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We propose a phase-field model to describe reaction front propagation in activated transitions obeying
Arrhenius kinetics. The model is applicable, for example, to the explosive crystallization of amorphous films.
Two coupled fields interact during the reaction, a temperature Ti€gt) and a fieldC(x,t) describing the
amorphous/crystal transition, which are continuous functions of spacel timet. Unlike previous work, our
model incorporates a nonzero front widtlin a natural way, corresponding to that region in space whered
C undergo rapid variation. In the limit of— 0, our model reduces to the sharp interface approach of others.
Treating the background temperature of the reacting sample as a control parameter, periodic solQtiemd in
T can be found which go through a series of period doubling bifurcations. We find that the substrate tempera-
ture marking the onset of period doubling bifurcations decreases with increasing concentration diffusion.
Furthermore, it is shown that period doubling bifurcations@fT solutions of period greater than 2 are
generated by dynamics isomorphic to those of the one-dimensional logistic map, for all values of concentration
diffusion studied.

[. INTRODUCTION since the propagation velocities of the front can be meters
per second In these experiments, the amorphous film is
Materials existing in a metastable state can undergo an a substrate fixed at a temperatdrg,,. It is T, that
transition into an energetically more favorable phase bydetermines whether or not the latent heat released will be
chemical activation. In such processes, the metastable phageeat enough to maintain self-sustained crystallization. Be-
must overcome an energy barrier. For an amorphous matéew a critical value ofT ¢ ;,, the latent heat released is insuf-
rial, this energy can correspond to that required for the glasficient to crystallize any amorphous material. The heat is thus
to locally diffuse and reorient itself to attain a stable crystal-lost to the substrate and the crystallization front stops. A
line phase. The rate at which such a process occurs in striking feature of the process is that, for temperatures
steady state is often well described by the Arrhenius law oslightly above the critical substrate temperature, regular pe-
chemical kineticse™ E/*sT, whereE is the activation energy, riodic variations in the film thickness, grain size, and com-
kg is Boltzmann’'s constant, and is temperature. Such a pleteness of transformation have been observed after crystal-
reaction can start due to spontaneous fluctuations in thkzation in samples such as InSb and GaS$iFar away from
metastable phase, or, as in the case we shall consider, whancleation centers, these surface undulations resemble paral-
the metastable phase is brought into contact with a moréel wave fronts, perpendicular to the direction of propagation
stable phase. A reaction front then forms between the tweof the crystallization front. Their periodic spacing reflects the
phases, which advances from the stable phase through tifigct that the temperature at the front varies periodically. The
metastable phase, until no metastable phase remains. In exascillating interfacial temperature leads to different local re-
thermic reactions, latent heat is released at this front. Sincaction rates and thus different local crystal densities, which
the Arrhenius rate increases with temperature, such an ex@aan be measured opticaflySimilar periodic patterns have
thermic reaction can lead to an increase in the reaction rat@also been observed in oscillatory zoning in the solidification
causing the transition to develop a rapid, self-sustaining reef binary mixtures, such as plagioclase feldspaas,well as
action front. In the case where the latent heat is lower thawother nonlinear systen$
the activation energy, the metastable material can be elevated In the case of explosive crystallization, the origin of these
to some fixed temperature, thus still allowing for the forma-undulations has been explained by van Saarloos, Weeks, and
tion of a front. Kurtze? using the following sharp interface model for the
An experimental realization of such a reaction is found intemperature field. In such a model the amorphous/crystal
the crystallization of amorphous films. The lower free energytransition is assumed to take place over a spatial region that
of the crystalline state leads to the release of latent heat arid infinitely sharp. In this paper we have extended their
initiates the formation of a rapid reaction front as discussednalysis by including the coupling to a fie@(x,t) describ-
above. This scenario is known as explosive crystallizatioring the amorphous/crystal transition. In this approach,

