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The particle-size effect on the percolation and conductivity of ionic conductors containing a dispersed
second phase is investigated on the generalized random resistor networks model. A random sequential packing
model different from the one used by Roman and Yussouff is proposed, and by computer simulations we find
that there is a maximum critical particle size above which the second critical concenpgtatnwhich the
conductor-insulator transition takes place, will disappear. The first critical concentratiat which the
interface percolation transition occurs may also disappear above the critical particle size. The particle-size
effect on the conductivity property of the present model is studied with a powerful and efficiéntansfor-
mation algorithm, and the numerical results are in good agreement with experiment results and previous
conclusion.

[. INTRODUCTION concentrations of the insulating particles for such composite
materials, Roman and YussoUfeneralize the random resis-
Dispersed ionic conductors form a class of composite mator network model by introducing an additional parameser
terials with intriguing conductance properties. As observectalled the particle size, so the size of elementary insulating
by Liang! addition of a dispersed insulating component toclusters can be varied. For more details of this model, we
an ionic conductor can increase the overall conductivity byrefer the reader to Ref. 6. Monte Carlo calculatfoos the
two or three orders of magnitude. This peculiar behaviogeneralized RRN for two-dimensional systems are reported
results from an increased conductivity along the interfacdor square as well as rodlike particles of different size. It is
between the conducting matrix and the insulating finefounc that the corresponding critical concentratigrjsand
particles’~® Because of such distinct interfacial properties,p’ , respectively, for interface percolation and the conductor
dispersed ionic conductors can be regarded as thregnsulator transition, strongly depend on the size and shape of
component systems. Bunde, Dieterich, and Romaave  the dispersed particles, and the simulation results for the dif-
proposed a random resistor netwoRRN) model which  fusion constant as a function of the particle size are in good
consists of nonconducting, normally conducting, and highlyoverall agreement with the experimentally observed particle-
conducting bonds. They start from a two-dimensional squaregjze effects.
lattice and generate their two-phase mixture by producing |n this paper we will propose a random sequential packing
random occupation of unit squares with probabifitywhich (RSP model that is different from the one in Ref. 6, and
is the concentration of the dispersed insulating phase. Thdiscuss the particle-size effect on the percolational behavior
sides of the squares are called bonds and have three differesé well as conductivity property of the present model. We
conductances. They consider a given bond and its two adjaxplore directly the percolation behavibmhich is charac-
cent squares. If both squares are occupied, the bond is calléerized by percolation susceptibilify and by the percolation
insulating bond and the conductaneg=0. If only one of  probabilitypg(p) that a “spanning cluster” occurs onlax L
them is occupied the bond is called interface bahighly finite size for each particle size We will show that there is
conducting bongand the conductance is, . Finally if none & maximum critical particle size. above which the second
of them is occupied, the bond is taken as a normally conpercolating thresholgg for the conductor-insulator transi-
ducting bond with conductanceg. The resistor model is tion disappears, and the first percolating threstpjldor the
mapped in the conventional way on a random walihich  interface percolation transition may also disappear. The
in turn is solved by means of Monte Carlo simulations. Theyparticle-size effect on the conductivity property of the
show that their model correctly describes the distinct conpresent model is studied with a recently proposéd/
duction properties of those materials and in addition it dis-transformatio” algorithm which is more efficient than the
plays the critical behavior of both random-superconductoprevious method:’ The particle-size effect on the conduc-
and random resistor netwofi&at two different critical con- tivity property of the present model obtained WyV trans-
centrations, and they conclufd@ that ionic conductors con- formation is in good agreement with that of Roman and
taining a dispersed insulating phase are good candidates ¥ussouff®
investigate the predictions of static and kinetic percolation The paper is organized as follows. In Sec. Il we will
theory in a real system. Later, in order to explain the experipresent our RSP model, and in Sec. Il we will study the
mentally observed particle-size effédr the whole range of percolation behavior as well as the conductivity property of
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the present model through computer simulations, and conmtempted to be created in a position where it overlaps with the

pare the present model with the one in Ref. 6. Our discussiopreviously deposited squares.

