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Electromagnetic properties of composites containing elongated conducting inclusions
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We present a detailed theoretical study of the dielectric and magnetic response of composites containing
elongated conducting inclusions—sticks. These composites are widely used as engineering materials. They can
be also considered as a model to describe many processes occurring in nature, e.g., dielectric enhancement in
grain-saturated porous rocks. An approach is proposed that is based on the idea of a scale-dependent local
dielectric constant. We develop an effective-medium approximation and derive an equation to calculate an
effective dielectric constant of the composites in the quasistatic case and for the high frequency when there is
a strong skin effect in the conducting sticks. Our theory predicts very large values of the effective dielectric
constant in a wide range of the stick concentration. We find that the dielectric constant can exhibit various
dispersive behaviors. It can have relaxation behavior, power-law scaling behavior, or resonance dependence on
the frequency. The resonance dependence occurs when the skin effect is strong and wavelength is comparable
to the stick length. Then the real part of the dielectric constant has negative values in some frequency ranges.
The possibility of a wave localization is discussed in that case. We consider effective magnetic properties of the
conducting stick composites. We propose that the composites with nonmagnetic components will have a giant
paramagnetic response as a result of a collective interaction of the sticks with an external magnetic field.

[. INTRODUCTION AND MOTIVATION image analysis. The authors have obtained that the elemen-
tary conducting cell has an elongated shape. This circum-
We consider composites that contain very elongated constance is almost evident from the electron micrographs of the
ducting inclusions, “sticks” embedded in a dielectric host films (see, e.g., Refs. 8—10t is therefore of interest to have
(see Fig. L The sticks are supposed to be randomly distrib-a picture of the variation of the film dielectric properties with
uted and oriented. The problem to be considered here is ththe shape of conducting inclusions. After all, we will show in
calculation of the macroscopic dielectric and magnetic rethis paper that dielectric and magnetic properties of the con-
sponse of the conducting stick composites. The interest iducting stick composites are unusual and very interesting in
metal-dielectric composites, where conducting inclusiongheir own right. We proposed that these composites can be
have a very elongated shape, is because these systems deed to manufacture various artificial dielectrics and magnet-
scribe physical structures occurring both in nature and teches.
nology. The geometric properties of composites with penetrable
There are a lot of porous rocks in nature such as sandzonducting sticks have been studied by Monte Carlo
stones or similar geological formations that have channelsimulation*~*®and analytically*° It was found that the
like or sheetlike porous structure. In spite of its great impor-percolation threshol@, is inversely proportional to the stick
tance, there is no universal concept for rock conductivityaspect ratiqp.ocb/a, whereb is the radius of a stick anda2
permeability, and dielectric susceptibilifgee discussion in is its length. The same estimatignecb/a was obtained in
Refs. 1, 2. Considering the sticks as a model for the rockRef. 16 by an excluded volume explanation of Archie’s law
pores, one can reproduce the structure of porous rocks Hgr the porous rock permeability. This important result may
fitting the shape and concentration of the stitRghen it is  be explained as follows: A conducting stick intersects on
possible to calculate the rock conductivity, permeability, andaverage withN other sticks. WheiN<1, the sticks are sepa-
dielectric susceptibility by the methods that we develop inrated from each other and the probability to percolate
this paper. The conducting stick composites are also impothrough the conducting sticks is equal to zero. When1l,
tant for industrial applications. Ceramic and plastic materialghe sticks form some carpet as is shown in Fig. 1 and the
reinforced by carbon or metallic fibers are becoming increasprobability to percolate is equal to one. There is a critical
ingly attractive as engineering materials. The physical-number of intersection$\., that correspond to the percola-
chemical and mechanical properties of such materials are th@n threshold. An important finding of Refs. 3, 11-15 is that
subject of great interestsee Refs. 4, 5 and references the critical numbeNN, is about one and it does not depend on
therein. The dielectric properties of the materials look like the stick aspect rati@/b in the limit a>b. The averaged
an important tool for their characterization and diagndstic. number of intersectiondy, can be calculated using elemen-
The results obtained in this paper may be also useful fotary theory of probability. It appears to be proportional to the
characterization of semicontinuous metal films. The semiaspect ratio and to the volume concentration of the conduct-
continuous films, used to fabricate selective surfaces for sang sticks: N=(4/7)p(a/b) for d=2 andN=2p(a/b) for
lar photothermal energy conversion, are usually prepared bg=3 (see, e.g., Ref.)3 Therefore we have the percolation
thermal evaporation or spattering of the metal on an insulatthreshold p.=N.,7b/(4a)xb/a for d=2 and p,=N.sb/
ing substrate. In Ref. 7 its structure has been studied by affa)x=b/a for d=3, whereN., andN; are critical numbers
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ducting inclusions cover a wide range of methods and

\ (a) approximation$;®!"~2?!extensions to nonspherical inclusions
\ ‘ have been restricted, almost entirely, to mean-field approxi-
\ \ mations. There are two different mean-field approximations
considered in the literature: Bruggeman effective-medium
(‘ theory (EMT) (Refs. 6, 22, 2B and the symmetrized
Maxwell-Garnet approximation introduced by SheiMGS)

v ‘v( (Refs. 9, 24, 2k The EMT and MGS theories reproduce, at
\ least qualitatively, the behavior of the effective parameters of
the composites in the entire range of the conducting compo-

\ nent concentratiop. It was found that the last one gives
V l better agreement with experimental data for the optical prop-

erties of the compositésThere are many approximations in
l the literature designed to obtain the effective parameters of

"’ the composites in the limit of small concentratign®r for

‘ the case when the properties of the constituents are only

slightly different. A comprehensive list of such approxima-

» AN tions can be found in Refs. 19-21. In Ref. 20 the authors

> have suggested an extrapolation procedure that being applied
to a formula valid forp<p, gives an extension of this for-

b mula to all concentrationg. The thus obtained equations for
(b) the effective parameters give the percolation threshmld
either equal to one or depending on the conductivity of the
conducting component. In Ref. 21 the same authors suggest
another symmetrization procedure that can be applied to an
approximate formula to extrapolate it to all concentratipns
and to all values of the parameters of the composite constitu-
ents. The procedure proposed in Ref. 21 gives, in all cases
when it actually changes an original formula, the equation
for the effective conductivityo, of the form ¢1/3=(1
—p)oi®+pall® whereo,, andoy are the conductivities of
the conducting and dielectric components, respectively. This
equation implies that even fary=0 effective conductivity
remains finite for all concentrationp of the conducting
component. That is, the percolation threshp|dis exactly
equal to zero. Since the percolation threshmldor the con-
ducting stick composites is neither equal to zero nor equal to
one and the values @f, do not depend on the stick conduc-
tivity, it is difficult to use the equations suggested in Refs.
20, 21 to find the effective parameters of the composites. For
this reason we restrict further consideration to EMT and
MGS theories, which give nontrivial values of that are
independent of the conductivities of the composite compo-
nents. Nevertheless, we would like to point out that our ap-
Iproach is close to some extent to that proposed in Ref. 20.
The EMT and MGS theories have been developed origi-

[ ——

FIG. 1. Conducting stick composité) Backbone of the “infi-
nite cluster” that spans from top to bottom.

of the stick intersections for two- and three-dimensiona
composites, respectively. It follows from this result that the v 1o d ibe th ’ f " taini
percolation thresholgh, may be very small for composites nally o describe the properties of composites containing

with elongated conducting inclusions. Moreoveg, tends to spherical conducting grains. Diﬁerent ger?eralizations o_f
zero when the aspect ratih goes to infinity. Small values EMT have been suggested for composites with randomly ori-

of the percolation threshold is one of the distinguishing fea€nted prolate conducting mglusm??s‘.zglt IS easy to sho? _
tures of the conducting stick composites. Another one is théhat all these approaches give a percolation threshold that is
anomalous dielectric response of such composites. proportional to the depolarization factor of an inclusion in
The dielectric response of the metal-dielectric composite¢he direction of its major axip.xg,. For very elongated
has attracted the attention of many researchers for a lonigiclusions the depolarization factor takes form
time. The problem to be considered is the calculation of theg,=(b/a)? In(a/b), where 2 andb are the stick length and
macroscopic, effective dielectric constagt and magnetic radius, respectivelysee, e.g., Ref. 30, Sec).4Therefore
permeability u, of the composites in terms of the dielectric EMT gives the percolation threshopioc(a/b)z, which is in
and magnetic responses of its constituents. Although the rebvious disagreement with the results of Refs. 3, 11-15. The
sults obtained so far for the composites with spherical conpercolation threshold given by MGS theory for the randomly
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oriented sticks depends on the typical shape of the dielectrimteract as soon ag.>1, which happens for sufficiently
regions that is assumed in the theGhBince the sticks are small stick concentrationg<p,<1.

randomly oriented, it is quite natural to suppose that the di- The effective dielectric constant may be introduced for
electric regions have on average a spherical sRaffélhen  the composite samples whose size is much larger than the
the percolation threshold given by MGS theqoy=0.46, is stick lengtha. But to calculate the effective parameters it is

- ; ; necessary to start with scales smaller than the stick radius
paSpenent of e Sl shafan seTaLie SRR S The aspectalaioe 1 may b Consldred a>a i
sticks®°%6 Then it follows from the results of Ref. 29 that al dimensionless correlation length of the problem. When
the concentratiorp is increased, the correlation length is
MGS theory givesp,xyb/a. Therefore the results of this further increased. As we have pointed out above, the sticks
theory also disagree with results for the percolation threshusually strongly interact. Therefore the conducting stick
old, p.xb/a, obtained in Refs. 3, 11-15. composite is a system with long-ranged strong interactions.
The percolation threshold is an important property since itAs a result, well-developed methods of the percolation
determines the concentration of inclusions for which dratheory’®'"** like renormalization group in real space or
matic changes in the dielectric properties occur. A discrepmean-field approximations cannot be directly applied to the
ancy between the values of the percolation threshold directigyStém. Computer simulation of the dielectric properties of
leads to a discrepancy between the dielectric data. Consid F]e condu_ctlng_ stick composites is also difficult. To calculate
for example, the composites with the stick aspect ratighe effectlye (_jlelect_rlc_cor_]stant, we have to know the elec-
a/b>10? that have been investigated in an experiniéfihe tromagnetic field distribution over the system. Indeed, the

observd values of he percoation theshekbla e 19 SSen = obtand usaly by souton of e
many tens times larger tham.=(b/a)? predicted by EMT P q | y b