0163-1829/96/53.0)/626310)/$10.00 53 6263 © 1996 The American Physical Society



6264 NIKOLAS PROVATAS, MARTIN GRANT, AND K. R. ELDER 53

C(x,t) can vary independently and is not slavedTi@as in  stable and metastable phases. Thus, we introduce a field
the sharp interface approach. The coupling betweemd T C(x,t) describing the local concentration of reactifmgeta-
will become important as the system gets deeper and deepstable material, whereC=1 in the completely unreacted
into the period doubling sequence where small perturbationphase of the sample, while in the reactefable phase
can initiate large changes. Itis in this regime that the internaC=0. For explosive crystallization of amorphous films, the
structure of the fron{and any time lag betwee@ andT)  reacting phase is amorphous while the reacted phase corre-
will play a role. sponds to crystal. Across the interfacial boundary layer
Hence, we propose a phase-field reaction-diffusion modelhere the transition takes place<@<1. The scale over
describing the transformation of a metastable material to &hich the concentration varies fro@=0 to C=1 is deter-
stable one for chemically activated reactions limited bymined by the interfacial widtle. We furthermore introduce a
Arrhenius kinetics. We introduce a two-field model which local temperature field. It is is driven by the latent heat
couples the local concentration of react@fk,t) as a func- released by changes in concentration of the metastable phase.
tion of positionx and timet to the local temperaturé(x,t). In our model, the dynamics of the temperature and concen-
The model describes the reaction and diffusion of reactantration fields are described by
concentration in both the metastable and stable phases, as
well as the dynamics of the accompanying thermal field. The )
model is examined in the context of reaction-front propaga- a_tchv C—yR(MC @)
tion and bifurcations in reaction-front velocities. In particu-
lar, adjusting a parameter controlling the background temand
peratureTg,, can cause the propagation of the temperature
3nd concentration fields to undergo a sequence of period £=DTV2T—T(T—TSUQ—Q§- @
oubling bifurcations. As our model is aimed at a general at ot
description of reaction fronts in reaction-diffusion systems
governed by Arrhenius activation, it provides a generaliza!n Eg. (1) the first term describes local reactant concentration
tion of pre\/ious Sharp interface models of exp|osi\/e Crysta].difoSion in the system. The concentration diffusion constant
lization of amorphous materials. For crystallization, the fieldiS given byD¢ and, for simplicity, is taken as constant in
C(x,t) would represent a Fourier component of the densitypoth phases. The second term describes the rate of transfor-
field, which has negligible amplitude in the amorphous phasénation of the metastable phase to the stable one due to
and large amplitude in the crystal phase. This associatioghemical activation, wherg is a constant. The rate of acti-
connects explosive crystallization to the larger body ofvation is taken to follow Arrhenius kinetics
reaction-diffusion theory already used to model other physi-
cal and chemical phenomena from first principi@s. R(T)=Qe F/keD ()
A further aspect of our model is reactant diffusion, which

allows us to study certain material-dependent properties o I ¢ : In th ¢ |
reaction-front propagation. In particular, the bifurcation oltzmann factor, an@ is a constant. In the case of explo-

structure of the solutions of our model changes. For examples,ive crystallization, the amorphous to crystal reaction rate is

the background temperatufe, , at which periodic solutions given by
first emerge varies with reactant diffusion. Indeed, in explo- A~ El(kgT) (Likg)(1T—1/T,)
sive crystallization, it has been experimentally established R(T)=Qe Pl1-enTs I (4)

that the{ ,Critical - substrate  temperature is materialryjs i typical for the reaction rate of a crystal from a rHelt
dependent™""We furthermore find that the entire range 55 we|| as that describing polymorphic crystallization of ox-
of substrate temperatures over which oscillatory solutiongye glassed Here, the constants, andL are the melting
. . . . 1 Cc

occur is also strongly dependent on Ségus'o_n' temperature and latent heat of melting, respectively. The

The outline of this paper is as followsWe introduce our  arrhenius kinetics discussed in this paper are controlled by
model_ln Sec. I, and give an asymptotic analysis of |_t in SeCthe left-hand side of Eq4), where it essentially takes the
lll. This shows that our model reduces to a sharp interfacgy .y, of Eq. (3). Finally, theR(T)C term in Eq.(1) ensures
model, in particular limits. In Sec. IV, we examine our model {4t the rate of the transition is proportional to the concen-
equations numerically. The bifurcation structure of their S0+,ation of metastable material.
lutions is studied, with emphasis on how the bifurcation  gq,ation(2) describes the evolution of the thermal field.

structure changes as a function of diffusion of the local ré-rpg first term describes thermal diffusion, where the thermal
actant concentration. We furthermore make an analysis of th§it,sion constant is given bp1. The heat source is given
equations in the parameter range corresponding to our nys;

; T ' Ny qaC/at and replaces the termo(x—x,(t)) typical in
merical work, providing support for some of the numerical gy, interface models such as that of Gilmer and Lemy.
results. Finally, in Sec. V we summarize our results.