will be presented in Sec. IV. After a pattern has been generalized, both the percolation
properties and conductivity properties can be obtained, re-
spectively, by the standard percolation théBrmnd electric

Il. RANDOM SEQUENTIAL PACKING MODEL circuit theory, as we now proceed to demonstrate.
The random sequential packing problem has been mainly
studied in continuum or lattice spate® The random se- . NUMERICAL RESULTS
quential packing in square cellular structures has been stud- A. Percolation behavior
ied by Nakamura?~*® Nakamurd’ finds that the maximum , . . _
critical percolation lengthy, (3 units length of the packed As pointed by percolation theory, the percolation behavior

squares is presented for the insulator-metal transition to taki§ characterized by percolation susceptibilitythe probabil-
place on the random sequential packing textures if the rady Ps(P) that a “spanning cluster” occurs in the system, and
dom sequential patterns are formed by filling metallicthe percolation probabilitp..(p) (the probability that an oc-
squares with integer length on the insulator substrate di- cuPied site is part of the percolating clusteriere we only
vided into square unit cells. Whes>a,, no insulator-to- Présent the results of the percolation susceptibiktyand
metal transition occurs even at the saturation coverage wheRs(P)- The percolation susceptibility is defined as
no more squares can be filled without any overlap. o

We employ the algorithm used by Nakamtfra generate = "12n,(p) 1)
the “patterns.” We follow Ref. 1 and model the pure ionic e R
conductors to be the matrix with lengthandL 2 unit meshes

of unit square. A square insulator with lengttand s? unit : ) i : .
cells is deposited on the meshes of the matrix at random orfi€d Sités. The prime means that the largest cluster is omitted
from the summation. Since there exist two critical concen-

by one without any overlap but permitting contact. The depo- - , . . . .
sitions are repeated, searching places where no overlaps déationspc andpc, the definition of cluster is very different

cur, and they are continued until the concentration of thdor these two critical concentrations. p; is related to the
insulating particlgp=ns?/L?, n is the total number of insu- interface bonds only and defines the lowest concentration
lating particle reaches a fixed value or a square with lengthwhere an infinite network of interface bonds or highly con-

s cannot be placed without any overlap. The computerizedlucting bonds develops. Two sites belong to the same cluster

wheren,(p) is the number of clusters which contdimccu-

procedures are the following: if there is a highly conducting bonds connecting them. We
(1) Assign numbers from 1 to 100 at random to every unitcall such clusters “interface cluster,” which will be used in
cell of the matrix. Eq. (1) to calculatedy'. The concentratiop?, is the threshold
(2) Find out the unit cells with number(1<i<100 and  concentration for disrupting the conducting paths and defines
register their places. the percolation where all normal and interface bonds get dis-

(3) Selected at random one place from the registration angupted. The cluster must be defined in the following way:
deposit an insulator square with lengthsetting one of the two sites belong to the same cluster if there is a normal or
corners to the selected place. As a mark of the depositeitterface bond connecting them. The critical concentration
square, all the numbers of the cells in the square are changgd at which the conductor-insulator transition takes place is
from the originally assigned numbers to 1006r example. linked to such clusters. We will call such clusters “metal-
If the square overlaps a cell with the number 1000 in theinsulator M1I) clusters,” which will be used in Eq(l) to
course of deposition, the deposition is ceased. Delete thealculatey™'.
selected place from the registration whether the deposition is We employ Monte Carlo computer simulation procedures
executed or not. Continue this operation until the concentrafor the square lattice witliL +1) sites on its edge, whele
tion of the insulating particles reaches a fixed value or all theanges from 20 to 120, so that there hfeunit squares in the
places are deleted from the registratitime concentration in square lattices. Periodic boundary conditions are used, so

this case is the saturation concentration that the lattice is in reality a torus. We say that a given finite
(4) Complete operatioii2) and (3) for everyi from 1 to  LXL system “spans” if there is a cluster which surrounds
100. the hole in the torus. The amount of data generalized for each

