
v* . The dependencee1~t! has ‘‘percolationlike’’ behavior
with a sharp peak atpc whenv*!1. The peak ine1~t! be-
comes wider and wider, and it shifts to the larger concentra-
tion far away from the percolation threshold when the fre-
quencyv* increases. Since the dielectric constant has no
anomaly at the percolation threshold whenv*>1, we believe
that the EMTSC equation~10! gives now quantitatively cor-
rect results for all stick concentrations including the percola-
tion threshold. Forv*>1 the effective dielectric constant has
a relaxation dispersionee(v)}1/(12 ivtR) in the entire
range of concentrationsp while the relaxation timetR some-
what decreases with increasingp above the percolation
thresholdpc . We obtain from this result and scaling, Eqs.
~15b!–~17!, that in the critical concentration regionutu!1
nearpc the effective dielectric constantee~v* ! changes with
the frequency as follows: ee}ed(a/b)utu2s, t,0, and
ee}ed(a/b)(utu2s1( i /v* )t t), t.0 for v*,utut1s,
ee}ed(a/b)v*

su(t1s) for utut1s,v*,1: finally we have
ee}ed(a/b)/(12 iv* ) for v*.1. Note that the dispersive
behavioree~v! can be described in any particular range of
v* andt by one of the equations suggested in Ref. 19. But
none of these equations can reproduceee~v! as a whole. Our
approach has another advantage over Ref. 19 because it al-
lows one to express explicitly the parameters in the disper-
sive equations in terms of the universal critical exponentst
ands, dimensionless concentrationt, etc. Out of the critical

concentration region, the effective dielectric constant either
accepts their static values forv*,1 or it has a relaxation
dispersion whenv*.1 as we have mentioned above.

It follows from the above discussion that the dispersive
behavior of stick composites can be very different from that
of ordinary metal-dielectric composites with spherical par-
ticles. We believe that stick composites may be considered as
a special class of percolating systems.

III. HIGH-FREQUENCY DIELECTRIC RESPONSE
OF THE CONDUCTING STICK COMPOSITES

Composite materials containing conducting sticks dis-
persed in a dielectric matrix have new and unusual properties
at high frequency. When the frequencyv increases, the
wavelengthl52pc/v of an external electromagnetic field
starts to be of the order of the stick length 2a. At first glance
the sticks behave now like microantennas and an external
wave should be scattered in all directions. We propose in this
paper that composite materials still have well-defined dielec-
tric and magnetic properties for the high-frequency case in
contrast to the ‘‘antenna’’ picture.

The reason for this ‘‘effective-medium’’ behavior is that a
very thin conducting stick interacts with an external field like
a dipole. Therefore the conducting stick composite can be
considered as a system of dipoles regardless of the wave-

FIG. 3. Dependence of reale1~t! ~a! and imaginarye2~t! ~b!
parts of the effective dielectric constantee on the dimensionless
stick concentrationt5(p2pc)/pc for different calues of the dimen-
sionless frequencyv*5(a/b)2@edv/4psm ln(a/b)#: 12v*51.0,
22v*50.1, 32v*50.01. The aspect ratio is equal toa/b51000,
ed52.
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length and be described in terms of effective parameters.
Namely, we can still use the effective dielectric constantee
or effective conductivityse52 ivee/4p to describe the in-
teraction of the composites with an external electromagnetic
wave. The formation of large conducting clusters near the
percolation threshold may initiate some scattering only.

Since conducting stick composites are supposed to have
effective parameters for all concentrationsp out of the per-
colation threshold, we can use the theory developed in Sec.
II to calculate the effective conductivityse . Certainly, this
theory has to be modified to take into account nonquasistatic
effects. The problem of the effective parameters of compos-
ites had been considered for the nonquasistatic case in Refs.
36, 46, 47. It has been shown there how the mean-field ap-
proach can be extended to find the composite dielectric con-
stant and magnetic permeability at high frequency. We can
summarize the results of Refs. 36, 46, 47 in the following
way: One has to solve Maxwell’s equations to find the po-
larizability for a particle in the composite illuminated by an
electromagnetic wave. The particle is supposed to be embed-
ded in the ‘‘effective medium’’ with conductivityse . Then
the effective conductivityse is determined by the condition
that the averaged polarizability of all particles shall vanish.
The polarizability of the dielectric regions that are assumed
to have spherical shape is known~see, e.g., Refs. 6, 30!. The
problem is reduced to the calculation of the polarizability of
an elongated conducting inclusion for the nonquasistatic
case.

The diffraction of electromagnetic waves on a conducting
stick is a classical problem of classical electrodynamics. A
rather complex theory of this process is presented in Refs.
48, 49. But until now it has not been realized that the prob-
lem can be solved analytically in the case of very elongated
sticks when the aspect ratioa/b is so large that ln(a/b)@1.

Consider a conducting stick of length 2a and radiusb
illuminated by an electromagnetic wave. For simplicity we
will suppose that the electric field in the wave is directed
along the stick. The stick is supposed to be embedded in a
medium with effective conductivityse . The external electric
field will excite the electric currentI (z) in the stick, wherez
is the coordinate along the stick, measured from its midpoint.
The dependenceI (z) will be nontrivial when the wavelength
l is of the order or smaller than the stick length. It will be
also a nontrivial charge distributionq(z) along the stick in
this case. The charge distributionq(z) determines the polar-
izability of the stick. To findI (z) andq(z), it is convenient
to introduce the potentialU(z) of the chargesq(z) distrib-
uted over the stick surface. From the equation for the electric
induction ~see, e.g., Ref. 30!, “•D54ppext, we obtain the
equation

2
em
sm

dI~z!

dz
54pq~z!, ~21!

