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We derive a general effective-medium theory for describing biased diffusion on a bond-disordered lattice in
the presence of an external driving field. In our theory, the effective medium associated with a disordered
d-dimensional lattice is characterized, for each value of the applied field, by 2d independent parameters
describing, respectively, the net drift velocityvn and the diffusion constantDnn describing the spread of a
carrier packet about its mean value, for each of thed crystal axes. The theory correctly predicts the velocity
transition occurring in an exactly soluble model studied by Derrida and, in contrast to other recent theories,
correctly reproduces the critical velocity at which this transition occurs.

I. INTRODUCTION

Recent observations of negative differential mobility,1 as
well as the general anomolous field dependence of the drift
velocity2 seen in the high-field migration of photexcited
charge carriers in molecularly doped polymers, have revived
interest in the theoretical problem of hopping transport in
energetically and spatially disordered systems in the pres-
ence of a strong biasing field.3 An important theoretical tool
which has proved useful in understanding hopping transport
in disordered systems atlow fields has been the development
of effective-medium theories, which attempt to self-
consistently identify an ordered system having the same
macroscopic transport properties~i.e., diffusion tensor! as the
actual disordered system of interest.4–6 Traditionally, such
approximate theories have been used to obtain important
qualitative information about the effects of disorder on the
low-field transport properties of condensed phases, and have
proved to be surprisingly accurate except in the immediate
neighborhood of critical points of the type encountered in
percolation problems.

More recently, the techniques of effective-medium theory
have been combined with real-space renormalization group
ideas to provide an accurate quantitative method for comput-
ing the low-field conductivity of a wide class of energetically
and spatially disordered materials.7,8 An important prerequi-
site to the extension of numerical procedures of this type to
the high-field conductivity of disordered systems is a corre-
sponding effective-medium theory for describing hopping
conduction in the presence of a strong biasing field. A review
of the literature reveals the development of at least three
distinct kinds of effective-medium theory for biased systems.
Böttger and Bryksin,9 e.g., have developed a simple
effective-medium theory in which it is implicitly assumed
that the forward and backward effective-medium rates~as
measured with respect to the driving field! are related to one
another in the same way as the bare rates. As a result, their
effective medium can be characterized by a single parameter,
which can be taken to be the drift velocity of the carriers as
a function of the biasing field. Stephen,10 on the other hand,
uses a field theoretical analysis to derive an effective-

medium theory to study directed percolation, and uses that
theory to study the phase diagram of that model. An impor-
tant feature of effective-medium theories of this type is that
they contain more parameters than that of Bo¨ttger and
Bryksin, allowing the effective medium to describe both the
drift velocity of the carriers and the rate at which a localized
packet of carriers will spread about its~drifting! mean value.
In this respect Stephen’s theory is similar to a one-
dimensional effective-medium theory of Bernasconi and
Schneider,11 who focused on an interesting class of models
related to a problem studied by Sinai.12A recent perturbative
approach by Izzoet al.13 also has this feature although the
specific dependence of effective-medium parameters on the
underlying distribution of rates is different in the theory of
Izzo et al.13 than that of the previous authors. Interestingly,
in an application of their approach to an exactly soluble one-
dimensional model studied by Derrida,14 the effective-
medium theory of Izzoet al.was shown to qualitatively re-
produce the velocity transition appearing in that model,
although it was found to incorrectly predict the critical field
at which the mean velocity becomes nonzero.13

In this paper we derive an effective-medium theory for
uniformly biased systems with bond disorder, applicable to
lattices of arbitrary dimension. Our approach is of sufficient
generality to allow for independent parameters describing the
net drift velocity and net diffusion constant for each axis of
the effective medium, and allows for the situation in which a
biasing field is applied field along an arbitrary direction in
space. When the field is applied along one of the crystal
axes, our theory allows for three independent parameters:
one to describe the drift velocity in the field direction, and
two rates to describe the transverse and parallel rates of
spreading. Our expressions reduce for a one-dimensional lat-
tice to those of Bernasconi and Schneider.11 Also, as in the
theory of Izzoet al., our approach predicts a velocity transi-
tion for the exactly soluble one-dimensional model of Der-
rida. In contrast to the effective-medium theory of Izzoet al.,
however, our theory reproduces the exact drift velocity for
that model.13,14Finally, we discuss the relation of our theory
to the simpler one of Bo¨ttger and Bryksin, concluding that
their theory is, in a certain sense, a non-self-consistent ap-
proximation to the theory developed in this paper.
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II. MODEL

