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We examine the percolation threshold for composites made by dispersing anisometric, single-crystal graphite
flakes in either an epoxy resin or a polyurethane polymer matrix. Analysis is based on empirical and excluded-
volume approaches and the results are compared with a similar treatment using literature data of carbon-fiber
based composites.

I. INTRODUCTION

Percolation theory has been applied to a wide range of
materials and phenomena over the past years1 and the funda-
mental mathematics are well understood.2 Application to
electrical conductivity has been reviewed in detail by several
authors.3–5Many model systems have been treated and a vast
literature exists comparing experiment with theory. One of
the less well established points concerns the capacity of per-
colation concepts to predict the threshold of a conducting
filler in an insulating matrix in real systems for other than the
most simply shaped filler objects.

In the present work, based on two types of graphite, the
particles of which can be assimilated to very thin disks, we
have made composite materials by dispersing this conducting
filler in two types of polymers, an epoxy resin and a poly-
urethane resin. The critical concentrationfc , expressed as a
volume percentage of graphite, was determined through dc
electrical conductivity measurements on a large number of
samples covering the range off from 0 to 10 % as discussed
elsewhere.6 We will show here that it is possible, through
different approaches, to calculate this observed value. In par-
ticular, it will be seen that the concept of excluded volume7

is particularly efficient in treating the problem of percolating
systems in which the objects possess a large aspect ratio,
such as disks. Through the same type of calculation, we will
determine the critical concentrations of another type of ani-
sometric filler, namely fibers. In order to do so, we have
analyzed much literature data concerningfc and compared
them to the excluded volume calculations presented here. For
disks, as for fibers, a brief discussion will center on orienta-
tion effects of the particles and specific properties of the
insulating matrices.

II. POLYMER –GRAPHITE FLAKE COMPOSITES

A. Materials and determination of the threshold

The conducting filler used in this work, termed FMG1 ~flat
micronic graphite!, is constituted of single-crystal particles

of graphite made through exfoliation.8 They were character-
ized by scanning electron microscopy which showed that
their thickness is of the order of 0.1mm. Laser counting
furnished a particle size distribution histogram with an aver-
age diameter of 10mm. A typical flake of FMG1 is thus
roughly disk-shaped with an aspect ratio~diameter/
thickness! of the order of 100. Furthermore, krypton adsorp-
tion on these particles showed a specific surface area of
about 20 m2/g.

The second type of particle, designated FMG2 is charac-
terized by a size distribution identical to that of FMG1, thus
an average diameter of 10mm. Its specific surface area, how-
ever, is 40 m2/g, a measurement from which we conclude
that these particles are twice as thin as those of FMG1 and
possess therefore an aspect ratio of about 200.

Using these two types of disk-shaped particles, we have
made polymeric composites of different filler concentrations
f based on two thermally cured resins. The protocol used6

leads to materials in the form of thick films with preferen-
tially oriented particles. The degree of disorientation, or mo-
saic spread, is defined as the full width at half maximum of
the curve of intensity versus angular rotationa about the
~002! graphite reflection. If all the particles were perfectly
aligned parallel to the plane of deposition, the reflection
would primarily be only instrumentally broadened: in our
case, rotation of the sample within the x-ray beam places
greater or fewer graphite flakes into Bragg diffraction condi-
tions yielding a mosaic spread of approximately620°, inde-
pendent off. We will return to this later. The percolation
threshold was determined through conductivity measure-
ments, both parallel~si! and perpendicular~s'! to the plane
of the films, as illustrated in Fig. 1: the corresponding critical
concentrationsfc are presented in Table I. All values are
below 2%, much less than is the case for spherical filler
materials. In the following, we will compare these values
with those that can be obtained theoretically using the char-
acteristics at our disposal and three different approaches.
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B. Theoretical determination of the threshold

1. Mean-field theory

To calculate the critical concentration of an ensemble of
thin spheroids dispersed in an insulating matrix, a mean-field
approach was used by Helsing and Helte.9 Such an approach
consists in calculating the average effects of the random re-
sistor network representing the binary heterogeneous mixture
of insulator and conductor by a homogeneous effective me-
dium. An overall conductivity equation can be determined
which is then, in principle, applicable over the full range of
compositions. Thus for flat ellipsoids of major and minor
axis lengthsR andeR ~e!1!, the conductivity threshold for
a critical concentrationfc was found, to first order, to be
such that,

fc51.18e. ~1!