which connects the values of chargeq(z) and currentI (z) in
the stick. The stick charge per unit lengthq(z) is connected
to the potentialU(z) via the specific capacitanceC given by
Eq. ~A4!: q(z)5CU(z). Substituting this relation into Eq.
~21!, we have the equation

2
dI~z!

dz
54p

sm

em
CU54p

sd

2 ln~11asd /bse!
U,

~22!

which connects the currentI (z) and the surface potential
U(z). Otherwise, the electric currentI (z) and potentialU(z)
are connected by the usual Ohm’s law

2
dU~z!

dz
5SR2 i

vL

c2 D I ~z!2E0 , ~23!

whereE0 is an amplitude of the external field andR andL
are the impedance and inductance per unit length of the stick,
respectively. To obtain a closed equation for the currentI (z),
we differentiate Eq.~22! with respect toz and substitute the
result into Eq. ~23! for dU(z)/dz. Thus we have at the
second-order differentiate equation forI (z)

d2I ~z!

dz2
5

2psd

ln~11asd /bse!
F SR2 i

vL

c2 D I ~z!2E0G ,
~24!

with boundary conditions corresponding to vanishing the
current at the ends of the stick,

I ~2a!50, I ~a!50. ~25!

Solution of this equation gives the current distributionI (z)
in a conducting stick that is illuminated by an electromag-
netic wave. Then we can calculate the charge distribution
and, therefore, the polarizability of the stick.

To determine the impedanceR and inductanceL in Eq.
~25!, we take a conducting stick in the form of a prolate
spheroid with semiaxesa@b. Since the section area of a
spheroid at coordinatez is equal topb2[12(z/a)2], we
have the following expression for the impedance:

R5
1

pb2@12~z/a!2#sm*
, ~26!

wheresm* is the stick conductivity that is renormalized to
take into account a skin effect in the conducting sticks. We
assume that the conductivitysm* changes due to the skin
effect in the same way as the conductivity of a long wire
~see, e.g., Ref. 30, Sec. 61! of radiusb,

sm*5smf ~D!, f ~D!5
~12 i !

D

J1@~11 i !D#

J0@~11 i !D#
, ~27!

whereJ0 and J1 are the Bessel functions of zero and first
order, respectively, and the parameterD is equal to the ratio
of the stick radiusb to the skin depths5c/A2psmv, i.e.,

D5bA2psmv/c. ~28!

When the skin effect is weak, i.e.,D!1, the functionf ~D!>1
and renormalized conductivitysm* is equal to the stick con-
ductivity sm*>sm . In the opposite case of a strong skin
effect ~D@1!, the currentI flows in the thin skin layer at the
surface of the stick. Then Eq.~30! gives f (D)5(12 i )/D,
sm*5(12 i )sm /D!sm .

The inductanceL per unit length of a stick is calculated in
the Appendix@see Eq.~A9!# and given by the equation
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L>2 lnS abD12iAedka, ~29!

wherek5v/c52p/l is a wave vector of the external field.
The first term in Eq.~29! is the usual inductance of a long
wire ~see, e.g., Ref. 30, Sec. 34!. The second term emerges
for the nonquasistatic case. For the very thin sticks consid-
ered in this section, ln(a/b)@1 and the second term in Eq.
~28! is much smaller than first one. Nevertheless, it appears
to be very important when a stick is at resonance with an
electromagnetic field.

For further consideration it is convenient to rewrite Eqs.
~24! and ~25! in terms of the dimensionless coordinate
z15z/a and dimensionless currentI 15I /(smf (D)pb

2E0)
and introduce the dimensionless relaxation parameter

ig5 f ~D!
sm

sd
gi5 f ~D!

sm

sd
S baD

2

lnS 11
aed
bee

D ~30!

and dimensionless stick frequencyV,

V25~ak!2LC5ed~ak!2
ln~a/b!1 iAedka

ln~11aed /bee!
, ~31!

wherek5v/c. Substituting the thus determined parameters
into Eqs.~24! and~25!, we obtain the following equation for
the dimensionless currentI 1(z1):

d2I 1~z1!

dz1
2 5F2 i

2

g~12z1
2!

2V2G I 1~z1!1
2i

g
,

I 1~21!50, I 1~1!50. ~32!

In order to understand the physical meaning of Eq.~32!, let
us consider two limiting cases. When the skin depth is weak,
the combinationV2g}D2!1. Therefore we can neglect the
second term in square brackets in Eq.~32! and find the cur-
rent

I 1~z1!5
~12z1

2!

11 ig
. ~33!

The electric fieldEin mi inside a conducting stick is uniform
when the skin effect is negligible and it equalsEin mi5E0
2dU/dz. From Eqs.~32! and ~33!, we obtain the following
expression for the internal field:

Ein mi5E0

1

11~sm /sd!~b
2/a2!ln~11asd /bse!

5E0

1

11gism /se
, ~34!

wheregi is the depolarization factor given by Eq.~8!. As one
can expect, the fieldEin mi given by Eq.~34! coincides with
the quasistatic internal field in a prolate conducting spheroid
Ein mi @see Eq.~2a!# for the casesm@se considered here.

In the opposite case of a strong skin effect the product
V2g}D@1. Therefore we neglect the first term in the square
brackets in Eq.~32!, obtaining

I 1~z1!5
2i

V2g S cos~Vz1!

cos~V!
21D . ~35!

In the diluting casep!(b/a)2, the effective dielectric con-
stantee>ed and the stick frequency is equal toV5kaAed
52paAed/l. Therefore the current will have resonances
when the wavelengthln54aAed/(2n21), n51,2,... . It is
the well-known antenna resonances.48,49

In the general case of arbitraryV andg, the solution of
Eq. ~32! cannot be expressed as a finite set of any known
special functions.50 Therefore we integrate this equation nu-
merically. Experience with numerical integration of Eq.~32!
has shown that for not very short wavelengths~l.l2! the
solution can be approximated by a simple formula

I 1~z1!5
12z1

2

11 ig cosV
. ~36!

