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We propose a phase-field model to describe reaction front propagation in activated transitions obeying
Arrhenius kinetics. The model is applicable, for example, to the explosive crystallization of amorphous films.
Two coupled fields interact during the reaction, a temperature fieldT(x,t) and a fieldC(x,t) describing the
amorphous/crystal transition, which are continuous functions of spacex and timet. Unlike previous work, our
model incorporates a nonzero front widthe in a natural way, corresponding to that region in space whereT and
C undergo rapid variation. In the limit ofe→0, our model reduces to the sharp interface approach of others.
Treating the background temperature of the reacting sample as a control parameter, periodic solutions inC and
T can be found which go through a series of period doubling bifurcations. We find that the substrate tempera-
ture marking the onset of period doubling bifurcations decreases with increasing concentration diffusion.
Furthermore, it is shown that period doubling bifurcations ofC-T solutions of period greater than 2 are
generated by dynamics isomorphic to those of the one-dimensional logistic map, for all values of concentration
diffusion studied.

I. INTRODUCTION

Materials existing in a metastable state can undergo a
transition into an energetically more favorable phase by
chemical activation. In such processes, the metastable phase
must overcome an energy barrier. For an amorphous mate-
rial, this energy can correspond to that required for the glass
to locally diffuse and reorient itself to attain a stable crystal-
line phase. The rate at which such a process occurs in a
steady state is often well described by the Arrhenius law of
chemical kinetics,e2E/kBT, whereE is the activation energy,
kB is Boltzmann’s constant, andT is temperature. Such a
reaction can start due to spontaneous fluctuations in the
metastable phase, or, as in the case we shall consider, when
the metastable phase is brought into contact with a more
stable phase. A reaction front then forms between the two
phases, which advances from the stable phase through the
metastable phase, until no metastable phase remains. In exo-
thermic reactions, latent heat is released at this front. Since
the Arrhenius rate increases with temperature, such an exo-
thermic reaction can lead to an increase in the reaction rate,
causing the transition to develop a rapid, self-sustaining re-
action front. In the case where the latent heat is lower than
the activation energy, the metastable material can be elevated
to some fixed temperature, thus still allowing for the forma-
tion of a front.

An experimental realization of such a reaction is found in
the crystallization of amorphous films. The lower free energy
of the crystalline state leads to the release of latent heat and
initiates the formation of a rapid reaction front as discussed
above. This scenario is known as explosive crystallization

since the propagation velocities of the front can be meters
per second.1–3 In these experiments, the amorphous film is
on a substrate fixed at a temperatureTsub. It is Tsub that
determines whether or not the latent heat released will be
great enough to maintain self-sustained crystallization. Be-
low a critical value ofT sub, the latent heat released is insuf-
ficient to crystallize any amorphous material. The heat is thus
lost to the substrate and the crystallization front stops. A
striking feature of the process is that, for temperatures
slightly above the critical substrate temperature, regular pe-
riodic variations in the film thickness, grain size, and com-
pleteness of transformation have been observed after crystal-
lization in samples such as InSb and GaSb.1,4 Far away from
nucleation centers, these surface undulations resemble paral-
lel wave fronts, perpendicular to the direction of propagation
of the crystallization front. Their periodic spacing reflects the
fact that the temperature at the front varies periodically. The
oscillating interfacial temperature leads to different local re-
action rates and thus different local crystal densities, which
can be measured optically.5 Similar periodic patterns have
also been observed in oscillatory zoning in the solidification
of binary mixtures, such as plagioclase feldspars,6 as well as
other nonlinear systems.7,8

In the case of explosive crystallization, the origin of these
undulations has been explained by van Saarloos, Weeks, and
Kurtze,9 using the following sharp interface model for the
temperature field. In such a model the amorphous/crystal
transition is assumed to take place over a spatial region that
is infinitely sharp. In this paper we have extended their
analysis by including the coupling to a fieldC(x,t) describ-
ing the amorphous/crystal transition. In this approach,
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C(x,t) can vary independently and is not slaved toT as in
the sharp interface approach. The coupling betweenC andT
will become important as the system gets deeper and deeper
into the period doubling sequence where small perturbations
can initiate large changes. It is in this regime that the internal
structure of the front~and any time lag betweenC andT!
will play a role.

