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Dislocations patterns have been extensively studied by means of TEM. In parallel, theoretical approaches
have been developed by using two methods; reaction diffusion schemes and computer simulation models. This
distinction is not rigid since some computer models include the former approach in their evolution equations.
Independently from the difficulties each approach presents in formulating the collective behavior of disloca-
tions, the aim of these studies is to exhibit simple dislocation patterns as persistent slip bands and/or cellular
organization. In this context, computer simulations brought a methodology which undoubtedly is a complement
to the existing approaches for dislocations. Nevertheless, several remarks must be pointed out about the results
obtained with the method. First, the conditions of simulations~e.g., cutoff procedure, periodic boundaries
conditions!, have been extensively criticized and responsible for spurious patterns. Second, the simulations
developed do not show clearly the formation of cell structures. Third, the simulations performed do not tell us
about the evolution of dislocation patterns in function of the parameters such as dislocation density, external
force, or friction stress. The aim of the simulations presented here is to study at the mesoscopic scale the
formation of dislocation patterns in two dimensions. For this, we used systems of large dimensions (20m)2 and
rigid boundaries conditions which permitted us to avoid a cutoff procedure. The simulations performed exhibit
the formation of dipolar walls present in persistent slip bands and clearly show the formation of cell organi-
zations. For each pattern observed, we have deduced relationships between the size of the patterns and the
parameters used as dislocation density, external force, or friction stress. And indeed, the results obtained show
a good agreement with experimental laws.

I. INTRODUCTION

The classical theory of dislocations has permitted one to
elucidate the main properties of individual dislocations and
to address the difficult question of plastic deformation or
strain hardening of metals and alloys.

1–4
These theoretical

studies have been corroborated by experimental results based
on transmission electron microscopy~TEM!. Beside this, in-
teracting dislocations can present complicated patterns like
persistent slip bands~PSB’s!, labyrinth and/or cell structures
for which our knowledge is limited to some interaction
mechanisms between dislocations. Thus the theoretical ap-
proaches developed until now, for dislocation patterning, are
mainly qualitative. This is due to the complexity of the non-
linear physical mechanisms intervening during plastic defor-
mation. Moreover, the dislocation patterning presents a dy-
namical behavior similar to that of physical systems driven
far from equilibrium and where spatiotemporal pattern for-
mation is present.

The studies developed by means of TEM have deduced
some of the main mechanisms responsible for dislocation
patterning, for example, dipole formation, the number of ac-
tive slip systems, annihilation, and multiplication
processes.5,6 Moreover, they have permitted one to deduce
several scaling laws for the observed patterns relating the
flow stress with the dislocation density and with the size of
the cells obtained.7–9These scaling laws can be explained by
means of interaction mechanisms between dislocations~e.g.,
forest mechanisms!. But frequently, it is difficult to make a
correct interpretation of the experimental results when more
than one dislocation mechanism is activated.

Beside the experimental studies, we have theoretical ap-
proaches intent on giving an explanation to the observed
patterns. For instance, in analogy with the spinodal decom-
position of solids, Holt10 has studied the formation of a cell
organization in two dimensions by means of a diffusion
equation. The model shows a spontaneous structurization of
dislocations without the action of an external force. How-
ever, some of the hypotheses made in this model have been
contested.7 Some of the arguments given against Holt’s re-
sults are that he did not use a random initial distribution of
dislocations~each dislocation was surrounded by disloca-
tions of opposite Burgers vectors! and a cutoff radius ofr1/2