This equation can be considered as some interpolation from
Eqs.~33!–~35!.

When the currentI 1 is known, we can calculate the spe-
cific polarizabilityPm of a conducting stick,

Pm54p
D

VE0
5

1

E0

3

ab2 E2a

a

z
q~z!

ee
dz5

3

2
f ~D!

sm

se
E
0

1

I 1~z1!dz1 , ~37!

whereD andV54pab2/3 are the dipole moment and volume of the stick, respectively, and the functionf ~D! is given by Eq.
~30!. Substituting Eq.~36! for the current in Eq.~37!, we obtain the equation

Pm5 f ~D!
sm

se

1

11 ig cosV
5 f ~D!

sm

se

1

11 f ~D!~sm /se!~b
2/a2!ln~11aed /bee!cosV

~38!

for the polarizabilityPm of a conducting stick that is illumi-
nated by an electromagnetic wave. The stick is supposed to
be parallel to the direction of the electric field in the wave.

Up to now we considered sticks that are aligned with an
electric field in the incident electromagnetic wave. The com-
posites we are interested in contain randomly oriented con-
ducting sticks. In this case we have to improve Eq.~38! for

the stick polarizability. Consider a conducting stick that is
aligned with some unit vectorn. Suppose that the stick is
illuminated by an electromagnetic wave with electric field

E5E0 exp@ i ~ke•r !#, ~39!

whereke is the wave vector of the wave inside the compos-
ite. The currentI in a very elongated stick is excited by the
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component of the electric field

Ei~z!5n~n•E0!exp@ i ~ke•n!z#, ~40!

which is parallel to the stick, wherez is a coordinate along
the stick. The fieldEi averaged over all stick orientations is
aligned with the external fieldE0. Its amplitude is equal to

E0* ~z!5
E0

~kez!2 S sin~kez!

kez
2cos~kez! D . ~41!

The current flows in a stick are linear functions of the field
Ei . Since the averaged fieldEi is aligned withE0 the current
averaged over the stick orientations is also aligned with the
external fieldE0. To obtain the current̂^I 1(z1)&& averaged
over the stick orientations and, therefore, the averaged stick
polarizability ^^Pm&&, one has to substitute the fieldE0* (z)
given by Eq.~41! into Eq. ~24! instead of the fieldE0. Then
the current̂ ^I 1(z1)&&, polarizability ^^Pm&&, and, therefore,
effective dielectric constant will depend on the frequencyv
but, what is more, on the value of the wave vectorke . This
means that a conducting stick composite is a medium with
some spatial dispersion. This result is easy to understand
when we recall that the characteristic scale of an inhomoge-
neity in the composites is the stick length 2a. Moreover, one
can use the bulk value of the dielectric constantee for the
scales larger thana only, as discussed in Sec. II. So it is not
surprising that the interaction of an electromagnetic wave
with the composites has a nonlocal character and, therefore,

spatial dispersion takes place. On can expect that additional
waves will be excited in the composites in the presence of a
strong spatial dispersion.51,52These questions call for further
investigation.

In this paper we consider the wavelengthl.l2; there-
fore, we expandE0* (z) in a series

E0* ~z!5
E0

3 S 12
~kez!2

10
1••• D ~42!

and restrict ourselves to the first term. Since the averaged
field is equal toE0* (z)5E0/3, the averaged current is equal
to ^^I 1(z1)&&5I 1(z1)/3 where the stick currentI 1(z1) is still
given by Eq.~36!. As a result, the stick polarizabilitŷ̂ Pm&&
averaged over all orientations is equal toPm/3 wherePm is
given by Eq.~38!.

Inasmuch as the sticks are randomly oriented, the dielec-
tric regions of the composites are supposed to have a spheri-
cal shape@see discussion after Eq.~5!#. The specific polariz-
ability of a dielectric region is given by the usual quasistatic
equation~see, e.g., Ref. 6!

Pd5
3~sd2se!

2se1sd
. ~43!

The effective dielectric constant of the compositesse is de-
termined by the self-consistent condition that the polarizabil-
ity averaged over all inclusions shall vanish,36,46,47

p^^Pm&&1~12p!Pd5
p

3

f ~D!sm /se

11 f ~D!~sm /se!~b
2/a2!ln~11aed /bee!cosV

13~12p!
sd2se

2se1sd
50. ~44!

This equation differs from the EMTSC equation~10! obtained for the quasistatic case in that~a! the conductivity of the sticks
sm is replaced by the renormalized conductivitysm*5 f (D)sm given by Eq.~27!, and~b! the ‘‘resonance’’ factor cosV appears
in the denominator of the first term.

Let us consider a solution of Eq.~44! for the conducting stick concentrationp below the percolation threshold
(b/a)2,p,b/a. The absolute values of the effective conductivityse are large as compared withusdu for such concentrations.
Then, neglectingsd in the second term of Eq.~44!, we have

se

sd
[

ee
ed

5
2

9
p

f ~D!sm /sd

11 f ~D!~sm /sd!~b/a!2 ln@11~a/b!ed /ee#cosV
. ~45!

This equation is similar to Eq.~18! obtained in Sec. II for the quasistatic case. The absolute values of the effective dielectric
constantee calculated in the quasistatic approximation~see Figs. 2, 3! are less than (a/b)ed for the concentrationp,b/a. Let
us suppose that the same inequality takes place in the nonquasistatic case considered here. For a qualitative analysis of Eq.
~45!, we therefore neglect ln(ed/ee) in comparison with ln(a/b) in Eqs.~45! and~31!. After these simplificationsse disappears
from right-hand side of Eq.~45! and this equation becomes an explicit expression for the effective conductivity or dielectric
constant,

ee5ed
2

9
p

a2

b2 ln~a/b!