Hence, we propose a phase-field reaction-diffusion model
describing the transformation of a metastable material to a
stable one for chemically activated reactions limited by
Arrhenius kinetics. We introduce a two-field model which
couples the local concentration of reactantC(x,t) as a func-
tion of positionx and timet to the local temperatureT(x,t).
The model describes the reaction and diffusion of reactant
concentration in both the metastable and stable phases, as
well as the dynamics of the accompanying thermal field. The
model is examined in the context of reaction-front propaga-
tion and bifurcations in reaction-front velocities. In particu-
lar, adjusting a parameter controlling the background tem-
peratureTsub can cause the propagation of the temperature
and concentration fields to undergo a sequence of period
doubling bifurcations. As our model is aimed at a general
description of reaction fronts in reaction-diffusion systems
governed by Arrhenius activation, it provides a generaliza-
tion of previous sharp interface models of explosive crystal-
lization of amorphous materials. For crystallization, the field
C(x,t) would represent a Fourier component of the density
field, which has negligible amplitude in the amorphous phase
and large amplitude in the crystal phase. This association
connects explosive crystallization to the larger body of
reaction-diffusion theory already used to model other physi-
cal and chemical phenomena from first principles.10

A further aspect of our model is reactant diffusion, which
allows us to study certain material-dependent properties of
reaction-front propagation. In particular, the bifurcation
structure of the solutions of our model changes. For example,
the background temperatureT subat which periodic solutions
first emerge varies with reactant diffusion. Indeed, in explo-
sive crystallization, it has been experimentally established
that the critical substrate temperature is material
dependent.1,4,11–14We furthermore find that the entire range
of substrate temperatures over which oscillatory solutions
occur is also strongly dependent on diffusion.

The outline of this paper is as follows.15We introduce our
model in Sec. II, and give an asymptotic analysis of it in Sec.
III. This shows that our model reduces to a sharp interface
model, in particular limits. In Sec. IV, we examine our model
equations numerically. The bifurcation structure of their so-
lutions is studied, with emphasis on how the bifurcation
structure changes as a function of diffusion of the local re-
actant concentration. We furthermore make an analysis of the
equations in the parameter range corresponding to our nu-
merical work, providing support for some of the numerical
results. Finally, in Sec. V we summarize our results.

II. MODEL

A description of an activated transition must account for
spatial variations in local concentration, as well as, in the
case of the formation of a reaction front, the emergence of a
boundary layer of extente defining the zone separating the

stable and metastable phases. Thus, we introduce a field
C(x,t) describing the local concentration of reacting~meta-
stable! material, whereC51 in the completely unreacted
phase of the sample, while in the reacted~stable! phase
C50. For explosive crystallization of amorphous films, the
reacting phase is amorphous while the reacted phase corre-
sponds to crystal. Across the interfacial boundary layer
where the transition takes place, 0,C,1. The scale over
which the concentration varies fromC50 toC51 is deter-
mined by the interfacial widthe. We furthermore introduce a
local temperature fieldT. It is is driven by the latent heat
released by changes in concentration of the metastable phase.
In our model, the dynamics of the temperature and concen-
tration fields are described by

]C

]t
5Dc¹

2C2gR~T!C ~1!

and

]T

]t
5DT¹

2T2G~T2Tsub!2q
]C

]t
. ~2!

In Eq. ~1! the first term describes local reactant concentration
diffusion in the system. The concentration diffusion constant
is given byDC and, for simplicity, is taken as constant in
both phases. The second term describes the rate of transfor-
mation of the metastable phase to the stable one due to
chemical activation, whereg is a constant. The rate of acti-
vation is taken to follow Arrhenius kinetics

R~T!5Qe2E/~kBT! ~3!

whereE is the activation energy of the transition,kB the
Boltzmann factor, andQ is a constant. In the case of explo-
sive crystallization, the amorphous to crystal reaction rate is
given by

R~T!5Qe2E/~kBT!@12e~L/kB!~1/T21/Tc!#. ~4!

This is typical for the reaction rate of a crystal from a melt16

as well as that describing polymorphic crystallization of ox-
ide glasses.17 Here, the constantsTc andL are the melting
temperature and latent heat of melting, respectively. The
Arrhenius kinetics discussed in this paper are controlled by
the left-hand side of Eq.~4!, where it essentially takes the
form of Eq. ~3!. Finally, theR(T)C term in Eq.~1! ensures
that the rate of the transition is proportional to the concen-
tration of metastable material.

Equation~2! describes the evolution of the thermal field.
The first term describes thermal diffusion, where the thermal
diffusion constant is given byDT . The heat source is given
by q]C/]t and replaces the termqd„x2xb(t)… typical in
sharp interface models such as that of Gilmer and Leamy.18

To satisfy heat conservation we must haveq'L/Cp whereL
is the latent heat of the reaction andCp the specific heat,
which is again taken to be the same in both phases. This
source term generates latent heat over the interfacial length
e of the interface. The termG(T2Tsub) is introduced to ap-
proximately describe heat loss through thermal dissipation
by Newton’s law of cooling. The background to which heat
is dissipated, e.g., an underlying substrate, is held fixed at a

6264 53NIKOLAS PROVATAS, MARTIN GRANT, AND K. R. ELDER



constant temperatureTsub. In amorphous crystallization, this
corresponds to a substrate on which a thin amorphous film
rests.