A particle undergoing a nearest-neighbor random walk on
a bond-disordered lattice in the presence of a uniform bias
field can be described by a master equation

drn
dt

52(
n

@~Wn2n,n1Wn1n,n!rn2Wn,n2nrn2n

2Wn,n1nrn1n#, ~1!

for the probabilitiesrn(t) of finding the particle at lattice site
nPZd at time t. In this equation, the unit vectorsn point
along the positive direction of the crystal axes of a
d-dimensional cubic lattice, and the hopping rate from siten
to its neighbor atn6n is Wn6n,n . These rates are assumed
to reflect the intrinsic disorder of the system as well as the
uniform bias that shifts the energy of the sites relative to one
another. The Laplace transform of this equation takes the
form

eRn~e!2rn~0!52(
n

@~Wn2n,n1Wn1n,n!Rn

2Wn,n2nRn2n2Wn,n1nRn1n#, ~2!

in which Rn(e) is the Laplace transform at frequencye of
the probabilityrn(t).

After configuration averaging over the disorder, every site
in the crystal will be the same, on average, as any other.
Thus, as shown explicitly, e.g., by Klafter and Silbey,15 the
averaged probabilitiesPn(e)5^Rn(e)& will obey a set of
linear, translationally invariant equations of the form

eRn~e!2rn~0!52(
m

Mm2n~e!Pn , ~3!

which reflect the bias on the system. These equations of mo-
tion, if they could be obtained exactly, would serve to define
the true effective medium associated with the average trans-
port properties of the system. In particular, they would cor-
rectly describe the rates with which an initially localized
probability distribution will drift and spread, on average, in
response to the imposed field. The simplest equations of this
form having a sufficient number of parameters to describe
both the drift and the spread of the probability distribution is
just a translationally invariant form of~2!, which retains con-
nections only to nearest neighbors. A correct description of
higher moments of the probability distribution would re-
quire, presumably, connections to greater-than-nearest neigh-
bors. Thus, in a standard approximation,5 we will assume in
what follows that the configurationally averaged probabili-
ties obey, in the presence of the field, the Laplace-
transformed equations of motion

ePn2pn~0!52(
n

@~Wn
21Wn

1!Pn2Wn
1Pn2n2Wn

2Pn1n#

52(
m

Gn2mPm , ~4!

wherePn(e) is the Laplace transform at frequencye of the
average probabilitypn(t)5^rn(t)& of finding a particle at

lattice vectorn at time t; Wn
1(e) andWn

2(e) are frequency-
dependent effective-medium hopping rates associated with
forward and backward hops~defined with respect to the cor-
responding components of the bias field! between nearest
neighbors along crystal axisn, andG is the associated tran-
sition matrix. The frequency dependence of the rates, in prin-
ciple, allows a characterization of the time dependence of the
transport process. In this analysis we focus on the long time
properties of the system, which are described by the zero
frequency value of the effective-medium ratesWn

6

5Wn
6(0). In keeping with this focus, we will in what fol-

lows suppress anye dependence which would normally be
associated with these quantities.