~wherer corresponds to the dislocation density! was intro-
duced in the calculation of the interaction forces. The latter
point facilitates the formation of patterns as has been dem-
onstrated in Refs. 11 and 12. To study theoretically the col-
lective behavior of a density of dislocations some of the
methods used are reaction, reaction-diffusion schemes, and
computer simulations. In the latter approach some models
~cellular automata! include diffusionlike equations~see Ref.
7 and references therein!. A pioneer study on the collective
behavior of dislocations was developed by Walgraef and
Aifantis.13~a!,13~b! These authors used a formulation based on
the coupling of two partial differential equations expressing
the spatiotemporal evolution of mobile and slow disloca-
tions; the description includes local interactions between dis-
locations, for example, annihilation, multiplication or dipole
formation. The motion was assumed to be diffusive and the
dynamical analysis showed the formation of dislocation pat-
terns observed experimentally. However, as was pointed out
by Shiller and Walgraef13~b! and in Ref. 14 the dependence of
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the parameters in function of the stress or the temperature
must be improved to facilitate the comparison between the
experimental and theoretical results. Moreover, Kratochvil
et al.15 have developed a reaction-diffusion model to study
the formation of veins and dipolar walls in monocrystals
under cyclic loading. This last approach is based on the dis-
tinction between two kinds of dislocations: mobiles which
are responsible of the plastic deformation and dipoles pro-
ducing the strain hardening. In this formulation, the diffusive
character of dislocations is given in terms of internal stress
gradients and the analysis shows that it is possible to ob-
serve, qualitatively, the formation of vein structures and
PSB’s. However, the considerable number of equations in the
model limits an analytical stability analysis.

As mentioned above, the study of dislocation patterning
by computer simulations has been developed by using
mainly cellular automata or molecular dynamics. A great ad-
vantage of these methods is that, as the computer models are
developed by using the elementary properties of dislocations,
we can avoid some drastic approximations on the dislocation
interactions used in some analytical models. Among these
computer simulations we can find those of Lepinouxet al.,16

who used the notion of cellular automata to study, in two
dimensions, the dynamics of a random distribution of edge
and screw dislocations. In this formulation, the dislocations
are free to move in their glide plane and in a perpendicular
direction associated to the climb mechanism, local interac-
tions ~e.g., annihilation and multiplication of dislocations!
and periodic boundaries conditions were used. The simula-
tions show several interesting features like the possibility to
obtain the formation of dipolar walls. Moreover, they show
that it is impossible to obtain a spontaneous dislocation
structure without the action of an external force. Another
computer simulation approach, using the basis of molecular
dynamics, was developed by Amodeo and Ghoniem.17 Their
work was centered on the study of the formation of PSB’s
and cellular structures in two dimensions. For this, they con-
sidered a simulation cell with a random distribution of edge
dislocations obeying their local interactions mechanisms
~i.e., annihilation, multiplication, dipoles formation.!. In this
approach, the dislocation motion is determined by the action
of an external force and the elastic interaction between dis-
locations. The results obtained, when only one glide system
is activated, show the formation of a dislocation wall at the
center of the simulation cell and when two glide systems are
activated a fairly clear cell organization is observed.

Most of the computer simulations described above were
performed for systems of small size~'1m2! with periodic
boundaries conditions and where the range of interaction was
limited to half the size of the simulation box. It is important
to remark that these last restrictions imply, as was stated by
Gulluoglu et al.,11 that it is possible to obtain spurious pat-
terns, for instance, polygonization walls which appear when
the dislocation density is very high.12 Until now, the only
studies in three dimensions are those developed by Kubin
et al.,18–20to study at the mesoscopic scale the plastic defor-
mation in a single crystal. Their approach is based on a dis-
cretization of a dislocation loop into edge and screw seg-
ments. Each segment can interact with each other and the
multiplication process is taken into account. By this method
it is possible to quantify at the mesoscopic scale the plastic

deformation in relation with the dislocation theory. For the
moment, the deformation produced cannot exceed one per-
cent due to the complexity of interactions introduced in the
model.

The studies we present here were focused to clarify some
of the difficulties encountered in dislocation patterning,
namely, the formation of dipolar walls and cellular organiza-
tion. Our computer simulations were developed at the meso-
scopic scale for a single crystal of copper of~20m!2 under
cyclic loading and under rigid boundary conditions. The plan
of the paper is as follows. In Sec. II, we briefly explain the
dislocation physics used in the algorithm and we calculate
the forces exerted on each dislocation. In Sec. III, we de-
velop the algorithm used. In Sec. IV, we give relevant nu-
merical results when one or two glide systems are activated
and we derive the resulting relationships. In Sec. V, we sum-
marize the main results obtained in our study.

