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Formation of dislocation patterns: Computer simulations
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Dislocations patterns have been extensively studied by means of TEM. In parallel, theoretical approaches
have been developed by using two methods; reaction diffusion schemes and computer simulation models. This
distinction is not rigid since some computer models include the former approach in their evolution equations.
Independently from the difficulties each approach presents in formulating the collective behavior of disloca-
tions, the aim of these studies is to exhibit simple dislocation patterns as persistent slip bands and/or cellular
organization. In this context, computer simulations brought a methodology which undoubtedly is a complement
to the existing approaches for dislocations. Nevertheless, several remarks must be pointed out about the results
obtained with the method. First, the conditions of simulati¢eg., cutoff procedure, periodic boundaries
conditiong, have been extensively criticized and responsible for spurious patterns. Second, the simulations
developed do not show clearly the formation of cell structures. Third, the simulations performed do not tell us
about the evolution of dislocation patterns in function of the parameters such as dislocation density, external
force, or friction stress. The aim of the simulations presented here is to study at the mesoscopic scale the
formation of dislocation patterns in two dimensions. For this, we used systems of large dimensio)é 480
rigid boundaries conditions which permitted us to avoid a cutoff procedure. The simulations performed exhibit
the formation of dipolar walls present in persistent slip bands and clearly show the formation of cell organi-
zations. For each pattern observed, we have deduced relationships between the size of the patterns and the
parameters used as dislocation density, external force, or friction stress. And indeed, the results obtained show
a good agreement with experimental laws.

[. INTRODUCTION Beside the experimental studies, we have theoretical ap-
proaches intent on giving an explanation to the observed
The classical theory of dislocations has permitted one tgatterns. For instance, in analogy with the spinodal decom-
elucidate the main properties of individual dislocations andposition of solids, Hoft® has studied the formation of a cell
to address the difficult question oflp‘!astic deformation ororganization in two dimensions by means of a diffusion
strain hardening of metals and alloys.These theoretical equation. The model shows a spontaneous structurization of
studies have been corroborated by experimental results basdislocations without the action of an external force. How-
on transmission electron microscofyEM). Beside this, in- ever, some of the hypotheses made in this model have been
teracting dislocations can present complicated patterns likeontested. Some of the arguments given against Holt’s re-
persistent slip band®®SB’s, labyrinth and/or cell structures sults are that he did not use a random initial distribution of
for which our knowledge is limited to some interaction dislocations(each dislocation was surrounded by disloca-
mechanisms between dislocations. Thus the theoretical apions of opposite Burgers vectorand a cutoff radius op*/?
proaches developed until now, for dislocation patterning, aréwhere p corresponds to the dislocation dengityas intro-
mainly qualitative. This is due to the complexity of the non- duced in the calculation of the interaction forces. The latter
linear physical mechanisms intervening during plastic deforpoint facilitates the formation of patterns as has been dem-
mation. Moreover, the dislocation patterning presents a dyenstrated in Refs. 11 and 12. To study theoretically the col-
namical behavior similar to that of physical systems drivenlective behavior of a density of dislocations some of the
far from equilibrium and where spatiotemporal pattern for-methods used are reaction, reaction-diffusion schemes, and
mation is present. computer simulations. In the latter approach some models
The studies developed by means of TEM have deducetellular automatrinclude diffusionlike equationésee Ref.
some of the main mechanisms responsible for dislocatiofd and references thergimA pioneer study on the collective
patterning, for example, dipole formation, the number of ac-behavior of dislocations was developed by Walgraef and
tive slip systems, annihilation, and multiplication Aifantis.}*®*P These authors used a formulation based on
processe3® Moreover, they have permitted one to deducethe coupling of two partial differential equations expressing
several scaling laws for the observed patterns relating ththe spatiotemporal evolution of mobile and slow disloca-
flow stress with the dislocation density and with the size oftions; the description includes local interactions between dis-
the cells obtained-° These scaling laws can be explained by locations, for example, annihilation, multiplication or dipole
means of interaction mechanisms between dislocafierms, formation. The motion was assumed to be diffusive and the
forest mechanismsBut frequently, it is difficult to make a dynamical analysis showed the formation of dislocation pat-
correct interpretation of the experimental results when moréerns observed experimentally. However, as was pointed out
than one dislocation mechanism is activated. by Shiller and Walgraéf® and in Ref. 14 the dependence of
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the parameters in function of the stress or the temperaturdeformation in relation with the dislocation theory. For the
must be improved to facilitate the comparison between thenoment, the deformation produced cannot exceed one per-
experimental and theoretical results. Moreover, Kratochvilcent due to the complexity of interactions introduced in the
et al’® have developed a reaction-diffusion model to studymodel.