1

cosV1sd / f ~D!sm
, ~46!

where the functionf ~D! is given by Eq.~27!. Substituting into Eq.~46! the definition of the stick frequencyV given by Eq.
~31! andsd52 i edv/4p, we have

ee5ed
2

9
p

a2

b2 ln~a/b!

1

cos~~Aedak!A11 iAedak/ ln~a/b!!2 i @ed /D
2f ~D!#~ak!2/2 ln~a/b!

, ~47!
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where k5v/c and the parameterD is given by Eq.~28!.
When the skin effect is strong, the parameterD@1 and func-
tion f ~D!}1/D. Therefore we can neglect the second term in
the denominator of Eq.~47!. Expanding the first term in the
denominator of Eq.~47! in a series of the small parameter
1/ln(a/b), we have

ee5ed
p

pc

a

b ln~a/b!

1

cos~Aedak!2 i ed~ak!2/2 ln~a/b!
.

~48!

From this equation it follows that the effective dielectric con-
stant of the conducting stick composite has resonance behav-
ior when the skin effect is strong. The resonance frequencies
vn are determined by the conditionAedak5(p/2)(2n21),
n51,2,..., and therefore they are equal tovn5(p/2)(2n
21)c/(aAed). It is interesting to point out that the thus ob-
tained effective dielectric constant is independent of the
metal conductivitysm .

Consider the behavior of the effective dielectric constant
near the lowest resonance frequencyv15(p/2)c/aAed. Ex-
panding the denominator of Eq.~48! in a power series of
v2v1, we have

ee5ed
p

pc

a

b ln~a/b!

1

~v12v!/v12 ip2/8 ln~a/b!
,

~49!

where imaginary part of the denominatorp2/~8 ln(a/b)!!1
since we suppose that ln(a/b)@1. This equation gives a
well-developed resonance behavior of the effective dielectric
constantee . At the resonance frequencyv1, the real part of
ee changes its sign and becomes negative whenv.v1. The
imaginary part ofee has a maximum at the resonance and its
value

e2~v1!5edp
16

9p2

a2

b2
~50!

does not depend on the conductivity of the sticks for the case
of a strong skin effect considered here. Therefore the imagi-
nary part of the effective dielectric constant does not vanish
for composites with stick conductivitysm→`. We believe
that the presence of the effective losses is due to exciting
internal modes in such composites. These modes are
bounded around the sticks and cannot exit from the compos-
ite. Whensm→` and the dielectric host has no losses, the
amplitude of these modes will continuously increase in time.
In all real composites there are some losses in the conducting
sticks as well as in the dielectric host. Therefore the internal
field should stabilize at some large value. In other words, it
should be a wave localization in the conducting stick com-
posites whensm→`. The field distribution in the composites
cannot be found in terms of the effective-medium theory
developed in this paper. The field distribution and the spec-
trum of the internal modes are questions for further consid-
eration.

In the general case of an arbitrary skin effect, we solve
Eq. ~44! numerically. The thus obtained effective dielectric
constantee depends on the stick concentrationp, aspect ratio
a/b and dimensionless frequencyv* @see Eq.~19!# as in the
quasistatic case. The behavior ofee also depends on the pa-

rameterD given by Eq.~28!, i.e., on the ratio of the stick
radiusb to the skin depthd. Considering Eqs.~44! and~45!,
we see that the parametersed , p, a/b, v* , andD fully char-
acterize the dielectric response of the conducting stick com-
posites. The parameterD can be considered as an electrical
‘‘goodness’’ of a conducting stick. When the parameterD@1,
the behavior of the effective dielectric constant is similar to
that given by Eq.~46!. We return to the quasistatic situation
whenD!1. In this case neither the skin effect nor resonance
effects are important.

In Fig. 4 we show the dependence of the effective dielec-
tric constantee on the frequencyv* for different values of
the parameterD. The stick concentrationp is chosen to be
sufficiently small, p50.1pc . The dispersive behavior is
close to the relaxation behavior given by Eq.~26! for the
weak skin effect: D<0.1. The dispersive behavior dramati-
cally changes when the parameterD increases toD>0.5.
Now the dependence of the effective dielectric constant
ee~v* ! has a resonance character. The real part ofee~v* !
increases with frequency: it has a sharp maximum at the
resonance frequency and then drops to negative values. The
imaginary part ofee~v* ! has a well-developed maximum at
the resonance frequency.

In Fig. 5 we presentee~v* ! for the concentration
p50.9pc close to the percolation threshold. When the skin
effect is weak~D50.1!, the real and imaginary parts of the
effective dielectric constant decrease according to the power

FIG. 4. Dispersion curves of reale1~v* ! ~a! and imaginary
e2~v* ! ~b! parts of the effective dielectric constantee for different
values the parameterD5b/d, the ratio of stick radiusb to skin
depth d5c/A2psmv: 12D50.1, 22D50.5, 32D55.0. The
stick concentrationp50.1pc , aspect ratioa/b51000,ed52.
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law as discussed in Sec. II. This critical behavior continues
in a wide range of the dimensionless frequencyv* turning
into the relaxation dispersion forv*.1. The dispersive be-
havior changes when the parameterD>0.5 in a similar fash-
ion as in the dilute case discussed above. In this paper we do
not consider in detail the behavior of the effective dielectric
constantee in the critical regionp>pc for the nonquasistatic
case. We point out that the only real part ofee takes small
negative values in a wide frequency range forv* larger than
the resonance frequency, as shown in Fig. 5. It should be
noted that the effective-medium theory developed here can-
not pretend to an accurate estimation of the effective param-
eters in the critical region. Moreover, some ‘‘critical opales-
cence’’ can take place for the concentrationp near the
percolation threshold. All these questions deserve further
study.