II. DISLOCATION THEORY AND MOLECULAR
DYNAMICS

Nowadays, molecular dynamics is a powerful tool in the
study of solid state problems. The methodology used is par-
ticularly adapted to dislocation problems. Indeed, disloca-
tions can be considered as elementary elements which move
under the action of forces. Hence it is possible to study, at
mesoscopic scale, the spatiotemporal evolution of a given
dislocation distribution in function of the forces exerted on
these point defects. These long range foces can be separated
in three processes: interactions between dislocations, inter-
action between dislocations and an external stress field, and
interaction between dislocation and the crystal lattice. More-
over, dislocations are line defects which can interact between
each other at short distance. Then, it is necessary to introduce
in the formulation local interactions like annihilation or mul-
tiplication.

A. Long range interaction forces

It is well known that the presence of a dislocation in a
crystal produces a deformation field which can be divided in
two parts: a plastic deformation near the core of the dislo-
cation and an elastic one where the linear theory of elasticity
can be applied. If we suppose that the core of a dislocation
can be approximated by an incompressible area, then the
stress field produced by an edge dislocation can be consid-
ered as an elastic stress. In this case, we can use the equa-
tions for plane deformation which are satisfied by any solu-
tion of the biharmonic equation21

¹4x50, ~1!

and where the elastic stress field in cylindrical coordinates
can be written as

s rr5
1

r

]x

]r
1

1

r 2
]2x

]u2
, ~2a!

s rr5
]2x

]r 2
, ~2b!
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s ru52
]

]r S 1r ]x

]u D . ~2c!

To obtain a solution for the last equations, we can use func-
tions of the form

x5R~r !Q~u!, ~3!

and solve the resulting ordinary differential equations forr .
In this way, a solution for a positive edge dislocation is of the
form

x52
mb

2p~12n!
r ln r sinu, ~4!

wherem is the shear modulus,n is the Poisson’s ratio,b is
the norm of the Burgers vectors, andu is the angle between
the Burgers vector and the directioni j ~see Fig. 1!. Then, the
elastic stress field in cylindrical coordinates is given by

is i , j i5
mb

2p~12n!r i j S 2sinu cosu 0

cosu 2sinu 0

0 0 22n sinu
D .

~5!

The force exerted on the dislocationi by the dislocationj is
calculated by means of the Peach-Koelher relation22

FW i j5~bW s i j !3LW j . ~6!

Given that in thez direction the dislocationj is parallel to
the dislocationi , the forces to be considered are in the~r ,u!
plane~see Fig. 1!. Hence the forces expressed on the refer-
ential frame of the dislocationj are

FW i j ~r ,u!5
k

r i j
S cosu cos~2g!

sinu1sin~2g!cosu D 5S Fi j
g

Fi j
c D , ~7!

whereF i j
g , F i j

c are respectively the glide and the climb com-
ponents of thej dislocation. The latter component is acti-
vated at high temperatures and is related to the diffusion of
point defects.1

In general, studies on plastic deformation are associated
with the presence of an external force which can be monoto-
nous or cyclic.5,6 Here, we used a cyclic external loading and
the resulting forces were calculated by using Eq.~6!. Hence,
if the external stress field is given bysext, its corresponding
force on a dislocationi can be expressed as

FW ext5~bW isext!3LW i . ~8!

Another force acting on a dislocation is the friction force,
FW friction , which gives us a lower bound of the external force
to be applied on a dislocation to set its movement on a glide
plane. The friction stress is always opposite to the motion of
the dislocations and its origin can be related to several fac-
tors, for instance, the action of the crystal lattice, the pres-
ence of impurities, or the influence of other dislocations. For
cubic face centered metals the value of the friction force is
relatively low ~1025m! and for cubic centered metals or co-
valent structures this value is higher.23

B. Local interactions

Dislocations can interact between each other at short
range implying complex atomic rearrangements on the
crystal.1–4 These interactions have been detailed by remark-
able experimental studies5,6 where we can find the conditions
under which they appear. The dislocation processes most fre-
quently used13~a!,13~b!,16,19 for studying dislocation patterning
are annihilation, multiplication, and pinning of dislocations.
The annihilation process corresponds to the destruction of
two dislocations of opposite Burgers vectors approaching
each other within a critical region. The critical distance be-
tween these two defects is, in the case of an edge dislocation
in Cu, approximatively equal to 1.6 nm.24 This process,
which is activated at high temperature, induces the well-
known recovery process in strong hardened metals.21 The
multiplication of dislocations is a complex process respon-
sible of the strain hardening in materials, and a well known
mechanism is the Frank-Read source.4 This process can be
schematically described as follows: under the action of a
shear stress,s, a pinned line of dislocation can be bent. If
this stress is sufficiently high, the curvature of the line passes
through a maximum forming a semicircle which evolves,
under the action ofs, into a complete dislocation loop con-
taining in its interior the initial line of dislocations. If the
applied stress exceeds this value, the line can increase be-
yond a semicircle and become a complete loop and restore
the initial line of dislocation. This mechanism produces a
large number of dislocation loops under the action of rela-
tively small stress~mb2!. During plastic deformation, the dis-
location density increases considerably and some of the cre-
ated dislocations become immobile. The pinning of
dislocations creates a forest of dislocations which interacts
with mobile dislocations. If a dislocation passes through the
forest it may form jogs or junctions resulting from the local
interactions between the dislocations and the forest.2