To satisfy heat conservation we must havel/C, whereL
is the latent heat of the reaction a@j, the specific heat,
which is again taken to be the same in both phases. This
source term generates latent heat over the interfacial length
A description of an activated transition must account fore of the interface. The terh (T— Ty, is introduced to ap-
spatial variations in local concentration, as well as, in theproximately describe heat loss through thermal dissipation
case of the formation of a reaction front, the emergence of &y Newton’s law of cooling. The background to which heat
boundary layer of exten¢ defining the zone separating the is dissipated, e.g., an underlying substrate, is held fixed at a

here E is the activation energy of the transitiokg the

Il. MODEL



53 PHASE-FIELD MODEL FOR ACTIVATED REACTION FRONTS 6265

constant temperatufk,,. In amorphous crystallization, this OTout 9T ot
corresponds to a substrate on which a thin amorphous film - a2 VO — =~ (Touw=To) = Sou, (1)
rests.

where the source term in E@LD) is just
I1l. SHARP INTERFACE LIMIT

S _ COU'[_V acout
It is instructive to study the limit in which Eqé1) and(2) ou X, 1) = — = — V(1) — =
simplify to a sharp interface model analogous to those used

in Ref. 9 to model explosive crystallizatidan equation for The inner domain is examined by introducing the coordinate
the thermal field plus a moving boundary condifiowith ~ Stretchingx=z£*, which transforms Eqg5) and(6) into

the transformation to the dimensionless variables

(12

Xx—(T/D7)V%, t—Tt, and T—T/q, this gives a model er?Cin_ 21— ?°Cin S
with three free parametersp=Dc/Dy, g=y/I', and AT r7t ¢ Kz +AV(t i Ci (13
To=Tsuw/q. We solve our model in one dimension, simulat- and
ing front propagation far from the nucleation site. TGeT
fronts satisfy the following conditions: C(o0,t)=1, T 2-|-In
C(—o,t)=0, andT(xo,t)=T,. Also, for x<x(T=T,), £ a2 gVV(t) —&(Tin—To)— S (14
whereT,, is the maximum temperature alomxgat a given
time, C(x,t)~0. We rewrite Egs(1) and(2), in a reference where the source term in EL4) is now
frame whose origin is at the maximum of tfiefront. In this
reference frame the dimensionless model of Efjsand(2) i
becomes Sin(z,t)= fzy -&v (15
ac  dC aC and the inner expansior®,, andT;, are defined b
=P V(D —gRTIC ® pansiortsn and T Y
Cin=C2%z,t)+&"CL(z,t)+- - (16)
and
and
aT T aT . .
1= o2 TV~ (T=To) = S(x,0), (6) Tn=T2(z,)+ & TL(z,)+- - -. 17
where the source term in E@6) is just We deal with the lowest order outer expansions by substi-
tuting the outer expansions into E40) and(11) and obtain,
Sxt) = dC Vit )0C to lowest order, thaR(T2,)C2,=0 whereC® (—,t)=0

X’ ™ andC (,t)=1. This implies that in the outer domain

We will now consider the limit where variations ®fthappen =0(x) (18)
over a small length scalé— 0. We identify ¢ with the term 0”

in the concentration field with the highest derivalf® so ~ where ®(x) is the step function, anEk(Tgu,):O for x>0.
that £= \/p/g. To consistently order the other terms, we letAs a consequence, fox|>0, T2, satisfies

1/lg=A¢&", where 06<v<1, andA is a constant of order 1.

If x<|€| is the width of the boundary layer of ti@field, aTSm 2 - 0 AT
we can consider the two cases of the outer region given aH ox2 ( )a_x
approximately byx>|e|, and the inner interface region
given byx<|e|. The size of the inner region will be deter-  Considering the temperature field in the inner domain,
mined self-consistently to bee[>£”. On the outer domain T satisfiesd?T2/dz?=0, whose solution isT%,=az+b.

we define an expansion of tli@ and T fields denoted by Matching T to Tgut using Van Dyke’s matching
19, 20

(T2~ To). (19

0 ol principle;~<"it is straightforward to show that
Cout: Cout(xvt) + f Cout(X,t)-l- e (8)
and T2 (z,t)=T,(0}). (20
0 _— Thus asé—0 the inner temperature is, to lowest order, the
Tout=Toul X, 1) + & Tou (X, O+ - - -, (9 x—0 limit of the outer temperature. Going to ordgrin Eq.

along with the expansion for the velocity, given by (14, we obtain

V(t)=VO(t)+ &Vi(t)+ - - -. The outer expansions must sat-

, 9T Flon
IS in_\,07%in
fy 7= V0" (2
aCout ‘92Cout out . . H
A&Y =¢? > +A§Vv(t) —R(Tu) Cout Integrating Eq.(21) yields a two-term expansion of;,.
at 28 10 Matching this two-term(order £”) expansion ofT;, with the
(10 one-term outer expansiorp,, of Eq. (19), using Van Dyke’s
and rule2°® gives
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dTguI(x—>0+,t) dT%ut(x—>0‘,t) . 2>7,. Specifically, consider the transformation
ax - dx =-Vi(1). (22 z_—zp=§2(1*”)77. With this stretching equation, Eq13)
gives
Equation (22) is the latent heat condition encountered in 0 0
sharp interface models. Equatiofi®) and(22) are arrived at 9°Cip LA VO dCi, -
in a manner analogous to that in which Stefan and Hele- an’ 28)