the formation of veins and dipolar walls in monocrystals The studies we present here were focused to clarify some
under cyclic loading. This last approach is based on the diof the difficulties encountered in dislocation patterning,
tinction between two kinds of dislocations: mobiles which namely, the formation of dipolar walls and cellular organiza-
are responsible of the plastic deformation and dipoles protion. Our computer simulations were developed azt the meso-
ducing the strain hardening. In this formulation, the diffusive SCOPIC scale for a single crystal of copper (@0)” under

character of dislocations is given in terms of internal stres§yCIiC loading and under rigid boundary conditions. The plan

gradients and the analysis shows that it is possible to o of the paper is as follows. In Sec. II, we briefly explain the

serve, qualitatively, the formation of vein structures anddlslocatlon physics used in the algorithm and we calculate

PSB'’s. However, the considerable number of equations in thg1e forces exer_ted on each dislocation. In_Sec. Ill, we de-
model limits an analytical stability analysis. velop the algorithm used. In Sec. IV, we give relevant nu-

As mentioned above, the study of dislocation patternindﬂer'cal resplts when one or two gI|de_ systems are activated
nd we derive the resulting relationships. In Sec. V, we sum-

by computer simulations has been developed by usin . . : .
mainly cellular automata or molecular dynamics. A great ad_@]anze the main results obtained in our study.

vantage of these methods is that, as the computer models are

developed by using the elementary properties of dislocations,  |I. DISLOCATION THEORY AND MOLECULAR

we can avoid some drastic approximations on the dislocation DYNAMICS

interactions used in some analytical models. Among these o )
computer simulations we can find those of Lepinemsal,*® Nowadays, molecular dynamics is a powerful tool in the

who used the notion of cellular automata to study, in twoStudy of solid state problems. The methodology used is par-
dimensions, the dynamics of a random distribution of edgdicularly adapted to dislocation problems. Indeed, disloca-
and screw dislocations. In this formulation, the dislocationgions can be considered as elementary elements which move
are free to move in their glide plane and in a perpendiculatNder the action of forces. Hence it is possible to study, at
direction associated to the climb mechanism, local interacl€soscopic scale, the spatiotemporal evolution of a given
tions (e.g., annihilation and multiplication of dislocations dlslocathn distribution in function of the forces exerted on
and periodic boundaries conditions were used. The simuldl€Se point defects. These long range foces can be separated

tions show several interesting features like the possibility tdn thrée processes:  interactions between dislocations, inter-
obtain the formation of dipolar walls. Moreover, they show action between dislocations and an external stress field, and

that it is impossible to obtain a spontaneous dislocatiornteraction between dislocation and the crystal lattice. More-
structure without the action of an external force. AnotherOVer, dislocations are line defects which can interact between

computer simulation approach, using the basis of moleculafach other at short distance. Then, it is necessary to introduce

dynamics, was developed by Amodeo and Ghoniéitheir in the formulation local interactions like annihilation or mul-

work was centered on the study of the formation of PSB'diplication.
and cellular structures in two dimensions. For this, they con-
sidered a simulation cell with a random distribution of edge A. Long range interaction forces

dislocations obeying their local interactions mechanisms It is well known that the presence of a dislocation in a

(i.e., annihilation, multiplication, dipoles formatignin this rvstal produces a deformation field which can be divided in
approach, the dislocation motion is determined by the actioff’”. P . . : :
two parts: a plastic deformation near the core of the dislo-

of an external force and the elastic interaction between dis-

locations. The results obtained, when only one glide systerﬁgﬂogeagd %2;'?:’3&:6025 Wgseéet:g? lr:i:)trzegfr);o(;i;lgigggx
is activated, show the formation of a dislocation wall at the ppled. pp

center of the simulation cell and when two glide systems arg2n be approximated by an incompressible area, then the

activated a fairly clear cell organization is observed. stress field produced by an edge dislocation can be consid-