IV. HIGH-FREQUENCY MAGNETIC RESPONSE OF THE
CONDUCTING STICK COMPOSITES

Consider the metal-dielectric composite containing con-
ducting sticks dispersed in a dielectric host. The sticks are
much elongated, that is, the aspect ratioa/b@1. We suppose
that the volume concentrationp of the conducting sticks is
less than the percolation thresholdp,pc}b/a. We also sup-
pose that neither sticks nor dielectric host has magnetic prop-
erties. At first glance the composite has no magnetic proper-

ties under such conditions. Indeed, the magnetic response of
a single conducting stick is small even at high frequency
~Ref. 30, Sec. 59!. Since the concentrationp!1, the response
of the entire composite should be negligible small.

In reality, as we will see below, the composites may have
a giant paramagnetic response at some frequencies. The rea-
son for such behavior of the conducting stick composites is
the collective response of the sticks to the high-frequency
magnetic field. The sticks form various closed circuits in the
composite. The external magnetic field excites electric cur-
rents in these stick contours. Magnetic moments of the cur-
rents flowing in the stick contours are in charge for the mag-
netic response of the composite.

In this work we restrict ourselves to the simplest stick
circuit consisting of two sticks only. Suppose at the begin-
ning that the sticks are parallel to each other as shown in Fig.
6. We also suppose that an external magnetic field
H5H0exp~2ivt! is applied perpendicular to the plane of the
circuit. This field will excite a circular currentI in the system
of two parallel sticks. The circular currentI flows in one
stick in one direction and in another stick in the opposite
direction as shown in Fig. 6. The displacement currents flow-
ing between two sticks short the circuit. The considered two-
stick circuit is nothing but the well-known two-wire trans-
mission line excited by the external magnetic field. The
currentI in the two-wire line can be calculated from Teleg-
rapher’s equation~see, e.g., Refs. 49, 53!

Electrodynamics processes in line of two wires separated
by the distanced are determined by the impedance per unit
length,

Z5
1

f ~D!smpb2
2
iv

c2
L2 , ~51!

wheresm andb are the stick conductivity and radius, respec-
tively; the functionf ~D! given by Eqs.~27! and~28! emerges
from the skin effect, andL2 is the self-inductance per unit
length of a system of two parallel straight wires having cross
section of radiib ~Ref. 30, Sec. 33!,

L254me lnS dbD , ~52!

whered is the distance between axes of the wires, andme is
the effective magnetic permeability of the composite. The
value ofme will be determined self-consistently. Another im-
portant parameter is the mutual capacity per unit length of
two wires ~Ref. 30, Sec. 3!,

FIG. 5. Dispersion curves of reale1~v* ! ~a! and imaginary
e2~v* ! ~b! parts of the effective dielectric constantee for different
values the parameterD5b/d, the ratio of stick radiusb to skin
depth d5c/A2psmv: 12D50.1, 22D50.5, 32D55.0. The
stick concentrationp50.9pc , aspect ratioa/b51000,ed52.

FIG. 6. Currents in the two-stick contour excited by an external
magnetic fieldH. The displacement currents that short the currents
in the conducting sticks are shown by dashed lines.
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C25
ed

4 ln~d/b!
. ~53!

The capacitanceC2 determines the value of the displacement
currents flowing in between two wires. Since we consider
two nearest sticks, we puted in Eq. ~53! for the interstick
capacitance. This approximation is good when the distanced
between the sticks is smaller than their lengtha @see Eq.~7!#.

Following the procedure described in Sec. III, we intro-
duce the currentI as a current in one stick. This current
depends on the coordinatez along the stick. We also intro-
duce the potential differenceU(z) between two sticks. Then
we get a first equation to determineI (z) andU(z) from the
first Maxwell’s equation written in integral form,

R
~a,b,c,d!

E dI5
iv

c EE
S

s H dS, ~54!

where S5d3dz is the area restricted by the contour
(a,b,c,d) as shown in Fig. 6. From Eq.~54! it follows that

2
dU~z!

dz
5ZI~z!1

idv

c
H0 . ~55!

The currentI (z) depends on the coordinatez since it can go
out from one stick and come into another stick. The second
equation forI (z) andU(z) we obtain from the charge con-
servation law considering the currents in the sticks and dis-
placement current between them,

dI~z!

dz
5 ivC2U~z!. ~56!

Combination of Eqs.~55! and ~56! gives the second-order
differential equation for the current,

d2I ~z!

dz2
52g2I ~z!1

C2dv2

c
H0 ,

2a,z,a,

I ~2a!5I ~a!50, ~57!

where the parameterg equals

g5kAedme1 i
ed

2D2f ~D!ln~d/b!
, ~58!

wherek5v/c is the wave vector of the external field: the
parameterD and functionf ~D! are given by Eqs.~28! and
~27!, respectively.

We solve Eq.~57! for the currentI (z) and calculate the
magnetic momentm of the circuit of two sticks,

m5
1

2c E @r3 j ~r !#dr , ~59!

where j ~r ! is the density of the current in two conducting
sticks or density of the displacement currents. Integration in
Eq. ~59! goes over two conducting sticks as well as over the
space between them where the displacement currents are
flowing. From Eqs.~57!–~59! we obtain the magnetic mo-
ment the system of two sticks,

m52H0a
3C2~kd!2

tan~ga!2ga

~ga!3
. ~60!