) ) proximation the stick radiub can be taken as an elementary
and many times smaller thqn=0.46 orp.>vb/a given by  |onaih  Then equations have to be solved on three-

MGS theory. Therefore an application of the existing theo'dimensional(SD) lattices whose number of sites is much
ries to the conducting stick composites is in question. larger than &/b)3. Suppose, for example, that the stick as-

The perCO|ati0n thl’eshold iS not a Single problem W|th thepect ratioa/b~102 then the number Of the Sites is of the
conducting stick composites. The effective dielectric con-grder of 18. The solution of a finite difference equation on a
stante, of the composite with aligned conducting spheroidssuch lattice is a difficult problem even for the most powerful
has been detailed considered in Ref. 32. Suppose that thgodern computers.
prolate spheroids with semiaxasandb (a>b) are aligned On the experimental side results of the first attethp
with z axis. The simple scale transformatigr (b/a)*x*, investigate the dielectric properties of conducting stick com-
y=(b/a)¥3y*, z=(a/b)?3z* reduces the composite to the posites are in evident disagreement with the percolation
system of anisotropic conducting spheres distributed in atheory®!"'8The percolation theory predicts that the dielec-
anisotropic host: Therefore the percolation threshold for the tric constant exhibits a power-law dispersive behavior
composites with aligned sticks coincides with that of thee,(w/o )Y Doc(w/o)®2 in a small critical region
spherical particles. Nevertheless, it appears that the dielectraroundp, defined byl Ap|< (/o) Y¢S, where the critical
response of aligned stick composites is quite different fromexponents are equal t=2.0, s=0.8 for d=3; o, is the
that of composites with spherical inclusions even for theconductivity of the conducting inclusions. Out of this critical
small concentrations considered in Ref. 32. This difference isegion, there should be no dispersion at all. In contrast to this
due to long-range correlations in the interaction of the sticksprediction, the dispersive behavior of the dielectric constant
It is shown in Ref. 32 that long-range correlations are a dis<, has been observed in the microwave rang&-10'° Hz
tinct feature of sticks, while for spherical particles they arefor all investigated concentrations of conducting stitks.
negligible (see also Ref. 34 Another important result of The dispersive behavior for sticks with conductivity
Ref. 32 is the possibility of the excitation of internal mani- ¢,,~10"* sec! is similar to the Debye relaxation:
fold modes in the system. This observation corresponds te.(w)>1/(1—iw7g),” where the relaxation time; depends
the results of the present work. The high-frequency dielectrion the stick length and conductivity. The frequency depen-
properties of the aligned stick composites have been considlence of the dielectric constagf(w) is resonance in form
ered in Refs. 35, 36 beyond the usual quasistatic approximder the composites with higher stick conductiviby,~10""
tion. secl. The real part of the dielectric constagi(w) drops

Let us consider the interaction of randomly oriented sticksdown to zero at some resonance frequesag¢ynd it acquires
excited by an external fiel&,. The dipole momenD of a  negative values for frequencies>w,. The power-law dis-
conducting stick may be estimated@sa’E, (Ref. 30, Sec. persive behavior predicted by the percolation theory had not
3). Then the effective dielectric constant is estimated adbeen observed in this experiment at all.
e.~a’nxa’p/(ab?), wheren is the number of the sticks i In this paper we present a comprehensive theoretical
a unit volume. We can rewrite the last expression for thestudy of the dielectric and magnetic response of conducting
dielectric constant in terms gi.: e.ca’nx=(a/b)(p/p,). stick composites. We study in all details the interaction of a
In this paper we are interested in composites with very eloneonducting stick with an external electric field. Then we de-
gated inclusionga/b>1). Then the dielectric constarf is  velop an effective medium theory for the conducting stick
large even for concentrations, which are far below the composites. Our approach is based on the well-known
percolation thresholg@. . We can estimate the numbey, of  Bruggeman EMT. It also incorporates the idea of MGS
sticks inside the rangea of the dipole interaction as theory, that the local environment of an inclusion may be
na’nxe,. Therefore the stick dipoles start to strongly different for different inclusions. We show that the dielectric
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constant is a nonlocal quantity for the considered composthe composite can be much larger than unity in some fre-
ites. It depends on the spatial scale for scales less than tlggiency range. Section V is devoted to conclusions.

stick length. We consider a single stick in such an environ-
ment and derive an equation to find the dielectric response of
the composites. Preliminary results of this work have been
reported earliet®

Our theory gives the percolation threshatd<b/a in Let us consider a system of randomly oriented conducting
agreement with the results of Refs. 3, 11-15. It also reproprolate spheroids with semiaxes>b=c. This shape is the
duces the dispersive behavior obtained in Ref. 31. For thamenable geometry to analysis and is a good affiliation for
guasistatic case, when the skin effect in the sticks is neglithe sticks. The prolate spheroid sticks are randomly embed-
gible, we obtain the relaxation behavior of the effective di-ded in a dielectric matrix characterized by a dielectric con-
electric constang(w)*1/(1-iw7g), for a wide concentra- stante;. We neglect the direct “hard-core” interaction and
tion range below and also above the percolation thresholcassume that the sticks are penetrable. Our objective is the
We actually determine the relaxation timgin this paper. It  calculation of the effective complex dielectric constant
turns out thatk depends on the stick shape and conductivity.e,=€;+ie, or the effective complex conductivity
For frequenciesv<ty !, the power-law dispersive behavior .= —iwe/4m of the stick composite. To find the effective
predicted by the percolation theory can be observed in somgarameters, one has to know the distribution of the electric
vicinity of the percolation threshold. field E(r) and current density(r) in the system when an

We extend our theory to the nonquasistatic case when it isxternal fieldg, is applied. The effective complex conduc-

a strong skin effect in the conducting sticks. Then the relaxiivity o, is determined by the definition

ation behavior of the effective dielectric constagi{w)

changes to the resonance dependence of the frequency. The .

real part ofe,(w) can accept negative values when the skin (1(r))=oe(E(r), @)
effect is strong. We discuss the possibility of a wave local-

ization in this case. The dependenegp—p.,») in the where(---) denotes an average over the system volume. In
critical region near the percolation threshold is also considthe real composite, both the currgt) and fieldE(r) will be
ered for the strong skin effect. It seems that this dependendgghly inhomogeneous and statistically random, and it will
has a nonuniversal form in this case. be very difficult to calculate them precisely.

We consider the magnetic response of conducting stick The typical correlation length of the field and current fluc-
composites. Randomly oriented sticks form different con-tuations is of the order of the stick lengtla 2Therefore the
tours in this kind of composite. The typical area of such aeffective conductivitys, can be defined only for the scdle
contour is abous®. An external alternative magnetic field is that is larger than the stick lengtta20n the other hand, the
excited in the contour electric currehtza®. The magnetic field and currentinside a stick are determined on a scale
moment of a such current is aboMxa®. The effective corresponding to the stick radilis<a. Then the conductiv-
magnetic permeability of the composites can be estimated aty o, and other effective parameters are determined by the
we*Mpl/(ab?) o< (p/p.)(a/b). Therefore conducting stick field distribution in a volume larger thaa®, while the field
composites can have a large magnetic response even fbuctuations with volumes®<a® are important. As a result,
small concentrations of the sticks<p.<1. It is necessary to the effective parameters of the composites essentially depend
stress that the magnetic response can be observed for cown the aspect ratia/b, that is, on the shape of the conduct-
posites consisting of nonmagnetic materials. ing inclusions. In this situation standard methods of percola-

In this paper we calculate the magnetic mominof the  tion theory cannot be applied to find the effective parameters
simplest contours consisting of two conducting sticks. Therand one has to develop new approaches. Let us illustrate the
we apply the approachto calculate the effective magnetic last statement by an example of effective-medium theory.
permeabilityu. . The frequency dependence of the thus ob- The method widely used to calculate the effective proper-
tained permeabilityu.(w) is resonance in form. The giant ties of a composite is a self-consistent approach known as
paramagnetic response can be observe in some frequeneffective-medium theoryEMT).6?223EMT has the virtue of
range for the conducting stick composites. relative mathematical and conceptual simplicity, and it is a

The rest of the paper is organized as follows: In Sec. Il wemethod that provides quick insight into the effective proper-
develop our mean-field approach and derive the equation fdies of metal-dielectric composites. In EMT one makes two
the effective dielectric constant. Then we consider the low-approximations: (a) the metal grains as well as dielectric
frequency dielectric properties of the stick composites. It isare embedded in theamehomogeneous effective medium
shown that the dispersive behavior of the compositeshat will be determined self-consistently afo) the metal
strongly depends on the stick’s length and conductivity. Ingrains as well as dielectric grains are taken to havestmee
Sec. Il we deal with the high-frequency properties of theshape.
stick composites. At high frequency the interaction of a stick For conducting stick composites, these approximations
with an electromagnetic wave has resonance character. Asraean that the metal and dielectric grains are assumed to have
result, the composite dielectric constant is resonance in fornthe same shape as prolate spheroids. The internal field inside
We also discuss the possibility of internal modes to be exa spheroid embedded in the effective medium with conduc-
cited in the composites. In Sec. IV we consider the effectiveivity o, can be easily calculate@Ref. 30, Sec. B The in-
magnetic properties of the composites consisting of nonmagernal fields in the conducting and dielectric spheroids aver-
netic materials. It is shown that the magnetic permeability ofaged over all orientations are equal, respectivély,

II. LOW-FREQUENCY PROPERTIES OF CONDUCTING
STICK COMPOSITES
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whereo,, is the conductivity of the sticksry= —i wegldm is
the dielectric host conductivity, arg} andg, are the spher-
oid depolarization factors in the direction of the major axis

_1 2
Ein m_ﬁEin m\|+§Ein ml »

1

Ein mu:1+g (om—olo Eo, and in the transverse direction, respectively. For very elon-
Em el gated inclusionsg,<1 andg, =1/2 (Ref. 30, Sec. % The
1 currents in the conducting and dielectric spheroids averaged
Ein =TT g (o= odlo Eo. (28 over all orientations are equal,
1 m e e
Ein ¢=3Ein a1t 5Ein a1 jin m=mEin m»  Jin 4= 04Ein - 3
1 . . . .
Ein a/= Eo, To find the effective conductivity,, we substitute Eq92)
1+g)(oq—0e)loe and(3) in Eq. (1) and take into account that the conducting
1 spheroids occupy the volume fractipnof the system. Thus
Ein q = Eo, (2b) we obtain the following equation to determine the effective
" 1+9,(oq—0e)loe conductivity:
|
E Om— Oe 2(om—0y) 1-p Om— Oe 2(om— o) -0 (4)
3loetgi(om—0e) 0Tt gi(om—0oe) 3 [oetgi(om—0e) 0Tt (om—0e) .