Most of the computer simulations described above Wert%g?g ?:r arl]aﬁgztgosrtr;?tisdr:r:/vtrr}lcshcz?rsee’s:tliz ﬁcea:jnbusgnthijg?a—
performed for systems of small size-1u?) with periodic b y any

boundaries conditions and where the range of interaction wat'sOn of the biharmonic equatich

limited to half the size of the simulation box. It is important 4
to remark that these last restrictions imply, as was stated by Vix=0, @
Gulluoglu et al,* that it is possible to obtain spurious pat- ) o o )
terns, for instance, polygonization walls which appear wherfnd Where_ the elastic stress field in cylindrical coordinates
the dislocation density is very hidf.Until now, the only ~ ¢an be written as

studies in three dimensions are those developed by Kubin

et al,’®=?°to study at the mesoscopic scale the plastic defor- 1oy 1 %

mation in a single crystal. Their approach is based on a dis- T =% (9_r+ 2 902 (2a)
cretization of a dislocation loop into edge and screw seg-

ments. Each segment can interact with each other and the )

multiplication process is taken into account. By this method _‘9 X (2b)

it is possible to quantify at the mesoscopic scale the plastic
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whereF {, Fj are respectively the glide and the climb com-
ponents of theg dislocation. The latter component is acti-
vated at high temperatures and is related to the diffusion of
point defects.

In general, studies on plastic deformation are associated
with the presence of an external force which can be monoto-
nous or cyclic® Here, we used a cyclic external loading and
the resulting forces were calculated by using E). Hence,
if the external stress field is given ly,,, its corresponding

force on a dislocatiom can be expressed as

Fex= (010 ex) X L; ®

Another force acting on a dislocation is the friction force,
Fiction» Which gives us a lower bound of the external force
to be applied on a dislocation to set its movement on a glide
plane. The friction stress is always opposite to the motion of
the dislocations and its origin can be related to several fac-
FIG. 1. Refere_ntial fr_ame related to the interaction forces beTors, for instance, the action of the crystal lattice, the pres-
tween two edge dislocations. ence of impurities, or the influence of other dislocations. For
cubic face centered metals the value of the friction force is

_ 9 (lox ) relatively low (10 °u) and for cubic centered metals or co-
To=" 50 \ ¥ 90/ (29 valent structures this value is higHér.
To obtain a solution for the last equations, we can use func- ) .
tions of the form B. Local interactions
Dislocations can interact between each other at short
x=R(r)0(0), (3 range implying complex atomic rearrangements on the

crystal’~* These interactions have been detailed by remark-
and solve the resulting ordinary differential equationsrfor able experimental studiwhere we can find the conditions
In this way, a solution for a positive edge dislocation is of theunder which they appear. The dislocation processes most fre-

form quently uset®® 1391619 ¢qr stydying dislocation patterning
are annihilation, multiplication, and pinning of dislocations.
ub ) The annihilation process corresponds to the destruction of
Xz—mr In r sing, (4 two dislocations of opposite Burgers vectors approaching

each other within a critical region. The critical distance be-
where u is the shear modulus; is the Poisson’s ratidy is ~ tween these two defects is, in the case of an edge dislocation

the norm of the Burgers vectors, ands the angle between N Cu, approximatively equal to 1.6 nffi.This process,
the Burgers vector and the directign(see Fig. 1 Then, the ~Which is activated at high temperature, induces the well-
elastic stress field in cylindrical coordinates is given by ~ Known recovery process in strong hardened métaEhe
multiplication of dislocations is a complex process respon-
sible of the strain hardening in materials, and a well known

ub ~siné CO_SQ 0 mechanism is the Frank-Read soutcBhis process can be
HUi,j”: m cos®  —sind 0 . schematically described as follows: under the action of a
4 0 0 — 2y sing shear stressg, a pinned line of dislocation can be bent. If

(5) this stressis sufficiently high, the curvature of the line passes
through a maximum forming a semicircle which evolves,
The force exerted on the dislocatiofy the dislocatiorj is  under the action o, into a complete dislocation loop con-

calculated by means of the Peach-Koelher rel&fion taining in its interior the initial line of dislocations. If the
applied stress exceeds this value, the line can increase be-
= =(5;)><|: 6) yond a semicircle and become a complete loop and restore
ij ij i

the initial line of dislocation. This mechanism produces a

Given that in thez direction the dislocatio is parallel to ~ 'arge number of dislocation loops under the action of rela-
the dislocatiori, the forces to be considered are in ting) tively small stres$ub?). During plastic deformation, the dis-

plane (see Fig. 1 Hence the forces expressed on the referJocation density increases considerably and some of the cre-
ential frame of the dislocatiop are ated dislocations become immobile. The pinning of
dislocations creates a forest of dislocations which interacts
with mobile dislocations. If a dislocation passes through the
- ( Fﬁ-)’ !