FIG. 1. Referential frame related to the interaction forces be-
tween two edge dislocations.

53 6285FORMATION OF DISLOCATION PATTERNS: COMPUTER . . .



C. Equation of motion

The next step consists in deriving an equation of motion
for each dislocation in function of the forces described
above. Each edge dislocation can move on a slip plane par-
allel to its Burgers vector and in a perpendicular direction
~i.e., the climb mechanism!. In this case, the equation of
motion for an edge dislocation can be written as

FW i5mi

d2rW i
dt2

, ~9a!

with

FW i5(
j
FW i j
int1FW ext2FW friction . ~9b!

and wheremi51. Here we assumed that the inertial effects
induced by the linear mass of the dislocations can be ne-
glected since they are nonsignificant.25 Moreover, when the
dislocation velocities are smaller than the speed of sound it is
possible to express the equation of motion, Eq.~9a!, as

vW i5
FW i

B
, ~10!

whereB corresponds to a damping coefficient~B5531025

Pa s for copper andB5531024 Pa s for aluminium20!. This
formulation of the equation of motion, in contrast with Eq.
~9a! permitted us to use a higher temporal mesh point~1029

s! and lower densities of dislocations.

III. DESCRIPTION OF THE FORMULATION

The formulation, developed here, uses the basis of mo-
lecular dynamics and consists in studying the formation of
dislocation patterns in two dimensions at the mesoscopic
scale. Several points differentiate our approach from classi-
cal problems of molecular dynamics. First, the forces used
do not derive from an interaction potential. Secondly, the
elastic interaction between two dislocations is a function of
the angle between their two Burgers vectors@see Eq.~7!#.
This angular dependence introduces an anisotropy in the
elastic interaction force and increases the difficulty to calcu-
late it. Thirdly, dislocations are line defects which can inter-
act at short distance. In consequence, we must take into ac-
count within the dynamical evolution of the dislocation
distribution several processes like annihilation or multiplica-
tion. Here, the system is constituted of an ensemble of par-
allel edge dislocations disposed randomly inside a simulation
cell. The numerical procedure consists in calculating for each
dislocation its new position and velocity resulting from the
forces acting on it. This is done in two steps: First, we
calculate the new velocity for each dislocation by using the
equation

v i~ t1dt!5
Fi~ t !

B
, ~11!

whereFi corresponds to the total force exerted on a disloca-
tion i and defined by Eq.~9b!, and secondly by using Eq.
~11!, we determine the dislocation positions given by

r i~ t1dt!5r i~ t !1dtv i~ t !, ~12!

where dt corresponds to the time step used. In a two-
dimensional approach, it is nearly impossible to formulate
correctly both the forest mechanisms and the multiplication
process. To overcome this difficulty we introduced in the
system a sufficiently high dislocation density. Moreover, the
procedure we used to simulate the annihilation process was
as follows: for any couple of dislocationsi , j we checked
both if their Burgers vectors were parallel or antiparallel and
if the distance separating the dislocations,r i , j , was greater or
smaller than the critical annihilation distancer a . Then, if the
Burgers vectors were antiparallel and ifr i j,r a , the disloca-
tions i and j were annihilated. To maintain a dislocation
velocity smaller than a critical velocity,vc ~usually the speed
of sound!, it is necessary to perform a scaling of the veloci-
ties. This consists in supposing that the total kinetic energy
of the dislocations is constant in time. In this case, we obtain
a Gaussian distribution of velocities for the dislocations
around an average velocityv0.