This equation is equivalent to the condition that the spacevhere we suppose that the dielectric regions are surrounded
average of polarization of the dielectric and conducting parby the “effective medium” with conductivityo .

ticles embedded in the “effective medium” shall vanish. It  Since we assume that the dielectric regions have a spheri-
has a transparent physical meaning. Namely, we choose tloal shape that is different from the shape of the conducting

effective conductivity to cause the averaged scattered field teticks, there is no reason to assume that local environments

vanish?® For spherical particlesg(=g, =1/3), Eq.(4) co-
incides with the usual EMT equatidisee, e.g., Ref.)6and
gives the usual EMT result that the percolation threshxld
is equal top.=1/3.

of dielectric regions and conducting sticks are the same. It
means that the first approximatida) of the standard EMT,

“the metal grains as well dielectric are embedded in the
samehomogeneous effective medium,” should be also re-

In the general case of elongated conducting particlesyised. At this point we follow the ideas of the symmetrized

EMT, Eq. (4), gives the percolation threshold

p.=(5—3g,)g,/(1+9g)). )

Maxwell-Garnett approximatioff:

Let us consider a single-well conducting stick placed in
an external fieldg, directed along it. The field is close to
zero at the stick surface, and it recovers the vdlgeat a

We consider here composites where the aspect ratio of th@distancel>a only. Clearly, the “effective medium” in the

conducting particles is larg@/b>1. Then the depolarization
factor is small,g,~(b/a)?In(a/b)<1 (see the Appendix
and the percolation threshold given by E§) is approxi-
mately equal tgp.=5(b/a)?In(a/b)x=(b/a)?. This result is
in contradiction top.«b/a obtained for the stick composites

distancd, b<<l<a, is most important in the formation of the
internal fieldE;, , in the stick. On the other hand, we can
prescribe bulk effective properties to the domain of the com-
posite, that the sizeis much larger than the stick lengtta2
For the smaller scalke the sticks will be cut off and effective

in Refs. 3, 11-15 and in the experiment of Ref. 31. Therefor€onductivity is a function of the scale  oe=o(l). When
EMT, Eq.(4), cannot be used for the actual calculation of thel <a the conductivityo(l) will be equal too(l)= o4 for the

effective parameters of the composites.

stick concentration p<<1 considered here. The scale-

To understand the reason for this discrepancy let us exdependent conductivityr(l) will recover its bulk value
amine the basic approximations of EMT. It is obvious thato(l)=c, when I>a. We accept the simplest assump-
suggestion(b), “the metal grains as well as dielectric ones tion: A conducting stick is surrounded in the composite by
are taken to have the same shape,” is not correct for stickhe medium with conductivity
composites. Indeed, the dielectric in such composites cannot
be considered as an aggregation of individual grains. It fills
all the space between randomly oriented conducting sticks,
and the averaged shape of the dielectric regions is more
spherical than prolate spheroid. Then the field in the dielec-
tric regions is given by

|
o(l)=04t+(oe—0y) 3 I<a,

|>a.

)

To find the internal fieldg;, ,, in a conducting stick embed-
ded in a such “effective medium,” note that E@a) for the
field is obtained under very general conditidief. 30, Sec.

8) and it should be true for the scale-dependent stick envi-

o(l)=oe,

30e

Bin a= Eo, (6)

20’e+0'd
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ronment. We calculate the internal field for this case in the In the static limitw—0, o4—0, the composite conductiv-
Appendix and show thaEk;, , is still given by Egs.(2a ity o, decreases with decreasing the stick concentrgtion
where the depolarization factogs,g, now take the form and it vanishes at the percolation threshold, which is equal to

1 9b
__ Pc=7 <.
’ gL_Za 2a

(8)  This result forp, is in best agreement with the respltxb/a
obtained in Refs. 3, 11-15 and in the experiment of Ref. 31.
The static conductivity vanishes near the percolation thresh-
old as

b2o, | b?e, |
=——1n =——1n
g a20'd azfd

aO'd
1+ —2
bo,

aEd

2t (11)
* bee

in the limit a>b. The depolarization factag, is reduced to
the usual expressiogH=(b/a)2In(a/b) in the dilute case
wheno.=0y.
Now we would like to summarize the main assumptions
of our effective-medium theory for conducting stick compos- oe(1=7 omt, 720, (12)
ites (EMTSC). To obtain the EMTSC equation for the effec-
tive complex conductivity, we make two approximations. where 7=(p—p.)/p. is the reduced concentration of the
(@) Each conducting stick is embedded in the effectiveconducting stickst=1. It follows from Eq.(12) thato <o,
medium with conductivityo(l) that depends on the scdle for concentrationsr<1, in agreement with the assumption
by means of Eq(7). The conductivityo(l) equals the effec- (1) made for Eq.(10). To understand this result, let us con-
tive conductivityo, for | >a. The value ofo, will be deter-  sider sticks that belong to the backbone of an infinite cluster.
mined self-consistently. Each stick that belongs to the backbone cuts a finite number
(b*) The dielectric regions are taken to have a sphericabf other backbone sticsee Fig. 1)]. Therefore the back-
shape and embedded in the effective medium with condudione consists of segments whose length is proportional to the
tivity o. stick length 2. Since the conductance of such a segment is
To find the effective conductivityr,, we substitute Eqs. proportional tob/a, we immediately obtain this small factor
(2a), (6), and(3) into Eq. (1). Thus we obtain the following in Eq. (12).

EMTSC equation to determine the effective conductivity: The EMTSC developed in this paper has disadvantages
characteristic of mean-field theories. For example, it gives
p Om— e 2(0m—0e) the “conductivity” critical exponent=1 in Eq.(12) instead

of t=2.0 given by percolation theofyNevertheless, we be-
lieve that EMTSC qualitatively reproduces the distinguishing
3(oq— ) features of the composites. Thus the very small fabtar
=0, C) should also appear in a “true” scaling equation for the static
conductivity o.(7) since the conductance of an elementary
where the polarization factogs andg, are given by Eq(8). ~ Pond in the backbone is proportional to this factor. We sug-
Equation(9) is much simplified in the case of the high- 9est that the scaling equation fog(7) has the form
conducting elongated inclusions,,>w, a>b) considered b
in the paper. oo(7)== o, (13
(1) We are interesting in the effective conductivity for the a
stick cor_lcentratiorp which is below and in a vicinity of the \;ere the critical exponeiitis equal tot=2.0.
percolation thresholgh.b/a<1. Therefore we neglect the The static dielectric constagg(7) is predicted by EMTSC

concentratiorp in comparison to the one in the second term;, diverge whemp, is approached from either side
of Eq. (9). c ,

5 getg(om—0e) 0t g (o= 0¢)

+(1=p) 20,1t 0y

(2) Since the concentratiop<<1, the effective conductiv- 1 a
ity o, is much smaller than the stick conductivityg< op,. €(1)=5 € 775, (14)
Therefore we negleat, in comparison witho,, in all terms
of Eq. (9). where the critical exponerg is equal tos=1. Note that a

(3) We can neglect the stick polarizability in a direction large factora/b>1 appears in Eq(14). We guess that this
perpendicular to an external field since it is much smalleffactor is due to the large polarizability of a conducting stick
than the polarizability in the direction of the field. That is, we discussed above. As a result, the dielectric constgfw
can neglect the second term in the square brackets if9Eq. achieves very large values in the critical regiefi<1l near

After these simplifications Eq9) takes the form the percolation threshold, as shown in Fig. 2the dashed
line in Fig. 2 indicates the position qf;). The “dielectric”

1 opn 1 T4— 0 critical exponen's=61 in Eq. (14) is not far away from the
3P 7o 11 (020 /a20g)In(1+ acg/boy) +3 oot og known values=0.8" Therefore we believe that E(L4) may

be used for a quantitative estimation €f7) in the vicinity
=0. (100  of pc.
The dielectric constard, does not diverge at the percola-
This is the basic EMTSC equation for the effective param-tion threshold for finite frequency, but the real parg; of
eters of the composite containing elongated conducting inthe complex dielectric constalet=¢€,+ie,=4i mo / w still
clusions. Let us consider the behavior @f obtained from has a maximum at the percolation threshold as it follows
Eqg. (10) in some extreme cases. from the solution of Eq.(10). Let us consider the scaling
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17

a (t—s)/(t+s) w s/(t+s)
e1(w)*ex(w)>

g
10000 m

(

| Note that the concentration range where the dielectric con-

: stant has the scaling dispersive behavibf) increases by a
100 ! factor (a/b)?"*S for the composites containing elongated