Shaw models are derived as asymptotic limits of phase-field 0 ] o
equations of modeC.%* From Eq.(21) it can also be shown for Cj, on Zp<2<°°: or 7>0. Expanding C5, as
that T,(z) drops off over a range of order Co=1+¢&1"CL(7,t)+---, the solution forC becomes
x~[dTgut(0+,t)/dx]*1. This therefore defines the order of .

the range of validity of Eq(20). But, sincez=x/¢" is of Cih=—Bex —AV(t) 7] (29
order 1, the width of the interface satisfig$~O(¢&”).

\ with B some positive constant. Expandin 9 to first
To lowest order, Eq(13) leads to an equation fo@i?] P P g ER9)

order in », nearn=0, writing it in terms of the variable,

given by and then matchin@?, of Eq. (28) with the first order expan-

0 sion of C2, in Eq. (27), we arrive at the velocity condition
n)Cin=0. (23 SR (01
AU . . V(1) = \ﬁ— (30
Since this is linear, it can be integrated to give B A

RIT o (y.1)] where R=/Qexp(-E/2kgT) and F=1-B&@-". The

(z t)= ex;{ f A\I;Ot ) (29 solvability condition imposed by Eq30) implies that, as

(1) £—0, the front velocity is an Arrhenius function of the peak

front temperature. Up to a trivial factor of 2 B kgT, this is

the same result as for the previous sharp interface models of
explosive crystallization. The choice af only changes the
constants in the square root of E@O) but not its form.

Likewise, the magnitude of only differs from 1 by order
52(17 V).

Furthermore, sinc&;,(z)— T, (the background temperatyre
as |z|—«, Eqg. (29 automatically satisfies the required
boundary conditionsC m(ZH ,t)=0 and C n(z— 1)
=1. With respect to the outer variabbes=z£", we see that

dc(z) 1 dC%(2)
lim O'l“x =i 7 #_@(x). (25)

-0 -0 IV. BIFURCATIONS IN FRONT PROPAGATION
IN THE MODEL

Equations(19), (22), and(25) can be combined into one ) . . )
equation describing the temperature field to lowest order. !N this section the field equations, Edd) and (2), are

This is given by solved numerically. Temperature is measured in unitg,of
distance in units of reactaritrystal grain size, and time in
9T 270 aTO units of seconds. Simulations were done using an explicit

OUI

out

T
4 \/O —(T9,~To)+VO5(x). (26)  Euler time step algorithm with a spatial stepdf=1. The
at X X model was solved in one dimension to simulate the reaction

Equation(26) is precisely the form used to describe the tem-front at late times, sufficiently far from the initiation site. We

perature field by sharp interface models. All that is requiredjse,ddtzo'o.l:lgl’ Whi%h is s(;nsll eniagh thelllt oulr resyltsfre—
to make it self-consistent is a solvability condition between™a!n essentl_a y unchanged by ma gsmaller. In qmts 0
VO(t) andTout(Ot) dt, the maximum time studied was~ 170 000, with our

reported data based typically on the subsequent 1200 to 2400
time iterates. The dimensionless constants in @g.were
taken as followsE/(gkg) =12.952, T,=1.8, L/(gkg)=3,
while Q=209 165.328. These are the same as the constants
used in Ref. 9 for the dimensionless reaction rate describing
the amorphous to crystalline transition, wh&eand E are
adjusted so that a maximum dimensionless growth rate of
12 is attained at =1.6. Withq~300 K, the values oE, L,
CO=F xp( R[To ut(Ot)] ~2) (27) and T, are also consistent with amorphous *SBor our nu-
" AV P merical simulations we fixeg=1 s %, I'=0.02 s %, and
Y D;=20 s 2 keepingD¢ and T, variable. For greater gener-
whereF=exp(—prR[Tm(y,t)]/A\/o(t)dy). The order ofF 4ty we will present our results in terms of dimensionless
will be determined as we proceed. Forz, we need all variables.
orders ofT;,(z,t) to proceed further with Eq24). To find a In Figs. 1 and 2, the evolution &@ and T(x,t) fronts is
form of C2 on z,<z<, we note that in obtaining Eq23)  shown for three different values of the substrate temperature
the variablez was chosen so as to balance the second andl, with p=0.05. Figure 1a) shows a constant velocity
third terms of Eq.(13). It is also possible, however, to bal- propagation of thd field for To=0.323. The horizontal axis
ance the first and second terms, obtaining a solution valid fois space and the vertical time. The gray scale represents tem-