The RSP problem studied by Nakamtird®is also useful  value of p ranges from 2000 realizations &t=20 and
for studying the particle-size effect on the percolation prop-L =60, to 1000 realizations at=120. We use the label al-
erties of the present model. The connection between the RSfrithm of Hoshen and Kopelm&rto identify all clusters in
problem in Ref. 17 and the present RSP model is vena given configuration.
simple, and from the results of Ref. 17 leads to the conclu- In Fig. 1. we have shown the interface percolation suscep-
sion that there is a critical sizs=4) at and above which no tibility ' as a function of the concentratignof insulating
percolation transition could possibly occur for the presenparticles for different particle size. Some interesting fea-
model. tures appear in Fig. 1. Fa=1, s=2, ands=3, two peaks

Note that the present model is different than the one irdevelop as the concentratign increases. Fos=4, as the
Ref. 6, and both percolating thresholds cannot be expected tmwncentration increases, the interface percolation susceptibil-
be identical. In the model of Ref. 6, although not stated exity increases and has a maximum value at its saturation con-
plicitly, squares are not distributed completely at random, butentration(p=0.646.'°> The concentration dependences of
a “local relaxation” is allowed when a new square is at- x' for s=1, s=2, ands=3 are very different from that of
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) ) R ) FIG. 2. The interface percolation susceptibility near the satu-
FIG. 1. The interface perCOIa“On Susceptlbll)@'/ as a function ration fraction of the insu|ating particle fa=4.

of the concentratiop of the insulating particles for different par-

ticle sizes, L=120. ) o
comparable tqs=3) that of first peak. This is because the

s=4. Such a result implies that the interface percolation befirst peak corresponds to the formation of the percolating
havior fors=1, s=2, ands=3 may also have different char- cluster, and the contribution of this percolating clustegto
acteristics from that o§=4. Fors=1, s=2, ands=3, when is omitted in Eq.(1), while the second peak corresponds to
the concentratiop of the insulating phase is very small, the some nonpercolating clusters, and the largest cluster in this
number of the interface bonds is also very small, and only¢ase is still nonpercolating and the ignorance of the contri-
some nonpercolating small interface clusters exist, thereforgution of this cluster to¢' in Eq. (1) will have relative small

the interface percolation susceptibiligy is very small. As  effect on the final result. Fos=4 a very different phenom-
the concentratiom increases, more and more normal bondsenon occurs. As the concentratign increases, more and
become the interface bonds and the interface clusters becorigore normal conducting bonds become the interface bonds
larger and larger, so the percolation susceptibijty will and the nonpercolating interface clusters become larger and
increase. At the interface percolation threshpld the per- larger. Finally when the concentratignapproaches the jam-
colation susceptibility ' will obtain the maximum value. By Ming coverage, the interface cluster becomes the largest one
further increasing the concentratipnthe percolating cluster and may also become a percolating cluster accidently. So for
will become larger and larger and the percolation susceptis=4, we cannot give a definite answer whether the interface
bility will decrease because in calculating the percolationPercolation occurs. However, if the interface percolation
susceptibility the largest cluster is omitted from the summatakes places, the concentratiph must be equal to the satu-
tion in Eq.(1). When the interface cluster becomes the larg-ration fraction.