The important point is that the effective medium of inter-
est is essentially defined by these dynamical equations and is
completely characterized by the set of 2d parameters
$Wn

6%. Taking Fourier-Laplace transforms of~4! and solving
the resulting equations for a particle initially located at the
origin we obtain the probability Green’s function at wave
vectorkPZd,

Gk5
1

e1(n2$W̄n@12coskn#1 idWn sinkn%
, ~5!

whereW̄n5(Wn
11Wn

2)/2, anddWn5(Wn
12Wn

2)/2. It is an
arbitrary choice whether we characterize the effective me-
dium in terms of the parameter set$Wn

1 ,Wn
2% or the equiva-

lent set$W̄n ,dWn%. It is convenient to introduce a scaling
variableW ~which is nonzero but otherwise arbitrary at this
point! and write Eq.~5! in the form

Gk5
1

e12W(n$hn@12coskn#1 idn sinkn%
, ~6!

which allows us now to characterize the effective medium by
the parameterW and by a set of dimensionless effective
medium parametershn5W̄n /W and dn5dWn /W. The
Laplace-transformed real-space propagators are obtained by
Fourier inversion, i.e.,

Gn5Gn,0

5~2p!2dE eik•ndVk

e12W(n$hn@12coskn#1 idn sinkn%
,

~7!

where the integration is over all wave vectorsk in the first
Brillouin zone (p>kn.2p) of the cubic lattice, with
dVk5Pndkn . The propagatorGn gives the Laplace trans-
form of the probability to find the particle at siten at time t
if it was located at the origin of the effective medium at time
t50. The general solution to Eq.~4! can be written in terms
of these propagators in the form

Pn
0~e!5(

m
Gn2m~e!pm~0!. ~8!

It is a straightforward excercise to show for the translation-
ally invariant effective medium that the Cartesian compo-
nents of the mean drift velocity of a particle are given
through the expression

630 53P. E. PARRIS AND B. D. BOOKOUT



vn5 lim
t→`

d

dt(n nnPn~ t !52dWn52dnW, ~9!

while the linear spread of the drifting probability distribution
about its mean position is determined by the Cartesian com-
ponents of the diagonal diffusion tensor

Dnn5 lim
t→`

1

2

d

dt F(n nn
2Pn~ t !2vn

2t2G5W̄n5hnW.

~10!

To self-consistentlydetermine the parametersW, hn , and
dn , we now introduce a defect in the translationally invariant
effective medium. Specifically, along the bond connecting
the sites atl andl1n, we replace the effective-medium rates
Wn

6 along that particular bond with ratesFn
6 drawnas a pair

from the distributionrn(F
1,F2) of forward and backward

rates associated with the actual bonds lying along thenth
direction of the crystal in the actual disordered system of
interest. The new equations of motion in the presence of this
defect can be written in the form

ePn2pn~0!5(
m

Gn2mPm2~Vn
1Pl2Vn

2Pl1n!

3~dn,l2dn,l1n!, ~11!

in which the transition matrixG reproduces the translation-
ally invariant equations of motion~4! associated with the
effective medium, and we have introduced the notation

Vn
65Fn

62Wn
6 . ~12!

The solution to this new equation can be written in the form

Pn5Pn
02~Gn2 l2Gn2 l2n!~Vn

1Pl2Vn
2Pl1n!, ~13!

wherePn
0 is the solution~8! that would obtain in the absence

of the defect for the initial conditions of interest. To solve
this, we write the corresponding equations for the two prob-
abilities Pl and Pl1n which appear bracketed on the right
hand side of~13!, obtaining two equations in two unknowns.
Multiplying the first equation byVn

1 , the second byVn
2 , and

taking the difference we find after some simplification that
the bracketed term itself can be written

Vn
1Pl2Vn

2Pl1n5
~Vn

1Pl
02Vn

2Pl1n
0 !

11Vn
1~G02G2n!1Vn

2~G02GvW !
.

~14!