To obtain a solvability condition, we begin by noting that
substitution of Eq.(20) into Eq. (24) gives a solution that
diverges az—o. From our discussion following Ed22),
there must exist &=z,~0(1) such that for—«<z<z,
one can replac&;, in Eq. (24) by Eq. (20). On this interval
CO becomes
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G (b)

()

FIG. 1. Evolution of temperature fiel@ for three differentT with p=0.05. The horizontal axis represents space, the vertical axis is
time, and the gray scale temperature. The darker the pixels the higher the temperature; the straight white band in the central dark regions
represents the hottest part of the frofd) To=0.332. Linear slope implies front is moving at constant speed. Scales=3422675,
1=<t=<130 in time units of 5@t. (b) T,=0.328. Periodic front motion is evident. Peak temperatures oscillate in period-2 cycle. Periodicity
apparent in the periodic spacing between successive temperature maxima. Scakes22885, 36<t<107.(c) T,=0.326. Periodic front
motion with peaks inT every third peak. First white peak on lower left is the same as the last on the upper right. This is a period-4 solution.
Close inspection reveals that spacing between the peaks i tfield also repeats with a period-4 cycle. Scales: 80%5 8255,
1=<t=<100. Periodic solutions also evident in the oscillations of the diffusion tail behind the leading front.

perature. The darker the pixels the higher the temperaturén temperature now occur at regular intervals in time, giving
while the lighter areas to the top left and bottom right of thea period-2 solution. The locations of higher temperatures
figure represent cool areas. The straight white band runninglso correspond to faster propagation velocities, given by the
through the dark middle zone defines the maximum temperaslope of the front. Also, it is clear that the width of the
ture front. The uniform propagation is marked by a straightinterface € also oscillates with a period-2 cycle. This is
line front. Figure 2a) shows the propagation of th@ field  shown in Fig. 2b), which corresponds to th€ field of Fig.
corresponding to th@, of Fig. 1(a). The white area repre- 1(b). Decreasindly to To=0.326 generates higher-order pe-
sents reacted material and the dark area, ahead of the intetedic solutions. Figure (£) and Fig. Zc) show a periodic
face, unreacted. In Fig.() T;=0.328, and we now see the solution of the temperature and concentration fields that re-
emergence of periodic solutions in the evolutionTofPeaks peats with a period-4 cycle: The peak temperatures repeat on



6268 NIKOLAS PROVATAS, MARTIN GRANT, AND K. R. ELDER 53

()

FIG. 2. Evolution ofC field corresponding to Fig. 1. White regions are reacted sample while the dark are unreacted phase. Fuzzy regions
in between are due to the interface between the two phaseghb)R@eriod 2 and(c) (period 4, the periodicity is best seen in the period-2
or period-4 oscillations in the slope of the interface (& the distance range is as in Figalwhile 5<t=<115. In(b), 2290<x=<2445,
while t=1 tot=290. In(c), 8075<x<8255 and 36:t<100. Due to thermal diffusion, thE field changes over a greater distance than the
C field and so the time and space ranges used to represe€t fielels are smaller than their counterparts Tor

every third peak, and the periodicity is evident in the slope ofof the main figure. The inset within the bifurcation diagram
the C interface. is the sub-bifurcation diagram. The transition from one peri-
A convenient way of studying the periodic evolution of odic solution of Tz to another corresponds to period dou-
the C-T fields is to plotT(t), the maximum temperature bling; we will show that the sub-bifurcation diagram is gen-
alongx at a given time. In Fig. 3 three solutions ©f,(t), erated by the same dynamics which generate period doubling
from bottom to top, are shown exhibiting solutions with in the one-dimensionallD) logistic map?? It is useful to
period-2, -4, and -8 cycles, respectively. define the values offy where the various bifurcations of
Plotting the extrema of ,(t), denotedTg, as a function Tg occur. The temperatuiBy(2) is the substrate temperature
of the substrate temperatullg produces a bifurcation dia- whereTg bifurcates to period 2, and generally(p) denotes
gram of Tg. A bifurcation diagram displays the period and the value of T, where T¢ bifurcates to periodp, with
amplitudes thal ,,(t) attains, as a function df,. In Fig. 4, p=2", n=1,2,3... . Similarly, Tg(p), i=1,2,...n de-
a bifurcation diagram of ¢ is shown forp=0.125. The inset note then values ofTg(p) (from bottom to top at the bifur-
of Fig. 4 shows an enlargement of the lower period-2 brancltation pointTy(p)
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FIG. 3. Plots ofT,(t) displaying period-2, 4, and -8 solutions FIG. 5. Superposition of bifurcation diagrams for several values
(bottom to top, respectivelyWe setp=0.05 andT,=0.328, 0.326, Of p. As p increases, the entire bifurcation diagram undergoes an
and 0.32587, respectively. The curves have been translated so as @y€rall translation as well as a contraction. This implies that the

