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The particle-size effect on the percolation and conductivity of ionic conductors containing a dispersed
second phase is investigated on the generalized random resistor networks model. A random sequential packing
model different from the one used by Roman and Yussouff is proposed, and by computer simulations we find
that there is a maximum critical particle size above which the second critical concentrationpc9 at which the
conductor-insulator transition takes place, will disappear. The first critical concentrationpc8 at which the
interface percolation transition occurs may also disappear above the critical particle size. The particle-size
effect on the conductivity property of the present model is studied with a powerful and efficientY-¹ transfor-
mation algorithm, and the numerical results are in good agreement with experiment results and previous
conclusion.

I. INTRODUCTION

Dispersed ionic conductors form a class of composite ma-
terials with intriguing conductance properties. As observed
by Liang,1 addition of a dispersed insulating component to
an ionic conductor can increase the overall conductivity by
two or three orders of magnitude. This peculiar behavior
results from an increased conductivity along the interface
between the conducting matrix and the insulating fine
particles.2–6 Because of such distinct interfacial properties,
dispersed ionic conductors can be regarded as three-
component systems. Bunde, Dieterich, and Roman2 have
proposed a random resistor network~RRN! model which
consists of nonconducting, normally conducting, and highly
conducting bonds. They start from a two-dimensional square
lattice and generate their two-phase mixture by producing
random occupation of unit squares with probabilityp, which
is the concentration of the dispersed insulating phase. The
sides of the squares are called bonds and have three different
conductances. They consider a given bond and its two adja-
cent squares. If both squares are occupied, the bond is called
insulating bond and the conductancesC50. If only one of
them is occupied the bond is called interface bond~highly
conducting bond! and the conductance issA . Finally if none
of them is occupied, the bond is taken as a normally con-
ducting bond with conductancesB . The resistor model is
mapped in the conventional way on a random walk,7 which
in turn is solved by means of Monte Carlo simulations. They
show that their model correctly describes the distinct con-
duction properties of those materials and in addition it dis-
plays the critical behavior of both random-superconductor
and random resistor networks8,9 at two different critical con-
centrations, and they conclude2–5 that ionic conductors con-
taining a dispersed insulating phase are good candidates to
investigate the predictions of static and kinetic percolation
theory in a real system. Later, in order to explain the experi-
mentally observed particle-size effect6 for the whole range of

concentrations of the insulating particles for such composite
materials, Roman and Yussouff6 generalize the random resis-
tor network model by introducing an additional parameters
called the particle size, so the size of elementary insulating
clusters can be varied. For more details of this model, we
refer the reader to Ref. 6. Monte Carlo calculations6 on the
generalized RRN for two-dimensional systems are reported
for square as well as rodlike particles of different size. It is
found6 that the corresponding critical concentrationspc8 and
pc9 , respectively, for interface percolation and the conductor
insulator transition, strongly depend on the size and shape of
the dispersed particles, and the simulation results for the dif-
fusion constant as a function of the particle size are in good
overall agreement with the experimentally observed particle-
size effects.

In this paper we will propose a random sequential packing
~RSP! model that is different from the one in Ref. 6, and
discuss the particle-size effect on the percolational behavior
as well as conductivity property of the present model. We
explore directly the percolation behavior10 which is charac-
terized by percolation susceptibilityx, and by the percolation
probabilityps(p) that a ‘‘spanning cluster’’ occurs on aL3L
finite size for each particle sizes. We will show that there is
a maximum critical particle sizesc above which the second
percolating thresholdpc9 for the conductor-insulator transi-
tion disappears, and the first percolating thresholdpc8 for the
interface percolation transition may also disappear. The
particle-size effect on the conductivity property of the
present model is studied with a recently proposedY-¹
transformation20 algorithm which is more efficient than the
previous method.2–7 The particle-size effect on the conduc-
tivity property of the present model obtained byY-¹ trans-
formation is in good agreement with that of Roman and
Yussouff.6

The paper is organized as follows. In Sec. II we will
present our RSP model, and in Sec. III we will study the
percolation behavior as well as the conductivity property of
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the present model through computer simulations, and com-
pare the present model with the one in Ref. 6. Our discussion
will be presented in Sec. IV.

