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Critical concentration in percolating systems containing a high-aspect-ratio filler
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We examine the percolation threshold for composites made by dispersing anisometric, single-crystal graphite
flakes in either an epoxy resin or a polyurethane polymer matrix. Analysis is based on empirical and excluded-
volume approaches and the results are compared with a similar treatment using literature data of carbon-fiber
based composites.

I. INTRODUCTION of graphite made through exfoliatidiThey were character-
ized by scanning electron microscopy which showed that

Percolation theory has been applied to a wide range ofheir thickness is of the order of 0.Am. Laser counting
materials and phenomena over the past yeamd the funda-  furnished a particle size distribution histogram with an aver-

mental mathematics are well understdodpplication t0  age diameter of 1Qum. A typical flake of FMG is thus

electrical conductivity has been reviewed in detail by severa}ougmy disk-shaped with an aspect ratitdiameter/

-5
authors!™Many model systems have been treated and a Vaﬁﬁicknes$ of the order of 100. Furthermore, krypton adsorp-
literature exists comparing experiment with theory. One of..

the less well established points concerns the capacity of pe]"—On on these particles showed a specific surface area of
colation concepts to predict the threshold of a conductingPout 20 mig. _ ,
filler in an insulating matrix in real systems for other than the  The second type of particle, designated FM& charac-
most simply shaped filler objects. terized by a size distribution identical to that of FMGhus

In the present work, based on two types of graphite, thein average diameter of Jm. Its specific surface area, how-
particles of which can be assimilated to very thin disks, weever, is 40 lg, a measurement from which we conclude
have made composite materials by dispersing this conductingpat these patrticles are twice as thin as those of KM@l
filler in two types of polymers, an epoxy resin and a poly-possess therefore an aspect ratio of about 200.
urethane resin. The critical concentratigp, expressed as a Using these two types of disk-shaped particles, we have
volume percentage of graphite, was determined through dgade polymeric composites of different filler concentrations
electrical conductivity measurements on a large number 0&, based on two thermally cured resins. The protocol fised
samples covering the range ¢ffrom 0 to 10 % as discussed |eads to materials in the form of thick films with preferen-
elsewheré. We will show here that it is possible, through ia|ly oriented particles. The degree of disorientation, or mo-
different approaches, to calculate this observed value. In pag,;c spread, is defined as the full width at half maximum of
ticular, it will be seen that the concept of excluded volime the curve o,f intensity versus angular rotatienabout the
s particul_arly e_fficient in tr_eating the problem of percolating_ 002 graphite reflection. If all the particles were perfectly
systems in which the objects possess a large aspect ratl%ﬁgned parallel to the plane of deposition, the reflection

such as disks. Through the same type of calculation, we WIIwould primarily be only instrumentally broadened: in our

determine the critical concentrations of another type of ani- ; o
sometric filler, namely fibers. In order to do so, we havet2Se; rotation of the sample within the x-ray beam places

analyzed much literafure data concernigand compared greater or.fewer grap_hite flakes into Bragg diffractio_n condi-
them to the excluded volume calculations presented here. F§PNS Yielding a mosaic spread of approximateig0°, inde-
disks, as for fibers, a brief discussion will center on orientaPendent of¢. We will return to this later. The percolation
tion effects of the particles and specific properties of thghreshold was determined through conductivity measure-

insulating matrices. ments, both parallgloy) and perpendiculafo, ) to the plane
of the films, as illustrated in Fig. 1: the corresponding critical
Il. POLYMER —GRAPHITE FLAKE COMPOSITES concentrationsp, are presented in Table I. All values are

below 2%, much less than is the case for spherical filler

materials. In the following, we will compare these values
The conducting filler used in this work, termed FM@at  with those that can be obtained theoretically using the char-

micronic graphitg is constituted of single-crystal particles acteristics at our disposal and three different approaches.