est one, the percolation susceptibility become the minimum In Fig. 2 we present the results of the interface suscepti-
in Fig. 1. The dependence of the interface percolation susdility x' near the saturation fraction. We find that the fluc-
ceptibility Xi on concentratiom aroundp,. is as the same as tuation ofy ' is very large and there is not a definite tendency
the percolation susceptibility for the bond percolation prob-asp increases as shown in Fig. 1. Our result in Fig. 2 is in
lem on the square lattidd.However, the second peak seemsagreement with that of Nakamuté:for s=4 even at the

to be an unexpected result and is quite different from theésaturation concentration, the pattern is usually made of the
bond percolation problem neag, on the square latticE.In ~ nonpercolating clusters, and the largest cluster and the sec-
conventional percolation problent$such as bond percola- ond largest cluster are separateste Fig. 2 in Ref. 1)7

tion on the square latticE,when the concentratiop of the ~ There is no reason to believe that the largest cluster is be-
bonds is becoming larger, the percolating cluster is also becoming larger and larger as the concentration approaches the
coming larger. Whemp=1, the percolating cluster dominates saturation fraction, so the interface percolation susceptibility
the whole lattice, so the percolation susceptibility is exactlyx' cannot be expected to increase monotonicallyp aap-

0. However, for the present model, when the interface perProaches the saturation fraction. This is very different from
colation cluster becomes the largest @oerresponds to the those ofs=1, s=2, ands=3 where the infinite interface
minimum of percolation susceptibility in Fig)lthe further ~ cluster forms, and the interface percolation susceptibiity
increase of the concentratignof the insulating phase will Will decrease monotonically gs approaches the saturation
disrupt the interface percolation cluster and some nonpercdtaction. So fors=4 by a detailed calculation near the satu-
lating of local interface clusters will be generated. This cor-ration fraction, we can definitely conclude that no interface
responds to the second increase of the interface percolatigiercolation transition occurs for the present model in a 120
susceptibility. By further increasing, the nonpercolating 120 lattice. We do not know whether this conclusion may
clusters will become larger, and the contribution of thesedlso hold in the thermodynamic limit, and we have not per-
clusters to the percolation susceptibility will increase ugtil ~ formed numerical simulations for larger lattice size because
gets its second maximum value. When one further increased limited computer power. However, we hope further inves-
the concentratiorp, these nonpercolating clusters will be- tigation may be carried out along this line.

come small andy' will decrease. Wherp approaches its The estimates op, are listed in Table I. The value of
saturation concentration, the interface percolating susceptp, is obtained by locating the concentratipnat which the
bility will obtain its second minimum value. It is not surpris- first peak develops. Note that the second peak in Fig. 1 has
ing that the second peaks are larger tHarl, s=2) or  no physical meaning, and the corresponding concentration
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- TABLE |. Percolation thresholds of dispersed ionic conductor for the present RSP moeli. frqm
x'(pe) or x™(pg). (b): from pg(p¢) or pg'(pe). (c): from Ref. 6.

s pe pe

Method a b c a b c
1 0.400:0.01 0.4150.02 0.40720.01 0.60-0.01  0.595-0.02 0.5930.01
2 0.5000.02  0.525-0.03 0.51¢-0.01 0.613-0.01 0.601+0.03 0.59¢-0.01
3 0.575:0.01 0.59@:0.02 0.64@:0.02 0.625-0.03
4 ?0.646 ?0.646 0.5860.02 ?0.646 none 0.61.02

cannot be used to define the critical concentration for thehe parts of Figs. &)—3(c) in the lower concentration region.
metal-insulator transition, because such a transition is linketHere again one cannot be sure whether the interface perco-
not only to the interface bonds, but also to the normallylation still occurs fors=4 in the thermodynamic limit. One
conducting bonds. possibility is that in the thermodynamic limit the interface
Numerical results of interfacq:»is(p) that a “spanning per<_:o|ation may also occur at the saturation conce_ntration
cluster” made of interface bonds occurs in a finite lattice sizeAccidently. We also see from FigsaB-3(d) that for a given
for different particle sizes are presented in Fig. 3. In the lattice size(for exampleL =100, when the particle size in-
lower concentration region, the insulating particles are discréasesps(p) will decrease: fos=3 p(p) will always be

persed in the normal bonds, and the number of interface gt&?é(fg{:iccimraﬂon fdr=20; fors=4, p(p) =0 even in
bonds is very small so the probability that a “interface span- Our results o' (p) are very different from those of Ref.