g . . . ; .
Fij forest it may form jogs or junctions resulting from the local

Fij(r,0)=— . . . .
interactions between the dislocations and the fdrest.

k cos) cog27y)
Fij sing+sin(2y)cosd
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C. Equation of motion where dt corresponds to the time step used. In a two-

The next step consists in deriving an equation of motiondlmensmnal approach, it is nearly impossible to formulate

for each dislocation in function of the forces describedcorrecuy both the forest mechanisms and the multiplication

above. Each edge dislocation can move on a slip plane pap_rocess. To overcome this difficulty we introduced in the

allel to its Burgers vector and in a perpendicular direction3YStem a sufficiently high dislocation depgity: Moreover, the

(i.e., the climb mechanismIn this case, the equation of procedure we used to simulate the annihilation process was

motion for an edge dislocation can be written as as fO_HOWS_: for any couple of dislocations] we_checked
both if their Burgers vectors were parallel or antiparallel and

. dr, if the distance separating the dislocationg,, was greater or
Fi=m T (98 smaller than the critical annihilation distancg. Then, if the
Burgers vectors were antiparallel and jf<r ,, the disloca-
with tionsi andj were annihilated. To maintain a dislocation
velocity smaller than a critical velocity,. (usually the speed
Izi _ 2 'E;?t+ 'Eext_ 'Efriction- (9b) of sound, it is necessary to perform a scaling of the veloci-

ties. This consists in supposing that the total kinetic energy

and wherem =1. Here we assumed that the inertial eﬁectsOf the dislocations is constant in time. In this case, we obtain
b a Gaussian distribution of velocities for the dislocations

e s iy o i s 10U an average veosiy,  Th scalig of velociis
dislocation velocities are smaller than the speed of sound it igerformed by using a scaling factgrgiven by

possible to express the equation of motion, B, as (2N—3)karef} 12 13
=l . 13
F, Sivf
viTpg" (10 where (2N —3) are the degrees of freedoik, is the Boltz-

_ o . mann constanf s a temperature reference for the system,
whereB corresponds to a damping coefficigBt=5x10 anduv;, is the velocity of the dislocation By multiplying

Pas for copper anB=5x10"* Pa's for aluminiurff). This by the velocity[Eq. (11)], we can determine the new distri-
formulation of the equation of motion, in contrast with Eq. bution of velocities, that is,

(9a) permitted us to use a higher temporal mesh p¢iot®

s) and lower densities of dislocations. Vi1 BUt+1- (14
The scaling is performed if more than 20% of the density of
[l. DESCRIPTION OF THE FORMULATION dislocations have a velocity greater than 100 m/s or smaller

The formulation, developed here, uses the basis of mot-han —100 m/s_corresponding approximately  to - 100-

lecular dvnamics and consists in studving the formation 0{rerations steps. To be thorough, we calculated the elastic
y ying .Interaction energy between dislocations which for edge dis-

dislocation patterns in two dl'menS|ons at the MEeSOSCOPIE, .~ ions is given by
scale. Several points differentiate our approach from classi-

cal problems of molecular dynamics. First, the forces used int unbib; rij

do not derive from an interaction potential. Secondly, the Wi (ri; -0i)=—m| .

elastic interaction between two dislocations is a function of 0

the angle between their two Burgers vectpsse Eq.(7)]. ubib;

This angular dependence introduces an anisotropy in the mcoszaﬁa), (15

elastic interaction force and increases the difficulty to calcu- . ) .
late it. Thirdly, dislocations are line defects which can inter-Wherea=a;— a; andr,~b (region of the dislocation coye

act at short distance. In consequence, we must take into aE_IS clear that the temporal ev_olut|0n of the _elastlc m'Ferac-
count within the dynamical evolution of the dislocation tion energy does not characterize the formation of a disloca-
distribution several processes like annihilation or multiplica-tion pattern but it is useful to verify that the system evolves
tion. Here, the system is constituted of an ensemble of pafowards a configuration of equilibrium.