1

i

|

Dielectric constant

conducting inclusions with the aspect ragith>1. Consider,
for example, a hypothetical composite prepared from indus-
trial carbon fibers with a thickness of aboupin that are cut
0.0001 0.001 0.01 into sticks with length 1 mm. The typical conductivity of
such carbon fibers is about,=10" sec'!. Therefore the
dimensionless frequency in E@150 is of the order 19
FIG. 2. Static dielectric constant of the conducting stick com-se¢ Y. Suppose that we measure the dielectric constant in
posite as a function of the stick concentratipnthe stick aspect the vicinity |74<0.1 of the percolation threshold. Then the
ratio and dielectric constant of the host are chosen ta/be=1000  power-law dispersive behavior given by E4.7) should be
andey;=2, respectively. The dashed line signifies the position of theobserved in the frequency band 100 kEz<100 MHz,
percolation thresholg. . where v=w/27. One can compare this frequency band with
the band for the scaling dispersion,'AMHz<»<10' Hz,
properties of the effective dielectric constaqtr,w) in the  given by the usual scaling expressid5a. We believe that
critical region|71<1, o,/w>1 near the percolation threshold. the conducting stick composites can be used as a convenient
The critical behavior ok, (7,w) for ordinary metal dielectric  reference system to verifguantitativelythe predictions of
composites is believéd"**to be described by the scaling the percolation theory, e.g., Eq45) as well as some mod-
expression ern approachetsee, e.g., Ref. 45
Consider now the behavior of the dielectric constarfor
(153 concentrationg below the percolation threshold out of the
’ critical region. We will still suppose that,|/e;>1 (see Fig.
2) and negleck, in comparison withe, in the second term of
Eqg. (10). Then Eq.(10) takes the form

Concentration P

1/(t+s)
€e(7,0) = €4 7| °¢ )

Aziopy,
|7l

Eqw

where the scaling functior(z) has the following asymp-
totic behavior:
2

1, |71, 7<0, c(bo)me 2p
()= 5 |d<l . elP@)=€a g P 2 Intaib)
Z'*s+1, |z]>1, 0. 1

This scaling behavior has been obtained in some experiments x InN[aey/bes(p,w)]/In(a/b) —iw*’ (18
and numerical simulationtsee Refs. 6, 43, 44, and refer- h introd the di ionl f
ences thereinthat have been done for the composites withVNEre We introduce the dimensionless irequency
approximately round conducting grains. Far—0, Egs. a\?|eslen| (a2 cw
(153, (15b give the asymptotic behavior of the effective w*=|— dffml _ (2 Td® (19
dielectric constante,=e4|7| S and effective conductivity bj In(a/b) b/ 4moyIn(alb)

ge=0pyr for 70 that is somewhat different from the as- |y is interesting to note that the thus obtained dimensionless
ymptotic behavior of these quantities for the conducting St'Ckfrequencyw* coincides up to a factor 1/la(b) with dimen-
composites given by Eqé13) and(14). To incorporate Eds. sjonless frequency which emerges in the scaling E§o),
(13) and(14) in the scaling approach, we suggest rewriting\yhich has been obtained in the different concentration
the scaling Eq(153 in the form ranges. The dimensionless frequengyis an important pa-
rameter that determines, as we show below, the dependence
, (159 e.(p,w) for the entire range of concentration. One can re-
write Eg.(19) for the dimensionless frequency a$ = w1,
where 7y is the stick relaxation time. Electric charges some-
how distributed over a stick will relax to their stationary
distribution in timerg. For spherical particles the relaxation
time coincides with Maxwell’s time 4no,,,) and is negli-

i 1(t+s)
|T'(w—*)

where the scaling functiog(z) is still given by Eq.(15b),
while the dimensionless frequeney =(a/b)?(eqw/4mo,,)
to the square of the stick aspect radith. Equation(15¢) can

be considered as a generalization of Bd3g to the conduct- . o 2
ing stick composites. This equation has a scaling form an ibly small usuglly. T_he relaxation time,(a/b) /(47”7”1)_
gives the asymptotic&l3) and (14). or the conducting sticks may be many orders of magnitude

From Egs.(15b), (150), it follows that when botH7 and Iarger than _Maxwell’s time_. Thi_s is th_e origin of the r_elax-_
wlo, are small in the critical region aroung, defined by ation behgwor of the effective dlglectrlc constant obtained in
the experiment of Ref. 31 and discussed below.
€40 )1/<t+s) For the stick concentratiop< p.. out of the critical range,

a —S
e rw)=p el 0

2/(t+s)

|T|<<B : (16)  Eq. (18) yields that|e,(p)|<(a/b)ey. To make an estima-
tion of ¢, we use a crude approximation neglecting

the complex dielectric constant exhibits a power-law disperin(ey/€.) in comparison with Ind/b) in Eqg. (18). Thus we

sive behavior obtain an explicit form of the effective dielectric constant:

4oy,
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It follows from Eq. (20) that the dielectric constart, takes
large values even for the concentratiprep, due to the
large aspect rati@/b>1. Since the dielectric constat
achieves sufficiently large value far below the percolation
threshold (see Fig. 2, this effect is not connected to the
formation of large, critical conducting clusters considered in
percolation theor§:1"'8Therefore it is easy to reproduce the
large valuese, in a real experiment: This is one of the
interesting features of the stick composites that may be im- 0 2 4 6 3
portant for engineering applications. We propose that these
composites can be used to prepare an artificial dielectric with
a high dielectric constant.

Another interesting feature of Eq&L8) and (20) is that
they give dispersive behavior of the effective dielectric con- =
stante,(p,w*) that is close to the relaxation behavior. This
relaxation behavior cannot be obtain from the usual percola- ~
tion theory and is closer to that given by the Maxwell-
Garnet approximatio.The fact that the behavior of com-
posites with elongated conducting inclusions is better
described by the Maxwell-Garnet approximation is discussed
in the literature(see, e.g., Ref. )9 but until now has no
proper explanation. Note that the relaxation behavior give by L
Egs. (18)—(20) should be observed for the concentration 0 2 4 6 8
range b/a)’<p<bl/a, that is, in a wide concentration range T
below the percolation threshold. This prediction of the theory
is in the besgualitativeagreement with experimeftA de- FIG. 3. Dependence of real(7) (a) and imaginarye,(7) (b)
tailed comparison with experiment will be present elsewhereparts of the effective dielectric constagt on the dimensionless

To obtain the behavior of the effective dielectric constantstick concentration=(p—p.)/p. for different calues of the dimen-
in entire range of the concentrations, we solve the EMTSGionless frequency* =(a/b) ¥ eqw/4moy, In(a/b)]: 1—w*=1.0,
equation(10) numerically. Thus the calculated regl7) and 2—w*=0.1, 3-»*=0.01. The aspect ratio is equal &b =1000,
imaginarye,(7) parts of the dielectric constant we present in &4=2.
Fig. 3 for different values of the dimensionless frequency
o*. The dependence,(7) has “percolationlike” behavior concentration region, the effective dielectric constant either
with a sharp peak gb, when w* <1. The peak ine;(7) be-  accepts their static values fes* <1 or it has a relaxation
comes wider and wider, and it shifts to the larger concentradispersion whenw*>1 as we have mentioned above.
tion far away from the percolation threshold when the fre- It follows from the above discussion that the dispersive
guency o* increases. Since the dielectric constant has ndehavior of stick composites can be very different from that
anomaly at the percolation threshold whete1, we believe of ordinary metal-dielectric composites with spherical par-
that the EMTSC equatiofiL0) gives now quantitatively cor- ticles. We believe that stick composites may be considered as
rect results for all stick concentrations including the percola-a special class of percolating systems.
tion threshold. Fow* =1 the effective dielectric constant has

a relaxation dispersiore,(w)>1/(1-iwrg) in the entire lll. HIGH-FREQUENCY DIELECTRIC RESPONSE

range of concentrations while the relaxation timey some- OF THE CONDUCTING STICK COMPOSITES
what decreases with increasing above the percolation

thresholdp,. We obtain from this result and scaling, Eqs. Composite materials containing conducting sticks dis-
(15b—(17), that in the critical concentration regignf<1l  persed in a dielectric matrix have new and unusual properties
nearp, the effective dielectric constarst(w*) changes with at high frequency. When the frequenay increases, the
the frequency as follows: e,xe4(a/b)|7| %, 7<0, and wavelengthh\=27c/w of an external electromagnetic field
exeq(alb) (|7 S+ (ilw*)7"), 70 for o*<|q'"S,  startsto be of the order of the stick length.t first glance

€. g(a/b) * ) for |4TS<w*<1: finally we have the sticks behave now like microantennas and an external
e.<eq(a/b)/(1-iw*) for w*>1. Note that the dispersive wave should be scattered in all directions. We propose in this
behaviore.(w) can be described in any particular range of paper that composite materials still have well-defined dielec-
»* and 7 by one of the equations suggested in Ref. 19. Butric and magnetic properties for the high-frequency case in
none of these equations can reprodege) as a whole. Our contrast to the “antenna” picture.

approach has another advantage over Ref. 19 because it al- The reason for this “effective-medium” behavior is that a
lows one to express explicitly the parameters in the dispervery thin conducting stick interacts with an external field like
sive equations in terms of the universal critical exponénts a dipole. Therefore the conducting stick composite can be
ands, dimensionless concentratianetc. Out of the critical considered as a system of dipoles regardless of the wave-

Logio (8 1 )

(b)

Al
80
Q

=
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length and be described in terms of effective parameters. dl(z) om o4
Namely, we can still use the effective dielectric constgnt ~ gy A7 CU=dn3 IN(1+ a0a/boy) U,
or effective conductivityo,= —iwe /47 to describe the in- " “ @

teraction of the composites with an external electromagnetic

wave. The formation of large conducting clusters near thévhich connects the curreri(z) and the surface potential
percolation threshold may initiate some scattering only. ~ U(2)- Otherwise, the electric currehtz) and potentiall (2)

Since conducting stick composites are supposed to ha/¥€ connected by the usual Ohm's law

effective parameters for all concentrationut of the per- du(2) ol
colation threshold, we can use the theory developed in Sec. - = ( R—i _2)|(Z)_|50, (23
Il to calculate the effective conductivity,. Certainly, this d c

theory has to be modified to take into account non0|uasistati\c,;,hereEO is an amplitude of the external field aRiand L
effects. The problem of the effective parameters of compoSre the impedance and inductance per unit length of the stick
ites had been considered for the nonquasistatic case in Ref%spectively. To obtain a closed equation for the curtén