ning cluster” occurs in the system is very small. As the ©OM¢ Previous studies show that for every particle size the
centration increases, more and more normal bonds become yp
I,

. . <(p) may obtain the value 1/2 even fbr<100. Our results
the |Pterf§ce bonds and the mtt_arface clusters becomg larg dhow that fors=1, this is correct, and fos=2.3.4, this is
so py(p) increases. Ap further increases, one of the inter-

. . incorrect. Previous results may be true in the thermodynamic
face clusters becomes the interface percolating cluster, anQ it

the interface percolating cluster becomes larger and larger The interface percolation threshoid is obtained as the

[p is(p) still increase§ and finally the interface percolating . . .

cluster disrupts itself and divides into several small cluster ?ommon_mters_ectlon point of the curves. ; 2 we use the

sopl(p) will decrease. Before the interface percolating clus-intersection point generated by larger lattice sizes. Our re-
A h 12 . . . .

ter disrupts itselfpi(p) will approach its maximum value. sults of p, are also listed in Table I. Since the maximum

, ° v N
We can see from Fig. 3 that as the lattice size increases, t&@/Ue 0fps<1 for s=2 ands=3 for the lattice sizes we have

maximum value o is(p) will also increase. _used in this paper fluctuates, we think_the resultant accuracy
For s=1 even a 6&60 lattice can make it possible for in our values ofp for s=2 ands=3 is correspondingly
p.=1. However, as the particle size increases, the maximurlPwer. _ _
value of pi(p) will decrease for the same lattice sizes. For Numerical resuits of the metal-insulator percolation sus-
s=2 even in a 1261120 lattice thep(p) cannot approach 1. cgpnblhty X for. different parthle sizes are _prgse_nted in
The dramatic difference betwesrr4 ands<4 can be easily Fig. 4. Here again the percolation susceptibilitjeS" for
seen in Fig. 3. Fos=4, pi(p) always increases as in- s=1, s=2, ands_=3 are.dlfferent. frpm that o6=4. In the
creases. Whep approaches its saturation concentratitis !owe_r concentration region, the infinite cl_uster_deﬂmtely ex-
saturation concentration is lattice size depentfenp(p) ists in the systenfnote here the cluster is defined by both

creases, some normal bonds become insulating bonds and the

M1 percolation cluster become smaller. At the critical con-

o — — 0.6 — . . . .
i; fo + L=60 » L=120 . 5:220 + L=60 x [=120 centrationp;, , the metal-insulator percolation cluster disrupts
ror 0.4} N itself and divides into several small clusters; this corresponds
P o6t 7
o2r e s=14 s=2% s=30 s=4
0.2 . ! . i =120
0.3 0.5, 0.7 0.45 0.55 0.65 e~
p
05[5=3 + L=60 x L=120 03 s =4+ L=100+L=120 Xi?o_
. 02l | .
o oo3yt »;
7 0.1k loo} +
0.1F
. - ¥ . N N Q L
0.54 0.58 0.62 0.66 0.58 0.60 0.62 0.56 0.64 0.72
P P P

FIG. 3. The interface spanning probabilipi(p) as a function FIG. 4. The metal-insulator percolation susceptibilit]'' as a
of the concentratiop of the insulating particle for different lattice function of the concentratiop of the insulating particles for differ-
sizes.(a) s=1; (b) s=2; (c) s=3; (d) s=4. ent particle sizes, L=120.
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previous estimates because our results are obtained only on
some small lattice sizes and finite-size scaling has not been
used to determine the percolation thresholds in the infinite

lattice size. So the results listed in Table | should be regarded
as preliminary results.