allel edge dislocations disposed randomly inside a simulation
cell. The numerical procedure consists in calculating for each
dislocation its new position and velocity resulting from the A. Simulations
forces acting on it. This is done in two steps: First, we

calculate the new velocity for each dislocation by using theedge dislocation in two dimensions by using the procedure

IV. SIMULATIONS AND NUMERICAL RESULTS

We performed computer simulations for a distribution of

equation described in the last section. To avoid a cutoff procedure we
(1) used systems of large dimensic2§u)? and rigid boundary
vi(t+dt)= lT (11 conditions, that is, any dislocation arriving at the boundary

of the simulation cell cannot leave (zero flux, but it can
whereF; corresponds to the total force exerted on a dislocamove to the interior of the cell if this movement leads to a
tion i and defined by Eq(9b), and secondly by using Eq. dislocation configuration that minimizes the elastic energy.

(11), we determine the dislocation positions given by At the beginning of the simulation we introduced a random
configuration of dislocations ranging from 300 to 1000
ri(t+dt)=r;(t)+dto;(t), (12 which corresponds approximately to a density of abodt 10
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TABLE |. Constant parameters used in the simulations.

Shear L L A L
Burgers Poisson  modulus  Time step 1

Metal vector (nm) ratio (GP3a (s J__ J__
Copper 25 0.324 42 ) L 1 L

2 | L L 1 L
cm 2 The time step used was equal to & and was de-
duced from the mean free path of a dislocation which varies L L
like p~Y2. For a dislocation density of #dcm 2 the mean 1 4
free path is equal tod. If we suppose that the mean velocity

for the dislocation is~1 m s ! this implies that the charac- —
teristic time,dt, is equal to 10’ s. Then, a fraction of one
percent of this time represents a good estimation of the time
step needed in a simulation. In our simulations the time steeva
was assumed to be constant in contrast with Ref. 17 wiiiere
varied considerablydt [107° s, 1 §) and which can intro- 5 o ) ]
duce a divergence problem. At the beginning of the simulaStePs for azsys_tzem of20u)" containing 550 dislocations
tions, the velocity of the dislocations and the external force(P:1-3751(_j m~) and for a friction stress of about 0.36
were set equal to zero and the forces created by the dislocMPa- Id_entlcal re§ults were obtained fo_r different densities of
tioni due to the presence of the remainiNg 1 dislocations dislocations and in all the cases we did not observe a spon-

were calculated by using EG7). An external force has been @n€ous structuration. In contrast, when we applied a cyclic
applied on the system in the glide direction of the disloca-Stress of+3 MPa, we obtained the formation of four dipolar

tions. The procedure which permits us to calculate this lasyalls [Fig. 4(b)]. A common feature to these simulations is
force can be explained as follows: we considered a constatff€ decrease of the elastic interaction energy towards a stable
stress tensor configuration[Figs. 3b) and 4c)]. The oscillations on the

energy shown in Fig. @) correspond to the effect of the
0 o1, cyclic external force which is responsible for the inversion of
R polarity in the walls. Moreover, in these simulations the an-

FIG. 2. Active slip system associated to the formation of dipolar
Ils.

ext__
Ul'] 012 0
acting on the system and corresponding to an experimental ®
shear stress used in the study of patterns like persistent
slip bands. The application of this external stress induced
on each dislocation a force which can be calculated by using > AT

Eq. (6). Then, for a dislocationi of Burgers vector 16f:

by=(b’,bY) the force is equal to 12f
> bix0'1‘2 . b
Fex™ bloy o)’ o4

this external forcing was applied in the glide direction each o TR T 2 0 500 1500 2500 3500 4500
500 iteration steps. This periodicity, deduced numerically, e Iteration
corresponds to the time necessary for a complete relaxation
of the system and does not correspond to the frequency ex-
perimentally used1 Hz). Due to the low deformation ob-
tained at the end of each simulatité®'<1%) we neglected
the rotation effect associated to the action of the shear stress.
The numerical procedure detailed in the last paragraph
was used when either one or two slip systems were activated.
In the former case, we were interested in the formation of
dipolar walls while in the latter case we studied the forma-
tion of cellular structures. In both cases, we analyzed the
influence of the dislocation density, the external force, and
the friction stress on the resulting patterns. In Table | are
given the constants used during the simulations.

