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Effective-medium theory for the electric-field dependence of the hopping conductivity
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We derive a general effective-medium theory for describing biased diffusion on a bond-disordered lattice in
the presence of an external driving field. In our theory, the effective medium associated with a disordered
d-dimensional lattice is characterized, for each value of the applied field,doyn@ependent parameters
describing, respectively, the net drift velocity, and the diffusion constarid,, describing the spread of a
carrier packet about its mean value, for each ofdherystal axes. The theory correctly predicts the velocity
transition occurring in an exactly soluble model studied by Derrida and, in contrast to other recent theories,
correctly reproduces the critical velocity at which this transition occurs.

I. INTRODUCTION medium theory to study directed percolation, and uses that
theory to study the phase diagram of that model. An impor-
Recent observations of negative differential mobttigs  tant feature of effective-medium theories of this type is that
well as the general anomolous field dependence of the drifhey contain more parameters than that oftt§er and
velocity? seen in the high-field migration of photexcited Bryksin, allowing the effective medium to describe both the
charge carriers in molecularly doped polymers, have revivedlrift velocity of the carriers and the rate at which a localized
interest in the theoretical problem of hopping transport inPacket of carriers will spread about {tifting) mean value.
energetically and spatially disordered systems in the pred! this respect Stephen's theory is similar to a one-
ence of a strong biasing fiefdAn important theoretical tool ~ dimensional effective-medium theory of Bernasconi and
which has proved useful in understanding hopping transpor%chneldei‘, who focused on an interesting class of models

in disordered systems biw fields has been the development related to a problem S}gdied by Si”‘g}i’* recent perturbative
of effective-medium theories, which attempt to self- approach by Izzeet al:™* also has this feature although the

consistently identify an ordered system having the sam specific dependence of effective-medium parameters on the

4 - ) . nderlying distribution of r is different in the theory of
macroscopic transport propertigé®., diffusion tensoras the % derlying distribution of rates is different in the theory o

| disordered f interést Traditionall h Izzo et al!® than that of the previous authors. Interestingly,
actual disordered system of Inter€st. Traditionally, such 5 gpplication of their approach to an exactly soluble one-

approximate theories have been used to obtain importanfimensional model studied by Derridh, the effective-
qualitative information about the effects of disorder on theqegium theory of Izzet al. was shown to qualitatively re-

low-field transport properties of condensed phases, and ha\ﬁ?oduce the velocity transition appearing in that model,
proved to be surprisingly accurate except in the immediatejthough it was found to incorrectly predict the critical field
neighborhood of critical points of the type encountered inat which the mean velocity becomes nonzEro.
percolation problems. In this paper we derive an effective-medium theory for
More recently, the techniques of effective-medium theoryuniformly biased systems with bond disorder, applicable to
have been combined with real-space renormalization groufattices of arbitrary dimension. Our approach is of sufficient
ideas to provide an accurate quantitative method for computgenerality to allow for independent parameters describing the
ing the low-field conductivity of a wide class of energetically net drift velocity and net diffusion constant for each axis of
and spatially disordered materidl&An important prerequi- the effective medium, and allows for the situation in which a
site to the extension of numerical procedures of this type tdiasing field is applied field along an arbitrary direction in
the high-field conductivity of disordered systems is a correspace. When the field is applied along one of the crystal
sponding effective-medium theory for describing hoppingaxes, our theory allows for three independent parameters:
conduction in the presence of a strong biasing field. A reviewone to describe the drift velocity in the field direction, and
of the literature reveals the development of at least threéwo rates to describe the transverse and parallel rates of
distinct kinds of effective-medium theory for biased systemsspreading. Our expressions reduce for a one-dimensional lat-
Bottger and Bryksir?, e.g., have developed a simple tice to those of Bernasconi and Schneitleklso, as in the
effective-medium theory in which it is implicitly assumed theory of Izzoet al, our approach predicts a velocity transi-
that the forward and backward effective-medium raes tion for the exactly soluble one-dimensional model of Der-
measured with respect to the driving fiekte related to one rida. In contrast to the effective-medium theory of |&tcal.,
another in the same way as the bare rates. As a result, thdiowever, our theory reproduces the exact drift velocity for
effective medium can be characterized by a single parametethat modef:>* Finally, we discuss the relation of our theory
which can be taken to be the drift velocity of the carriers aso the simpler one of Bitger and Bryksin, concluding that
a function of the biasing field. Steph&hon the other hand, their theory is, in a certain sense, a non-self-consistent ap-
uses a field theoretical analysis to derive an effectiveproximation to the theory developed in this paper.
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Il. MODEL lattice vectom at timet; W} (e) andW, (¢) are frequency-
ependent effective-medium hopping rates associated with
forward and backward hopgslefined with respect to the cor-
responding components of the bias fjelletween nearest
neighbors along crystal axis, andI" is the associated tran-