Fors=1 the present model reduces to the model in Ref. 6
and both percolating thresholds are expected to be identical.
The results fors=1 listed in Table | indeed support this
conclusion. Fois=2 the present model is different than the

0.8

mi

Py
0.4

08 one in Ref. 6 and both percolating thresholds cannot be ex-
P pected to be identical. Fa=2, the discrepancy fop/ be-
0.4} tween method §) and (b) is somewhat large, and we are

unable to arrive at a definite conclusion whether the perco-
, , & , , lating thresholdp;, of the present model is different from that
0:5 055 p 08 08505 085, 06 %% of the model in Ref. 6. However, comparipg with previ-
ous estimates, we conclude that fe=2 the percolating
FIG. 5. The metal-insulator spanning probabilinf’(p) as a thresholdsp; of the present model are larger thaq of
function of the concentratiop of the insulating particle for differ- previous models. As increases, the differences between the
ent lattice sizes(a) s=1; (b) s=2; (c) s=3; (d) s=4. percolating thresholds of the present model and those of pre-
vious models also increase. Fe+4, Roman and YussoUff
to the peaks in Fig. 4. As the concentration further increasesredict the existence of the percolation transitiorpatand
the local clusters become smaller and Sma.”er, ﬂﬁw will pg for their model. However, for the present mode|' no per-
decrease. Finally all bonds in the system become the insulgplating transition possibly occurs. The second percolating
tor bonds andy ™ obtains the minimum value. F&=4 the  resholdp” will disappear definitely from the data presented
percolation susceptibilityy ™ will always increase as the iy Fig 5 We are unable to arrive at a definite conclusion of
concentrationp increases. If the metal-insulator transition whether the first percolating threshqid still occurs for the
oceurs for.SZA" the trans?tion must occur at the Saturationpresent model because our simulations are performed on
concentration. So from Fig.(d) we can only conclude that some relatively small lattice sizes. However, the difference

for s=4 if the metal-insulator transition occurs, the critical between the present model and the previous one still can be
concentration must be equal to the saturation concentratioll, ,nineq by comparing the percolating thresholds: if there
However, numerical results gfY" presented next will rule

. L exists a percolation transition @i, for the present model,
out this possibility. _ then th lating thresh tb | to th i
Numerical results ofp"(p) that a “spanning cluster” en the percolating threshofif must be equal to the satu-

made of interface bonds or normal bonds in a finite latticd /O™ con7centrat|on of the RSP model discussed by
size for different particle size are presented in Fig. 5. In the Nakamura. 15 For_ s=4 the satu_ranon conce,r)tratmn IS
lower concentration region, although the number of interfacd)-646-0.01;> while the percolating thresholg;=0.610
bonds is very small, the metal-insulator percolating cluster™ 0-02 for prévious models. The percolating thresholds for
exists definitely in the system since the metal-insulator tranS=3 have not been studied in Ref. 6 and a comparison can-
sition is linked not only to interface bonds but also to normalnot be made. In Table | we use the question mark “?” to
bonds. As the concentratigm of the insulating particle in- denote that whether the. percolation transition occurs in this
creases, some normal bonds become interface bonds and fS€ cannot be determined by the present study. As men-
sulator bonds, so the percolating cluster becomes smaller. Bf[f”ed above, if the percolation transition occurs $or4,

further increasing the concentratipnthere will be different  then the percolation threshoftf must be equal to the satu-
consequences for the casesl, s=2, ands=3 and the case ration concentration in the RSP model discussed by Naka-

s=4. Fors=1, s=2, ands=3, the percolating cluster be- mura, so we also list in Table | the percolating transition at

comes smaller and smaller and may be divided into severayhich the percolating transition possibly occurs.
small clusters when the concentration approaches the critical
concentratiorp; . However, fors=4 the percolating cluster
does become smaller and smaller and before it is divided into
several clusters, the concentration already approaches the In this section we want to discuss the particle-size effect
saturation concentration. So the metal-insulator percolatingn the conductivity behavior of the dispersed conductors.
cluster still exists even at the saturation concentration and therevious studi€s® have mapped the three-resistor model on
metal-insulator transition definitely disappears $er4. a random walK. The mean-square displacement of the
The percolation thresholds. andp; are listed in Table | walker as a function of time¢ was calculated by using the
and comparisons are made with previous estinfatdsth-  Monte Carlo method-® For large timet the mean-square
ods @) and () indicate that the percolation thresholds aredisplacement of the walker is proportional@®, D being the
determined by the percolation susceptibility fo=120 and  diffusion constant, which is proportional to the conductivity
the spanning probabilitp, for L<120, respectively. Finite- according to the Nerst-Einstein relatibrOne drawback of
size scaling arguments have been used to determine the péhis algorithnd is that in order to obtain the correct diffusion
colation thresholds by Roman and Yussdufut our esti- constant, the asymptotic regime of the walker, where the
mates of percolation thresholds are less accurate than theean-square displacement of the walker is proportional to

