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A theory for weakly nonlinear and dispersive wave propagation in an Abrikosov vortex lattice in a type-II
superconductor of cylindrical symmetry is presented. A continuum treatment of the London equation with
vortex term is used, allowing nonlocal lattice elasticity. Vortex inertia is included, but pinning is ignored. A
dynamical regime is derived where the cylindrical Korteweg–de Vries~CKdV! equation governs the evolution
of the first-order field corrections. Fundamental properties of the CKdV equation are briefly recalled and a
prototypical soliton solution is given and discussed. Dynamical system analogies are mentioned.

Recently the dynamics of Abrikosov vortices1 in an ultra-
clean type-II superconductor was examined in a certain
weakly dispersive and nonlinear regime.2 With a single spa-
tial rectangular coordinate dependence for the field variables,
the Korteweg–de Vries~KdV! equation was derived. This
paper investigates a type-II superconductor3 of cylindrical
symmetry in the mixed state. It is found that the cylindrical
KdV ~CKdV! equation4
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governs the evolution of the first-order field corrections. The
CKdV equation is well known to be completely
integrable,5–9 possessingN-soliton solutions.8 Before briefly
reviewing some of the properties and physical occurrences of
this nonautonomous equation, the nature of an ultraclean su-
perconductor is described.

In an ultraclean material, the quasiparticle mean free path
l exceeds the coherence lengthj times the ratio of Fermi
energyeF to the magnitude of the order parameteruDu. In
these superconductors vortex drag is negligible and pinning
can be very small; the Hall force dominates the dynamics.10

In the high-Tc superconductors, the ratioeF/uD~0!u;1/20 is
small, making it rather easy to achieve the ultraclean regime.
Another way of characterizing an ultraclean material is that
vct @1, where\vc is the low-level energy spacing for bound
vortex core states andt is the lifetime of quasiparticles in the
core. In at least one high-Tc superconductor, YBa2Cu3O72d,
the quasiparticle lifetime can be so long thatvct is estimated
as ;14 for temperaturesT,15 K.10 Hall angle evidence
strongly indicates the ultraclean regime for this
superconductor.10

This paper concentrates on the limit of zero Hall force.
When the Hall coefficientaH is nonzero, the corresponding
derivation is considerably more complex, requiring results
through the third order of perturbation theory, where the non-
linear Schro¨dinger equation appears.11 Therefore in either
case a soliton equation is obtained. This paper presents the
more tractable situation withaH50, giving an exact result
for the coupled nonlinear electrodynamic equations. It is out-
side the scope to go into the details of how the dispersion
relation characterizes the rf response functions.12

The CKdV equation seems to have been first written by
Maxon and Viecelli4 in the context of ion acoustic waves in
a two-component plasma. The equation was derived for
long-wavelength, small-amplitude waves, which is usual.
Cylindrical solitons of the CKdV type have been realized in
double-plasma and other plasma experiments, and the agree-
ment with theory is generally good.13,4 For a review of the
CKdV equation in plasma physics, through the early 1980s,
see Ref. 14. The CKdV equation was investigated by Miles15

for the classical water-wave problem with an incompressible
irrotational fluid bounded above by a free surface and below
by a rigid horizontal surface.

The inverse scattering transformation~IST! seems to have
been first applied to the CKdV equation by Calogero and
Degasperis.5 They also found an infinite number of conser-
vation laws by this technique.6 Bäcklund transformations
have been found for the equation,7 together with more
straightforward means of deriving the conservation laws.16,14

Similarity solutions have been considered by many authors,17

and, consistent with the other properties, the CKdV equation
passes the Painleve´ test.9

The CKdV equation is mathematically important as a
nonautonomous generalization of the KdV equation which is
itself completely integrable. This conclusion can be verified
by Painleve´ analysis,9 the singularity exponent beinga522
and the resonancesr521,4,6, as for the KdV equation. In
this regard the work of Grimshaw9 should be noted. The
Painlevé-property compatibility constraints for a certain
variable-coefficient KdV equation appeared earlier in his ap-
proach of finding an explicit, invertible mapping to the KdV
equation.9

I consider an isotropic, isothermal type-II superconductor
at or near absolute zero. In this instance a normal current
density contribution is ignored; the total current densityJ is
the supercurrent density. In this study the displacement cur-
rent density is neglected for simplicity; frequencies well be-
low the superconducting gap frequency are assumed. Within
mesoscopic London theory a continuum description is em-
ployed using a vortex areal densityn~x,t!.18 Nonlocal vortex
interaction is accounted for, and in fact is critical to the wave
propagation of interest.