36, 46, 47. It has been shown there how the mean-field aRge gifferentiate Eq(22) with respect taz and substitute the
proach can be extended to find the composite dielectric conug it into Eq.(23) for dU(z)/dz. Thus we have at the

stant and magnetic permeability at high frequency. We caRgcond-order differentiate equation 1dz)
summarize the results of Refs. 36, 46, 47 in the following

way: One has to solve Maxwell’'s equations to find the po- d?l(2) 2oy ol
larizability for a particle in the composite illuminated by an dZ ~ in(i+aoa/boy) R-i = |l(2)~Eo|,
electromagnetic wave. The particle is supposed to be embed- di e (24)

ded in the “effective medium” with conductivityr,. Then

the effective conductivityr, is determined by the condition Wwith boundary conditions corresponding to vanishing the
that the averaged polarizability of all particles shall vanish.current at the ends of the stick,

The polarizability of the dielectric regions that are assumed

to have spherical shape is knovsee, e.g., Refs. 6, 30The I(-=a)=0, I(a)=0. (25)
problem is reduced to the calculation of the polarizability of 5 ,tion of this equation gives the current distributidz)

an elongated conducting inclusion for the nonquasistatig, 5 conducting stick that is illuminated by an electromag-

case. . . __netic wave. Then we can calculate the charge distribution
The diffraction of electromagnetic waves on a conducting, 4 therefore. the polarizability of the stick.

stick is a classical problem of classical electrodynamics. A" 14 getermine the impedand® and inductancd. in Eq.
rather complex theory of this process is presented in Ref%zs), we take a conducting stick in the form of a prolate
48, 49. But until now it has not been realized that the prob- pheroid with semiaxea>b. Since the section area of a
lem can be solved analytically in the case of very elongate pheroid at coordinate is equal towb2[1—(z/a)?], we

sticks when the aspect ratab is so large that Ird/b)>1. 1 5e the following expression for the impedance:
Consider a conducting stick of lengtha2and radiusb

illuminated by an electromagnetic wave. For simplicity we 1

will suppose that the electric field in the wave is directed R= b2 1—(Z/a)Zla™’
along the stick. The stick is supposed to be embedded in a mo 1= (Za) o,
medium with effective conductivity. . The external electric \here ¢, is the stick conductivity that is renormalized to
field will excite the electric currerit(z) in the stick, wher& (ke into account a skin effect in the conducting sticks. We
is the coordinate along the stick, measured from its midpoint;gsyme that the conductivity?, changes due to the skin

The dependencz) will be nontrivial when the wavelength effect in the same way as the conductivity of a long wire
\ is of the order or smaller than the stick length. It will be (see, e.g., Ref. 30, Sec. 6df radiusb

also a nontrivial charge distribution(z) along the stick in

this case. The charge distributioiiz) determines the polar- (1—i) J.[(1+)A]
izability of the stick. To findl (z) andq(z), it is convenient or=onf(A), f(A)= A Jo[(1+DA]’
to introduce the potentidl(z) of the charge(z) distrib- 0
uted over the stick surface. From the equation for the electrigghere J, and J; are the Bessel functions of zero and first
induction (see, e.g., Ref. 30V-D=4mpg,, we obtain the order, respectively, and the parameteis equal to the ratio

(26)

(27)

equation of the stick radiud to the skin depthr=c/\2mo o, i.e.,
g A=b\27wowlc. (28
eqn dl(2)
- U—m 4z =4mq(z), (2)  When the skin effect is weak, i.A<<1, the functionf (A)=1
m

and renormalized conductivity, is equal to the stick con-
ductivity oy=0,. In the opposite case of a strong skin
which connects the values of chamgéz) and current(z) in  effect(A>1), the current flows in the thin skin layer at the
the stick. The stick charge per unit lengitz) is connected surface of the stick. Then E@30) gives f(A)=(1-i)/A,

to the potentiald(z) via the specific capacitan@ given by — oh=(1—i)on/A<o,.

Eq. (Ad): q(z)=CU(z). Substituting this relation into Eq. The inductancé. per unit length of a stick is calculated in
(21), we have the equation the Appendixsee Eq(A9)] and given by the equation
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. The electric fieldg;, ., inside a conducting stick is uniform

YRR Vedka, (29 when the skin effect is negligible and it equalg, m=E,
—dU/dz. From Eqgs.(32) and(33), we obtain the following

wherek=w/c=2m/\ is a wave vector of the external field. expression for the internal field:

The first term in Eq(29) is the usual inductance of a long

wire (see, e.g., Ref. 30, Sec. 34 he second term emerges E _E 1

for the nonquasistatic case. For the very thin sticks consid- M0 + (gl og) (b a®)In(1+acy/boe)

ered in this section, Ir®/b)>1 and the second term in Eq.

(28) is much smaller than first one. Nevertheless, it appears —E 1 (34)

to be very important when a stick is at resonance with an 0 1+gomloe’

electromagnetic field.

For further consideration it is convenient to rewrite Egs.
(24) and (25) in terms of the dimensionless coordinate
z,=z/a and dimensionless curreti=1/(o,f(A)7b%Ey)
and introduce the dimensionless relaxation parameter

a
L=2In

whereg; is the depolarization factor given by E@). As one
can expect, the fiel&;, ,, given by Eq.(34) coincides with
the quasistatic internal field in a prolate conducting spheroid
Ein mi [See Eq(2a)] for the caser,> o, considered here.

In the opposite case of a strong skin effect the product

_ Om om [ b\? aey 02yxAs1. Therefore we neglect the first term in the square
iy=1(A) oy g,="f(4) oy (a) In{ 1+ be, (300  brackets in Eq(32), obtaining
and dimensionless stick frequen€y _2i [codQzy)
11(z)= 522 | o7 (39
n(a/b '\/—k Oy \ cogQ)
+
02=(ak)’LC=e4(ak)? mﬁa—‘;/;:e)a, (31) In the diluting casep<(b/a)?, the effective dielectric con-

stante,= e, and the stick frequency is equal f=ka/ey
wherek= w/c. Substituting the thus determined parameters= 2wa\/e—d/)\. Therefore the current will have resonances
into Eqs.(24) and(25), we obtain the following equation for when the wavelength ,=4ay/ey/(2n—1), n=1,2,.... It is

the dimensionless currehf(z;): the well-known antenna resonané&$®
2 . In the general case of arbitrafy and vy, the solution of
dl4(z) _ —i —02|14(z))+ 3 Eqg. (32) cannot be expressed as a finite set of any known
dz y(1-23) B ' special functions? Therefore we integrate this equation nu-

merically. Experience with numerical integration of £§2)
l1(—=1)=0, I4(1)=0. (32 has shown that for not very short wavelengths>\,) the

In order to understand the physical meaning of &), let  Solution can be approximated by a simple formula

us consider two limiting cases. When the skin depth is weak, 1— 72
the combination)?y=A?<1. Therefore we can neglect the I (zy)= ——— . (36)
second term in square brackets in E8R) and find the cur- 1+iy cod)
rent This equation can be considered as some interpolation from
5 Egs.(33)—(35).
1(2y)= (1-2) (33) When the current, is known, we can calculate the spe-
B 1+iy cific polarizability P, of a conducting stick,
|
pam— 23 [* q(Z)d—?’fAUmFl d 3
m= AT B, "By ab? ) 2 e 9% 2 ( )U_e . 1(z1)dzy, (37)

whereD andV=4rab?/3 are the dipole moment and volume of the stick, respectively, and the furf¢iris given by Eq.
(30). Substituting Eq(36) for the current in Eq(37), we obtain the equation

Om Om 1
Pn=1(A) U—em—f(A) o 1+ f(A) (000 (b%a%)In(1+aeq/bey)coOL)

(39)

for the polarizabilityP,, of a conducting stick that is illumi- the stick polarizability. Consider a conducting stick that is

nated by an electromagnetic wave. The stick is supposed wligned with some unit vecton. Suppose that the stick is

be parallel to the direction of the electric field in the wave. illuminated by an electromagnetic wave with electric field
Up to now we considered sticks that are aligned with an .

electric field in the incident electromagnetic wave. The com- E=Eo exdi(ke 1], (39

posites we are interested in contain randomly oriented conwherek, is the wave vector of the wave inside the compos-

ducting sticks. In this case we have to improve Bf) for  ite. The current in a very elongated stick is excited by the
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component of the electric field spatial dispersion takes place. On can expect that additional
) waves will be excited in the composites in the presence of a
Ei(2)=n(n-Eq)exfli(ke-n)z], (40 strong spatial dispersioh:®2 These questions call for further

which is parallel to the stick, whereis a coordinate along investigation. .
the stick. The fieldE, averaged over all stick orientations is N this paper we consider the wavelengthr\,; there-
aligned with the external fiel&,. Its amplitude is equal to ~ fore, we expandg; (2) in a series

(Ke2)?
- +)

. Eo (sinke)
0 (Z) - (keZ)Z keZ

The current flows in a stick are linear functions of the fieldand restrict ourselves to the first term. Since the averaged
E,. Since the averaged fielf| is aligned withE, the current  field is equal toE§ (2) =E,/3, the averaged current is equal
averaged over the stick orientations is also aligned with theg ((1,(z,)))=1,(z,)/3 where the stick current,(z,) is still
external fieldE,. To obtain the currenf(l,(z,))) averaged given by Eq.(36). As a result, the stick polarizabilit){ P,,))

over the stick orientations and, therefore, the averaged Stioiveraged over all orientations is equalRg/3 whereP,,, is
polarizability ((Pr,,)), one has to substitute the fieEf(z)  given by Eq.(38).

given by Eq.(41) into Eq. (24) instead of the field,. Then Inasmuch as the sticks are randomly oriented, the dielec-
the current((1,(z;))), polarizability ((Py,)), and, therefore, tric regions of the composites are supposed to have a spheri-
effective dielectric constant will depend on the frequency cal shapdsee discussion after E(5)]. The specific polariz-

but, what is more, on the value of the wave vedtpr This  ability of a dielectric region is given by the usual quasistatic
means that a conducting stick composite is a medium witkequation(see, e.g., Ref.)6

some spatial dispersion. This result is easy to understand

when we recall that the characteristic scale of an inhomoge- 3(og—0e)
neity in the composites is the stick length.2Moreover, one d= 5 - 1
can use the bulk value of the dielectric constanfor the

scales larger thaa only, as discussed in Sec. Il. So it is not The effective dielectric constant of the compositess de-
surprising that the interaction of an electromagnetic wavedermined by the self-consistent condition that the polarizabil-
with the composites has a nonlocal character and, therefority averaged over all inclusions shall vani&i®4’

Eo
cog kez)> . (41 ES(2)= 3

(42

B 20’e+0'd ’ (43)

_p f(A)om/oe [
PUPm) (1= P)Pa= 3 TR} (o /o) (bZad)In(1+ aeg/becosy S+~ P)

m =0. (44)

This equation differs from the EMTSC equati@t0) obtained for the quasistatic case in t@tthe conductivity of the sticks
o, is replaced by the renormalized conductivit§,= f(A) o, given by Eq.(27), and(b) the “resonance” factor co§) appears
in the denominator of the first term.