We now demand self-consistency by requiring that an av-
erage over the defect distribution associated with this one
bond reproduce the solutions obtained for the same initial
conditions in the fully averaged effective medium defined by
Eq. ~4!. Assuming that the initial conditions@and thus the
quantitiesPn

0(e)# are independent of the averaging proce-
dure, this requires that^Pn(e)&5Pn

0(e) for all n. Inspection
of Eq. ~13! reveals that this can be satisfied only if the aver-
age of the quantity,

K Vn
1

11Vn
1~G02G2n!1Vn

2~G02Gn! L Pl
02K Vn

2

11Vn
1~G02G2n!1Vn

2~G02Gn! L Pl1n
0 , ~15!

appearing in Eq.~14! vanishes. Unlike the situation that occurs in the absence of a bias, Eq.~15! appears to depend upon the
initial conditions through the functionsPl

0(e) andPl1n
0 (e). Clearly, in order that the characteristics of the effective medium

be independent of these initial conditions we must require that the two averages appearing in this equation vanish indepen-
dently, and, moreover, that these equations besimultaneouslysatisfied for each of thed crystal axes of the lattice. In this way
we end up with 2d coupled equations

K Vn
6

11Vn
1~G02G2n!1Vn

2~G02Gn! L 50, ~16!

to determine the 2d parameters defining the effective medium. To make this expression useful we need to obtain and simplify
expressions for the quantities

~G02G6n!5
1

~2p!d
E ~12e6 ikn!dVk

e12W(m$hm@12coskm#1 idn sinkm%
, ~17!

which appear in the denominator of~16!. Separating this into real and imaginary parts, getting rid of some obviously odd
integrals, and taking the zero-frequency limit, we find that lime→0(G02G6n)5 (1/2W) @M1

n7M2
n#, where

M1
n5

1

~2p!d
E ~12coskn!~(mhm@12coskm#!dVk

~(mhm@12coskm#!21~(mdm sinkm!2
~18!

and

M2
n5

1

~2p!d
E dn sin

2kn dVk

~(mhm@12coskm#!21~(mdm sinkm!2
~19!
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depend only upon the dimensionless constants$hn ,dn% which define the effective medium. These constants obey the easily
proven sum rule

(
n

~hnM1
n1dnM2

n!51. ~20!

Putting this back into the self-consistency condition and reinserting the definition~12! of Vn
6 , we obtain

K Fn
62Wn

6

2W1@~Fn
11Fn

2!2~Wn
21Wn

1!#M1
n1@~Fn

12Fn
2!2~Wn

12Wn
2!#M2

n L 50. ~21!

Alternatively, by taking the sum and difference of the equa-
tions with positive and negative superscripts these can be put
in the form

K F̄n2W̄n

W1~ F̄n2W̄n!M1
n1~dFn2dWn!M2

n L 50,

K dFn2dWn

W1~ F̄n2W̄n!M1
n1~dFn2dWn!M2

n L 50, ~22!

where F̄n5(Fn
11Fn

2)/2 and dFn5(Fn
12Fn

2)/2 are the
‘‘average sum’’ and ‘‘average difference’’ of the forward and
backward hopping rates across the defect.

III. DISCUSSION

Equations~22! are our main results. They are similar to
the equations obtained previously by Izzoet al., except for a
difference in denominators.13 A close comparison shows that
our denominator is ‘‘more coupled’’ than theirs. Their self-
consistent condition, which was explicitly derived for a one-
dimensional system would, in our notation, take the form13

K F̄2W̄

W1~ F̄2W̄!M1
L 505K dF2dW

W1~dF2dW!M2
L .

~23!

For one-dimensional motion the integrals~18! and ~19! can
be done exactly by settingW̄5W, for which h51. The in-
tegral

M15
1

2pE2p

p ~12cosk!2dk

~12cosk!21d2 sin2k
~24!

can then be done by settingz5eik and integrating around the
unit circle to obtainM15(11d)21. From the sum rule~20!
we also have the identityM11dM251, which leads to the
result that

M15M25
1

11d
. ~25!

Thus, in one dimension the self-consistent conditions~22!
can be written

K F̄2W

F̄1dF
L 505K dF2dW

F̄1dF
L , ~26!

from which we deduce that the effective-medium diffusion
constant is given by the expression

W5K F̄

F̄1dF
L K 1

F̄1dF
L 21

5
1

2 K 11
F2

F1 L K 1

F1 L 21

,

~27!

while the drift velocity takes the form

v52dW5K 2dF

F̄1dF
L K 1

F̄1dF
L 21

5K 12
F2

F1 L K 1

F1 L 21

.