III. SHARP INTERFACE LIMIT

It is instructive to study the limit in which Eqs.~1! and~2!
simplify to a sharp interface model analogous to those used
in Ref. 9 to model explosive crystallization~an equation for
the thermal field plus a moving boundary condition!. With
the transformation to the dimensionless variables
x→(G/DT)

1/2x, t→Gt, and T→T/q, this gives a model
with three free parameters:r5DC /DT , g5g/G, and
T05Tsub/q. We solve our model in one dimension, simulat-
ing front propagation far from the nucleation site. TheC-T
fronts satisfy the following conditions:C(`,t)51,
C(2`,t)50, andT(6`,t)5T0 . Also, for x<x(T5Tm),
whereTm is the maximum temperature alongx at a given
time,C(x,t)'0. We rewrite Eqs.~1! and ~2!, in a reference
frame whose origin is at the maximum of theT front. In this
reference frame the dimensionless model of Eqs.~1! and~2!
becomes

]C

]t
5r

]2C

]x2
1V~ t !

]C

]x
2gR~T!C ~5!

and

]T

]t
5

]2T

]x2
1V~ t !

]T

]x
2~T2T0!2S~x,t !, ~6!

where the source term in Eq.~36! is just

S~x,t !5
]C

]t
2V~ t !

]C

]x
. ~7!

We will now consider the limit where variations ofx happen
over a small length scalej→0. We identifyj with the term
in the concentration field with the highest derivative19,20 so
that j5Ar/g. To consistently order the other terms, we let
1/g5Ajn, where 0,n,1, andA is a constant of order 1.

If x,ueu is the width of the boundary layer of theC field,
we can consider the two cases of the outer region given
approximately byx.ueu, and the inner interface region
given byx,ueu. The size of the inner region will be deter-
mined self-consistently to beueu}jn. On the outer domain
we define an expansion of theC andT fields denoted by

Cout5Cout
0 ~x,t !1jnCout

1 ~x,t !1••• ~8!

and

Tout5Tout
0 ~x,t !1jnTout

1 ~x,t !1•••, ~9!

along with the expansion for the velocity, given by
V(t)5V0(t)1jV1(t)1•••. The outer expansions must sat-
isfy

Ajn
]Cout

]t
5j2

]2Cout

]x2
1AjnV~ t !

]Cout

]x
2R~Tout!Cout

~10!

and

]Tout
]t

5
]2T out

]x2
1V~ t !

]Tout
]x

2~Tout2T0!2Sout, ~11!

where the source term in Eq.~11! is just

Sout~x,t !5
]Cout

]t
2V~ t !

]Cout

]x
. ~12!

The inner domain is examined by introducing the coordinate
stretchingx5zjn, which transforms Eqs.~5! and ~6! into

Ajn
]Cin

]t
5j2~12n!

]2Cin

]z2
1AV~ t !

]Cin

]z
2R~Tin!Cin ~13!

and

j2n
]Tin
]t

5
]2Tin
]z2

1jnV~ t !
]T in

]z
2j2n~Tin2T0!2Sin ~14!

where the source term in Eq.~14! is now

Sin~z,t !5j2n
]Cin

]t
2jnV~ t !

]Cin

]z
~15!

and the inner expansionsCin andTin are defined by

Cin5Cin
0 ~z,t !1jnCin

1 ~z,t !1••• ~16!

and

Tin5Tin
0 ~z,t !1jnTin

1 ~z,t !1•••. ~17!

We deal with the lowest order outer expansions by substi-
tuting the outer expansions into Eq.~10! and~11! and obtain,
to lowest order, thatR(Tout

0 )Cout
0 50 whereC out

0 (2`,t)50
andCout

0 (`,t)51. This implies that in the outer domain

Cout
0 5Q~x! ~18!

whereQ(x) is the step function, andR(Tout
0 )50 for x.0.

As a consequence, foruxu.0, Tout
0 satisfies

]Tout
0

]t
5

]2T out
0

]x2
1V0~ t !

]Tout
0

]x
2~Tout

0 2T0!. ~19!

Considering the temperature field in the inner domain,
Tin
0 satisfiesd2Tin

0 /dz250, whose solution isT in
0 5az1b.

Matching Tin
0 to Tout

0 using Van Dyke’s matching
principle,19,20 it is straightforward to show that

Tin
0 ~z,t !5Tout

0 ~0,t !. ~20!

Thus asj→0 the inner temperature is, to lowest order, the
x→0 limit of the outer temperature. Going to orderjn in Eq.
~14!, we obtain

]2Tin
1

]z2
52V0

]Cin
0

]z
. ~21!