II. RANDOM SEQUENTIAL PACKING MODEL

The random sequential packing problem has been mainly
studied in continuum or lattice space.11–13 The random se-
quential packing in square cellular structures has been stud-
ied by Nakamura.14–18Nakamura17 finds that the maximum
critical percolation lengthac ~3 units length! of the packed
squares is presented for the insulator-metal transition to take
place on the random sequential packing textures if the ran-
dom sequential patterns are formed by filling metallic
squares with integer lengtha on the insulator substrate di-
vided into square unit cells. Whena.ac , no insulator-to-
metal transition occurs even at the saturation coverage where
no more squares can be filled without any overlap.

We employ the algorithm used by Nakamura18 to generate
the ‘‘patterns.’’ We follow Ref. 1 and model the pure ionic
conductors to be the matrix with lengthL andL2 unit meshes
of unit square. A square insulator with lengths ands2 unit
cells is deposited on the meshes of the matrix at random one
by one without any overlap but permitting contact. The depo-
sitions are repeated, searching places where no overlaps oc-
cur, and they are continued until the concentration of the
insulating particle~p5ns2/L2, n is the total number of insu-
lating particles! reaches a fixed value or a square with length
s cannot be placed without any overlap. The computerized
procedures are the following:

~1! Assign numbers from 1 to 100 at random to every unit
cell of the matrix.

~2! Find out the unit cells with numberi ~1,i,100! and
register their places.

~3! Selected at random one place from the registration and
deposit an insulator square with lengths, setting one of the
corners to the selected place. As a mark of the deposited
square, all the numbers of the cells in the square are changed
from the originally assigned numbers to 1000~for example!.
If the square overlaps a cell with the number 1000 in the
course of deposition, the deposition is ceased. Delete the
selected place from the registration whether the deposition is
executed or not. Continue this operation until the concentra-
tion of the insulating particles reaches a fixed value or all the
places are deleted from the registration~the concentration in
this case is the saturation concentration!.

~4! Complete operation~2! and ~3! for every i from 1 to
100.

The RSP problem studied by Nakamura15–18is also useful
for studying the particle-size effect on the percolation prop-
erties of the present model. The connection between the RSP
problem in Ref. 17 and the present RSP model is very
simple, and from the results of Ref. 17 leads to the conclu-
sion that there is a critical size~s54! at and above which no
percolation transition could possibly occur for the present
model.

Note that the present model is different than the one in
Ref. 6, and both percolating thresholds cannot be expected to
be identical. In the model of Ref. 6, although not stated ex-
plicitly, squares are not distributed completely at random, but
a ‘‘local relaxation’’ is allowed when a new square is at-

tempted to be created in a position where it overlaps with the
previously deposited squares.

After a pattern has been generalized, both the percolation
properties and conductivity properties can be obtained, re-
spectively, by the standard percolation theory10 and electric
circuit theory, as we now proceed to demonstrate.

III. NUMERICAL RESULTS

A. Percolation behavior

As pointed by percolation theory, the percolation behavior
is characterized by percolation susceptibilityx, the probabil-
ity ps(p) that a ‘‘spanning cluster’’ occurs in the system, and
the percolation probabilityp`(p) ~the probability that an oc-
cupied site is part of the percolating cluster!. Here we only
present the results of the percolation susceptibilityx and
ps(p). The percolation susceptibilityx is defined as

x5(
l51

`

8l 2nl~p!, ~1!

wherenl(p) is the number of clusters which containl occu-
pied sites. The prime means that the largest cluster is omitted
from the summation. Since there exist two critical concen-
trationspc8 andpc9 , the definition of cluster is very different
for these two critical concentrations. pc8 is related to the
interface bonds only and defines the lowest concentration
where an infinite network of interface bonds or highly con-
ducting bonds develops. Two sites belong to the same cluster
if there is a highly conducting bonds connecting them. We
call such clusters ‘‘interface cluster,’’ which will be used in
Eq. ~1! to calculatedxi . The concentrationpc9 is the threshold
concentration for disrupting the conducting paths and defines
the percolation where all normal and interface bonds get dis-
rupted. The cluster must be defined in the following way:
two sites belong to the same cluster if there is a normal or
interface bond connecting them. The critical concentration
pc9 at which the conductor-insulator transition takes place is
linked to such clusters. We will call such clusters ‘‘metal-
insulator (MI ) clusters,’’ which will be used in Eq.~1! to
calculatexmi.