B. Conductivity behavior
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of highly conducting bonds decreases vstiThe differences

150 a| gl b between our results and those of Ref. 6 are that the effective

- conductivities at higher concentrations can also be calculated

¢ n by our method while previous methods can only extrapolate
st the results in the low-concentration region to the higher-
0 ‘ 0 ‘ concentration region because of the limitation of their

8 method. The particle-size effect on the effective conductivity

in the higher-concentration region can easily be seen from

0.4 0
p
25 c sl 51 d
o \ : Eéf Fig. 6a) to Fig. 6d). In Figs. 6a) and Gb), the effective
- 05 >~ : conductance can approach zero for differeneven in a
4| o8 oss 0sTs N °’5“% 60x 60 lattice. This corresponds to the case where not only
=_—— normal bonds but also interface bonds are disrupted and

Oo‘o 02, 0.4 06 0.0 0.2 0.4 0.6 there is not a connected path formed by the normal or inter-
i ? face bonds. In Figs.(6) and &d) the effective conductances
approach finite values even at the saturation coverage in a
60X 60 lattice; this corresponds to the case where the inter-
10, 100, and 200 The inset shows the effective conductance nearface and T‘Ofma' bonds  still form a connected path in a
the saturation concentration in a 20000 network.(a) s=1; (b) 60x60 Iatt.lc.e. That the effective condl,!ctances.ovﬁS ap-
s=2; (c) s=3; (d) s=4. proaches finite value even at the saturation fraction, seems to
be contradictory to the percolation properties of the present
model. Fors=3 the prediction of the percolation property of
the present model shows that the metal-insulator transition
will occur at the concentration which is definitely smaller
than the saturation fraction. So at the saturation fraction the
effective conductivity for samples of size 860. In this composite will be an insulator and the effective conductance

method one can exactly calculated the equivalent conduc the composite will be exactly zero. This is because nu-
tance of a square network of arbitrary size, using a sequendBerical results presented in Fig. 6 are performed on a rela-
of network reductions familiar to electrical engineers, knowntive smaller lattice size(60X60). The finite lattice size
as Y-V transformations. The propagation starts from theeffect® on the effective conductance can be seen from the
square in the first column and first row. After each propagainsets of Figs. &) and &d), where numerical simulations are
tion, one square is deleted. THeV algorithm is then used to performed in a 108100 lattice near the saturation fraction.
delete successively all the other squares in the first columnthe effective conductance =3 for 7=10 and 100 will
Once the first column is deleted, the propagation algorithmapproach zero ap approaches the saturation concentration
comes to the next column. After approximatél}/3 propa-  from below. The effective conductance fer-200 does not
gation on aL X L network, the whole network is reduced to approach zero whep approaches the saturation fraction,
just a single conductor which gives the effective conductanc@&owever, the effective conductance will decrease as lattice
of the whole network. It has been shoifithat this algorithm  sjze increases. If one performs a simulation on a larger lat-
is highly efficient for reducing a large square network to atice, the effective conductance will finally approach zerpas
single effective conductance. This algorithm has been showgpproaches the saturation concentration. $e4 although
to work efficiently not only for problems involving the con- he increase of the lattice size can decrease the effective con-
ductivity but also for calculating the critical current of a ductance, the effective conductance in a 000 lattice for
normal-metal-superconductor composite. The same alg0-_1q cannot approach zero. This effect cannot be accounted
rlthm_has_ been use_d suc_cessfully to simulate far-infrared aly, o finite Jattice size. A numerical simulation on a large
sorption In a two-dimensional normal-metal—superconductof;c.o (200x200 is performed, and the effective conduc-
composite?! We carried out our simulations on 860 net- " h lue. This implies thasfer
works. For each concentratign the results were averaged tance st approach nonzero value. this implies hat