~28!

These expressions are equivalent to the one-dimensional
effective-medium results of Bernasconi and Schneider.11 The
expression for the velocity, moreover, has been shown by
Derrida14 to be the exact result for the one-dimensional ran-
dom bias problem when̂F2/F1&,1 and ^ ln(F2/F1)&,0.
Thus, the effective-medium theory associated with Eqs.~22!
correctly predicts the velocity transition, and indeed gives
the exact velocity for the binary random bias model studied
by Derrida.

In higher dimensions the integrals~18! and~19! cannot be
performed analytically. They are easily computed numeri-
cally, however, and so it is a straightforward process to com-
putationally implement the effective-medium theory defined
by Eqs. ~22! for arbitrary biasing fields. There are certain
field directions, however, for which the self-consistent equa-
tions are more easily implemented. In what follows we in-
vestigate two such directions.

A. Field parallel to a crystal axis

The first case of interest is that in which the driving field
is directed along a particular crystal axis, which we will de-
note byz, for which we will sethz5h anddz5d. The set of
effective-medium equations~22! is simplified for two rea-
sons. First, for an isotropic system, all axes transverse to the
field will be described by identical self-consistent equations.
Second, there will be no macroscopic bias along directions
perpendicular to the field axis. Thus, for these axes we can
set W̄n5Wn5W' and dWn505dn5M2

n . In addition, the
scale factorW can be set to the valueW' , so thath'51 for
all tranverse directions. Thus, the equations for all transverse
axes reduce to the same form, namely,

K F̄'2W

F̄'1~d'21!W
L 50, ~29!

where the quantity
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1

d'

5M1
'5

1

~2p!d
E dVk

~12coskn!~h@12coskz#1(mÞz@12coskm#!

~h@12coskz#1(mÞz@12coskm#!21d2 sin2kz
~30!

defines an ‘‘effective dimensionality’’ for any crystal axisn
perpendicular toz. This dimensionalityd' reduces to the
Euclidean dimensiond in the absence of an applied field.
From the general sum rule~20! it also is straightforward to
obtain for this limiting case the relation

~d21!M1
'1hM1

z1dM2
z51, ~31!

which reduces the number of independent integrals in the
effective-medium equations to 2.

It is also possible to point out the differences that arise in
our effective-medium theory from that developed by Bo¨ttger
and Bryksin.9 To make contact with their approach, we con-
sider a system in which the bias field alters the forward and
backward rates between two sites by a multiplicative factor
F→F65 gn

6F, whereF is now a random variable associ-
ated with the strength of the specific bond connecting these
sites and, e.g.,gn

65exp@6eEna/2kT#, where eEna is the
field-induced potential energy drop across a lattice spacinga
along axisn, andkT is the mean thermal energy. Thus, rates
associated with hops perpendicular to the field are not af-
fected. In the theory of Bo¨ttger and Bryksin it is implicitly
assumed that the ratesW6 which characterize the effective
medium also have this multiplicative property, i.e., that
Wn→Wn

65 Wgn
6 , whereW is a common~generally field-

dependent! prefactor which is independent of the crystal
axis. If we make this ansatz in our theory, and assume a field

along thez axis as above, then the resulting effective me-
dium will have a drift velocity

vz5W~g12g2!,

whereg65gz
6 , and the single parameterWmust satisfy the

associated self-consistent equations. For the axes transverse
to the field these take the form

K F2W

F1~d'21!W L 50, ~32!

with d' given by Eq. ~30! in which h5 1
2(g

11g2) and
d5 1

2(g
12g2). Note that the ansatz allows for ana priori

~but non-self-consistent! determination of the integrals, and
therefore provides a unique field-dependent valued' which
is independent of the single effective-medium parameterW.
This allowsW to be determined uniquely from Eq.~32!. If
the value ofW obtained from this procedure also satisfies the
two self-consistent conditions for motion along thez axis
~i.e., parallel to the field direction!, then the ansatz is verified
and we arrive at a completely self-consistent solution. Unfor-
tunately, analysis shows that, in general, this ansatz provides
only an approximate solution to our full self-consistent equa-
tions. Indeed, by applying the sum rule~31! appropriate to
this configuration it is straightforward to show that the ansatz
of Böttger and Bryksin reduces both self-consistent equa-
tions ~22! for the z axis to the single equation

K F2W

F1~dz21!W L 50, ~33!