We employ Monte Carlo computer simulation procedures
for the square lattice with~L11! sites on its edge, whereL
ranges from 20 to 120, so that there areL2 unit squares in the
square lattices. Periodic boundary conditions are used, so
that the lattice is in reality a torus. We say that a given finite
L3L system ‘‘spans’’ if there is a cluster which surrounds
the hole in the torus. The amount of data generalized for each
value of p ranges from 2000 realizations atL520 and
L560, to 1000 realizations atL5120. We use the label al-
gorithm of Hoshen and Kopelman22 to identify all clusters in
a given configuration.

In Fig. 1. we have shown the interface percolation suscep-
tibility x i as a function of the concentrationp of insulating
particles for different particle sizes. Some interesting fea-
tures appear in Fig. 1. Fors51, s52, ands53, two peaks
develop as the concentrationp increases. Fors54, as the
concentration increases, the interface percolation susceptibil-
ity increases and has a maximum value at its saturation con-
centration~p50.646!.15 The concentration dependences of
x i for s51, s52, ands53 are very different from that of
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s54. Such a result implies that the interface percolation be-
havior fors51, s52, ands53 may also have different char-
acteristics from that ofs54. Fors51, s52, ands53, when
the concentrationp of the insulating phase is very small, the
number of the interface bonds is also very small, and only
some nonpercolating small interface clusters exist, therefore
the interface percolation susceptibilityx i is very small. As
the concentrationp increases, more and more normal bonds
become the interface bonds and the interface clusters become
larger and larger, so the percolation susceptibilityx i will
increase. At the interface percolation thresholdpc8 , the per-
colation susceptibilityx i will obtain the maximum value. By
further increasing the concentrationp, the percolating cluster
will become larger and larger and the percolation suscepti-
bility will decrease because in calculating the percolation
susceptibility the largest cluster is omitted from the summa-
tion in Eq. ~1!. When the interface cluster becomes the larg-
est one, the percolation susceptibility become the minimum
in Fig. 1. The dependence of the interface percolation sus-
ceptibility x i on concentrationp aroundpc8 is as the same as
the percolation susceptibility for the bond percolation prob-
lem on the square lattice.19 However, the second peak seems
to be an unexpected result and is quite different from the
bond percolation problem nearpc on the square lattice.19 In
conventional percolation problems,10 such as bond percola-
tion on the square lattice,19 when the concentrationp of the
bonds is becoming larger, the percolating cluster is also be-
coming larger. Whenp51, the percolating cluster dominates
the whole lattice, so the percolation susceptibility is exactly
0. However, for the present model, when the interface per-
colation cluster becomes the largest one~corresponds to the
minimum of percolation susceptibility in Fig. 1!, the further
increase of the concentrationp of the insulating phase will
disrupt the interface percolation cluster and some nonperco-
lating of local interface clusters will be generated. This cor-
responds to the second increase of the interface percolation
susceptibility. By further increasingp, the nonpercolating
clusters will become larger, and the contribution of these
clusters to the percolation susceptibility will increase untilx i

gets its second maximum value. When one further increases
the concentrationp, these nonpercolating clusters will be-
come small andx i will decrease. Whenp approaches its
saturation concentration, the interface percolating suscepti-
bility will obtain its second minimum value. It is not surpris-
ing that the second peaks are larger than~s51, s52! or

comparable to~s53! that of first peak. This is because the
first peak corresponds to the formation of the percolating
cluster, and the contribution of this percolating cluster tox i

is omitted in Eq.~1!, while the second peak corresponds to
some nonpercolating clusters, and the largest cluster in this
case is still nonpercolating and the ignorance of the contri-
bution of this cluster tox i in Eq. ~1! will have relative small
effect on the final result. Fors54 a very different phenom-
enon occurs. As the concentrationp increases, more and
more normal conducting bonds become the interface bonds
and the nonpercolating interface clusters become larger and
larger. Finally when the concentrationp approaches the jam-
ming coverage, the interface cluster becomes the largest one
and may also become a percolating cluster accidently. So for
s54, we cannot give a definite answer whether the interface
percolation occurs. However, if the interface percolation
takes places, the concentrationpc8 must be equal to the satu-
ration fraction.