Integrating Eq.~21! yields a two-term expansion ofTin .
Matching this two-term~orderjn) expansion ofTin with the
one-term outer expansionTout

0 of Eq. ~19!, using Van Dyke’s
rule,20,19 gives
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dTout
0 ~x→01,t !

dx
2
dT out

0 ~x→02,t !

dx
52V0~ t !. ~22!

Equation ~22! is the latent heat condition encountered in
sharp interface models. Equations~19! and~22! are arrived at
in a manner analogous to that in which Stefan and Hele-
Shaw models are derived as asymptotic limits of phase-field
equations of modelC.21 From Eq.~21! it can also be shown
that Tin(z) drops off over a range of order
x;@dTout

0 (01,t)/dx#21. This therefore defines the order of
the range of validity of Eq.~20!. But, sincez5x/jn is of
order 1, the width of the interface satisfiesueu;O(jn).

To lowest order, Eq.~13! leads to an equation forCin
0

given by

AV0~ t !
]Cin

0

]z
2R~Tin!Cin

050. ~23!

Since this is linear, it can be integrated to give

Cin
0 ~z,t !5expS 2E

z

`R@T in~y,t !#

AV0~ t !
dyD . ~24!

Furthermore, sinceTin(z)→T0 ~the background temperature!
as uzu→`, Eq. ~24! automatically satisfies the required
boundary conditionsC in

0 (z→2`,t)50 and Cin
0 (z→`,t)

51. With respect to the outer variable,x5zjn, we see that

lim
j→0

dCin
0 ~z!

dx
5 lim

j→0

1

jn

dCin
0 ~z!

dz
→d~x!. ~25!

Equations~19!, ~22!, and ~25! can be combined into one
equation describing the temperature field to lowest order.
This is given by

]Tout
0

]t
5

]2T out
0

]x2
1V0

]Tout
0

]x
2~Tout

0 2T0!1V0d~x!. ~26!

Equation~26! is precisely the form used to describe the tem-
perature field by sharp interface models. All that is required
to make it self-consistent is a solvability condition between
V0(t) andTout

0 (0,t).
To obtain a solvability condition, we begin by noting that

substitution of Eq.~20! into Eq. ~24! gives a solution that
diverges asz→`. From our discussion following Eq.~22!,
there must exist az5zp;O(1) such that for2`,z,zp
one can replaceTin in Eq. ~24! by Eq. ~20!. On this interval
C in
0 becomes

Cin
05F expSR@Tout

0 ~0,t !#

AV0~ t !
~z2zp! D , ~27!

whereF5exp(2*zp
`R@Tin(y,t)#/AV

0(t)dy). The order ofF

will be determined as we proceed. Forz.zp we need all
orders ofTin(z,t) to proceed further with Eq.~24!. To find a
form of Cin

0 on zp,z,`, we note that in obtaining Eq.~23!
the variablez was chosen so as to balance the second and
third terms of Eq.~13!. It is also possible, however, to bal-
ance the first and second terms, obtaining a solution valid for

z.zp . Specifically, consider the transformation
z2zp5j2(12n)h. With this stretching equation, Eq.~13!
gives

]2Cin
0

]h2 1AV0
]Cin

0

]h
50 ~28!

for Cin
0 on zp,z,`, or h.0. Expanding C in

0 as
Cin
0511j2(12n)C̃in

1 (h,t)1•••, the solution forC̃in
1 becomes

C̃in
152Bexp@2AV0~ t !h# ~29!

with B some positive constant. Expanding Eq.~29! to first
order inh, nearh50, writing it in terms of the variablez,
and then matchingCin

0 of Eq. ~28! with the first order expan-
sion ofCin

0 in Eq. ~27!, we arrive at the velocity condition

V0~ t !5AF

B

R̃@Tout
0 ~0,t !#

A
, ~30!

where R̃5AQexp(2E/2kBT) and F512Bj2(12n). The
solvability condition imposed by Eq.~30! implies that, as
j→0, the front velocity is an Arrhenius function of the peak
front temperature. Up to a trivial factor of 2 inE/kBT, this is
the same result as for the previous sharp interface models of
explosive crystallization. The choice ofzp only changes the
constants in the square root of Eq.~30! but not its form.
Likewise, the magnitude ofF only differs from 1 by order
j2(12n).