A particle undergoing a nearest-neighbor random walk o
a bond-disordered lattice in the presence of a uniform bia
field can be described by a master equation

dp,, s?tion matrix. The freque_ncy_dependen_ce of the rates, in prin-
TR 2 [(Wh=ynt Wi n)Pn=Whn—wPn- ciple, allows a characterization of the time dependence of the
v transport process. In this analysis we focus on the long time

~ Wit P, (1) properties of the system, which are described by the zero

frequency value of the effective-medium rated/,
for the probabilitieg,(t) of finding the particle at lattice site =W:(0). In keeping with this focus, we will in what fol-
nez® at timet. In this equation, the unit vectors point  |ows suppress any dependence which would normally be
along the positive direction of the crystal axes of agssociated with these quantities.
d-dimensional cubic lattice, and the hopping rate fromsite  The important point is that the effective medium of inter-
to its neighbor an=* v is Wy, 5. These rates are assumed est is essentially defined by these dynamical equations and is
to reflect the intrinsic disorder of the system as well as thQ;omp|ete|y characterized by the set ofl Darameters
uniform bias that shifts the energy of the sites relative to ON8\*}. Taking Fourier-Laplace transforms @f) and solving
another. The Laplace transform of this equation takes thghe resulting equations for a particle initially located at the
form origin we obtain the probability Green’s function at wave
vectork e 29,

éRn(E)_Pn(O):_E [(anv,n+Wn+v,n)Rn 1
Gk: . . ’
Wy Rooy=Wa i Roisl, (2 e+ ,2{W,[1—cok,]+i6W, sink,}

®

in which R,(e) is the Laplace transform at frequeneyof ~ WhereW,=(W, +W,)/2, andsW,= (W, —W,)/2. Itis an

the probabilityp,(t). arbitrary choice whether we characterize the effective me-
After configuration averaging over the disorder, every sitedium in terms of the parameter @/, ,W, } or the equiva-

in the crystal will be the same, on average, as any othetent set{W, ,6W,}. It is convenient to introduce a scaling

Thus, as shown explicitly, e.g., by Klafter and Sild&ghe  variableW (which is nonzero but otherwise arbitrary at this

averaged probabilitie®,(€) =(R,(€)) will obey a set of point) and write Eq.(5) in the form

linear, translationally invariant equations of the form L

T e+ 2WS {7,[1—cok,]+id, Sink,}’

Gy (6)

eRy(€) = pn(0)=—2 Mp_n(€)Py, 3)
" which allows us now to characterize the effective medium by

which reflect the bias on the system. These equations of mdhe parametetV and by a set of dimensionless effective

tion, if they could be obtained exactly, would serve to definemedium parametersy,=W,/W and §,=56W,/W. The

the true effective medium associated with the average trand-aplace-transformed real-space propagators are obtained by

port properties of the system. In particular, they would cor-Fourier inversion, i.e.,

rectly describe the rates with which an initially localized

probability distribution will drift and spread, on average, in  G,=Gpp

response to the imposed field. The simplest equations of this ek-ngQ)

form having a sufficient number of parameters to describe =(27r)*dJ' S

both the drift and the spread of the probability distribution is e+2W= {n,[1-cok,]+id, sink,}

just a translationally invariant form @®), which retains con- )

nections only to nearest neighbors. A correct description of

higher moments of the probability distribution would re- where the integration is over all wave vectdrsn the first

quire, presumably, connections to greater-than-nearest neigBrillouin zone (m=k,>—) of the cubic lattice, with

bors. Thus, in a standard approximatiowe will assume in  dQ,=1II,dk,. The propagatoG, gives the Laplace trans-

what follows that the configurationally averaged probabili-form of the probability to find the particle at siteat timet

ties obey, in the presence of the field, the Laplaceifitwas located at the origin of the effective medium at time

transformed equations of motion t=0. The general solution to E¢4) can be written in terms