FIG. 3. Configuration obtained for a square are#2f) con-
taining a density of 1.37518 m~2 without an external force(a)

In this subsection, we report the results obtained whemnitial configuration of dislocationgb) Evolution of the elastic en-
only one glide system was activatéllig. 2). Figure 3c)  ergy of the systenfJ m3). (c) Configuration obtained after 5000
shows the resulting configuration obtained aftet itération iteration steps.

B. Dipolar walls
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(10-4m)
]61 Uf =0 Mp:a'..
127 .".-" 0;=0.37 Mpa
. ~ st .-
‘L 4 0¢=0.735Mpa
g ‘1 L
0 + + b p———t—t}
2 1 3 5 7 9 n 13 15
x x10-% 1/0 (102m2)

FIG. 6. Variation ofA with the inverse of the dislocation density
12 and the friction stress. The dashed line was calculated by using Eg.
(12) and the value ok used is given in Ref. 20.

ENERGY
(J

s acterize the obtained patterns we performed a Fourier trans-
' }mmm, E form of the resulting density distribution of dislocations.
o8 '”“““l“"lmlmm =0 . This was done in the following way: we divided theaxis of
0 o4 08 1z e 2 e T e o the simulation box into equally spaced mesh poi@&mesh
ITERATION x107¢ k points and then we counted the dislocations lying in each
interval. This last gives us the local distribution in function
of the space to which we fitted a curve. And subsequently,
we performed the Fourier transform to the fitted curve. The
deduced characteristic lengtk, is in fact an average value
of several Fourier transforms and its accuracy istdf.2u.
This allowed us to deduce a scaling behavior characteristic to
each observed pattern. The power spectrum of F{@) 4
gives a maximum with a period equal k&=4.3. Hence the
wavelength is given by

FIG. 4. Dipolar walls obtained for a square area2u)? con-
taining a density of 1.375£&m~2 when a cyclic external force of
0.36 MPa was applieda) Initial configuration of dislocationgb)
Configuration obtained after 15000 iteration stgje$.Evolution of
the elastic energy of the systefm %). (d) Fourier transform ob-
tained from(b).

nihilation effect is almost negligible due to the low disloca-
tion density. In all the simulations performed less than one
. ] o ; ) nAx

percent of the dislocations were annihilated. Figure 5 gives AN=——=4.75 um,
the velocity distribution of dislocations after 1000 iteration k

zt?/%?oiir':d forxgst;gﬁ;aemmsajg r_lg_)g;t Icgstth\?ecrjilfsilezcztlljcrmk? t‘avv(\a/hereAx=1M andn=20 correspond respectively to the dis-
pothesisyconcerning the mean ;/elocity used in the caIcu)I/atio'HanCe between mesh points in telirection and to the total
of the time step. The spatial organizations obtaifiE. number of mesh points. For different values/ot ranging

. . . ; from 0.01 to 1.0 the results converge. Moreover, we studied
4(b)] are in agreement with those given by Devirtérand . . . . -
demonstrate that we cannot obtain a dislocation pattern witﬁhe influence of the_ dislocation d_ensny and the_frlcnon force
a single slip system and without an external stress. To chap! the characteristic Iength of dipolar walls. Figure 6 reca-
' pitulates the results obtained and shows the evolutioniof
function of the inverse of the dislocation density. The three
curves presented correspond to three different values of the
Number of dislocations friction stressFicion - The dashed and solid lines correspond
to the results obtained in Ref. 20 whereas the points below
were determined by our simulations. Each point in the curves
corresponds to the average value of several simulations and
we can see thak decreases as the dislocation density in-
creases. This behavior can be represented by the following

scaling:

80
704

60

50
40

20 A=, (16)

204
. wherek is a constant parameter calculated in Ref. 20 for a

oy zero friction stress and given by

100 -80 60 40 20 O 20 40 60 80 100 16m(1—v)7
. -1 k= ——MMM8MM
velocity (m.s1) ,LLb

: (17)

FIG. 5. Example of a velocity distribution during a simulation. where 7 equals the effective stress.
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(10-%)
YA 6 @
= ) g
-]
44
L
: <4
0 X 3 ; + —
0 0.1 0.3 0.5 0.7 0.9 1
o . . o/u (10
FIG. 7. Active slip system associated to the cell formation.
i . . ) Go®m)
The formation of dipolar walls can be explained and in- 147 @
terpreted as follows: an initial stage, characterized by the 124
formation of isolated dipoles, occurs in the system. These 104

dipoles are destabilized under the action of the external force
and a correlation between dislocations of the same sign ap-
pears leading to the formation of subgrain boundaries. Then,
opposite subgrains can assemble to form a dipolar wall.