IV. BIFURCATIONS IN FRONT PROPAGATION
IN THE MODEL

In this section the field equations, Eqs.~1! and ~2!, are
solved numerically. Temperature is measured in units ofq,
distance in units of reactant~crystal grain! size, and time in
units of seconds. Simulations were done using an explicit
Euler time step algorithm with a spatial step ofdx51. The
model was solved in one dimension to simulate the reaction
front at late times, sufficiently far from the initiation site. We
useddt50.013, which is small enough that our results re-
main essentially unchanged by makingdt smaller. In units of
dt, the maximum time studied wast; 170 000, with our
reported data based typically on the subsequent 1200 to 2400
time iterates. The dimensionless constants in Eq.~4! were
taken as follows:E/(qkB)512.952, Tc51.8, L/(qkB)53,
whileQ5209 165.328g. These are the same as the constants
used in Ref. 9 for the dimensionless reaction rate describing
the amorphous to crystalline transition, whereQ andE are
adjusted so that a maximum dimensionless growth rate of
12 is attained atT51.6. Withq;300 K, the values ofE, L,
andTc are also consistent with amorphous Sb.9 For our nu-
merical simulations we fixedg51 s21, G50.02 s21, and
DT520 s22 keepingDC andT0 variable. For greater gener-
ality, we will present our results in terms of dimensionless
variables.

In Figs. 1 and 2, the evolution ofC andT(x,t) fronts is
shown for three different values of the substrate temperature
T0 with r50.05. Figure 1~a! shows a constant velocity
propagation of theT field for T050.323. The horizontal axis
is space and the vertical time. The gray scale represents tem-
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perature. The darker the pixels the higher the temperature,
while the lighter areas to the top left and bottom right of the
figure represent cool areas. The straight white band running
through the dark middle zone defines the maximum tempera-
ture front. The uniform propagation is marked by a straight
line front. Figure 2~a! shows the propagation of theC field
corresponding to theT0 of Fig. 1~a!. The white area repre-
sents reacted material and the dark area, ahead of the inter-
face, unreacted. In Fig. 1~b! T050.328, and we now see the
emergence of periodic solutions in the evolution ofT. Peaks

in temperature now occur at regular intervals in time, giving
a period-2 solution. The locations of higher temperatures
also correspond to faster propagation velocities, given by the
slope of the front. Also, it is clear that the width of the
interface e also oscillates with a period-2 cycle. This is
shown in Fig. 2~b!, which corresponds to theC field of Fig.
1~b!. DecreasingT0 to T050.326 generates higher-order pe-
riodic solutions. Figure 1~c! and Fig. 2~c! show a periodic
solution of the temperature and concentration fields that re-
peats with a period-4 cycle: The peak temperatures repeat on

FIG. 1. Evolution of temperature fieldT for three differentT0 with r50.05. The horizontal axis represents space, the vertical axis is
time, and the gray scale temperature. The darker the pixels the higher the temperature; the straight white band in the central dark regions
represents the hottest part of the front.~a! T050.332. Linear slope implies front is moving at constant speed. Scales: 2424<x<2675,
1<t<130 in time units of 50dt. ~b! T050.328. Periodic front motion is evident. Peak temperatures oscillate in period-2 cycle. Periodicity
apparent in the periodic spacing between successive temperature maxima. Scales: 2280<x<2455, 30<t<107.~c! T050.326. Periodic front
motion with peaks inT every third peak. First white peak on lower left is the same as the last on the upper right. This is a period-4 solution.
Close inspection reveals that spacing between the peaks in theT field also repeats with a period-4 cycle. Scales: 8055<x<8255,
1<t<100. Periodic solutions also evident in the oscillations of the diffusion tail behind the leading front.
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every third peak, and the periodicity is evident in the slope of
theC interface.

A convenient way of studying the periodic evolution of
the C-T fields is to plotTm(t), the maximum temperature
alongx at a given time. In Fig. 3 three solutions ofTm(t),
from bottom to top, are shown exhibiting solutions with
period-2, -4, and -8 cycles, respectively.

Plotting the extrema ofTm(t), denotedTE , as a function
of the substrate temperatureT0 produces a bifurcation dia-
gram ofTE . A bifurcation diagram displays the period and
amplitudes thatTm(t) attains, as a function ofT0 . In Fig. 4,
a bifurcation diagram ofTE is shown forr50.125. The inset
of Fig. 4 shows an enlargement of the lower period-2 branch

of the main figure. The inset within the bifurcation diagram
is the sub-bifurcation diagram. The transition from one peri-
odic solution ofTE to another corresponds to period dou-
bling; we will show that the sub-bifurcation diagram is gen-
erated by the same dynamics which generate period doubling
in the one-dimensional~1D! logistic map.22 It is useful to
define the values ofT0 where the various bifurcations of
TE occur. The temperatureT0(2) is the substrate temperature
whereTE bifurcates to period 2, and generallyT0(p) denotes
the value of T0 where TE bifurcates to periodp, with
p52n, n51,2,3, . . . . Similarly, TE

i (p), i51,2, . . . ,n de-
note then values ofTE(p) ~from bottom to top! at the bifur-
cation pointT0(p)