Note that the thus obtained moment takes on large values
when the wavelengthl52p/k is of the order of the stick
length 2a and the skin effect is strong. Indeed, for the case of
a strong skin effect when the ratio of the stick radiusb to the
skin depthd is large,D5b/d@1, we can neglect the imagi-
nary part of the parameterg in Eq. ~58!. Then we can esti-
matega'ak'1, kd'd/a, and havem}H0ad

2. One can
compare the thus estimated momentm with the moment of a
single stick,m1}H0ab

2. Since the concentrationsp!1, the
typical distanced between two sticks is much larger than the
stick radiusb. Therefore the ‘‘collective’’ momentm is much
larger than the momentm1 of a single stick,
m/m1}(d/b)

2@1. For this reason the conducting stick com-
posite may have a large magnetic response even for very
small concentrations of the sticks.

Let us now estimate quantitatively the effective magnetic
permeability of the conducting stick composites. We are in-
terested in the effective properties of the composites where
conducting sticks are randomly oriented. Consider a con-
ducting stick directed along some vectorn1 and take its cen-
ter as the center of coordinates. Suppose that the nearest-
neighboring stick is aligned with the vectorn2 and has its
center at the coordinater0. As a first approximation, we as-
sume that the moment of a such system is still given by Eq.
~60!, but we substitute in this equation the averaged distance
d12 between the stick,

d12
2 5

1

2a E
2a

a

@n1z2~r01nz!z#
2dz. ~61!

Integrating Eq.~61! and averaging the result over the direc-
tion of vectorn2 and over the direction and length of vector
r0, we have the averaged distance^d2& between any two
nearest-neighbor sticks,

^d2&5 8
3a

21^r 0
2&. ~62!

The averaged square distance between centers of two
nearest-neighbor sticks can be estimated as
^r 0

2&'n22/3'a2/3b4/3/p2/3, where n is the number of the
sticks in a unit volume. Since the averaged distance^r 0

2& is
much smaller thana2, for the concentrationsp.(b/a)2 we
neglect^r 0

2& in comparison with^a0
2& and set^d2&58a2/3.

Substituting the value of the averaged distance, i.e.,

^d&5A^d2&5A~8/3!a, ~63!

in Eq. ~60!, we have the magnetic momentm of two ran-
domly oriented sticks. The thus obtained moment can have
an arbitrary orientation. The component of the magnetic mo-
ment that is parallel toH0 makes a contribution to the total
momentM of the composite only. Averaging over the direc-
tion of the stick moment gives the factor 1/3. Then we obtain
from Eq. ~60! the magnetic moment per unit volume of the
conducting stick composite,

M5
1

3
H0na

3C2

8

3
~ka!2

tan~ga!2ga

~ga!3
, ~64!
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where n5p/(4/3pab2) is the density of the sticks,
C25ed/@4 ln(^d&/b)#>ed@4 ln(a/b)# and the parameterg is
given by Eq.~58! where we substitute the average distance
^d&, i.e.,

g5kAedme1 i
ed

2D2f ~D!ln~^d&/b!

>kAedme1 i
ed

2D2f ~D!ln~a/b!
. ~65!

Taking into account the definition of the effective magnetic
permeabilitymeH05H014pM , we obtain from Eq.~64! the
following equation for the effective magnetic permeability:

me511
2

3
p
a2

b2
ed~ka!2

ln~a/b!

tan~ga!2ga

~ga!3
, ~66!

where the parameterg is given by Eq.~65!. The thus ob-
tained effective magnetic permeabilityme of the conducting
stick composites is shown in Figs. 7 and 8 for the stick
concentrationsp50.1pc and p50.9pc , respectively. The
real part of the effective permeabilitym1~v! as a function of
the frequency has a positive maximum that increases in mag-
nitude and shifts to lower frequencies when the concentra-
tion increases. The permeability achieves the valuem1'10.0
at the resonance even for a sufficiently small concentration
p50.1pc . We name this phenomenon the ‘‘giant paramag-

netic response of the conducting stick composites.’’ The
imaginary part of the effective permeabilitym2~v! is a step
function of the frequency. It almost equals zero for small
frequencies:m2~v! builds up at the frequency corresponding
to the maximum ofm1~v!, and thenm2~v! decays very
smoothly. It is interesting to point out that this behavior of
m2~v! to some extent is opposite to that of the imaginary part
of the effective dielectric constant~see Figs. 4 and 5!.

The magnetic permeability of the percolating composites
has attracted the attention of many researchers.39,54–57In all
these works the authors have considered the magnetic re-
sponse of percolating clusters made up from conducting in-
clusions that are in Ohmic contact with each other. As a
result, they have obtained the diamagnetic response for the
percolating composites. In the case of the conducting stick
composites, the contours that are excited by an external mag-
netic field includeC andL elements. The currents excited in
the contours are shifted in phase relative to the field. As a
result, the composites have aparamagneticresponse.

In this work we consider stick circuits consisting of two
sticks only. Therefore the thus obtained Eq.~66! for the ef-
fective magnetic permeabilityme of the composites may be
not quantitative true in the critical region. In this region one
has to consider the circuits forming by three, four, etc.,
sticks. The application of EMT is also in question for the
vicinity of the percolation threshold. Therefore the critical
behavior of the magnetic permeability is open for further
consideration.

FIG. 7. Dispersion curves of realm1(ka) ~a! and imaginary
m2(ka) ~b! parts of the effective magnetic permeabilityme for dif-
ferent values the parameterD5b/d, the ratio of stick radiusb to
skin depthd5c/A2psmv: 12D50.1, 22D55.0. The stick con-
centrationp50.1pc , aspect ratioa/b51000,ed52.