A. Materials and determination of the threshold
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| | ‘ | 2. Empirical method

E T T T T |
10 2:2[ o’ °G, /1 The above determined critical concentrations can also be
—_ 10*§ oo © + determined somewhat more empirically by the fdescord-
g 1oL ° E ing to vyhich th(_a percolation threshold of a conducting pow-
2 - oG, 7 der is linked with the empty volume between the particles.
© 10 T = T This, of course, is directly related with the notion of ex-
o 1074 o I cluded volume which will be developed in the following
e B T paragraph. A composite can thus be considered as a conduct-
10 T, R0% T ing backbone with a certain packing density which differs
1071422 | ‘ —— with the conducting powder according to the particle mor-

1o
n

0 05 1 15 2 phologies. For example, the greater the aspect ratio, the less
Vol. % FMG the packing density and the lower one would expect to find
2 the critical volume concentration. Good qualitative corre-
spondence has thus been found between the quandties

FIG. 1. Experimentally determined curves of conductivity)) and ¢, where
P

for a polyurethane-FM&composite.
B density of unpacked powder
~ density of material constituting this powder

B. Theoretical determination of the threshold ¢p

1. Mean-field theory . ) . .
#, Is thus equivalent to a filling factor. For a certain number

h.TO cr?lcu_lgte dt_he C”“g?' con_centlra'qon of an ensembI?_ OI%,T materials withe, values between 20 and 55%, the follow-
thin spheroids dispersed in an insulating matrix, a mean-field ' oirical relationship was put forward:

approach was used by Helsing and Hélguch an approach
consists in calculating the average effects of the random re- b~ d,—5%. )
sistor network representing the binary heterogeneous mixture P
of insulator and conductor by a homogeneous effective me- However, it was noted that ag, diminished below 20%
dium. An overall conductivity equation can be determinedy_ and ¢, more closely approached each other, gne- .
which is then, in principle, applicable over the full range of consequently, the lesser the packing density, the lower the
compositions. Thus for flat ellipsoids of major and minorya|ye of ¢, (and the easier the percolation in a matrix for a
axis lengthsR and €R (e<1), the conductivity threshold for oy value of ¢).
a critical concentrationp, was found, to first order, to be We would now like to apply this relationship to FMG;
such that, however,¢, is not an easy parameter to work with since it
must strongly depend on the experimental conditions. In-
$c=1.18. @ deed, the apparent density of the FM@wder is about 10

. : /I. Graphite, having a mass density of 2.2 gicapercola-
If we suppose that a FMG particle can be approxmatelyp. .
described by this type of object with a ratio of diameter totion threshold of about 0.45% should then be observed. Simi-

; _ larly, an apparent density of about 8 g/l was found for FEMG
thickness of 100 for FM(e=0.01), then which would then lead to a critical concentration of 0.36%.

_ 0 These results are, of course, approximate, and serve mainly
¢c1=1.18%. - ; :
to compare the different types of graphite powders with each
For the FMG we havee,=¢,/2=0.005, so other using a well defined protocol for defining the apparent
density.
¢c>=0.59%.

3. Excluded volume

These values are indeed of the order of magnitude of appjication of this concept, which associates a volume
those in Table |. Furthermore, the calculations of Helsing andyith objects which do not necessarily possess a true volume
Helte modeled a medium containing an unoriented filler;e g infinitely thin rods and disksesults in very low values
knowing that the particles are more or less well oriented inyf threshold concentration. Indeed, real particles can have a
the present case, it is thus natural to find a percolation threshg e volume which is extremely modest compared to the ex-
old which is slightly higher; this point will be further devel- | ded volume when they are not densely packed. Let us use
oped below. this concept and define the excluded voldfexcluded area
in two dimensiong2D)] as the volume around an object in
which the center of another similarly shaped object is not
allowed to penetrate. The underlying idea is that the perco-
lation threshold is not linked to the true volume of the object
itself but rather to its excluded volume. Thus,Nf is the

TABLE I. Values of critical concentrations expressed in vol %
of conducting particles determined experimentally for polymer—
graphite flake composites.