26 The scaling of velocities is
performed by using a scaling factorb given by

b5F ~2N23!kbTref
( iv i

2 G1/2, ~13!

where~2N23! are the degrees of freedom,kb is the Boltz-
mann constant,Tref is a temperature reference for the system,
andv i is the velocity of the dislocationi . By multiplying b
by the velocity@Eq. ~11!#, we can determine the new distri-
bution of velocities, that is,

v t11←bv t11 . ~14!

The scaling is performed if more than 20% of the density of
dislocations have a velocity greater than 100 m/s or smaller
than 2100 m/s corresponding approximately to 100-
iterations steps. To be thorough, we calculated the elastic
interaction energy between dislocations which for edge dis-
locations is given by

Wij
int~r i j ,u i !52

mbibj
2p~12n!

ln
r i j
r 0

1
mbibj

2p~12n!
cos~2u i1a!, ~15!

wherea5a i2a j andr 0'b ~region of the dislocation core!.
It is clear that the temporal evolution of the elastic interac-
tion energy does not characterize the formation of a disloca-
tion pattern but it is useful to verify that the system evolves
towards a configuration of equilibrium.

IV. SIMULATIONS AND NUMERICAL RESULTS

A. Simulations

We performed computer simulations for a distribution of
edge dislocation in two dimensions by using the procedure
described in the last section. To avoid a cutoff procedure we
used systems of large dimensions~20m!2 and rigid boundary
conditions, that is, any dislocation arriving at the boundary
of the simulation cell cannot leave it~zero flux!, but it can
move to the interior of the cell if this movement leads to a
dislocation configuration that minimizes the elastic energy.
At the beginning of the simulation we introduced a random
configuration of dislocations ranging from 300 to 1000
which corresponds approximately to a density of about 1012
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cm22. The time step used was equal to 1029 s and was de-
duced from the mean free path of a dislocation which varies
like r21/2. For a dislocation density of 1012 cm22 the mean
free path is equal to 1m. If we suppose that the mean velocity
for the dislocation is'1 m s21 this implies that the charac-
teristic time,dt, is equal to 1027 s. Then, a fraction of one
percent of this time represents a good estimation of the time
step needed in a simulation. In our simulations the time step
was assumed to be constant in contrast with Ref. 17 wheredt
varied considerably~dt e@1029 s, 1 s#! and which can intro-
duce a divergence problem. At the beginning of the simula-
tions, the velocity of the dislocations and the external force
were set equal to zero and the forces created by the disloca-
tion i due to the presence of the remainingN21 dislocations
were calculated by using Eq.~7!. An external force has been
applied on the system in the glide direction of the disloca-
tions. The procedure which permits us to calculate this last
force can be explained as follows: we considered a constant
stress tensor,

s i , j
ext5S 0 s1,2

s1,2 0 D ,
acting on the system and corresponding to an experimental
shear stress used in the study of patterns like persistent
slip bands. The application of this external stress induced
on each dislocation a force which can be calculated by using
Eq. ~6!. Then, for a dislocationi of Burgers vector
bW i5(b i

x ,b i
y) the force is equal to

FW ext5S bixs1,2

bi
ys1,2

D ;
this external forcing was applied in the glide direction each
500 iteration steps. This periodicity, deduced numerically,
corresponds to the time necessary for a complete relaxation
of the system and does not correspond to the frequency ex-
perimentally used~1 Hz!. Due to the low deformation ob-
tained at the end of each simulation~etot,1%! we neglected
the rotation effect associated to the action of the shear stress.

The numerical procedure detailed in the last paragraph
was used when either one or two slip systems were activated.
In the former case, we were interested in the formation of
dipolar walls while in the latter case we studied the forma-
tion of cellular structures. In both cases, we analyzed the
influence of the dislocation density, the external force, and
the friction stress on the resulting patterns. In Table I are
given the constants used during the simulations.