of these propagators in the form

€Pn—Pn(0)=— 2 [(W, + W, )P =W, P ,~W, Py.,]
’ PR(€)=2 Gn-m(€)Pm(0). (®)
= _% FoemPm, (4) It is a straightforward excercise to show for the translation-
ally invariant effective medium that the Cartesian compo-
whereP,(¢€) is the Laplace transform at frequeneyof the  nents of the mean drift velocity of a particle are given
average probabilityp,(t) ={pn(t)) of finding a particle at through the expression
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. V,=F,—-W, . (12
v,=lim tEnpn(t) 26W,=28,W, 9)

oo The solution to this new equation can be written in the form
while the linear spread of the drifting probability distribution
about its mean position is determined by the Cartesian com- Po=P’—(Gy_ =G - )(VIP, =V, P.,), (13
ponents of the diagonal diffusion tensor
wherePg is the solution(8) that would obtain in the absence
W 7,W. of the defect for the initial conditions of interest. To solve
this, we write the corresponding equations for the two prob-
(100  abilities P, and P, , which appear bracketed on the right
hand side of13), obtaining two equations in two unknowns.

s introd defectin th lationally i ___Multiplying the first equation by, , the second by/, , and
v, We now introduce a defect in the translationally InVa”amtakmg the difference we find after some simplification that
effective medium. Specifically, along the bond connectlngthe bracketed term itself can be written

the sites at andl + v, we replace the effective-medium rates
W, along that particular bond with rat€s, drawnas a pair +00 -0
from the distributionp,(F*,F~) of forward and backward VP —VIP, = (V, Pr=V, Piyy)
rates associated with the actual bonds lying along tie ! " 14V, (Go—G_,)+V,(Go—G;)’
direction of the crystal in the actual disordered system of (14)
interest. The new equations of motion in the presence of this
defect can be written in the form We now demand self-consistency by requiring that an av-
erage over the defect distribution associated with this one
- + - bond reproduce the solutions obtained for the same initial
Prl0)=2% To-mPm= (V; Pr=V, Pr) conditiorﬁ)s in the fully averaged effective medium defined by

E n2P,(t) —v?t?

=lim —d—

t—oo

To self-consistentlgetermine the parametevg, »,, and

Eq. (4). Assuming that the initial conditiongand thus the
X (On1= S+, (11) quantitiesPﬂ(e)] are independent of the averaging proce-
in which the transition matriX" reproduces the translation- dure, this requires thgP,(e))= P?,(e) for all n. Inspection
ally invariant equations of motioiid) associated with the of Eq.(13) reveals that this can be satisfied only if the aver-
effective medium, and we have introduced the notation age of the quantity,

V+

14

v-
0_
<1+Vi(Go—GV)+VV(Go—GV)>P' <1+V3(Go G_,)+V, (G V)> Praw:

appearing in Eq(14) vanishes. Unlike the situation that occurs in the absence of a b|a$1£liiqappears to depend upon the

initial conditions through the functioriéf)(e) and P|°+ J(€). Clearly, in order that the characteristics of the effective medium

be independent of these initial conditions we must require that the two averages appearing in this equation vanish indepen-
dently, and, moreover, that these equationsibeiltaneouslatisfied for each of thd crystal axes of the lattice. In this way

we end up with @ coupled equations

14

(15

\%

(16)

N

<1+vj(Go— +V, (Go— V)>:O'

to determine the @ parameters defining the effective medium. To make this expression useful we need to obtain and simplify
expressions for the quantities

Go—G.,)= f (1—e")dQy
( 0 tv)_(zﬂ_)d €+2WEM{7’#[1—CO§(#]+|5V Sirk/_t},

17

which appear in the denominator ¢f6). Separating this into real and imaginary parts, getting rid of some obviously odd
integrals, and taking the zero-frequency limit, we find that lig{Gy— G+ ,)= (1/2W) [M;+=M;], where

1 (1-co%k,)(S , 7,[1—cok,])dQ

Mi= 20 (S, 71— ok, )2+ (2,5, sink,)? (18

and
e j 5, sirtk, dQ, 19
2 (2m) (2, m[1-cok,])?+ (2,6, sik,)? (19
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depend only upon the dimensionless consténts, 5,} which define the effective medium. These constants obey the easily
proven sum rule

> (g,M{+5,M5=1. (20)

Putting this back into the self-consistency condition and reinserting the defii®rof V,, , we obtain

Fo-w; )
<2W+[(FI+F;)—(W;+Wj)]M§+[(F:_|:;)_(W;_W;)]M;> =0. (21)