With these assumptions, the three basic vector equations
are vortex continuity, a vortex equation of motion, and the
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London equation. The conservation of flux lines, equivalent
to Faraday’s law, is written as19

]Bv

]t
52“3~Bv3v!, ~2!

whereBv , the local vortex-generated magnetic induction, is
nf0â andf0 is the flux quantum,â the local vortex direc-
tion.

The vortex equation of motion

m
dv

dt
1aHv3â5f0J3â, ~3!

wherev is the vortex velocity andaH the Hall coefficient,
ignores pinning and drag forces. A massm per unit length of
vortex20 has been assumed.@Recall thatm5m(T) is tempera-
ture dependent, vanishing at the transition temperature.# This
regime represents an ultraclean superconductor where the in-
ertia effect could predominate. It may well be very close to
those considered in vortex tunneling.21 In addition, a very
recent microscopic analysis of the Hall anomaly has found a
large vortex mass coming from the core, specifically in the
ultraclean limit.22 The detection of CKdV solitons could pro-
vide a means of studying the vortex mass per unit length
since the acoustic soliton speed varies as the square root of
the ratio of the external magnetic induction tom.2 As is typi-
cal for a soliton, the amplitude, speed, and width are related;
soliton measurements on a variety of materials might be able
to discriminate between different vortex-mass mechanisms.2

As a first approximation, the Hall force is also neglected
here, i.e., I consider simply the balance of inertia and the
Lorentz force. The inclusion of the vector Hall term signifi-
cantly alters the dispersion relation of the linearized problem,
and is considered elsewhere.11 A small viscous force may be
included at the end of the treatment by the use of further
perturbation theory.

The London equation may be written in the form

Bv5B2lL
2¹2B, ~4!

wherelL is the London penetration depth. In the Meissner
state the densityn is absent and here the normal fluid or
quasiparticle component does not contribute. Equation~4!
takes into account nonlocal vortex interaction, over the char-
acteristic distancelL . I ignore magnetic-field nonlinearity in
the penetration depth, which is well justified for a wide range
of field for high-Tc superconductors owing to their very large
upper critical fields. The London equation is linear in this
approximation.

I assume a type-II superconductor with cylindrical sym-
metry with a static external magnetic field alongẑ, apply
Ampère’s law, and use the above assumptions. The magni-
tude of the static applied inductionB0 is assumed to satisfy
B0/m0*2Hc1, whereHc1 is the lower critical field. Employ-
ing cylindrical coordinates, I letB5Bz , v5vr , andJ5Ju
depend only on the radialr ~spatial! coordinate, and write
Eqs.~2!–~4! as
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I perform the scaling t85v0t, r85r/lL , B85B/B0 ,
n85n/n0 , v85v/v0lL , where v05Af0B0 /m0m/lL and
n05B0/f0. For a flux density ofB051 T, l~0!.1500 Å, and
m~0!'108me/cm, the characteristic time 1/v0.4310213 s.
These values are typical for YBCO at low temperature.

For notational simplicity, I then drop the primes to write
Eqs.~5! as
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where d/dt5]/]t1v]/]r is the convective derivative.
Equations~6! can easily be combined to yield the fourth-
order equation
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This is an exact equation, whereB has been eliminated.
The dispersion relation for the linear propagation problem

can be found by perturbing Eq.~7! or the system~6! about
unit ~scaled! vortex density and magnetic induction and zero
vortex velocity. Let

n~r,t !511dnJ0~kr!e2 ivt, ~8a!

B~r,t !511dBJ0~kr!e2 ivt, ~8b!

and

v~r,t !5dvJ1~kr!e2 ivt, ~8c!

whereJn is the Bessel function of ordern. Using the ordinary
differential equation satisfied byJ0 and the relation
(d/dz)zJ1(z)5zJ0(z), the dispersion relation is given by

v2~k!5k2~11k2!21. ~9!