FIG. 1. Reduced drift velocityvd5v/F0a for a bond percolat-
ing lattice versus the applied electric field, as predicted by the full
self-consistent theory presented in this paper. From lower left to
upper right, curves presented correspond to values of the unweak-
ened bond fractionp50.35, 0.45, 0.55, 0.65, 0.75, 0.85, and 0.95,
respectively.

FIG. 2. Reduced drift velocityvd5v/F0a for a bond percolat-
ing lattice versus the applied electric field, as predicted by the
simple effective-medium theory of Bo¨ttger and Bryksin. From
lower left to upper right, curves presented correspond to values of
the unweakened bond fractionp50.35, 0.45, 0.55, 0.65, 0.75, 0.85,
and 0.95, respectively.
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wheredz5d' /(d'2d11). It is not hard to see that simul-
taneous solutionsW to Eqs.~32! and ~33! can be expected
only if dz→d' , which requires thatd'→d. While this is a
valid approximation for very low fields, the effective dimen-
sionalityd' and the Euclidean dimensionalityd can deviate
strongly at high fields. Thus, in a sense, the effective-
medium theory of Bo¨ttger and Bryksin can be viewed as a
low-field approximation to that of the current study.

B. Field along the body diagonal

Another situation in which the self-consistent equations
simplify is that in which the applied field is along the ‘‘body
diagonal’’ of the unit cell or the~1,1,1! direction of the crys-
tal ~we assume isotropy of the underlying lattice!. By sym-
metry, the effective-medium equations for each axis will then
have the same form, withdn5d andhn5h, for all n. In this
limit there are just two independent coupled equations

K F̄2W

W1~ F̄2W!M11~dF2dW!M2
L 505K dF2dW

W1~ F̄2W!M11~dF2dW!M2
L , ~34!

where we have~without loss of generality! takenW̄5W, so thath51. The symmetry of the problem in this limit also implies
a simplification in the required integrals:

M15
1

~2p!d
E dVk

~12coskn!~(m@12coskm#!

~(m@12coskm#!21d2~(m sinkm!2
,

M25
1

~2p!d
E dVk

d sin2kn

~(m@12coskm#!21d2~(m sinkm!2
. ~35!

The general sum rule~20! leads in this case to the relation

M11dM25
1

d
, ~36!

which allows us to express one of the constants in terms of the other. Thus, for example, we can writeM15(12ddM2)/d,
which reduces the self-consistency condition~22! to

K F̄2W

F̄1~d21!W1~dF2dF̄ !dM2
L 505K dF2dW

F̄1~d21!W1~dF2dF̄ !dM2
L . ~37!

It is interesting to note that in these circumstances the ansatz
of Böttger and Bryksin, i.e.,

Wn→Wn
65wg65

2g6W

g11g2 , ~38!

when applied to systems for whichFn→Fn
65 g6F ~where

thegn
6 are now independent ofn due to the symmetry of the

applied field!, does not lead to internal inconsistencies, as it
did with the field along one axis. Indeed, in this situation the
ansatz reduces both of these last two equations to

K F2w

F1~d21!w L 50, ~39!

the solution to which is just the zero-field effective-medium
rate associated with the distributionr(F) of bond strengths
associated with this type of system.