Alternatively, by taking the sum and difference of the equa- E 1 19 = 1\t
tions with positive and negative superscripts these can be put W={ = — =={1+=—=){ == ,
in the form F+oF [ \F+6F 2 F F

W -0, while the drift velocity takes the form
W+ (F,—W,)M7+(6F,— 6W,)M;

oo | 2F 1\t LV o
< R, oW, > 0. (22 TN R R [ \Fror/ T \T FT\FT)
W+ (F,—W,)MY+(8F,— 6W,)M} (28)

where I;V=(F3+F;)/2 and 6F,=(F,—F,)/2 are the These expressions are equivalent to the one-dimensional
“average sum” and “average difference” of the forward and effective-medium results of Bernasconi and Schnefitighe

backward hopping rates across the defect. expression for the velocity, moreover, has been shown by
Derrida“ to be the exact result for the one-dimensional ran-
l1l. DISCUSSION dom bias problem whefF ~/F*)<1 and{In(F~/F*))<0.

] ) o Thus, the effective-medium theory associated with EB8)
Equations(22) are our main results. They are similar to correctly predicts the velocity transition, and indeed gives
the equations obtained previously by Izzbal, except for a  the exact velocity for the binary random bias model studied
difference in denominatorS.A close comparison shows that by Derrida.
our denominator is “more coupled” than theirs. Their self- " | higher dimensions the integra(8) and(19) cannot be
cpnsist_ent condition, which was explicitl_y derived for a One-performed analytically. They are easily computed numeri-
dimensional system would, in our notation, take the form  cally, however, and so it is a straightforward process to com-
- — putationally implement the effective-medium theory defined
F__V! —n— oF — oW by Egs.(22) for arbitrary biasing fields. There are certain
W+ (F—W)M, '

W+ (6F — SW)M,, field directions, however, for which the self-consistent equa-
(23)  tions are more easily implemented. In what follows we in-

For one-dimensional motion the integrdls8) and (19) can vestigate two such directions.

be done exactly by settingd=W, for which »=1. The in-

tegral A. Field parallel to a crystal axis

M 1 fﬂ (1—cok)?dk 24 The first case of interest is that in which the driving field
1=5= — T2 o is directed along a particular crystal axis, which we will de-
2m ) - n(1-cok)*+ 5° sirk note byz, for which we will setn,= » and§,= . The set of
can then be done by settimg e’ and integrating around the  effective-medium equation€2) is simplified for two rea-
unit circle to obtainM ;= (1+ &) . From the sum rul¢20)  sons. First, for an isotropic system, all axes transverse to the
we also have the identitil; + M,=1, which leads to the field will be described by identical self-consistent equations.
result that Second, there will be no macroscopic bias along directions
1 perpendicular to the field axis. Thus, for these axes we can
1rs (25  setW,=W,=W, and 6W,=0=45,=M3. In addition, the
scale factoW can be set to the valu&, , so thaty, =1 for
Thus, in one dimension the self-consistent conditi2®  all tranverse directions. Thus, the equations for all transverse

Mi=M,=

can be written axes reduce to the same form, namely,
F-W SF— 5W -
_ =0={ —— ), (26) F,—WwW
F+oF F+6F —F ) =0, (29
F,+(d, —-1)W

from which we deduce that the effective-medium diffusion
constant is given by the expression where the quantity
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l—Mi— 1 fdQ (1—cok,)(n7[1-cok,]+Z,.,[1—cok,])
d, Tt (2m)d K(p[1-cosk,]+3 ., [1—cok,])Z+ &2 sirPk,

(30)

defines an “effective dimensionality” for any crystal axis along thez axis as above, then the resulting effective me-
perpendicular taz. This dimensionalityd, reduces to the dium will have a drift velocity

Euclidean dimensiom in the absence of an applied field.

From the general sum rul@0) it also is straightforward to v,=W(y" —vy),

obtain for this limiting case the relation . 4 , )
wherey~ =y, , and the single paramet& must satisfy the

associated self-consistent equations. For the axes transverse

(d—=1)M7+ M+ oM5=1, (31)  to the field these take the form
which reduces the number of independent integrals in the F-W =0 32
p g w—_w\/ =0, (32