FIG. 8. Dispersion curves of realm1(ka) ~a! and imaginary
m2(ka) ~b! parts of the effective magnetic permeabilityme for dif-
ferent values the parameterD5b/d, the ratio of stick radiusb to
skin depthd5c/A2psmv: 12D50.1, 22D55.0. The stick con-
centrationp50.9pc , aspect ratioa/b51000,ed52.
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V. SUMMARY AND CONCLUSIONS

We present a comprehensive study of electrodynamics
properties of the metal-dielectric composites containing
elongated conducting inclusions, sticks dispersed in a dielec-
tric host. The distinguishing feature of these composites is a
scale-dependent conductivity and dielectric constant. We de-
velop an effective-medium theory that takes into account this
scale dependence. Thus we get an equation to determine the
effective parameters of the composites. The effective dielec-
tric constant determined by this means is quite different from
that of the ordinary metal-dielectric composites with spheri-
cal conducting particles. The maximum of the dielectric con-
stant may be shifted far away from the percolation threshold.
The dispersive behavior of the conducting stick composites
is also different from that of the ordinary composites. At low
frequencies it is close to the relaxation behavior in a wide
concentration range below and also above the percolation
threshold. A power-law critical dispersive behavior is still
predicted in the vicinity of the percolation threshold. But in
contrast to the usual composites, the scaling function for the
effective conductivity incorporates a large parameter, the
stick aspect ratioa/b@1. As a result, the concentration range
when the critical, power-law dispersion takes place increases
greatly, while the frequency range for the critical dispersion
drastically shifts to lower frequencies.

Conducting stick composites have new and unusual prop-
erties at high frequency when the skin effect in a stick is
significant. For example, the effective dielectric constant has
a resonance at some frequencies. Its real part vanishes at the
resonance and acquires negative values for a frequency
larger than the resonance. The imaginary part of the effective
dielectric constant has a maximum at the resonance. The
dispersive behavior does not depend on the stick conductiv-
ity and takes some universal form when the stick conductiv-
ity tends to infinity. Wave localization may occur in the sys-
tem in his case.

We propose that conducting stick composites consisting
of nonmagnetic particles have a large magnetic response at
high frequency. The effective magnetic properties are due to
the collective interaction of the sticks with an external mag-
netic field. A giant paramagnetic response can take place in
some frequency range.

One can conclude that conducting stick composites is a
new class of percolating systems. In spite of the study per-
formed in this work, many questions concerning the electro-
dynamics properties of the composites are still unclear. The
critical behavior at high frequency is the most intriguing
problem. From the results of this work, it follows that spatial
dispersion may take place in such composites. The new, in-
ternal modes can be excited around the conducting sticks.
Then the electrical and magnetic field distributions in the
stick composites may be quite different from that of the or-
dinary composites. All these questions are open for further
consideration.
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APPENDIX

In Sec. III we have obtained the equation for the charge
and current in a conducting stick using an intuitive approach.
In this appendix we rederive Eq.~24! to make all assump-
tions clear. An explicit expression for the quasistatic field in
the stick is obtained as a by-product.

Let us consider a conducting stick in the composite, a
prolate conducting spheroid with semiaxesa@b that is illu-
minated by an electromagnetic wave with frequencyv. The
direction of the major axis is supposed to coincide with di-
rection of the electric fieldE0 exp(2 ivt) in the wave. Let
q(z) be the charge per unit length induced on the surface of
the stick andz the coordinate along the major axis of the
stick, measured from its midpoint. The electric potential of
the chargeq(z) is given by the solution of Maxwell’s equa-
tions ~see, e.g., Ref. 49, p. 377!

U~z!5EEs q~z8!/2pr~z8!exp~ ikeur2r 8u!
e~ ur2r 8u!ur2r 8u

ds8

>E uz8u,a
uz2z8u,b

q~z8!exp~ ikeuz2z8u!
e~ uz2z8u!uz2z8u

dz8, ~A1!

wherer is a point on the surface at coordinatez, e(uz2z8u)
is the scale-dependent dielectric constant of the composites
given by Eq.~7!, r(z)5bA12z2/a2 is the radius of the stick
cross section at coordinatez, ke5Ae(uz2z8u)k, andk5v/c
is the wave vector of the external field. Integration in the first
integral goes over the total surface of the stick: in going to
the second expression, we neglect terms of the order of
b/a!1. The denominator of the integrals in Eq.~A1! have
some singularity atz5z8; therefore, we putke5keuz5z8
5Aedk in the exponent. We divide the last integral in Eq.~1!
into two parts putting q(z8)exp(iAedkuz2z8u)[q(z)
1@q(z8)exp(iAedkuz2z8u)2q(z)#, i.e.,

U~z!5q~z!E uz8u,a
uz2z8u,b

1

e~ uz2z8u!uz2z8u
dz8

1E uz8u,a
uz2z8u,b

q~z8!exp~ iAedkuz2z8u!2q~z!

e~ uz2z8u!uz2z8u
dz8.

~A2!

Sincea@b, we have, for points not too near the ends of the
stick,

q~z!E uz8u,a
uz2z8u,b

1

e~ uz2z8u!uz2z8u
dz85

1

C
q~z!, ~A3!

where

C5ed
1

2 ln~11aed /bee!
~A4!

is the capacitance per unit length of the stick embedded in
the effective medium with a scale-dependent dielectric con-
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stante( l ), and ee is the effective dielectric constant of the
composite, i.e., the limiting value ofe( l ) for l.a @see Eq.
~7! and discussion there#.

In the integral which contains the difference
q(z8)exp(ikeuz2z8u)2q(z), we resolve the exponent into
real and imaginary parts. Thus the second term in Eq.~A2!
becomes

E
uz8u,a

q~z8!cos~Aedkuz2z8u!2q~z!

e~ uz2z8u!uz2z8u
dz8

1 i E
uz8u,a

q~z8!sin~Aedkuz2z8u!
e~ uz2z8u!uz2z8u

dz8. ~A5!