FIG. 2. Evolution ofC field corresponding to Fig. 1. White regions are reacted sample while the dark are unreacted phase. Fuzzy regions
in between are due to the interface between the two phases. For~b! ~period 2! and~c! ~period 4!, the periodicity is best seen in the period-2
or period-4 oscillations in the slope of the interface. In~a!, the distance range is as in Fig. 1~a! while 5<t<115. In ~b!, 2290<x<2445,
while t51 to t590. In ~c!, 8075<x<8255 and 30,t,100. Due to thermal diffusion, theT field changes over a greater distance than the
C field and so the time and space ranges used to represent theC fields are smaller than their counterparts forT.
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Bifurcation diagrams were obtained for several values of
r. Figure 5 shows the bifurcation diagrams forr50, 0.025,
0.05, 0.075, 0.1, 0.125, and 0.15. Inspection of Fig. 5 shows
a change in the structure and location of the bifurcation dia-
grams as a function ofr. Note also the increasing amplitude
of higher periodic solutions, for largerr. These trends illus-
trated in Fig. 5 continue forr.0.15.

We refer to theT0 shift caused by differentr as postpone-
ment. In Fig. 6,T0(2) has been plotted as a function ofr.

We find thatT0(2) is fitted well by an exponential function
of the form

T0~2!5T0~2!ur501a~12e2br!, ~31!

with a'0.306 andb'3.6. We will see below that this fit of
T0(2) is also supported by analytic arguments. In explosive
crystallization, the pointT0(2) is experimentally the most
easily accessible bifurcation point, as it is the substrate tem-
perature at which periodic surface patterns first emerge in the
crystallized sample. These patterns correspond to variations

FIG. 3. Plots ofTm(t) displaying period-2, 4, and -8 solutions
~bottom to top, respectively!. We setr50.05 andT050.328, 0.326,
and 0.32587, respectively. The curves have been translated so as not
to overlap. The line through the top curve is drawn to emphasize the
period-8 cycle of the trajectory.

FIG. 4. A bifurcation diagram of the extremum ofTm(t) for
r50.125. The inset shows an enlargement of the smaller sub-
bifurcation diagram connected to the lower period-2 branch. Note
the self-similarity to smaller and smaller scales. For clarity theT0
axis of the inset has been rescaled byT085(T020.32)31000.

FIG. 5. Superposition of bifurcation diagrams for several values
of r. As r increases, the entire bifurcation diagram undergoes an
overall translation as well as a contraction. This implies that the
individual period doubling windows each contract. For the larger
values ofr, the higher period doubling windows cannot be re-
solved.

FIG. 6. Plot of natural logarithm ln@T0(2)20.306# versusr.
T0(2) denotes the substrate temperature at which stable steady-state
solutions bifurcate to period-2 solutions.
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in film thickness and grain size due to the periodically vary-
ing temperatures that sweep through the sample during the
amorphous to crystal transformation.4 Their detection can be
achieved by exploiting the optical properties of the amor-
phous and crystal phases of the thin film.5

There is a structural difference between the period-2
branches ofTE bifurcation diagrams and branches of higher
periods. This is best illustrated by rescaling the (T0 ,TE) axes
of Fig. 5 according to the linear transformation

T̃05
T02T0~4!

T0~8!2T0~4!
, T̃E5

TE2TE
1~4!

TE
1~8!2TE

2~8!
. ~32!

This rescaling collapses all the lower sub-bifurcation dia-
grams of Fig. 5 onto a single bifurcation diagram. Figure 7
illustrates this collapse. There is a clear resemblance to the
period doubling bifurcations generated by the logistic map.22

Applying Eq. ~32! to the period-2 (T0 ,TE) portion of Fig. 5
does not also collapse the period-2 branches onto a common
curve, indicating a difference between the period-2 branches
of the bifurcation diagrams and those of higher period.
Changing the superscripts 1 and 2 in the denominator of the
TE transformation similarly collapses all the upper sub-
bifurcation diagrams onto the same common curve.

Defining theT0 interval between period-2n and period-
2n11 bifurcations as W2n5T0(2

n)2T0(2
n11)

(n51,2,3, . . . !, Fig. 7 implies

W2n

W2n11
5Cn ~33!

for n52,3, . . . , and for allr. A plot of W4 andC2W8 is
shown in Fig. 8 forn52, whereC2;6.978. Forr>0.2 dif-
ferences betweenW4 andW8 are of the same order as their
absolute values, which reflects inaccuracies in bifurcation
structures forT0,T0(8) asr increases. Indeed, finer struc-

tures of the sub-bifurcation diagrams@for T0,T0(8)# will
inevitably approach the same order as inaccuracies of our
numerical methods. Furthermore, largerr values require a
greater transient time before a nonchanging bifurcation pat-
tern is established. Thus while larger structures
@T0.T0(8)# do collapse onto the curve of Fig. 7, the finer
structures do not. For this reason, we did not include
r>0.2 in Fig. 7.