IV. APPLICATION

To demonstrate the use~and abuse! of the approach that
we have developed, we consider the biased percolation prob-
lem featured in the analysis of Bo¨ttger and Bryksin,9 in
which a region of field strengths and bond concentrations
was found for which a negative differential drift velocity

~NDDV! was predicted, i.e., a region for which the drift ve-
locity decreases with increasing field strength. Thus, in keep-
ing with the analysis of Ref. 9 we consider a three-
dimensional bond percolating lattice with a field directed
along thez axis. Hopping rates for this system are of the
form Fn

65gn
6F, in which gz

65exp@6eEa/2kT# for n5z,
andgn

651 for all other axes. The bond strengthsF are then
drawn from the percolative binary distribution

r~F !5pd~F2F0!1~12p!d~F2jF0!, ~40!

wherej is a reduction factor associated with weak links in
the system. In Fig. 1 we show the results of an implementa-
tion of the full set of self-consistent effective-medium equa-
tions for this problem with a reduction factorj51024. In
this plot appear predicted values of the drift velocity as a
function of field strength, for several different concentrations
p of unweakened bonds. In Fig. 2 we show corresponding
plots of the drift velocity as predicted by the earlier theory of
Böttger and Bryksin,9 which in our implementation corre-
sponds to the solution of Eq.~33! ~which, as we have pointed
out, does not give an internally self-consistent solution to the
full set of effective-medium equations!. For large concentra-
tions of weak bonds the differences are striking, with the
simpler theory of Bo¨ttger and Bryksin showing a distinct
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region of NDDV at high fields which is lacking in the fully
self-consistent theory of this paper. Recent simulations by
Gartstein and Conwell3 have revealed that such a region of
NDDV does, in fact, appear for this model, although the
quantitative agreement of the simulation data with the
Böttger-Bryksin theory was shown to be rather poor.

Nonetheless, this raises the question of how the appar-
ently less self-consistent theory of Bo¨ttger and Bryksin9 is
able to qualitatively predict the general tendency observed in
simulations, while the more fully self-consistent theory de-
veloped in this paper is not. Notwithstanding the adage that
‘‘nothing succeeds like success’’ we suggest that the apparent
qualitative agreement of the Bo¨ttger-Bryksin theory is, to a
certain extent, fortuitous, a judgement which we base on the
following argument. The analysis of Gartstein and Conwell3

convincingly shows that the negative differential drift veloc-
ity observed in the percolation problem can be identified as
arising from ‘‘field-induced traps.’’ The latter are regions a
particle can, at high fields, enter, but from which it cannot
escape except by making a difficult hop against the field. The
minimum ‘‘defect’’ which can be expected to act as a trap in
this sense is, therefore, not a single bond, but a single strong
bond leading along the field into a site out of which the only
other bonds are weak. Viewed in this light it is rather hard to
see howanyeffective-medium theory based upon the idea of
embedding a single bond defect in an otherwise uniform sys-
tem can be sensitive to the underlying physics associated
with field-induced traps. Thus, in our view it is unreasonable

to expect an effective-medium theory constructed at the bond
level to reproduce the high-field properties of this particular
model. We agree with the opinion expressed in Ref. 3 that
high electric fields require a proper treatment of fluctuations
at more extended length scales.

V. SUMMARY

We have presented a simple derivation of a general
effective-medium theory suitable for studying problems in-
volving hopping conduction on bond disordered
d-dimensional lattices in the presence of biasing fields. The
theory recovers exact results for the drift velocity of one-
dimensional random bias models studied earlier, but fails to
show the negative differential drift velocity associated with
the bond percolation model due, we suggest, to the limited
size of the defect used in the analysis. It seems reasonable to
speculate that an effective-medium theory which incorpo-
rates an embedded defect of sufficiently large size, drawn at
random from the disordered system of interest, would be
sensitive to the fluctuations that are responsible for this kind
of anomolous disorder-induced behavior. In a future publica-
tion we show how a combination of real-space renormaliza-
tion group ideas and the basic effective-medium theory pre-
sented in this paper can be used to quantitatively reproduce
the features observed in numerical simulations for the bond
and site percolation model.8
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