Let us consider a solution of Eq44) for the conducting stick concentratiop below the percolation threshold
(b/a)?<p<b/a. The absolute values of the effective conductivityare large as compared witt| for such concentrations.
Then, neglectingry in the second term of Eq44), we have

Te € 2 f(A)oy/oy 45
oq eq 9P 17f(A)(onlog)(bla)? IN[1+ (a/b)ey/e]co) " (45)

This equation is similar to Eq18) obtained in Sec. Il for the quasistatic case. The absolute values of the effective dielectric
constante, calculated in the quasistatic approximatieee Figs. 2, Bare less thang/b) ¢4 for the concentratiop<<b/a. Let

us suppose that the same inequality takes place in the nonquasistatic case considered here. For a qualitative analysis of Eq
(45), we therefore neglect Ir{/ ;) in comparison with In4/b) in Eqs.(45) and(31). After these simplifications,, disappears

from right-hand side of Eq45) and this equation becomes an explicit expression for the effective conductivity or dielectric
constant,

2 a’ 1
€= €d g P b2 In(alb) cod+ og/f(A)ay

(46)

where the functiorf(A) is given by Eq.(27). Substituting into Eq(46) the definition of the stick frequenc§ given by Eq.
(31 and oy= —ieqw/4m, we have

2 a2 1
€=€dy p

(47)

b? In(a/b) cos (Veqak) V1+iVegak/In(a/b)) —i[ eq/A%f(A)](ak)?/2 In(a/b),
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where k= w/c and the parameteh is given by Eq.(28).

150 | ' T ' -
When the skin effect is strong, the parameterl and func- 3 ()
tion f(A)x1/A. Therefore we can neglect the second term in 100 | 2 |
the denominator of Eq47). Expanding the first term in the
denominator of Eq(47) in a series of the small parameter ~ s 4
1/In(a/b), we have 1
0
p a 1
€e™ € p. b In(a/b i 2 ' 50 - .
Pc b In(a/b) coq \/eqak) —ieq(ak)?/2 In(alb)
(48) 1 1 1
-4 3 -2 -1 0

From this equation it follows that the effective dielectric con-

stant of the conducting stick composite has resonance behav-

ior when the skin effect is strong. The resonance frequencies

w, are determined by the conditiofegak= (7/2)(2n—1), 150
n=1,2,..., and therefore they are equal 4g=(#/2)(2n

- 1)c/(a\/e—d). It is interesting to point out that the thus ob-

tained effective dielectric constant is independent of the 100
metal conductivityo,.

Consider the behavior of the effective dielectric constant
near the lowest resonance frequem:]y:(w/Z)c/a\/e—d. Ex-
panding the denominator of E¢48) in a power series of
w—w, We have

2

50

0 a 1 -4 -3 2 -1 0

€ b b In(a/b) (w;—w)/w—i7%/8 In(alb)’

€=

(49) Logio (A2 oy )

where imaginary part of the denominatﬁ?/(S In(a/b))<1 FIG. 4. Dispersion curves of real(w*) (a) and imaginary
since we suppose that kb)>1. This equation gives a . %) (b) parts of the effective dielectric constagt for different
well-developed resonance behavior of the effective dielectriGaiyes the parametex=b/s, the ratio of stick radius to skin
constante, . At the resonance frequenay, the real part of  gepth s=c/\270,0: 1-A=0.1, 2-A=0.5, 3-A=50. The

€ changes its sign and becomes negative whefw;. The  stick concentratiop=0.1p,, aspect ratica/b=1000, e;=2.
imaginary part ofe, has a maximum at the resonance and its

value
rameterA given by Eq.(28), i.e., on the ratio of the stick
16 a2 radiusb to the skin depthd. Considering Eqs44) and(45),
€2(w1)=€P g2 12 (500 we see that the parametags, p, a/b, »*, andA fully char-

acterize the dielectric response of the conducting stick com-
does not depend on the conductivity of the sticks for the casposites. The parametér can be considered as an electrical
of a strong skin effect considered here. Therefore the imagi“‘goodness” of a conducting stick. When the parameter1,
nary part of the effective dielectric constant does not vanistihe behavior of the effective dielectric constant is similar to
for composites with stick conductivity,,—%. We believe that given by Eq(46). We return to the quasistatic situation
that the presence of the effective losses is due to excitingghenA<1. In this case neither the skin effect nor resonance
internal modes in such composites. These modes areffects are important.
bounded around the sticks and cannot exit from the compos- In Fig. 4 we show the dependence of the effective dielec-
ite. Whenao,,— and the dielectric host has no losses, thetric constante, on the frequencyw* for different values of
amplitude of these modes will continuously increase in timethe parameteA. The stick concentratiop is chosen to be
In all real composites there are some losses in the conductirapfficiently small, p=0.1p.. The dispersive behavior is
sticks as well as in the dielectric host. Therefore the internatlose to the relaxation behavior given by H@6) for the
field should stabilize at some large value. In other words, iweak skin effect: A<0.1. The dispersive behavior dramati-
should be a wave localization in the conducting stick com-cally changes when the paramet&rincreases taA=0.5.
posites whenr,,—. The field distribution in the composites Now the dependence of the effective dielectric constant
cannot be found in terms of the effective-medium theorye.(w*) has a resonance character. The real parg.6h*)
developed in this paper. The field distribution and the specincreases with frequency: it has a sharp maximum at the
trum of the internal modes are questions for further considfesonance frequency and then drops to negative values. The
eration. imaginary part ofe.,(w*) has a well-developed maximum at

In the general case of an arbitrary skin effect, we solvahe resonance frequency.

Eq. (44 numerically. The thus obtained effective dielectric In Fig. 5 we presente(w*) for the concentration
constante, depends on the stick concentratipnaspect ratio p=0.9p. close to the percolation threshold. When the skin
a/b and dimensionless frequeney [see Eq(19)] as in the effect is weak(A=0.1), the real and imaginary parts of the
guasistatic case. The behavior gfalso depends on the pa- effective dielectric constant decrease according to the power
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(a)
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5000

, FIG. 6. Currents in the two-stick contour excited by an external
5 -4 3 2 -1 magnetic fieldH. The displacement currents that short the currents
in the conducting sticks are shown by dashed lines.

ties under such conditions. Indeed, the magnetic response of

15000 , . . a single conducting stick is small even at high frequency
(Ref. 30, Sec. 59 Since the concentratiqgn<1, the response
(b) of the entire composite should be negligible small.

In reality, as we will see below, the composites may have
a giant paramagnetic response at some frequencies. The rea-
son for such behavior of the conducting stick composites is
5000 - ] the collective response of the sticks to the high-frequency
1 magnetic field. The sticks form various closed circuits in the
composite. The external magnetic field excites electric cur-
0 : ' rents in these stick contours. Magnetic moments of the cur-

-5 -4 -3 2 -1 rents flowing in the stick contours are in charge for the mag-
7 ) % netic response of the composite.
Logio (A'® ) In this work we restrict ourselves to the simplest stick
circuit consisting of two sticks only. Suppose at the begin-

FIG. 5. Dispersion curves of reah(w*) (@) and imaginary Ning that the sticks are parallel to each other as shown in Fig.
e(w*) (b) parts of the effective dielectric constaqt for different 6. We also suppose that an external magnetic field
values the parametek=b/s, the ratio of stick radius to skin ~ H=HeXp(—iwt) is applied perpendicular to the plane of the
depth s=c/\2momw: 1-A=0.1, 2-A=0.5, 3-A=5.0. The Circuit. This field will excite a circular currentin the system
stick concentrationp=0.9p., aspect ratia/b=1000, e;=2. of two parallel sticks. The circular curremtflows in one

stick in one direction and in another stick in the opposite

law as discussed in Sec. II. This critical behavior continuedliréction as shown in Fig. 6. The displacement currents flow-
in a wide range of the dimensionless frequengyturning N9 between two sticks short the circuit. The considered two-

into the relaxation dispersion fas*>1. The dispersive be- stick circuit is nothing but the well-known two-wire trans-
havior changes when the parameter0.5 in a similar fash- mission line excited by the external magnetic field. The
ion as in the dilute case discussed above. In this paper we dg/rrentl in the two-wire line can be calculated from Teleg-

not consider in detail the behavior of the effective dielectric@Pher's equatiorisee, e.g., Refs. 49, 53 ,
constante, in the critical regionp=p, for the nonquasistatic Electrodynamics processes in line of two wires separated

case. We point out that the only real part gftakes small by the distancel are determined by the impedance per unit
negative values in a wide frequency range dérlarger than ~ '€ngth,
the resonance frequency, as shown in Fig. 5. It should be