In Fig. 2 we present the results of the interface suscepti-
bility x i near the saturation fraction. We find that the fluc-
tuation ofx i is very large and there is not a definite tendency
asp increases as shown in Fig. 1. Our result in Fig. 2 is in
agreement with that of Nakamura:17 for s54 even at the
saturation concentration, the pattern is usually made of the
nonpercolating clusters, and the largest cluster and the sec-
ond largest cluster are separated~see Fig. 2 in Ref. 17!.
There is no reason to believe that the largest cluster is be-
coming larger and larger as the concentration approaches the
saturation fraction, so the interface percolation susceptibility
x i cannot be expected to increase monotonically asp ap-
proaches the saturation fraction. This is very different from
those ofs51, s52, and s53 where the infinite interface
cluster forms, and the interface percolation susceptibilityx i

will decrease monotonically asp approaches the saturation
fraction. So fors54 by a detailed calculation near the satu-
ration fraction, we can definitely conclude that no interface
percolation transition occurs for the present model in a 120
3120 lattice. We do not know whether this conclusion may
also hold in the thermodynamic limit, and we have not per-
formed numerical simulations for larger lattice size because
of limited computer power. However, we hope further inves-
tigation may be carried out along this line.

The estimates ofpc8 are listed in Table I. The value of
pc8 is obtained by locating the concentrationp at which the
first peak develops. Note that the second peak in Fig. 1 has
no physical meaning, and the corresponding concentration

FIG. 1. The interface percolation susceptibilityx i as a function
of the concentrationp of the insulating particles for different par-
ticle sizes, L5120.

FIG. 2. The interface percolation susceptibilityx i near the satu-
ration fraction of the insulating particle fors54.
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cannot be used to define the critical concentration for the
metal-insulator transition, because such a transition is linked
not only to the interface bonds, but also to the normally
conducting bonds.

Numerical results of interfacep s
i (p) that a ‘‘spanning

cluster’’ made of interface bonds occurs in a finite lattice size
for different particle sizes are presented in Fig. 3. In the
lower concentration region, the insulating particles are dis-
persed in the normal bonds, and the number of interface
bonds is very small so the probability that a ‘‘interface span-
ning cluster’’ occurs in the system is very small. As the con-
centration increases, more and more normal bonds become
the interface bonds and the interface clusters become larger,
so p s

i (p) increases. Asp further increases, one of the inter-
face clusters becomes the interface percolating cluster, and
the interface percolating cluster becomes larger and larger
@p s

i (p) still increases#, and finally the interface percolating
cluster disrupts itself and divides into several small clusters,
sop s

i (p) will decrease. Before the interface percolating clus-
ter disrupts itself,p s

i (p) will approach its maximum value.
We can see from Fig. 3 that as the lattice size increases, the
maximum value ofp s

i (p) will also increase.
For s51 even a 60360 lattice can make it possible for

p s
i 51. However, as the particle size increases, the maximum

value ofp s
i (p) will decrease for the same lattice sizes. For

s52 even in a 1203120 lattice thep s
i (p) cannot approach 1.

The dramatic difference betweens54 ands,4 can be easily
seen in Fig. 3. Fors54, p s

i (p) always increases asp in-
creases. Whenp approaches its saturation concentration~this
saturation concentration is lattice size dependent15!, p s

i (p)
approaches its maximum value. Figure 3~d! corresponds to

the parts of Figs. 3~a!–3~c! in the lower concentration region.
Here again one cannot be sure whether the interface perco-
lation still occurs fors54 in the thermodynamic limit. One
possibility is that in the thermodynamic limit the interface
percolation may also occur at the saturation concentration
accidently. We also see from Figs. 3~a!–3~d! that for a given
lattice size~for exampleL5100!, when the particle size in-
creases,p s

i (p) will decrease: fors53 p s
i (p) will always be

0 at any concentration forL520; for s54, p s
i (p)50 even in

a 60360 lattice.
Our results ofp s

i (p) are very different from those of Ref.
6. Previous studies show that for every particle size the
p s
i (p) may obtain the value 1/2 even forL,100. Our results

show that fors51, this is correct, and fors52,3,4, this is
incorrect. Previous results may be true in the thermodynamic
limit.

The interface percolation thresholdpc8 is obtained as the
common intersection point of the curves. Fors52 we use the
intersection point generated by larger lattice sizes. Our re-
sults of pc8 are also listed in Table I. Since the maximum
value ofp s

i ,1 for s52 ands53 for the lattice sizes we have
used in this paper fluctuates, we think the resultant accuracy
in our values ofpc8 for s52 and s53 is correspondingly
lower.