the metal-insulator transition cannot occur which is in agree-

over 100 realizations. t with . di : b lorina directly th
In Fig. 6, we have shown the effective conductivitys a ment with our previous discussions by exploring directly the
percolation behavior numerically.

function of the concentratiop of the insulating particles for - _ L
different values ofr=c s/ g . Although the present model is "€ effect of the particle size on the conductivity is
different from the one in Ref. 6, both percolating thresholdsC!early seen in Fig. 7 where for a fixed value ©f 100, we
cannot be expected to be identical, however, we are surprisdtfive plotted the effective conductivityas a function of the
to find that the result of the effective conductance of theParticle sizes. The different curves are for different concen-
present model is in good agreement with the diffusion contrations(p=0.46, 0.40, 0.33, and 0.30Here we choose the
stantD(p) reported earlie?.As a by-product, we also calcu- same parameters as the previous stutly order to see
lated the effective conductanee for s=3, which has not whether the present model will bring out different conduc-
been studied previousfyAs the particle size varies from tivity behavior from the one in Ref. 6. The conductivities for
s=1 to s=4, for constantr, the peak height oé decreases s=3 ands=5 are also presented in Fig. 7 which have not
and the peak position moves to a higher concentration. Thibeen studied previously. Our results are in very good agree-
can be understood by noting that the corresponding fractioment with the results obtained by the Monte Carlo method.

FIG. 6. The effective conductaneeas a function of concentra-
tion p for different values ofr=0 /o (from bottom to topr are

Dt, must be reached. It usually takes the walke? ftd p
<p. and 10-1C for p<p. to reach the asymptotic reginie.
Here we deal with this problem from a different point of
view and use the Frank and Lobb algoritfito calculate the
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gated with a powerful and efficiem-V transformation algo-
rithm, and to our surprise the numerical results of the present
RSP model are in good agreement with previous study.
There are some possibilities for future investigations of
the present RSP model. Whether the present RSP model be-
longs to the university class of two-dimensional lattice per-
colation still requires further study. However, the present
RSP model does not change the transport expongnjs
and the transport exponents still take the universal values.
This is because previous studi&=®have predicted that the
transport critical exponent can be nonuniversal for percolat-
FIG. 7. The effective conductivity as a function of particle ing networks with an anomalous distribution of bond
for fixed =100 and different Concentratiorﬁﬁom bottom to top StrengthS’ arising natura”y in continuum mod@l_szys such

the concentrations are 0.30, 0.33, 0.40 and 0.46 as the random-void models, where circular or spherical holes
are randomly placed in a uniform transport medium. For the
IV. DISCUSSION AND CONCLUSIONS present RSP model, the normal bonds have finite conductiv-

) ) . ity, and the increase of the particle size does not lead to the
In this paper we have considered a random-resistor modefingylarity of the distribution of the conductance; therefore

for studying particle-size effects on the conductivity of mix- the"present RSP model cannot be expected to change the
tures of insulating particles dispersed in a conducting matr'xtransport exponents.

a subject which is of both theoretical and practical interest.
We have proposed a random sequential packing model,
which is different from the one in Ref. 6, and we find that
both percolating thresholds of the present model are different
from those of previous estimates, and for the RSP of squares, | thank Professor Z. Y. Li for suggesting this problem and
there is a critical siz€s=4) at and above which no perco- providing me some references of this work. This work was
lating transition possibly occurs. Particle-size effect on thesupported by a Direct Grant for Research under Project No.
conductivity property of the present RSP model is investi-3409 at Suzhou University.
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