Since the first integral is real and has no singularity atz5z8,
it gives some correction to the capacitanceC. We will ne-
glect this correction as it is small in comparison with the
leading term given by Eqs.~A3! and~A4!. The second inte-
gral is exactly equal zero forz50 since q(z) is an odd
function—the total charge is zero. We may neglect this term
for all z that are not too close to the ends of the stick. This
assumption is invalid near the ends of the stick, but in cal-
culating the dipole moment that region is unimportant.
Therefore we assume that connection between the charge
q(z) and potentialU(z) is local and given by

U~z!5
1

C
q~z!. ~A6!

This result is obtained with so-calledlogarithmic accuracy:
its relative error is of the order 1/ln(a/b), and the ratioa/b is
assumed to be so large that its logarithm is large.

Consider now the vector potentialA(z) induced by the
currentI (z) flowing in the stick. We obtain the vector poten-
tial following the same basic pattern as above. Thus we have
with the same logarithmic accuracy the following expression
for the componentAz of the vector potentialA(z):

Az~z!5
1

c E uz8u,a
uz2z8u,b

I ~z8!exp~ ikeuz2z8u!
uz2z8u

dz8

>
2I ~z!

c
lnS abD1

i

c E2a

a I ~z8!sin~Aedkuz2z8u!
uz2z8u

dz8.

~A7!

Note that we do not take into account the effective magnetic
permeabilityme of the composites introduced by Sec. IV. We
neglectme for the reason that the value of the integral in Eq.
~A7! is determined mainly by a singularity atz5z8, while
theme is formed on much larger scales@see Eq.~63! and the
following discussion#. The last term in Eq.~A7! does not
vanish since the currentI (z) is an even function. It is a
sufficiently smooth function for not very short wavelengths.
We expand the exponent into a series ofk and put, rather
arbitrary,* I (z8)dz852aI(z). Thus we obtain the local con-
nection between the vector potential and current, i.e.,

Az~z!>
L

c
I ~z!, ~A8!

whereL is the inductance per unit length,

L52 lnS abD1 i2Aedka. ~A9!

Note that sin(Aedkuz2z8u)/uz2z8u→pd(z2z8) when
k→`. Therefore Eq.~A7! also gives the local relation~A8!
in the short wave limit, but the imaginary part of the induc-
tance saturates at the valueip and is independent ofk in this
limit. In any case the second term in Eq.~A9! is much
smaller than 2 ln(a/b)@1. Nevertheless, we preserve the
imaginary part of the inductance since it has a profound im-
pact in a stick response to external fields when the resonance
conditions are fulfilled@see Eqs.~44!–~46!#.

We suppose that the stick is excited by the external field
E0 exp(2 ivt) that is parallel to its axis. Then electric field
at some pointz on the surface is equal to

E~z!5E02
dU~z!

dz
1 i

v

c
Az~z!. ~A10!

Substituting here Eqs.~A6! and ~A8!, we have

E~z!5E02
1

C

dq~z!

dz
1 i

v

c2
LI ~z!. ~A11!

Then we use the continuity condition for electricitydI/dz
5 ivq, obtaining

E~z!5E02
1

ivC

d2I ~z!

dz2
1 i

v

c2
LI ~z!. ~A12!

On the other hand, the fieldE(z) is proportional to the cur-
rent E(z)5R(z)I (z), whereR is called the complex resis-
tance or impedance of the conductor. In the quasistatic case,
R(z)51/(pr (z)2sm), wheresm is the stick conductivity and
r (z)5bA12(z/a)2 is the stick radius at coordinatez. When
the skin effect in the conducting stick is not negligible, the
impedanceR is given by Eq. ~26!. Substituting E(z)
5R(z)I (z) in Eq. ~A12!, we obtain the wanted Eq.~24! for
the current in a stick illuminated by an electromagnetic
wave.

Note that one can use the original Eqs.~A1! and~A7! for
the potentials instead to expand them in terms of 1/lag(a/b).
Then Eq.~24! becomes an integral equation for the current
I (z). This one-dimensional integral equation can be easily
solved numerically. Nevertheless, we use the ‘‘local’’ ap-
proximation described above since we believe that the accu-
racy of the effective-medium approach makes no sense to
further improve the current estimation.

For the quasistatic case, we neglect the inductance and
substituteR51/(pr 2sm) in Eq. ~A12!, obtaining

d2I ~z!

dz2
52

ivC

smpb2~12z2/a2!
I ~z!1 ivCE0 ,

I ~2a!50, I ~a!50. ~A13!

The solution of this equation matching the boundary condi-
tions is

I ~z!5pb2sm

12z2/a2

112p i ~sm /v!~b2/a2C!
E0 . ~A14!
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Then Eq.~A12! gives the internal fieldEin5E(z) in the stick
that is uniform and equals

Ein5
1

112p i ~sm /v!~b2/a2C!
E0 . ~A15!

Substituting here Eq.~A4! for the capacitanceC and
sd52 ived/4p, we have

Ein5
1

11~b2ee /a
2ed!ln~11aed /bee!sm /se

E0 .

~A16!

Comparing this result and fieldEin mi in Eq. ~2a! for the case
sm@se , considered here, we obtain Eq.~8! for the depolar-

ization factorgi . For the scale-independent environment, we
return to the equation

gi5
b2

a2
lnS abD , ~A17!

which can be also obtained by direct expansion of the known
expression forgi ~see, e.g., Ref. 30, Sec. 4! in a series of
b/a!1. When the external field is across the stick, the local
field distribution is determined by the scale of the stick ra-
dius b!a. Therefore the depolarization factor across the
stick, g' , is still given by the usual expression for the much
prolate spheroid, i.e.,g'>1/2.
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