Numerical results of the metal-insulator percolation sus-
ceptibility x mi for different particle sizes are presented in
Fig. 4. Here again the percolation susceptibilitiesx mi for
s51, s52, ands53 are different from that ofs54. In the
lower concentration region, the infinite cluster definitely ex-
ists in the system~note here the cluster is defined by both
interface bonds and normal bonds!. As the concentration in-
creases, some normal bonds become insulating bonds and the
MI percolation cluster become smaller. At the critical con-
centrationpc9 , the metal-insulator percolation cluster disrupts
itself and divides into several small clusters; this corresponds

TABLE I. Percolation thresholds of dispersed ionic conductor for the present RSP model. (a): from
x i(pc8) or xmi(pc9). (b): from ps

i (pc8) or ps
mi(pc9). (c): from Ref. 6.

s pc8 pc9
Method a b c a b c

1 0.40060.01 0.41560.02 0.40760.01 0.60060.01 0.59560.02 0.59360.01
2 0.50060.02 0.52560.03 0.51060.01 0.61060.01 0.60160.03 0.59060.01
3 0.57560.01 0.59060.02 0.64060.02 0.62560.03
4 ?0.646 ?0.646 0.58060.02 ?0.646 none 0.61060.02

FIG. 3. The interface spanning probabilityps
i (p) as a function

of the concentrationp of the insulating particle for different lattice
sizes.~a! s51; ~b! s52; ~c! s53; ~d! s54.

FIG. 4. The metal-insulator percolation susceptibilityx mi as a
function of the concentrationp of the insulating particles for differ-
ent particle sizes, L5120.
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to the peaks in Fig. 4. As the concentration further increases,
the local clusters become smaller and smaller, andx mi will
decrease. Finally all bonds in the system become the insula-
tor bonds andx mi obtains the minimum value. Fors54 the
percolation susceptibilityx mi will always increase as the
concentrationp increases. If the metal-insulator transition
occurs fors54, the transition must occur at the saturation
concentration. So from Fig. 4~d! we can only conclude that
for s54 if the metal-insulator transition occurs, the critical
concentration must be equal to the saturation concentration.
However, numerical results ofp s

mi presented next will rule
out this possibility.

Numerical results ofp s
mi(p) that a ‘‘spanning cluster’’

made of interface bonds or normal bonds in a finite lattice
size for different particle sizes are presented in Fig. 5. In the
lower concentration region, although the number of interface
bonds is very small, the metal-insulator percolating cluster
exists definitely in the system since the metal-insulator tran-
sition is linked not only to interface bonds but also to normal
bonds. As the concentrationp of the insulating particle in-
creases, some normal bonds become interface bonds and in-
sulator bonds, so the percolating cluster becomes smaller. By
further increasing the concentrationp, there will be different
consequences for the casess51, s52, ands53 and the case
s54. For s51, s52, ands53, the percolating cluster be-
comes smaller and smaller and may be divided into several
small clusters when the concentration approaches the critical
concentrationpc9 . However, fors54 the percolating cluster
does become smaller and smaller and before it is divided into
several clusters, the concentration already approaches the
saturation concentration. So the metal-insulator percolating
cluster still exists even at the saturation concentration and the
metal-insulator transition definitely disappears fors54.

The percolation thresholdspc8 andpc9 are listed in Table I
and comparisons are made with previous estimates.6 Meth-
ods (a) and (b) indicate that the percolation thresholds are
determined by the percolation susceptibility forL5120 and
the spanning probabilityps for L<120, respectively. Finite-
size scaling arguments have been used to determine the per-
colation thresholds by Roman and Yussouff.6 But our esti-
mates of percolation thresholds are less accurate than the

previous estimates because our results are obtained only on
some small lattice sizes and finite-size scaling has not been
used to determine the percolation thresholds in the infinite
lattice size. So the results listed in Table I should be regarded
as preliminary results.

For s51 the present model reduces to the model in Ref. 6
and both percolating thresholds are expected to be identical.
The results fors51 listed in Table I indeed support this
conclusion. Fors>2 the present model is different than the
one in Ref. 6 and both percolating thresholds cannot be ex-
pected to be identical. Fors52, the discrepancy forpc8 be-
tween method (a) and (b) is somewhat large, and we are
unable to arrive at a definite conclusion whether the perco-
lating thresholdpc8 of the present model is different from that
of the model in Ref. 6. However, comparingpc9 with previ-
ous estimates, we conclude that fors52 the percolating
thresholdspc9 of the present model are larger thanpc8 of
previous models. Ass increases, the differences between the
percolating thresholds of the present model and those of pre-
vious models also increase. Fors54, Roman and Yussouff7