The dynamics leading to the bifurcation properties dis-
cussed above can be understood by projecting the dynamics
of TE onto a first return map. This relatesTE

i11 to TE
i , where

now the indexi denotes thei th branch ofTE . Figure 9
shows this forr50 and 0.125. In both casesT0 was set@via
transformation Eq.~32!# to correspond to a very high~pos-
sibly chaotic! orbit. A sample trajectory of iterates defined by
the r50 mapTE

i115 f (TE
i ) is shown. The maps shown in

Fig. 9 both possess a minimum component. For allr exam-
ined, these minimum components ofTE

i115 f (TE
i ) can be

rescaled onto a common curve that is fitted by a quadratic
function. The transformations that perform the rescaling of
the quadratic components do not also line up the linear seg-
ments of TE

i115 f (TE
i ). Moreover, the iterates off 4, f 8,

f 16, . . . always lie on the quadratic section off . Thus, for

all r, the iteratesTE
2i , for i>2 @corresponding to solutions of

period 4 or greater which occur forT0,T0(4)#, are gener-
ated by the dynamics of a quadratic function. This produces
the characteristic period doubling sequence of the logistic
map.22 In contrast, the dynamics of period-2 iteratesTE are
not explained by similar dynamics.

Experimentally, only period-2 patterns have been ob-
served in explosively crystallized films.23,24This implies that
it is possible to measure the pointsT0(2). However, to our
knowledge no pattern of period 4 or greater has been ob-
served in a crystallized amorphous sample. We believe the
reason for this is because of the decreasingT0 range avail-
able for bifurcations to occur, with increasingr. To see this
we must first convert theT0 intervals over which period

FIG. 7. Mapping onto one curve of all the sub-bifurcation dia-
grams attached to the lower period-2 branches of Fig. 5. The trans-
formation that maps these sub-bifurcation diagrams onto a common
curve does not also scale the larger period-2 sections onto a com-
mon curve.

FIG. 8. Plot showing self-similarity of the period-4 and period-8
windows of Fig. 5. The square symbols representW4 and the circles
C2W8 . The constantC2 is the scaling factor that scalesW8 to the
size ofW4 .
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doubling bifurcations occur into unscaled units of tempera-
ture. In dimensionless units, the largest interval over which
period doubling bifurcations occur isDT0;0.005, corre-
sponding tor50, as shown in Fig. 5. Usingq5300 K ~in
the range of Sb!, our model predicts a temperature range of
DTsub;1.5 K. Thus, according to our model,DTsub,1.5 K
for any finite value ofr. This magnitude of temperature
presents a problem, as it will often correspond to the limit of
temperatures at which an amorphous film can experimentally
be maintained. Any fluctuations of orderTsub;1 K would, in
theory, causeTE to jump to different locations on the bifur-
cation diagram~perhaps even below the point of sustaining
crystallization!. It is thus unlikely that higher period dou-
bling bifurcations can be observed in the systems undergoing
an amorphous-crystalline transition for a nonzero value of
r.

We also examined the dependence ofe on r and T0 ,
numerically. Our estimates of these two parameters show
thate is essentially completely determined by the concentra-
tion diffusion, for the range of substrate temperatures exam-
ined. This estimate will be useful to us below. Sincee is
oscillatory forT0,T0(2) we considered the averagede. The
interfacial width is defined ase(t)51/m(t), wherem(t) is
the slope of theC field at the point whereC(x,t)51/2.
When in the oscillatory part of parameter space, the average
value was obtained by averaging 1/m(t) over many cycles of
a periodic solution.

For the particular range ofr examined numerically,
namely, 0,r,0.33, and for T0 fixed very near
T05T0(2), we found thate is well approximated by

e„r,T0~2!…'0.7r13.4. ~34!

This functional form remains valid over the range
T0(2)2DT0(r),T0,T0(2)1DT0(r), where DT0(r) is

chosen such thatT0 never goes below the point where crys-
tallization dies out. Even for the expanded range
T0(2)2DT0(r),T0,T0(2)1DT0(r50), the form of e
remains essentially independent ofT0 . Equation ~34! is in
accord with intuition, as concentration diffusion is expected
to broaden the boundary layer of theC field. Increases ofe
with r occur predominantly on the leading edge of the reac-
tion front where the second derivative term in theC equation
is dominant.