T
w
1

10000

€,
(8]

noted that the effective-medium theory developed here can- 7— 1 _ fw L (51)
not pretend to an accurate estimation of the effective param- f(A)crm77bz cZ %

eters in the critical region. Moreover, some “critical opales-

cence” can take place for the concentratipnnear the whereoy, andb are the stick conductivity and radius, respec-

percolation threshold. All these questions deserve furthetively; the functionf(A) given by Eqs(27) and(28) emerges

study. from the skin effect, and., is the self-inductance per unit
length of a system of two parallel straight wires having cross

section of radiib (Ref. 30, Sec. 33
IV. HIGH-FREQUENCY MAGNETIC RESPONSE OF THE

CONDUCTING STICK COMPOSITES

Consider the metal-dielectric composite containing con- (52

ducting sticks dispersed in a dielectric host. The sticks are

much elongated, that is, the aspect ratib>1. We suppose Wwhered is the distance between axes of the wires, apds
that the volume concentratiom of the conducting sticks is the effective magnetic permeability of the composite. The
less than the percolation threshqlek p.cb/a. We also sup- value of u, will be determined self-consistently. Another im-
pose that neither sticks nor dielectric host has magnetic progortant parameter is the mutual capacity per unit length of
erties. At first glance the composite has no magnetic propetwo wires (Ref. 30, Sec. B

d
L2:4,(Le In 6 y
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_ & o a3 , tan(ga)—ga
Co= Zin(dib) (53) m=2Hea’C(kd)* — 53

The capacitanc€, determines the value of the displacementNote that the thus obtained moment takes on large values
currents flowing in between two wires. Since we considefyhen the wavelengthh=27/k is of the order of the stick
two nearest sticks, we pu; in Eq. (53) for the interstick  |ength 22 and the skin effect is strong. Indeed, for the case of
capacitance. This approximation is good when the distance a strong skin effect when the ratio of the stick radiut the
between the sticks is smaller than their lengtfsee Eq(7)].  skin depths is large,A=b/8>1, we can neglect the imagi-
Following the procedure described in Sec. lll, we intro- nary part of the parametey in Eq. (58). Then we can esti-
duce the current as a current in one stick. This current mate ga~ak~1, kd~d/a, and havem=Hgad?. One can
depends on the coordinazealong the stick. We also intro-  compare the thus estimated momenwith the moment of a
duce the potential differendé(z) between two sticks. Then single stick,m;<H,ab?. Since the concentrations<1, the
we get a first equation to determihgz) andU(z) from the  typical distanced between two sticks is much larger than the

(60)

first Maxwell's equation written in integral form, stick radiusb. Therefore the “collective” momenm is much
, larger than the momentm; of a single stick,
% E dl= '@ ﬁ H dS, (54) m/mloc(d/b)2>l. For this reason t_he conducting stick com-
(a,b,c,d) c Jls posite may have a large magnetic response even for very

small concentrations of the sticks.
Let us now estimate quantitatively the effective magnetic
permeability of the conducting stick composites. We are in-
dU(z) idw terested_ in thg effective properties _of the compo_sites where
— ———=Z1(z2)+ — Hy. (55) conducting sticks are randomly oriented. Consider a con-
dz c ducting stick directed along some vectgrand take its cen-
The current (z) depends on the coordinatesince it can go ter as th_e center _of cpordinatgs. Suppose that the nearest-
out from one stick and come into another stick. The second@€ighboring stick is aligned with the vectop and has its
equation forl (z) andU(z) we obtain from the charge con- center at the coordinatg. As a first approximation, we as-

servation law considering the currents in the sticks and disSUme that the moment of a such system is still given by Eg.
placement current between them (60), but we substitute in this equation the averaged distance

d,, between the stick,

where S=dXxdz is the area restricted by the contour
(a,b,c,d) as shown in Fig. 6. From Ed@54) it follows that

A2 iucu (56) 1
—=iw ). a
dz ? dffﬁ f [n;z— (ro+n,)z]?dz (61)
Combination of Eqs(55) and (56) gives the second-order :
differential equation for the current, Integrating Eq.(61) and averaging the result over the direc-
5 5 tion of vectorn, and over the direction and length of vector
dl(z) 2 (2)+ Codw H ro,» We have the averaged distan@¥) between any two
dz° 9 c 0 nearest-neighbor sticks,
—a<z<a, (d?)= 8a+(r). (62)
I(—a)=I(a)=0, (577 The averaged square distance between centers of two
nearest-neighbor  sticks can be  estimated as
where the parametey equals (r3y~n~2<a2?%43yp23 \wheren is the number of the
sticks in a unit volume. Since the averaged distaigg is
g=k\/ed,u T €d , (58  much smaller thamm?, for the concentrationp>(b/a)? we
¢ 2A%f(A)In(d/b) neglect(r3) in comparison with(ag) and set(d*)=8a?/3.

where k= w/c is the wave vector of the external field: the Substituting the value of the averaged distance, i.e.,

parameterA and functionf(A) are given by Eqgs(28) and
(27), respectively. (d)=(d*)=V(8/3)a, (63
We solve Eq.(57) for the currentl(z) and calculate the

. e ; in Eqg. (60), we have the magnetic moment of two ran-
magnetic momenitn of the circuit of two sticks,

domly oriented sticks. The thus obtained moment can have
1 an arbitrary orientation. The component of the magnetic mo-
m= — J [rXj(r)]dr, (59) ment that is parallel té1, makes a contribution to the total
2c momentM of the composite only. Averaging over the direc-
wherej(r) is the density of the current in two conducting tion of the stick moment gives the factor 1/3. Then we obtain

sticks or density of the displacement currents. Integration i"®™M EQ. (60) the magnetic moment per unit volume of the
Eq. (59) goes over two conducting sticks as well as over theconducting stick composite,

space between them where the displacement currents are

flowing. From Eqs.(57)—(59) we obtain the magnetic mo- M= 1 H-nadC 8 (ka)? tan(ga)—ga 64
ment the system of two sticks, 30 23 (ga)®
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FIG. 7. Dispersion curves of reat,(ka) (a) and imaginary FIG. 8. Dispersion curves of real;(ka) (a) and imaginary

uo(ka) (b) parts of the effective magnetic permeability for dif-  #2(ka) (b) parts of the effective magnetic permeabiljty for dif-
ferent values the parametar=b/s, the ratio of stick radiud to ~ ferent values the parametér=b/, the ratio of stick radius to
skin depthd=c/\2mo,w: 1-A=0.1, 2-A=5.0. The stick con-  Skin depthé=c/\2monw: 1-A=0.1, 2-A=5.0. The stick con-
centrationp=0.1p, , aspect ratica/b=1000, e;=2. centrationp=0.9p., aspect ratia/b=1000, 5=2.

. . . netic response of the conducting stick composites.” The
where n=p/(4/3rab’) is the density of the st|c;ks, imaginary part of the effective permeabiliy,(w) is a step
Co=e4/[4 In((d)/b) ]=€ [4 In(a/b)] and the parametey iS  nction of the frequency. It almost equals zero for small
given by Eq.(58) where we substitute the average d'Stancefrequencies;uz(w) builds Up at the frequency corresponding
(d), i.e, to the maximum ofu,(w), and thenu,(w) decays very
smoothly. It is interesting to point out that this behavior of

9=k \/ed,u +i €d Mo(w) to some extent is opposite to that of the imaginary part
¢ 2A%(A)In((d)/b) of the effective dielectric constafsee Figs. 4 and)5
The magnetic permeability of the percolating composites
. €d ; 57
zk\/ Egiet| . (65) has attracted the attention of many researcfiets:®’In all
47T 20%(A)In(a/b) these works the authors have considered the magnetic re-

Taking into account the definition of the effective magneticSPonse of percolating clusters made up from conducting in-

permeability uHo=H,+4mM, we obtain from Eq(64) the  clusions that are in Ohmic contact with each other. As a
following equation for the effective magnetic permeability: "€Sult, they have obtained the diamagnetic response for the
percolating composites. In the case of the conducting stick

2 a® ey4(ka)? tanga)—ga composites, the contours that are excited by an external mag-
Me=1+ 3Pp? In(a/b) (ga® (66) netic field includeC andL elements. The currents excited in
the contours are shifted in phase relative to the field. As a
where the parameteay is given by Eqg.(65). The thus ob- result, the composites haveparamagnetiaesponse.
tained effective magnetic permeability, of the conducting In this work we consider stick circuits consisting of two
stick composites is shown in Figs. 7 and 8 for the sticksticks only. Therefore the thus obtained KEG6) for the ef-
concentrationsp=0.1p, and p=0.9., respectively. The fective magnetic permeability, of the composites may be
real part of the effective permeabilify;(w) as a function of  not quantitative true in the critical region. In this region one
the frequency has a positive maximum that increases in madras to consider the circuits forming by three, four, etc.,
nitude and shifts to lower frequencies when the concentrasticks. The application of EMT is also in question for the
tion increases. The permeability achieves the valye10.0  vicinity of the percolation threshold. Therefore the critical
at the resonance even for a sufficiently small concentratiobbehavior of the magnetic permeability is open for further
p=0.1p.. We name this phenomenon the “giant paramag-consideration.
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V. SUMMARY AND CONCLUSIONS by the Russian Fund of Fundamental Researches under Grant

: . No. 95-02-06443A. Part of this work was done while one of
We present a comprehensive study of electrodynamlc%‘he authorgA.K.S.) was at Liege University

properties of the metal-dielectric composites containing
elongated conducting inclusions, sticks dispersed in a dielec-
tric host. The distinguishing feature of these composites is a
scale-dependent conductivity and dielectric constant. We de- |n Sec. 11l we have obtained the equation for the charge

velop an effective-medium theory that takes into account thigind current in a conducting stick using an intuitive approach.
scale dependence. Thus we get an equation to determine the this appendix we rederive Eq24) to make all assump-
effective parameters of the composites. The effective dieleions clear. An explicit expression for the quasistatic field in
tric constant determined by this means is quite different fromne stick is obtained as a by-product.