predict the existence of the percolation transition atpc8 and
pc9 for their model. However, for the present model, no per-
colating transition possibly occurs. The second percolating
thresholdpc9 will disappear definitely from the data presented
in Fig. 5. We are unable to arrive at a definite conclusion of
whether the first percolating thresholdpc8 still occurs for the
present model because our simulations are performed on
some relatively small lattice sizes. However, the difference
between the present model and the previous one still can be
examined by comparing the percolating thresholds: if there
exists a percolation transition atpc8 for the present model,
then the percolating thresholdpc8 must be equal to the satu-
ration concentration of the RSP model discussed by
Nakamura.17 For s54 the saturation concentration is
0.64660.01,15 while the percolating thresholdpc950.610
60.02 for previous models. The percolating thresholds for
s53 have not been studied in Ref. 6 and a comparison can-
not be made. In Table I we use the question mark ‘‘?’’ to
denote that whether the percolation transition occurs in this
case cannot be determined by the present study. As men-
tioned above, if the percolation transition occurs fors54,
then the percolation thresholdpc8 must be equal to the satu-
ration concentration in the RSP model discussed by Naka-
mura, so we also list in Table I the percolating transition at
which the percolating transition possibly occurs.

B. Conductivity behavior

In this section we want to discuss the particle-size effect
on the conductivity behavior of the dispersed conductors.
Previous studies2–6 have mapped the three-resistor model on
a random walk.7 The mean-square displacement of the
walker as a function of timet was calculated by using the
Monte Carlo method.2–6 For large timet the mean-square
displacement of the walker is proportional toDt, D being the
diffusion constant, which is proportional to the conductivity
according to the Nerst-Einstein relation.7 One drawback of
this algorithm7 is that in order to obtain the correct diffusion
constant, the asymptotic regime of the walker, where the
mean-square displacement of the walker is proportional to

FIG. 5. The metal-insulator spanning probabilityps
mi(p) as a

function of the concentrationp of the insulating particle for differ-
ent lattice sizes.~a! s51; ~b! s52; ~c! s53; ~d! s54.

6260 53G. M. ZHANG



Dt, must be reached. It usually takes the walker 103 for p
,pc8 and 10

4–105 for p,pc9 to reach the asymptotic regime.
2

Here we deal with this problem from a different point of
view and use the Frank and Lobb algorithm20 to calculate the
effective conductivity for samples of size 60360. In this
method one can exactly calculated the equivalent conduc-
tance of a square network of arbitrary size, using a sequence
of network reductions familiar to electrical engineers, known
as Y-¹ transformations. The propagation starts from the
square in the first column and first row. After each propaga-
tion, one square is deleted. TheY-¹ algorithm is then used to
delete successively all the other squares in the first column.
Once the first column is deleted, the propagation algorithm
comes to the next column. After approximatelyL3/3 propa-
gation on aL3L network, the whole network is reduced to
just a single conductor which gives the effective conductance
of the whole network. It has been shown20 that this algorithm
is highly efficient for reducing a large square network to a
single effective conductance. This algorithm has been shown
to work efficiently not only for problems involving the con-
ductivity but also for calculating the critical current of a
normal-metal–superconductor composite. The same algo-
rithm has been used successfully to simulate far-infrared ab-
sorption in a two-dimensional normal-metal–superconductor
composite.21 We carried out our simulations on 60360 net-
works. For each concentrationp the results were averaged
over 100 realizations.

In Fig. 6, we have shown the effective conductivitys as a
function of the concentrationp of the insulating particles for
different values oft5sA/sB . Although the present model is
different from the one in Ref. 6, both percolating thresholds
cannot be expected to be identical, however, we are surprised
to find that the result of the effective conductance of the
present model is in good agreement with the diffusion con-
stantD(p) reported earlier.6 As a by-product, we also calcu-
lated the effective conductances for s53, which has not
been studied previously.6 As the particle size varies from
s51 to s54, for constantt, the peak height ofs decreases
and the peak position moves to a higher concentration. This
can be understood by noting that the corresponding fraction