to overlap. The line through the top curve is drawn to emphasize thédividual period doubling windows each contract. For the larger
period-8 cycle of the trajectory. values of p, the higher period doubling windows cannot be re-
solved.

Bifurcation diagrams were obtained for several values OW fi hatT~(2) is fi I ial f .
p. Figure 5 shows the bifurcation diagrams for 0, 0.025, Ofeth:entf:iotrmat o(2) is fitted well by an exponential function

0.05, 0.075, 0.1, 0.125, and 0.15. Inspection of Fig. 5 shows

a change in the structure and location of the bifurcation dia- _ _a—bp

grams as a function gf. Note also the increasing amplitude To(2)=To(2)],=ota(1-e"™), (Y

of higher periodic solutions, for larger. These trends illus-  with a~0.306 andb~3.6. We will see below that this fit of

trated in Fig. 5 continue fop>0.15. To(2) is also supported by analytic arguments. In explosive
We refer to theT, shift caused by different as postpone-  crystallization, the poinfT,(2) is experimentally the most

ment. In Fig. 6,To(2) has been plotted as a function@f  easily accessible bifurcation point, as it is the substrate tem-

perature at which periodic surface patterns first emerge in the

crystallized sample. These patterns correspond to variations

5 T T T T T T T T T T T
I T T T ) -3.6— -
1.3+ B = i
i ] 1 = i ]
| - O’j _3'8 - —
L — B ~— r g
- © - -
& L J o L i
™
- —4 —
— 9. — —]
1.2 A T C|> r h
r 155 16 165 1.7 o - P r 7
v ) C\Z - —
i i o —4.2F -
E‘ L -
- | N’
ap - J
|- M 3 L N
1.1+ - —4.4- 7]
L. | L L L L | I L L [ T
0.32 0.324 0.326 r 1
° —48r | ! L]
0 0.1 0.2 0.3
FIG. 4. A bifurcation diagram of the extremum @f,(t) for P

p=0.125. The inset shows an enlargement of the smaller sub-

bifurcation diagram connected to the lower period-2 branch. Note FIG. 6. Plot of natural logarithm [T((2)—0.306] versusp.

the self-similarity to smaller and smaller scales. For clarityTge Ty(2) denotes the substrate temperature at which stable steady-state
axis of the inset has been rescaledTy= (T,— 0.32)x 1000. solutions bifurcate to period-2 solutions.
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W, (10%)

0.5} :‘:1 7. —

(T, = T,(4))/(T(8)-T,(4))

-1 0 1
(Te = T&(4)) / (Te(8)-TE(8)) FIG. 8. Plot showing self-similarity of the period-4 and period-8
windows of Fig. 5. The square symbols repredahtand the circles

FIG. 7. Mapping onto one curve of all the sub-bifurcation dia- c,w;. The constant, is the scaling factor that scal&¥g to the
grams attached to the lower period-2 branches of Fig. 5. The transsize ofw,.

formation that maps these sub-bifurcation diagrams onto a common
curve does not also scale the larger period-2 sections onto a co

m- . . . )
mon curve. tures of the sub-bifurcation diagranmifor To<T,(8)] will

inevitably approach the same order as inaccuracies of our

in film thickness and grain size due to the periodically vary-"umerical methods. Furthermore, largenvalues require a
ing temperatures that sweep through the sample during ﬂﬁreater transient _t|me before a nonc_hangmg bifurcation pat-
amorphous to crystal transformatidiheir detection can be t€rn is established. Thus while larger structures
achieved by exploiting the optical properties of the amorLTo™>To(8)] do collapse onto the curve of Fig. 7, the finer
phous and crystal phases of the thin fim. structures do not. For this reason, we did not include
There is a structural difference between the period-ZOBO-2 in Fig. 7 ) . . . .
branches of¢ bifurcation diagrams and branches of higher The dynamics leading to the bifurcation properties dis-
periods. This is best illustrated by rescaling tfig (Tg) axes cussed above can be understood by projecting the dynamics

of Fig. 5 according to the linear transformation of T onto a first return map. This relat@"* to T, where
now the indexi denotes thdath branch of Tg. Figure 9
- To—To(4) ~ TE—Té(4) shows this forp=0 and 0.125. In both casdg was sefvia