that of the ordinary metal-dielectric composites with spheri- | et us consider a conducting stick in the composite, a
cal conducting particles. The maximum of the dielectric con-prolate conducting spheroid with semiaxes b that is illu-
stant may be shifted far away from the percolation thresholdminated by an electromagnetic wave with frequeacyThe
The dispersive behavior of the conducting stick compositegjirection of the major axis is supposed to coincide with di-
is also different from that of the ordinary composites. At Iow rection of the electric fieldE, exp(—iwt) in the wave. Let
frequenCies it is close to the relaxation behavior in a Wld%(z) be the Charge per unit |ength induced on the surface of
concentration range below and also above the percolatioghe stick andz the coordinate along the major axis of the
threshold. A power-law critical dispersive behavior is still stick, measured from its midpoint. The electric potential of

predicted in the V|C|n|ty of the percolation threshold. But in the Chargm(z) iS given by the So|uti0n of Maxwe”’s equa_
contrast to the usual composites, the scaling function for th@ons (see, e.g., Ref. 49, p. 377

effective conductivity incorporates a large parameter, the

stick aspect rati@/b>1. As a result, the concentration range q(z")2mp(z" ) expiker—r’|) )
when the critical, power-law dispersion takes place increases U(2)= jg e(Jr—rDr—r’|

greatly, while the frequency range for the critical dispersion

APPENDIX

drastically shifts to lower frequencies. _ a(z')explike|z—2']) dz’ AL
Conducting stick composites have new and unusual prop- - IZ’|/<a e(|z—2'])|z—2'] Z, (A1)
erties at high frequency when the skin effect in a stick is |z=2'|<b

significant. For example, the effective dielectric constant hasvherer is a point on the surface at coordinaee(|z—2z'|)
a resonance at some frequencies. Its real part vanishes at tisethe scale-dependent dielectric constant of the composites
resonance and acquires negative values for a frequengjven by Eq.(7), p(z) =b\/1—z%/a? is the radius of the stick
Igrger than the resonance. The _imaginary part of the effectivgrgss section at coordinate ko= Ve(|z—Z'])k, andk= w/c
dielectric constant has a maximum at the resonance. Thg the wave vector of the external field. Integration in the first
dispersive behavior does not depend on the stick conductiptegral goes over the total surface of the stick: in going to
ity and takes some universal form when the stick conductivihe second expression, we neglect terms of the order of
ity tends to infinity. Wave localization may occur in the sys-p/a«<1. The denominator of the integrals in E@\1) have
tem in his case. . . . _ . some singularity atz=2z'; therefore, we putke=Ke|,—,

We propose that conducting stick composites consisting_ Jegk in the exponent. We divide the last integral in EX.

of nonmagnetic particles have a large magnetic response at : '  ih—
high frequency. The effective magnetic properties are due t(ﬁhto two parts putting q(2')exp(eqk|z—2')=q(2)

the collective interaction of the sticks with an external mag_+[q(z’)equ \/e—dk|z—z’|)—q(z)], 1€,

netic field. A giant paramagnetic response can take place in 1

some frequency range. U(Z)=Q(Z)f Zl<a 5o Nr—57 92
One can conclude that conducting stick composites is a =2 |<b e(|z=2'])|z-2'|

new class of percolating systems. In spite of the study per- ]

formed in this work, many questions concerning the electro- q(z")expli Vesk|z—2')) —q(2)

dynamics properties of the composites are still unclear. The lz|<a e(|z—2'])|z— 7'

critical behavior at high frequency is the most intriguing lz=2|<b

problem. From the results of this work, it follows that spatial (A2)

dispersion may take place in such composites. The new, insinceas-b, we have, for points not too near the ends of the

ternal modes can be excited around the conducting stick§ﬁck,

Then the electrical and magnetic field distributions in the

stick composites may be quite different from that of the or- 1 1

dinary composites. All these questions are open for further Q(Z)f Zl<a e(lz—2Dz—27'] dz'= c 9@, (A3)

consideration. |z

!

+ dz'.

-27'|<b

where
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stante(l), and ¢, is the effective dielectric constant of the a
composite, i.e., the limiting value ofl) for I>a [see Eq. L=2 |n(5
(7) and discussion thete

In the integral which contains the difference Note that sin(/esk|z—2'|)/|z—2'|—>mS8(z—2') when
q(z')exp(kelz—2'[)—q(z), we resolve the exponent into k.. Therefore Eq(A7) also gives the local relatiotA8)
real and imaginary parts. Thus the second term in(B&)  in the short wave limit, but the imaginary part of the induc-

+i2+/egka. (A9)

becomes tance saturates at the valiwe and is independent & in this
limit. In any case the second term in E(A9) is much
f q(z')cos Vegk|z—2'[) - q(2) dz’ smaller than 2 Irg/b)>1. Nevertheless, we preserve the
2’| <a e(|z—2'])|z—2'| imaginary part of the inductance since it has a profound im-
pact in a stick response to external fields when the resonance
_ q(z")sin( \/e_dk|z— z'|) , conditions are fulfilled see Eqs(44)—(46)].
+ Lka =2 z=7] dz'. (AS5) We suppose that the stick is excited by the external field
E, exp(—iwt) that is parallel to its axis. Then electric field
Since the first integral is real and has no singularitg=a’,  at some point on the surface is equal to
it gives some correction to the capacitar€@eWe will ne-
glect this correction as it is small in comparison with the du(z) o
leading term given by Eq$A3) and (A4). The second inte- B(2)=Bo— —,—+1 £ ALD). (A10)

gral is exactly equal zero for=0 sinceq(z) is an odd
function—the total charge is zero. We may neglect this ternSubstituting here Eq4A6) and (A8), we have
for all z that are not too close to the ends of the stick. This

assumption is invalid near the ends of the stick, but in cal- o 1dg@) o
culating the dipole moment that region is unimportant. E(2)=Eo C dz + EZLI(Z)' (ALD)
Therefore we assume that connection between the charge
q(z) and potentialJ(z) is local and given by Then we use the continuity condition for electricith/dz
=iw(, obtaining
1
U(2)=za@). (A6) I 1 d2|(z)+_ © AL
(2)=Bo=i g7 "1 zL@. (A12)

This result is obtained with so-callddgarithmic accuracy

its relative error is of the order 1/la(b), and the ratim/bis ~ On the other hand, the fiel(z) is proportional to the cur-

assumed to be so large that its logarithm is large. rent E(z)=R(z)1(z), whereR is called the complex resis-
Consider now the vector potentidl(z) induced by the tance or impedance of the conductor. In the quasistatic case,

currentl (z) flowing in the stick. We obtain the vector poten- R(z)=1/(wr(z)%c,,), whereo,, is the stick conductivity and

tial following the same basic pattern as above. Thus we havg(z)=b1- (z/a)7 is the stick radius at coordinaze When

with the same logarithmic accuracy the following expressiorthe skin effect in the conducting stick is not negligible, the

for the componenA, of the vector potentiah(z): impedanceR is given by Eq. (26). Substituting E(z)
, ) , =R(2)1(2) in Eq. (A12), we obtain the wanted E¢24) for
1 I(z')explike[z—2"|) the current in a stick illuminated by an electromagnetic
AL2)=3 | 17)<a |z—2'| dz wave
|z—2'|<b '

Note that one can use the original E¢&1) and (A7) for

21(z) (a| i [a 1(2)sin(\egk|z—2']) the potentials instead to expand them in terms Ed(a/b).
= n ol T e f_a Iz—2'] dz' Then Eq.(24) becomes an integral equation for the current

I(2). This one-dimensional integral equation can be easily
(A7) solved numerically. Nevertheless, we use the “local” ap-

: : . proximation described above since we believe that the accu-
Note that we do not take into account the effective magnet|$aCy of the effective-medium approach makes no sense to
permeabilityu, of the composites introduced by Sec. IV. We

. . further improve the current estimation.
?:?;G.Ct’ée Ior the fgasoﬂ rh"’g the v_aluel of_tthe tTte,graL_lln Eq. For the quasistatic case, we neglect the inductance and
is determined mainly by a singularity at=z', while : _ 2 : o

the w, is formed on much larger scalgsee Eq(63) and the substituteR=1/(mr"om) in Eq. (A12), obtaining

following discussiol The last term in Eq(A7) does not d2l(2) i wC
vanish since the currerlt(z) is an even function. It is a =— . —
sufficiently smooth function for not very short wavelengths. dz* ommb*(1-2%a%)
We expand the exponent into a serieskoénd put, rather

arbitrary, [1(z')dz’ = 2al(z). Thus we obtain the local con- I(—a)=0, I(a)=0. (A13)
nection between the vector potential and current, i.e.,

1(2)+iwCE,,

The solution of this equation matching the boundary condi-
L tions is
Al)=—=1(2), (A8)
’ ¢ 1-7%/a?
. . . |(Z): 7Tb20'm . 2,2
wherelL is the inductance per unit length, 1+ 27 (o /w)(b/a“C)

E,. (Ald)
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Then Eq.(A12) gives the internal fieldE;,=E(z) in the stick
that is uniform and equals

1
=11 271 (o) (b2a’C) O

Substituting here Eq.(A4) for the capacitanceC and
oq= —iweyldm, we have

E

(A15)

1
=17 (b%./a%eg)In(1+ aey/beorlog O
(A16)

Comparing this result and fiel,, ., in Eq. (28 for the case
o> 0., considered here, we obtain E@) for the depolar-

Ein

ELECTROMAGNETIC PROPERTIES OF COMPOSISE . .

6335

ization factorg,. For the scale-independent environment, we
return to the equation

b2
guzg In

a

t (A17)

which can be also obtained by direct expansion of the known
expression form, (see, e.g., Ref. 30, Sec) # a series of
b/a<1. When the external field is across the stick, the local
field distribution is determined by the scale of the stick ra-
dius b<<a. Therefore the depolarization factor across the
stick, g, , is still given by the usual expression for the much
prolate spheroid, i.eg, =1/2.
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