If we suppose that a FMG particle can be approximately
described by this type of object with a ratio of diameter to
thickness of 100 for FMG1 ~e50.01!, then

fc151.18%.

For the FMG2 we havee25e1/250.005, so

fc250.59%.

These values are indeed of the order of magnitude of
those in Table I. Furthermore, the calculations of Helsing and
Helte modeled a medium containing an unoriented filler;
knowing that the particles are more or less well oriented in
the present case, it is thus natural to find a percolation thresh-
old which is slightly higher; this point will be further devel-
oped below.

2. Empirical method

The above determined critical concentrations can also be
determined somewhat more empirically by the idea10 accord-
ing to which the percolation threshold of a conducting pow-
der is linked with the empty volume between the particles.
This, of course, is directly related with the notion of ex-
cluded volume which will be developed in the following
paragraph. A composite can thus be considered as a conduct-
ing backbone with a certain packing density which differs
with the conducting powder according to the particle mor-
phologies. For example, the greater the aspect ratio, the less
the packing density and the lower one would expect to find
the critical volume concentration. Good qualitative corre-
spondence has thus been found between the quantitiesfc
andfp where

fp5
density of unpacked powder

density of material constituting this powder
.

fp is thus equivalent to a filling factor. For a certain number
of materials withfc values between 20 and 55%, the follow-
ing empirical relationship was put forward:

fc'fp25%. ~2!

However, it was noted that asfc diminished below 20%
fc andfp more closely approached each other, andfc'fp .
Consequently, the lesser the packing density, the lower the
value offp ~and the easier the percolation in a matrix for a
low value off!.

We would now like to apply this relationship to FMG;
however,fp is not an easy parameter to work with since it
must strongly depend on the experimental conditions. In-
deed, the apparent density of the FMG1 powder is about 10
g/l. Graphite, having a mass density of 2.2 g/cm3, a percola-
tion threshold of about 0.45% should then be observed. Simi-
larly, an apparent density of about 8 g/l was found for FMG2
which would then lead to a critical concentration of 0.36%.
These results are, of course, approximate, and serve mainly
to compare the different types of graphite powders with each
other using a well defined protocol for defining the apparent
density.

3. Excluded volume

Application of this concept, which associates a volume
with objects which do not necessarily possess a true volume
~e.g., infinitely thin rods and disks! results in very low values
of threshold concentration. Indeed, real particles can have a
true volume which is extremely modest compared to the ex-
cluded volume when they are not densely packed. Let us use
this concept and define the excluded volume7 @excluded area
in two dimensions~2D!# as the volume around an object in
which the center of another similarly shaped object is not
allowed to penetrate. The underlying idea is that the perco-
lation threshold is not linked to the true volume of the object
itself but rather to its excluded volume. Thus, ifNc is the
critical number density of objects in the system,V is the
volume of one of these objects, andVe is the associated
excluded volume, then the invariance properties of the quan-
tity NcV established for network percolation11 are no longer
valid in the continuum in which the dimensionless invariant

FIG. 1. Experimentally determined curves of conductivitys~f!
for a polyurethane-FMG2 composite.

TABLE I. Values of critical concentrations expressed in vol %
of conducting particles determined experimentally for polymer–
graphite flake composites.

Composite Critical concentrationfc ~vol %!

Epoxy-FMG1 1.3
Polyurethane-FMG1 1.7
Polyurethane-FMG2 0.7
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is thenNcVe . Indeed, in the continuum,Ve is often very
different from V and the difference between the two in-
creases as the complexity of the objects’ geometry rises.

The argument based on excluded volume thus allows
evaluating the threshold of more complex systems, in which
it is possible to introduce not only a distribution function
describing the orientations of the objects with respect to each
other, but also aspect ratios different from unity. This allows
more closely approximating real random media than through
the use of a well defined geometric network. The total ex-
cluded volumêVex& is defined by the relation

^Vex&5Nc^Ve&'const, ~3!

where^Ve& represents the excluded volume of an object av-
eraged over the orientational distribution characterizing the
system objects.