B. Dipolar walls

In this subsection, we report the results obtained when
only one glide system was activated~Fig. 2!. Figure 3~c!
shows the resulting configuration obtained after 104 iteration

steps for a system of~20m!2 containing 550 dislocations
~r51.3751012 m22! and for a friction stress of about 0.36
MPa. Identical results were obtained for different densities of
dislocations and in all the cases we did not observe a spon-
taneous structuration. In contrast, when we applied a cyclic
stress of63 MPa, we obtained the formation of four dipolar
walls @Fig. 4~b!#. A common feature to these simulations is
the decrease of the elastic interaction energy towards a stable
configuration@Figs. 3~b! and 4~c!#. The oscillations on the
energy shown in Fig. 4~c! correspond to the effect of the
cyclic external force which is responsible for the inversion of
polarity in the walls. Moreover, in these simulations the an-

TABLE I. Constant parameters used in the simulations.

Metal
Burgers

vector ~nm!
Poisson
ratio

Shear
modulus
~GPa!

Time step
~s!

Copper 2.5 0.324 42 1029

FIG. 2. Active slip system associated to the formation of dipolar
walls.

FIG. 3. Configuration obtained for a square area of~20m!2 con-
taining a density of 1.3751012 m22 without an external force.~a!
Initial configuration of dislocations.~b! Evolution of the elastic en-
ergy of the system~J m21!. ~c! Configuration obtained after 5000
iteration steps.
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nihilation effect is almost negligible due to the low disloca-
tion density. In all the simulations performed less than one
percent of the dislocations were annihilated. Figure 5 gives
the velocity distribution of dislocations after 1000 iteration
steps and shows that the major part of the dislocations have
a velocity lower thanu30u m s21. This last verifies our hy-
pothesis concerning the mean velocity used in the calculation
of the time step. The spatial organizations obtained@Fig.
4~b!# are in agreement with those given by Devincre20 and
demonstrate that we cannot obtain a dislocation pattern with
a single slip system and without an external stress. To char-

acterize the obtained patterns we performed a Fourier trans-
form of the resulting density distribution of dislocations.
This was done in the following way: we divided thex axis of
the simulation box into equally spaced mesh points~20 mesh
points! and then we counted the dislocations lying in each
interval. This last gives us the local distribution in function
of the space to which we fitted a curve. And subsequently,
we performed the Fourier transform to the fitted curve. The
deduced characteristic length,l, is in fact an average value
of several Fourier transforms and its accuracy is of60.2m.
This allowed us to deduce a scaling behavior characteristic to
each observed pattern. The power spectrum of Fig. 4~d!
gives a maximum with a period equal tok54.3. Hence the
wavelength is given by

l5
nDx

k
54.75 mm,

whereDx51m andn520 correspond respectively to the dis-
tance between mesh points in thex direction and to the total
number of mesh points. For different values ofDx ranging
from 0.01 to 1.0 the results converge. Moreover, we studied
the influence of the dislocation density and the friction force
on the characteristic length of dipolar walls. Figure 6 reca-
pitulates the results obtained and shows the evolution ofl in
function of the inverse of the dislocation density. The three
curves presented correspond to three different values of the
friction stressF friction . The dashed and solid lines correspond
to the results obtained in Ref. 20 whereas the points below
were determined by our simulations. Each point in the curves
corresponds to the average value of several simulations and
we can see thatl decreases as the dislocation density in-
creases. This behavior can be represented by the following
scaling:

l5
k

r
, ~16!

wherek is a constant parameter calculated in Ref. 20 for a
zero friction stress and given by

k5
16p~12n!t

mb
, ~17!

wheret equals the effective stress.

FIG. 4. Dipolar walls obtained for a square area of~20m!2 con-
taining a density of 1.3751012 m22 when a cyclic external force of
0.36 MPa was applied.~a! Initial configuration of dislocations.~b!
Configuration obtained after 15000 iteration steps.~c! Evolution of
the elastic energy of the system~J m21!. ~d! Fourier transform ob-
tained from~b!.

FIG. 5. Example of a velocity distribution during a simulation.

FIG. 6. Variation ofl with the inverse of the dislocation density
and the friction stress. The dashed line was calculated by using Eq.
~12! and the value ofk used is given in Ref. 20.
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The formation of dipolar walls can be explained and in-
terpreted as follows: an initial stage, characterized by the
formation of isolated dipoles, occurs in the system. These
dipoles are destabilized under the action of the external force
and a correlation between dislocations of the same sign ap-
pears leading to the formation of subgrain boundaries. Then,
opposite subgrains can assemble to form a dipolar wall.