0T T(8)~To(4)' F TL8)-T(8) (32 transformation Eq(32)] to correspond to a very higfpos-
sibly chaotig orbit. A sample trajectory of iterates defined by
This rescaling collapses all the lower sub-bifurcation diathe p=0 map T *=f(Tg) is shown. The maps shown in
grams of Fig. 5 onto a single bifurcation diagram. Figure 7Fig. 9 both possess a minimum component. Fopadxam-
illustrates this collapse. There is a clear resemblance to thged, these minimum components ajf;'l:f(TiE) can be
period doubling bifurcations generated by the logistic ffap. rescaled onto a common curve that is fitted by a quadratic
Applying Eq.(32) to the period-2 To,Tg) portion of Fig. 5 function. The transformations that perform the rescaling of

does not also collapse the period-2 branches onto a comm@Re quadratic components do not also line up the linear seg-
curve, indicating a difference between the period-2 brancheg,ents of TiE+l:f(Ti|E)' Moreover. the iterates of# f8

of the bifurcation diagrams and those of higher period.fis

. : " . , ... always lie on the quadratic section fof Thus, for
Changing the superscripts 1 and 2 in the denominator of the . y 5 i d . .
T transformation similarly collapses all the upper Sub_aII p, the iterated ¢ , fori=2 [corresponding to solutions of

bifurcation diagrams onto the same common curve. period 4 or greate( which occur f(T.r0<T°(.4)]’ are gener-
Defining the T, interval between period™and period- ated by the dynamics of a quadratic function. This produces

n+1 ; ; _ n_ n+1 the characteristic period doubling sequence of the logistic
(anl 2 S?I_flfgc?:tilg_ni impliaess Won=To(2%) = To(2") map?? In contrast, the dynamics of period-2 iterafgs are
o ' not explained by similar dynamics.
Won Experimentally, only period-2 patterns have been ob-
Worrs c (33 served in explosively crystallized filntd24This implies that

it is possible to measure the pointg(2). However, to our
forn=2,3,..., and for allp. A plot of W, and C,Wg is  knowledge no pattern of period 4 or greater has been ob-
shown in Fig. 8 fom=2, whereC,~6.978. Forp=0.2 dif-  served in a crystallized amorphous sample. We believe the
ferences betweeW, andWg are of the same order as their reason for this is because of the decreadiggange avail-
absolute values, which reflects inaccuracies in bifurcatiorable for bifurcations to occur, with increasipg To see this
structures fofTy<Ty(8) asp increases. Indeed, finer struc- we must first convert th& intervals over which period
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T T T T chosen such tha, never goes below the point where crys-
14l \\ _ tallization dies out. Even for the expanded range
p=0 . To(2)—ATo(p)<To<To(2)+ATy(p=0), the form of e
\ \< . remains essentially independent ©f. Equation (34) is in

1 accord with intuition, as concentration diffusion is expected
. to broaden the boundary layer of tRefield. Increases oé
13- 7 with p occur predominantly on the leading edge of the reac-
tion front where the second derivative term in tbequation

is dominant.

Some of these results can be obtained by analytic argu-
1ol _ ments. Motivated by our numerical work, we make a simple
L i decoupling ansatz for the concentration field and the reaction
L i rate, namely,

L \/ i

"y
1.1 ! p=0.125—N/ — Cx,H=c
1

i+1
TE

X X
‘ | | ;), R(T)=R[T(0,t)]r(;,/)), (35
1 1z 13 14
Tk where the width of the interface(t) enters. From our nu-
. , merical work, the fieldc~0 for x<0, c~1 for x=2 and
~ FIG. 9. Plots ofT¢"* versusT for p=0 and 0.125. Asample 1 (0)~1, whiler(x)~0 for x>2. Using these forms, we can
iteration sequence is shown for the=0 map. These mappings ntegrate Eq.(5) for the concentration, thereby finding the

have two different structures. The linear parts are responsible fOform of the velocity and the source term in the temperature
overall period-2 cycling off,,,, while the smaller quadratic compo- equation; namely,

nents are responsible for the finer structures of the bifurcation dia-
grams, occurring for period2n=2,3, . .. ,solutions ofT,,. These oT 02T J

finer structures produce the characteristic period doubling generated —=—+V(t)— —(T-Ty) —S(x,1), (36)
by the logistic map. at X X

doubling bifurcations occur into unscaled units of tempera—Where

ture. In dimensionless units, the largest interval over which glne\ 1 dc(2)