Thus for small k the dispersion relation is cubic,
v(k).k2(1/2)k3, and indicates, as usual, that for weak
nonlinearity a KdV-type equation may arise for the first-
order field corrections. This conclusion is an important con-
sequence of the nature of the nonlocal vortex interaction,
traceable back tolLÞ0 in Eq.~5c!. For if n5B, the resulting
dispersion relation is simplyv25k2.

By making the change of independent variablesj5v~r
2t!, h5v3r, Eqs.~6! become
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Using the perturbation expansions in even powers ofv

n~j,h!511v2n~1!1v4n~2!1••• , ~11!

B~j,h!511v2B~1!1v4B~2!1••• , ~12!

v~j,h!5v2v ~1!1v4v ~2!1••• ~13!

in Eqs. ~10! gives recursion relations for the higher-order
corrections by equating coefficients of like powers ofv.

The lowest-order equations can be integrated with respect
to j to yield

v ~1!5n~1!1 f ~h!, B~1!5n~1!, ~14!

wheref is an arbitrary function. The next-order contributions
are
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These can be combined to give the cylindrical KdV equation
in the form
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The change of coordinates

j85j1
1

2 E f dh, h85h ~17!

can be used to eliminate the last term on the left-hand side of
Eq. ~16!.

The functionf ~h! can be used to satisfy initial or bound-
ary conditions. For a bulk superconductor with zero bound-
ary condition at infinity,f50, and then multi-soliton solu-
tions of Eq.~16! can be written in terms of the Airy function
Bi.7,8 The single-soliton solution of the CKdV equation is

h~j,h!511h0E
j

`

dj$~6h!21/3 Bi@~6h!21/3~j2j0!#%
2,

~18!

where

v ~1!~j,h!52
]2

]j2
ln h, ~19!

and h0 and j0 are arbitrary constants. In accordance with
standard cylindrical KdV theory, as a cylindrical soliton
progresses inward, the amplitude grows somewhat faster
thanh21/2 while the width decreases somewhat faster than
h1/4. The square root of the peak amplitude times the width
remains constant, as for one-dimensional solitons.

The first three constants of the motion,

c15h1/2E v ~1!~j,h!dj, ~20a!

c25hE @v ~1!~j,h!#2dj, ~20b!

and

c35h1/2E v ~1!~j,h!F j

2
1hv ~1!~j,h!Gdj, ~20c!

can easily be verified using the CKdV equation.
Analogous dynamical systems exist in plasma physics in

ion acoustic waves and in hydrodynamics.4,15The correspon-
dences for the dependent variables of a two-component
plasma aren↔ni , the volume density of ions,v↔v i , the
ion velocity, andB↔f11, wheref is the electrostatic po-
tential. The magnetic~Lorentz! force in the vortex lattice is
replaced with the electric force in the plasma. Therefore the
current density in the superconductor plays a role analogous
to the electric field in the plasma. In a simple fluids model,23

there is a correspondence between the cross-sectional area of
a cylinder with elastic walls and the vortex density, the fluid
velocity and the vortex velocity, and between the fluid pres-
sure and the magnetic induction.

When electron inertia is neglected in the plasma, an inte-
gration can be performed to give the electron number density
explicitly in terms of the electrostatic potential. This addi-
tional nonlinearity does not occur in the vortex dynamics
equations. The weak nonlinearities in the present model in-
clude bilinearity in the vortex continuity equation~2! and
convective differentiation in the equation of motion~3!. With
the stated assumptions, the equations are completed with the
London equation for the magnetic induction. The use of the
continuum densityn allows the modeling of tilt and com-
pression modes of the lattice but neglects shear. The nonlocal
vortex interaction is critical in obtaining the long-wave cubic
dispersion relation, from Eq.~9!.

The derivation here ignored pinning and drag, resulting in
stringent conditions for the appearance of solitons. Limited
viscosity can be included by treating a perturbed form of the
CKdV equation. However, it would be of interest to find
solutions of an extended CKdV or other equation with a
damping term~s! comparable in size with the nonlinear and
dispersive terms. Such equations will have a wider range of
applicability in type-II superconductivity.
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