^Vex& is, in fact, not a true invariant beyond the case of
parallel objects and is situated, for each type of object,
within a range of values, the extremal values corresponding
to the system characterized by a random orientation~lower
limit ! and a system of strictly parallel objects~upper limit!.
The upper limit is the same as that which corresponds to the
case of permeable spheres. Table II summarizes the values of
total excluded volume that we use in this paper.

In three dimensions~3D!, the critical volume fraction is
linked14 to ^Vex& through

fc512expS 2
^Vex&V

^Ve&
D512exp~2NcV!. ~4!

The problem of thin disks of radiusr randomly dispersed in
space has been studied by Charlaix, Guyon, and Rivier.15

The quasi-invariant was found to be^Vex&5Ncr
3 whereNc is

the critical number of objects per unit volume. The mean
excluded volume of a disk was calculated as,

^Ve&54pr 3E
0

u

sin2b db, ~5!

where b is the angle between the planes of two disks in
contact with each other andu represents the angle of greatest
disorientation of the system of disks. In other words,

2u<b<1u.

For randomly oriented disks~isotropic system!, u5p/2 and
consequently, the excluded volume of a disk of radiusr is

^Ve&5p2r 3.

Thus, based on Eq.~4!, determination of the percolation
threshold of a system of randomly oriented disks thus neces-
sitates calculating

fc512expS 2
^Vex&pr

2t

p2r 3 D512expS 2
^Vex&t

pr D , ~6!

where t is the thickness of the disks.^Vex& is known in the
extreme cases of infinitely thin disks~1.8! and of spheres
~2.8!; it is thus expected that the value of^Vex& corresponding
to disks of thicknesst will lie between 1.8 and 2.8. We thus
have the following double inequality:

12expS 2
1.8t

pr D<fc<12expS 2
2.8t

pr D .
With r55 mm and t150.1 mm for the FMG1 and t250.05
mm for the FMG2, we find the following critical concentra-
tion fc1 andfc2 such that:

1.14%<fc1<1.77%,

0.57%<fc2<0.89%.

The values found above are thus close to the critical con-
centrations experimentally determined for the two types of
conducting charge~Table I!. The lower limits forfc are very
similar to those given by Eq.~1!; however, the calculations
that we present suppose randomly oriented disks, whereas as
we have indicated above, there is an experimental mosaic
spread of620° in our materials. In order to observe the
sensitivity of the threshold to the particle orientation, we
recalculated the excluded volume taking different values ofu
based on Eq.~5!, which after integration becomes

^Ve&5r 3@2pu2p sin~2u!#,

where the disks are oriented at6u with respect to each other.
The results are summarized in Fig. 2 for the two types of
FMG. It is clear that particle orientation has considerable
influence on the position of the percolation threshold. If, in
our composites, the particles were disoriented by620°5
6p/9 at the most, then using the same limits of^Vex& as
before, the critical concentrationsfc1 andfc2 correspond-
ing, respectively, to the FMG1 and FMG2 become

47.8%<fc1<63.6%,

27.8%<fc2<39.7%.

Agreement between these values and those of Table I is
no longer observed; two factors underlie this. First, as dis-
cussed above, although the graphite flakes are on theaverage
oriented at6u, this is by no means the upper limit: there is a
non-negligible number within the tails of the curve, beyond
20°, which strongly influencefc as brought out by Fig. 2.
Secondly, the laser counting carried out on the suspension of
the particles reveals that the size~diameter! distribution is
asymmetrically extended on the side of the higher-than-
average values, up to diameters of about 50mm. This fact in
itself tends to reduce the threshold since it has been
shown16,17 that when percolating objects have a large aspect
ratio, the critical concentration diminishes as the size distri-
bution increases. Furthermore, in their concluding remarks

TABLE II. Total excluded volumeŝVex& of objects cited in this
paper.