of highly conducting bonds decreases withs. The differences
between our results and those of Ref. 6 are that the effective
conductivities at higher concentrations can also be calculated
by our method while previous methods can only extrapolate
the results in the low-concentration region to the higher-
concentration region because of the limitation of their
method. The particle-size effect on the effective conductivity
in the higher-concentration region can easily be seen from
Fig. 6~a! to Fig. 6~d!. In Figs. 6~a! and 6~b!, the effective
conductance can approach zero for differentt even in a
60360 lattice. This corresponds to the case where not only
normal bonds but also interface bonds are disrupted and
there is not a connected path formed by the normal or inter-
face bonds. In Figs. 6~c! and 6~d! the effective conductances
approach finite values even at the saturation coverage in a
60360 lattice; this corresponds to the case where the inter-
face and normal bonds still form a connected path in a
60360 lattice. That the effective conductance ofs53 ap-
proaches finite value even at the saturation fraction, seems to
be contradictory to the percolation properties of the present
model. Fors53 the prediction of the percolation property of
the present model shows that the metal-insulator transition
will occur at the concentration which is definitely smaller
than the saturation fraction. So at the saturation fraction the
composite will be an insulator and the effective conductance
of the composite will be exactly zero. This is because nu-
merical results presented in Fig. 6 are performed on a rela-
tive smaller lattice size~60360!. The finite lattice size
effect23 on the effective conductance can be seen from the
insets of Figs. 6~c! and 6~d!, where numerical simulations are
performed in a 1003100 lattice near the saturation fraction.
The effective conductance ofs53 for t510 and 100 will
approach zero asp approaches the saturation concentration
from below. The effective conductance fort5200 does not
approach zero whenp approaches the saturation fraction,
however, the effective conductance will decrease as lattice
size increases. If one performs a simulation on a larger lat-
tice, the effective conductance will finally approach zero asp
approaches the saturation concentration. Fors54 although
the increase of the lattice size can decrease the effective con-
ductance, the effective conductance in a 1003100 lattice for
t510 cannot approach zero. This effect cannot be accounted
for the finite lattice size. A numerical simulation on a large
lattice ~2003200! is performed, and the effective conduc-
tance still approach nonzero value. This implies that fors54
the metal-insulator transition cannot occur which is in agree-
ment with our previous discussions by exploring directly the
percolation behavior numerically.

The effect of the particle size on the conductivity is
clearly seen in Fig. 7 where for a fixed value oft5100, we
have plotted the effective conductivitys as a function of the
particle sizes. The different curves are for different concen-
trations~p50.46, 0.40, 0.33, and 0.30!. Here we choose the
same parameters as the previous study6 in order to see
whether the present model will bring out different conduc-
tivity behavior from the one in Ref. 6. The conductivities for
s53 ands55 are also presented in Fig. 7 which have not
been studied previously. Our results are in very good agree-
ment with the results obtained by the Monte Carlo method.6

FIG. 6. The effective conductances as a function of concentra-
tion p for different values oft5sA/sB ~from bottom to topt are
10, 100, and 200!. The inset shows the effective conductance near
the saturation concentration in a 1003100 network.~a! s51; ~b!
s52; ~c! s53; ~d! s54.
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IV. DISCUSSION AND CONCLUSIONS

In this paper we have considered a random-resistor model
for studying particle-size effects on the conductivity of mix-
tures of insulating particles dispersed in a conducting matrix,
a subject which is of both theoretical and practical interest.
We have proposed a random sequential packing model,
which is different from the one in Ref. 6, and we find that
both percolating thresholds of the present model are different
from those of previous estimates, and for the RSP of squares,
there is a critical size~s54! at and above which no perco-
lating transition possibly occurs. Particle-size effect on the
conductivity property of the present RSP model is investi-

gated with a powerful and efficientY-¹ transformation algo-
rithm, and to our surprise the numerical results of the present
RSP model are in good agreement with previous study.6

There are some possibilities for future investigations of
the present RSP model. Whether the present RSP model be-
longs to the university class of two-dimensional lattice per-
colation still requires further study. However, the present
RSP model does not change the transport exponentss(t),
and the transport exponents still take the universal values.
This is because previous studies24–28have predicted that the
transport critical exponent can be nonuniversal for percolat-
ing networks with an anomalous distribution of bond
strengths, arising naturally in continuum models,26–28 such
as the random-void models, where circular or spherical holes
are randomly placed in a uniform transport medium. For the
present RSP model, the normal bonds have finite conductiv-
ity, and the increase of the particle size does not lead to the
singularity of the distribution of the conductance; therefore
the present RSP model cannot be expected to change the
transport exponents.
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