We analyzed the influence of theF friction on the character-
istic length. In this case, we obtained thatl decreases as
F friction increases. This result can be explained in the follow-
ing way: each dipolar wall formed during a simulation cre-
ates a stress field which leads to push the other walls. When
F friction50, the motion of a dislocation is easier and the space
between two walls is maximal and fixed by the dislocation
density. However, whenF frictionÞ0, the range of the stress
field created by a wall is shorter and the mobility of the
dipolar walls decreases. In consequence,l cannot be maxi-
mal. An extreme case occurs~i.e., nonformation of dipolar
walls! for values of friction stress greater than 1.26 MPa.

C. Cellular organization

The conditions under which a cellular organization ap-
pears differ completely from those to observe dipolar walls.
In the latter case, only one active slip system is necessary to
observe the formation of walls perpendicular to the glide
direction, while in the former case we require the activation
of a secondary slip system. Another possibility, which facili-
tates the formation of cellular structures consists to increase
the temperature in order to activate the climb process. Here,
we focused our attention on studying the formation of dislo-
cation cells, starting from a random distribution of disloca-
tions and by considering two slip systems parallel to the
diagonals of the simulation box~Fig. 7!. Moreover, we con-
sidered the climb process in the determination of the elastic
interaction forces@see Eq.~7!# and the constants used during
the simulations are given in Table I. Figure 8~c! gives a typi-
cal configuration obtained for a dislocation density of
2.51012 m22 without an external force and with a
F friction54.2 MPa. The last figure shows clearly the forma-
tion of a cell organization after 1000 iterations where the
structuration starts to develop by the formation of clusters
composed of ‘‘pseudodipoles’’ uniformly distributed in space
@Fig. 8~b!#. And afterwards, mobile dislocations join these
clusters to give a cellular organization. Figure 8~d! gives the
configuration obtained in the same conditions as those of
Fig. 8~c! with an applied stress equal tor/m51023. Figure
9~a! shows the variation ofl in function of the applied
stress. In fact, we have represented these parameters in re-
duced coordinates:b/l for the cell size andr/m for the
external stress. Each point in Fig. 9~a! corresponds to a mean

FIG. 7. Active slip system associated to the cell formation.

FIG. 8. Cell organization obtained for a square area of~20m!2

containing a dislocation density of 2.51012 m22. ~a! Initial configu-
ration of dislocations.~b! Configuration obtained after 200 iteration
steps without external force.~c! Configuration obtained after 1000
iteration steps without external force.~d! Configuration obtained
after 1000 iteration steps withs/m51023.

FIG. 9. Variation ofl with the inverse of the external applied~a!
and the inverse of the square root of the dislocation density~b!.
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value of the characteristic length calculated in thex and y
directions by means of a Fourier transform. ForsÞ0, it is
easy to show that the relation betweenl and the inverse of
the applied stress can be approximated by the following re-
lation:

r

m
5k

b

l
, ~18!

whereb is the norm of the Burgers vectors,m is the shear
modulus, andk520 is a constant which was assimilated dur-
ing a long time with an universal constant.7 In our studies
k>400. Figure 9~b! shows the evolution ofl in function of
the inverse of the square root of the dislocation density with
a constant external force~r/m51022!. The results reported in
the last figure allow us to write

l}r21/2. ~19!

This evolution is in agreement with those reported in Refs.
7–9.

V. CONCLUSIONS

In this paper, we analyzed the formation of dislocation
patterns by using concepts emerging from molecular dynam-
ics. The computer simulations reported permitted us to
clarify several questions of dislocation patterning.

~a! The formation of dipolar walls when only one slip
system is activated requires necessarily the application of an
external force@Fig. 4~b!#.

~b! The results in Fig. 6 allow us to qualitatively describe
the evolution of the dipolar walls in function of the disloca-
tion density and the friction force asl5k/r. Moreover, our
computer experiments suggest that the main parameters re-
sponsible for the formation of dipolar walls are the external
force and the long range interaction forces.

~c! The results obtained when two active slip systems and
the climb process are activated show that it is possible to
observe the formation of a cell organization@Fig. 8~c!# and
the Fourier analysis of these cell structures allowed us to
write two scaling relationships:

r

m
5k

b

l
and l}r21/2,

which are in excellent agreement with the experimental re-
sults reported in Ref. 7
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