effective-medium equations to 2.
It is also possible to point out the differences thqt arise inyith d, given by Eq.(30) in which =2(y*+y") and
our effectiveg—medium theory from that developed byttBer  5_ 1(y*=97). Note that the ansatz allows for anpriori
and Bryksin: To make contact with their approach, we con- ,t non-self-consistendetermination of the integrals, and
sider a system in which the bias field alters the forward anqperefore provides a unique field-dependent valuewhich
backward r:i\tes between two sites by a multiplicative factog independent of the single effective-medium paraméter
F—F~= y,F, whereF is now a random variable associ- Ths allowsW to be determined uniquely from E2). If
ated with the strength of the specific bond connecting thesghe value ofw obtained from this procedure also satisfies the
sites and, e.g.y, =exd +eE a/2kT], whereeE,a is the  two self-consistent conditions for motion along theaxis
field-induced potential energy drop across a lattice spaging (j.e., parallel to the field directionthen the ansatz is verified
along axisv, andkT is the mean thermal energy. Thus, ratesand we arrive at a completely self-consistent solution. Unfor-
associated with hops perpendicular to the field are not aftunately, analysis shows that, in general, this ansatz provides
fected. In the theory of Bieger and Bryksin it is implicitly  only an approximate solution to our full self-consistent equa-
assumed that the rat&¥™~ which characterize the effective tions. Indeed, by applying the sum rui@l) appropriate to
medium also have this multiplicative property, i.e., thatthis configuration it is straightforward to show that the ansatz
W,—W; = Wy, , whereW is a common(generally field- of Bottger and Bryksin reduces both self-consistent equa-
dependent prefactor which is independent of the crystal tions (22) for the z axis to the single equation
axis. If we make this ansatz in our theory, and assume a field

F-w 0 33
F+(d,—DHW/ = (33
102 é T T T T
10?
101
10
>‘D
10°
2 o
3 100
L) >
[ =
> (53
£ 10" E
° £ 107
5
102
102
10-3 1 | 1 i 10_3
0 1 2 3 4 5 0 1 2 3 4 5
field strength BEea field strength BEea
FIG. 1. Reduced drift velocity y4=v/Fya for a bond percolat- FIG. 2. Reduced drift velocity 4=v/Fga for a bond percolat-

ing lattice versus the applied electric field, as predicted by the fuling lattice versus the applied electric field, as predicted by the
self-consistent theory presented in this paper. From lower left tsimple effective-medium theory of Biger and Bryksin. From
upper right, curves presented correspond to values of the unwealewer left to upper right, curves presented correspond to values of
ened bond fractiop=0.35, 0.45, 0.55, 0.65, 0.75, 0.85, and 0.95, the unweakened bond fractigr=0.35, 0.45, 0.55, 0.65, 0.75, 0.85,
respectively. and 0.95, respectively.
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whered,=d, /(d, —d+1). It is not hard to see that simul- B. Field along the body diagonal

taneous solution$V to Egs.(32) and(33) can be expected  another situation in which the self-consistent equations
only if d,—d, , which requires thatl, —d. While thisis a  sjmplify is that in which the applied field is along the “body
valid approximation for very low fields, the effective dimen- diagonal” of the unit cell or thé1,1,1) direction of the crys-
sionalityd, and the Euclidean dimensionalitycan deviate tal (we assume isotropy of the underlying lathicBy sym-
strongly at high fields. Thus, in a sense, the effectivemetry, the effective-medium equations for each axis will then
medium theory of Btger and Bryksin can be viewed as a have the same form, with,= & and 5, = 7, for all v. In this

low-field approximation to that of the current study. limit there are just two independent coupled equations
|
F-W SF— sW
= =0= = , (39
W+ (F=W)M;+ (6F— 6W)M, W+ (F=W)M;+ (6F — W)M,

where we havéwithout loss of generaIiMakenV_\/=W, so thaty=1. The symmetry of the problem in this limit also implies
a simplification in the required integrals:

1 (1—cok,)(2,[1—cok,])
Ml_(zw)af ddy (2, [1-cok,])?+ %2, sink,)?’