System~3D! ^Vex& Reference

Continuum, deformable spheres or
parallel objects

2.8 7

Continuum, randomly oriented,
infinitely thin rods

1.4 12

Continuum, randomly oriented,
infinitely thin disks

1.8 13
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on the effects of polydispersed particles, Charlaix, Guyon,
and Rivier15 specifically noted that a ‘‘larger statistical
weight’’ was given to larger disks in evaluating^Vex&5Ncr

3.
fc is thus a maximum when the objects are of fixed size,
otherwise it is the larger objects which determine the thresh-
old.

As concerns the values of 1.3% and 1.7% found for the
critical concentrations in the epoxy-FMG1 and
polyurethane-FMG1 composites, respectively, it should be
noted that the particles, their mode of incorporation and the
conditions used for the dispersion of the particles within the
matrix are all rigorously the same in the two types of com-
posites. This leads to believing that the different thresholds
arise from different physicochemical properties of the poly-
meric matrices. Whatever the case, the concept of excluded
volume leads, as suggested by Eq.~6! for disoriented par-
ticles, to the following relation of proportionality:

fc}
t

r
. ~7!

This relationship is thus relatively well verified in the real
composite materials, since we have verified that a system of
disks of thicknesst has a percolation threshold twice that of
a system of disks of thicknesst/2.

III. POLYMER –CARBON-FIBER COMPOSITES

So as to verify the applicability of the concept of excluded
volume to this type of composite, we have gathered together
a certain number of literature results. In all cases, the con-
ducting filler can be geometrically considered as capped, cy-
lindrical objects.

A. Experimental literature results

Table III illustrates a certain number of values of critical
concentration relative to composite materials comprising a
polymer and either carbon fibers or elongated carbon black
aggregates.

B. Calculation of excluded volume

Calculation of the excluded volume of a capped cylinder
modeled as a cylinder of lengthL and diameterW and com-
prising at each end a half sphere of diameterW/2 was carried
out by Balberget al.7 If g is the angle between the two
cylinders in contact with each other, one oriented at an angle
u i with respect to thez axis of the system, the other by an
angleu j , then the average excluded volume^Ve& is such that

FIG. 2. Critical concentration calculated for a system of disk-
shaped particles of 10mm diameter and thickness~a! 0.1 mm and
~b! 0.05 mm ~corresponding, respectively, to fillers FMG1 and
FMG2! as a function ofu, the maximum angular orientation be-
tween the disks. The calculation uses the two extreme values of 1.8
and 2.8 for the total excluded volume^Vex&.

TABLE III. Critical concentrations for indicated particles dispersed in a polymer matrix determined
experimentally~indicated reference! and calculated here based on concept of excluded volume.

Case Particles Diameter Length fc ~vol %! Calculatedfc Reference

1 Elongated carbon
black aggregates

'800 Å '5000 Å 7.2 7.00<fc<13.51 17

2 Carbon fibers 10mm 1 mm 0.52; 0.69; 0.72;
0.71; 0.86; 0.93; 1.1

0.67<fc<1.35 18

3 Carbon fibers 10mm 1.15 mm 1.4; 1.47; 1.55 0.59<fc<1.18 19
4 Carbon fibers 10mm 2.85 mm 0.24; 0.25; 0.265 0.24<fc<0.48 19
5 Carbon fibers 8mm 1 mm 0.98 0.54<fc<1.08 20
6 Carbon fibers 10mm 1.1 mm 3 0.62<fc<1.23 21
7 Carbon fibers 8mm 1 mm 0.90 0.54<fc<1.08 22
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^Ve&5
4p

3
W312pW2L12WL2^sing&m , ~8!

where ^sing&m is the average of sing when ui and uj are
confined within an angle 2um around thez axis of the system.
The calculation of̂ sing&m is complex7 and leads to the fol-
lowing when the cylinders are randomly oriented~i.e.,
um5p/2!:

^sing&m5
p

4
,

in other words, an excluded volume of

^Ve&5
4p

3
W312pW2L1

p

2
WL2.

Using Eq. ~4! once again, linking the excluded volume
and the critical concentration, we thus have for a system of
randomly oriented, capped cylinders of volumeV:

fc512expS 2
^Vex&V

^Ve&
D

512expS 2
^Vex&@~p/4!W2L1~p/6!W3#

@~4p/3!W312pW2L1~p/2!WL2# D .
As concernŝ Vex&, the value of 1.4~see Table I! was ob-
tained by simulation based on infinitely thin cylinders. Once
again calculation of the critical concentration of the system
of real cylindrical particles should be carried out using for
^Vex& the lower limit 1.4 and as an upper limit that corre-
sponding to spheres, 2.8. We can therefore write

12expS 2
1.4V

^Ve&
D<fc<12expS 2

2.8V

^Ve&
D .

Based on this double inequality, the critical-
concentrations corresponding to objects the geometry of
which is described in Table III were calculated. The results
are presented in the second last column of Table III.

All these different results concern systems of randomly
dispersed, anisometric objects. As we have noted above, the
agreement between measured and calculated critical concen-
trations is good. Sometimes, however, the experimental
value lies outside the range of estimated values. This can
probably be explained in terms of interactions between the
polymeric matrix and the conducting particles, these interac-
tions influencing the state of dispersion of the filler within
the matrix. These have been shown to modify the critical
concentration through the physicochemical properties of the
matrix, in particular, the viscosity and surface tension at the
time of synthesizing the composite.18 Furthermore, this ex-
plains the range of different values cited in Ref. 18. In this
case it was observed that the threshold rose preparing the
polymer-particle mixtures at increasingly higher tempera-
tures which resulted in increasingly lower values of viscos-
ity; this reference cites a value offc51.6% for a composite
prepared using a low viscosity solution.

Finally, we must examine the case of materials compris-
ing oriented cylindrical particles. A study carried out on car-
bon fibers23 of diameter58–9mm and length 1 mm oriented
in an epoxy resin yield a critical concentration of 1.6 vol,%.
Although the authors gave no specific details on the fiber
orientation, one can attempt to find this value by calculating
the excluded volume using, as before, 1.4 and 2.8 for the
limiting values of^Vex&. Table IV regroups the critical con-
centrations that can thus be determined through use of Eqs.
~4! and~8! as well as the results of calculating^sing&m given
by Balberget al.7 for certain values ofum . We recall that the
caseum5p/2 corresponds to a system of objects with no
preferential orientation whereasum50 is identified with a
system of perfectly parallel objects. An average diameter of
the fibers of 8.5mm was used in these calculations.

As in the case of disks, the effect of orienting the cylin-
ders on the position of the threshold is significant. Based on
the values of Table IV, and assuming that the polymer does
not affect the dispersion of the particles, it is seen that an
experimental percolation threshold of 1.6% would corre-
spond to a maximum orientation of630°.

IV. CONCLUSIONS

In this paper, through the use of several different methods,
we have treated the problem of determining the percolation
threshold for composites comprising an insulating matrix
charged with conducting disks. Among the three approaches
used, that based on the excluded volume yields the best re-
sults and it is observed that the calculated critical concentra-
tion is a strong function of both particle orientation and size
distribution. The concept of excluded volume was also ap-
plied to analysis of polymer–carbon-fiber composites based
on literature data and was found to give good results. For
both disk-and fiber-based composites, notable deviations
from predicted values offc may be observed according to
the intrinsic properties of the polymers utilized~viscosity,
surface tension, particle wetting, crystallinity, presence of
surfactants, etc.!. In spite of all these possible contributions,
it has been shown here that reasonably good agreement can
be observed between calculated and experimental values of
critical concentration taking into account only the particle
morphology. Work is currently in progress concerning the
variation of electrical conductivity with temperature and
pressure so as to understand the conduction processes and in
particular the role and nature of the particle-particle inter-
face.

TABLE IV. Calculated critical concentration of polymer–
partially oriented carbon-fiber composites, as a function of the
maximum disorientation angleum .

um ^sing&m Calcfc ~% vol!

0 0 16.05<fc<29.53
p/6 0.44 1.00<fc<1.99
p/4 0.60 0.75<fc<1.49
p/2 0.785p/4 0.58<fc<1.15
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