We analyzed the influence of tf&g;.i,, ON the character-
istic length. In this case, we obtained thatdecreases as °2 + t * 5 —
Fiiction iNCreases. This result can be explained in the follow- 0" o 7w )
ing way: each dipolar wall formed during a simulation cre-
ates a stress field which leads to push the other walls. When
Fiicion=0, the motion of a dislocation is easier and the space FIG. 9. Variation ofn with the inverse of the external appliéa)
between two walls is maximal and fixed by the dislocationand the inverse of the square root of the dislocation derjty
density. However, wheffr¢ion70, the range of the stress
field created by a wall is shorter and the mobility of the

dipolar walls decreases. In consequerniceannot be maxi-
mal. An extreme case occufse., nonformation of dipolar
walls) for values of friction stress greater than 1.26 MPa.

FIG. 8. Cell organization obtained for a square are#26).)?
containing a dislocation density of 2.52an~2. (a) Initial configu-
ration of dislocations(b) Configuration obtained after 200 iteration
steps without external forcéc) Configuration obtained after 1000
iteration steps without external forcéd) Configuration obtained
after 1000 iteration steps with/u=10"2.

C. Cellular organization

The conditions under which a cellular organization ap-
pears differ completely from those to observe dipolar walls.
In the latter case, only one active slip system is necessary to
observe the formation of walls perpendicular to the glide
direction, while in the former case we require the activation
of a secondary slip system. Another possibility, which facili-
tates the formation of cellular structures consists to increase
the temperature in order to activate the climb process. Here,
we focused our attention on studying the formation of dislo-
cation cells, starting from a random distribution of disloca-
tions and by considering two slip systems parallel to the
diagonals of the simulation bo¥ig. 7). Moreover, we con-
sidered the climb process in the determination of the elastic
interaction force$see Eq(7)] and the constants used during
the simulations are given in Table I. Figur&Bgives a typi-
cal configuration obtained for a dislocation density of
2.510° m™? without an external force and with a
Fiicion=4-2 MPa. The last figure shows clearly the forma-
tion of a cell organization after 1000 iterations where the
structuration starts to develop by the formation of clusters
composed of “pseudodipoles” uniformly distributed in space
[Fig. 8b)]. And afterwards, mobile dislocations join these
clusters to give a cellular organization. Figur@)8gives the
configuration obtained in the same conditions as those of
Fig. 8(c) with an applied stress equal du=10"3. Figure
9(a) shows the variation of\ in function of the applied
stress. In fact, we have represented these parameters in re-
duced coordinates:b/\ for the cell size ando/u for the
external stress. Each point in Figacorresponds to a mean
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value of the characteristic length calculated in sthandy (a) The formation of dipolar walls when only one slip

directions by means of a Fourier transform. Fo#0, it is  system is activated requires necessarily the application of an
easy to show that the relation betweerand the inverse of external forcgFig. 4(b)].

the applied stress can be approximated by the following re- (b) The results in Fig. 6 allow us to qualitatively describe

lation: the evolution of the dipolar walls in function of the disloca-
tion density and the friction force as=k/p. Moreover, our
sz E (18) computer experiments suggest that the main parameters re-
yn N sponsible for the formation of dipolar walls are the external

force and the long range interaction forces.
o . S (c) The results obtained when two active slip systems and
modulus, and=20 is a constant which was assimilated dur'the climb process are activated show that it is possible to

:(ng 4%(501? Errrt]aeg\;\;ltghg\r/]vsu?r:\éegillui?onnStinEﬂ ?uur:cfigjr?lgfs observe the formation of a cell organizatifffig. 8c)] and
=abu. g the Fourier analysis of these cell structures allowed us to

the inverse of the square root of the dislocation density with - . : o
a constant external fordg/u=10"?). The results reported in write two scaling relationships:
the last figure allow us to write

whereb is the norm of the Burgers vectorg, is the shear

p b _
)\OCp_l/Z. (19) ;—kx and )\OCp

1/2
1

This evolution is in agreement with those reported in Refs. . . . .
7_9 which are in excellent agreement with the experimental re-

sults reported in Ref. 7

V. CONCLUSIONS
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