" 1 J . 8 sir’k, 35
27 (2m)8 K(S[1-cok,])?+ (2, sink,)?’ (35
The general sum rul€0) leads in this case to the relation
1
M1+5M2:a, (36)

which allows us to express one of the constants in terms of the other. Thus, for example, we canwr{te—doM,)/d,
which reduces the self-consistency conditi@2) to

F-W oo SF— 5W a7
F+(d—1)W+(8F—8F)dM, [  \F+(d—1)W+(SF—6F)dM, |

It is interesting to note that in these circumstances the ansatlN\DDV) was predicted, i.e., a region for which the drift ve-

of Bottger and Bryksin, i.e., locity decreases with increasing field strength. Thus, in keep-
. ing with the analysis of Ref. 9 we consider a three-
4 2y W dimensional bond percolating lattice with a field directed
W,—-W, =wy =———, (39 : ; :
v vty along thez axis. Hopping rates for this system are of the

, , .. form F, =y, F, in which y; =exd +eEd2kT] for v=z,
when applied to systems for which,—F, = y F (where 4 y, =1 for all other axes. The bond strengfhsare then

the y. are now independent of due to the symmetry of the . . L
AN . : . : .drawn from the percolative binary distribution
applied field, does not lead to internal inconsistencies, as it

did with the field along one axis. Indeed, in this situation the

ansatz reduces both of these last two equations to p(F)=p3(F—=Fo)+(1=p)a(F~£&Fo), (40
E—w where ¢ is a reduction factor associated with weak links in
<—> =0, (390  the system. In Fig. 1 we show the results of an implementa-
F+(d-Dw tion of the full set of self-consistent effective-medium equa-

the solution to which is just the zero-field effective-mediumtions for this problem with a reduction factdr=10"*. In

rate associated with the distributipifF) of bond strengths this plot appear predicted values of the drift velocity as a
associated with this type of system. function of field strength, for several different concentrations

p of unweakened bonds. In Fig. 2 we show corresponding
plots of the drift velocity as predicted by the earlier theory of
Bottger and Bryksir?, which in our implementation corre-
To demonstrate the ugand abuseof the approach that sponds to the solution of E€B3) (which, as we have pointed
we have developed, we consider the biased percolation prolout, does not give an internally self-consistent solution to the
lem featured in the analysis of "Bger and Bryksirt, in  full set of effective-medium equationsFor large concentra-
which a region of field strengths and bond concentrationgions of weak bonds the differences are striking, with the
was found for which a negative differential drift velocity simpler theory of Bttger and Bryksin showing a distinct

IV. APPLICATION
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region of NDDV at high fields which is lacking in the fully to expect an effective-medium theory constructed at the bond
self-consistent theory of this paper. Recent simulations byevel to reproduce the high-field properties of this particular
Gartstein and Conwellhave revealed that such a region of model. We agree with the opinion expressed in Ref. 3 that
NDDV does, in fact, appear for this model, although thehigh electric fields require a proper treatment of fluctuations
quantitative agreement of the simulation data with theat more extended length scales.
Bottger-Bryksin theory was shown to be rather poor.
Nonetheless, this raises the question of how the appar-
ently less self-consistent theory of ®ger and Bryksif is
able to qualitatively predict the general tendency observed in
simulations, while the more fully self-consistent theory de- We have presented a simple derivation of a general
veloped in this paper is not. Notwithstanding the adage thagffective-medium theory suitable for studying problems in-
“nothing succeeds like success” we suggest that the apparenblving hopping conduction on bond disordered
qualitative agreement of the ‘Bger-Bryksin theory is, to a d-dimensional lattices in the presence of biasing fields. The
certain extent, fortuitous, a judgement which we base on théheory recovers exact results for the drift velocity of one-
following argument. The analysis of Gartstein and Contvell dimensional random bias models studied earlier, but fails to
convincingly shows that the negative differential drift veloc- show the negative differential drift velocity associated with
ity observed in the percolation problem can be identified ashe bond percolation model due, we suggest, to the limited
arising from “field-induced traps.” The latter are regions a size of the defect used in the analysis. It seems reasonable to
particle can, at high fields, enter, but from which it cannotspeculate that an effective-medium theory which incorpo-
escape except by making a difficult hop against the field. Theates an embedded defect of sufficiently large size, drawn at
minimum “defect” which can be expected to act as a trap inrandom from the disordered system of interest, would be
this sense is, therefore, not a single bond, but a single strorgensitive to the fluctuations that are responsible for this kind
bond leading along the field into a site out of which the onlyof anomolous disorder-induced behavior. In a future publica-
other bonds are weak. Viewed in this light it is rather hard totion we show how a combination of real-space renormaliza-
see howany effective-medium theory based upon the idea oftion group ideas and the basic effective-medium theory pre-
embedding a single bond defect in an otherwise uniform syssented in this paper can be used to quantitatively reproduce
tem can be sensitive to the underlying physics associatetthe features observed in numerical simulations for the bond
with field-induced traps. Thus, in our view it is unreasonableand site percolation mod@l.

V. SUMMARY
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