period doubling bifurcations occur iAT,~0.005, corre- S(x,t)=(V(t)+x )— , (37)
sponding top=0, as shown in Fig. 5. Using=300 K (in at | e(t) dz

the range of Sh our model predicts a temperature range of;—x/¢, and

ATg~1.5 K. Thus, according to our mode},T,;<1.5 K

for any finite value ofp. This magnitude of temperature de(t)

presents a problem, as it will often correspond to the limit of V(1) =a0e()gRIT(01) ] —bo—5—- (39)

temperatures at which an amorphous film can experimentally
be maintained. Any fluctuations of ord€g,,~1 Kwould, in  The constantsa, and b, are integrals of thec field:
theory, causd ¢ to jump to different locations on the bifur- ap,=cy[* . rc(dc/dz)dz, bo=cof”..z(dc/dz)?dz, and
cation diagram(perhaps even below the point of sustainingc,=[f“_(dc/dz)?dz] . From our numerical work, we can
crystallization. It is thus unlikely that higher period dou- estimate the values @k, by, co, and other integrals involv-
bling bifurcations can be observed in the systems undergoingg c.
an amorphous-crystalline transition for a nonzero value of Qur ansatz, then, brings our model to a tractable form,
p- and we can proceed as in the linear stability analysis of the
We also examined the dependenceeobn p and To,  steady states done by van Saarloos, Weeks, and Klifize.
numerically. Our estimates of these two parameters shoveatures of our model survive the decoupling ansatz, and
that e is essentially completely determined by the concentradiffer from the earlier work. First, although we shall make no
tion diffusion, for the range of substrate temperatures examuse of it here, the time dependence of the width allows for
ined. This estimate will be useful to us below. Sinegs  the time evolution of the temperature field to slip out of
oscillatory forT,<Ty(2) we considered the averagedThe  synchronization with the concentration field, which we have
interfacial width is defined as(t)=1/m(t), wherem(t) is  seen numerically for complicated doubling sequences. Sec-
the slope of theC field at the point whereC(x,t)=1/2.  ondly, since the source is nétfunction-like in this limit, we
When in the oscillatory part of parameter space, the averagean obtain the postponement effect of the period doubling
value was obtained by averagingri(t) over many cycles of due to the concentration diffusion.

a periodic solution. In the steady-state limit, the solution of the temperature
For the particular range op examined numerically, equation can be obtained easily from the Green function
namely, 0<p<0.33, and for T, fixed very near

To=To(2), wefound thate is well approximated by
G(x)=— /7 exp-

x| (39

U
_X+ [E—
€(p,To(2))~0.7p+3.4. (34) 27 2Jr

This functional form remains valid over the range where the steady-state velocity is given by agegR, and
To(2)—ATo(p)<To<To(2)+ATy(p), Where ATy(p) is  7=1/(v?+4). The steady-state solution is formally given by
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particular, the temperature at which periodic solutions first
T(x)= f dx'G(x—x")S(x"). (40)  appear depends strongly on reactant diffusion, shifting — or
being postponed — to lower substrate temperatures as reac-
The linear stability analysis of time-dependent fluctuationsant diffusion is increased. The dependence of this tempera-
around these Solutlons can now be done. ThIS analySIS @reTO(Z) on the reactant diffusion Coefﬁcieptwas exam-
straightforward for small interfacial widths, but tedious, andined and found to be well fitted to an exponential, over the
is similar to that of the original work.Complete details are range ofp examined. Analytic arguments also gave weight to
given in Ref. 15. In any case, we find that oscillations appeathis form. This dependence could be tested experimentally.
in the linear stability analysis corresponding to initial bifur-  \we also found that periodic solutions f,(t) generated
cation of T,. The dependence of this bifurcation pris a sequence of period doubling bifurcations, for numerous
_ “b values ofp. A first return mapping constructed froin,(t
To(2)=To(2)| o+ a(1—e™™), 4D showed tﬁat for bifurcationspgf Seriod 4 and higrijznrf ?[hese
where a~0.38 andb~2.8. These values are approximate bifurcation diagrams generate the same period doubling se-
because integrals such ag, by, andcy, must be numeri- quence of the one-dimensional logistic map. However, we
cally estimated. Nevertheless, this gives us additional confifound that a increased the substrate temperature range on
dence in the result obtained from the numerical simulationsvhich this period doubling occurs decreased. We calculated

reported above and in Fig. 6. that this range spanned no more than 1 K. It is likely that the
temperature of clamped amorphous thin films cannot be con-
V. SUMMARY trolled to this tolerance, and so we expect that higher order

_ _ bifurcations are unobservable in these systems.
We have proposed a phase-field model describing
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