Some of these results can be obtained by analytic argu-
ments. Motivated by our numerical work, we make a simple
decoupling ansatz for the concentration field and the reaction
rate, namely,

C~x,t !5cS xe D , R~T!5R@T~0,t !#r S xe ,r D , ~35!

where the width of the interfacee(t) enters. From our nu-
merical work, the fieldc'0 for x<0, c'1 for x>2 and
r (0)'1, while r (x)'0 for x.2. Using these forms, we can
integrate Eq.~5! for the concentration, thereby finding the
form of the velocity and the source term in the temperature
equation; namely,

]T

]t
5

]2T

]x2
1V~ t !

]T

]x
2~T2T0!2S~x,t !, ~36!

where

S~x,t !5SV~ t !1x
] lne

]t D 1

e~ t !

dc~z!

dz
, ~37!

z5x/e, and

V~ t !5a0e~ t !gR@T~0,t !#2b0
de~ t !

dt
. ~38!

The constantsa0 and b0 are integrals of thec field:
a05c0*2`

` rc(dc/dz)dz, b05c0*2`
` z(dc/dz)2dz, and

c05@*2`
` (dc/dz)2dz#21. From our numerical work, we can

estimate the values ofa0 , b0 , c0 , and other integrals involv-
ing c.

Our ansatz, then, brings our model to a tractable form,
and we can proceed as in the linear stability analysis of the
steady states done by van Saarloos, Weeks, and Kurtze.9 Two
features of our model survive the decoupling ansatz, and
differ from the earlier work. First, although we shall make no
use of it here, the time dependence of the width allows for
the time evolution of the temperature field to slip out of
synchronization with the concentration field, which we have
seen numerically for complicated doubling sequences. Sec-
ondly, since the source is notd-function-like in this limit, we
can obtain the postponement effect of the period doubling
due to the concentration diffusion.

In the steady-state limit, the solution of the temperature
equation can be obtained easily from the Green function

G~x!52At exp2S v2 x1
1

2At
uxu D ~39!

where the steady-state velocity is given byv5a0egR, and
t51/(v214). The steady-state solution is formally given by

FIG. 9. Plots ofTE
i11 versusTE

i for r50 and 0.125. A sample
iteration sequence is shown for ther50 map. These mappings
have two different structures. The linear parts are responsible for
overall period-2 cycling ofTm , while the smaller quadratic compo-
nents are responsible for the finer structures of the bifurcation dia-
grams, occurring for period 2n, n52,3, . . . ,solutions ofTm . These
finer structures produce the characteristic period doubling generated
by the logistic map.
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T~x!5E dx8G~x2x8!S~x8!. ~40!

The linear stability analysis of time-dependent fluctuations
around these solutions can now be done. This analysis is
straightforward for small interfacial widths, but tedious, and
is similar to that of the original work.9 Complete details are
given in Ref. 15. In any case, we find that oscillations appear
in the linear stability analysis corresponding to initial bifur-
cation ofTm . The dependence of this bifurcation onr is

T0~2!5T0~2!ur501a~12e2br!, ~41!

where a'0.38 andb'2.8. These values are approximate
because integrals such asa0 , b0 , and c0 must be numeri-
cally estimated. Nevertheless, this gives us additional confi-
dence in the result obtained from the numerical simulations
reported above and in Fig. 6.

V. SUMMARY

We have proposed a phase-field model describing
reaction-front propagation in activated transitions obeying
Arrhenius chemical kinetics. We have illustrated the model
by applying it to explosive crystallization in thin amorphous
films. Asymptotic analysis shows that our model simplifies,
in the limit of large reaction rate and small concentration
diffusion, to a sharp interface model, which has been used
previously. In our model, reactant concentration couples to
the thermal field, altering the bifurcation properties of the
propagating front predicted in the sharp interface limit. In

particular, the temperature at which periodic solutions first
appear depends strongly on reactant diffusion, shifting — or
being postponed — to lower substrate temperatures as reac-
tant diffusion is increased. The dependence of this tempera-
tureT0(2) on the reactant diffusion coefficientr was exam-
ined and found to be well fitted to an exponential, over the
range ofr examined. Analytic arguments also gave weight to
this form. This dependence could be tested experimentally.

We also found that periodic solutions ofTm(t) generated
a sequence of period doubling bifurcations, for numerous
values ofr. A first return mapping constructed fromTm(t)
showed that for bifurcations of period 4 and higher, these
bifurcation diagrams generate the same period doubling se-
quence of the one-dimensional logistic map. However, we
found that asr increased the substrate temperature range on
which this period doubling occurs decreased. We calculated
that this range spanned no more than 1 K. It is likely that the
temperature of clamped amorphous thin films cannot be con-
trolled to this tolerance, and so we expect that higher order
bifurcations are unobservable in these systems.
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