Composite Critical concentratiog, (vol %) critical number density of objects in the systeih,is the
Epoxy-FMG, 1.3 volume of one of these objects, anf is the associated
Polyurethane-FM& 1.7 excluded volume, then the invariance properties of the quan-
Polyurethane-FM& 0.7 tity N.V established for network percolatigrare no longer

valid in the continuum in which the dimensionless invariant
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TABLE II. Total excluded volumesV,,) of objects cited inthis  Thus, based on Eq4), determination of the percolation
paper. threshold of a system of randomly oriented disks thus neces-

sitates calculating

System(3D) Vey Reference

. F{ <Vex>77r2t) F( <Vex>t)
Continuum, deformable spheres or 2.8 7 ¢pc=l—expg ———=z—|=1l-exg ———|, (6)
parallel objects mr mr
Continuum, randomly oriented, 14 12 wheret is the thickness of the disk¢V.,) is known in the
infinitely thin rods extreme cases of infinitely thin diskd.8) and of spheres
Continuum, randomly oriented, 18 13 (2.8); it is thus expected that the value @f,,) corresponding
infinitely thin disks to disks of thickness will lie between 1.8 and 2.8. We thus

have the following double inequality:

is then N.V,. Indeed, in the continuuny, is often very 1.8 2.8
different from V and the difference between the two in- 1—exr{ - —)<¢c$1—exl< =y

creases as the complexity of the objects’ geometry rises.
The argument based on excluded volume thus allowdVith r=5 um andt;=0.1 um for the FMG andt,=0.05

evaluating the threshold of more complex systems, in whichm for the FMG, we find the following critical concentra-

it is possible to introduce not only a distribution function tion ¢¢; and ¢, such that:

describing the orientations of the objects with respect to each

other, but also aspect ratios different from unity. This allows 114%< ¢y <1.77%,

more closely approximating real random media than through

the use of a well defined geometric network. The total ex-

cluded volumegV,, is defined by the relation

0.57%< ¢b.,<0.89%.

The values found above are thus close to the critical con-
centrations experimentally determined for the two types of
{Vex =N(Ve)~const, (3 conducting chargéTable ). The lower limits forg, are very
where(V,) represents the excluded volume of an object av-Similar to those given by Eq1); however, the calculations
eraged over the orientational distribution characterizing thdhat we present suppose randomly oriented disks, whereas as
system objects. we have |nd|cat§ad above, th_ere is an experimental mosaic
(Vo is, in fact, not a true invariant beyond the case ofSPread of=20° in our materials. In order to observe the
parallel objects and is situated, for each type of object,sens't'v'ty of the threshold to the p_artlcl_e orientation, we
within a range of values, the extremal values correspondingec@lculated the excluded volume taking different valueg of
to the system characterized by a random orientatiower ased on Eq(5), which after integration becomes
limit) and a system of strictly parallel objedispper limif. _ .3 o
The upper IimBi/t is the same gspthat whicr{ cci)lsrsfepsponds to the (Ve)=r2mb—m sin(20)],
case of permeable spheres. Table Il summarizes the valueswhere the disks are orienteda® with respect to each other.

total excluded volume that we use in this paper. The results are summarized in Fig. 2 for the two types of
In three dimensiong3D), the critical volume fraction is FMG. It is clear that particle orientation has considerable
linked* to (V,,) through influence on the position of the percolation threshold. If, in

our composites, the particles were disoriented Hg0°=

+7/9 at the most, then using the same limits (df,,) as
before, the critical concentrationg.; and ¢, correspond-
ing, respectively, to the FMGand FMG, become

¢C:1‘eXp( B <<V\?f>v

=1—exp—N.V). (4)

The problem of thin disks of radiusrandomly dispersed in

space has been studied by Charlaix, Guyon, and Rivier. 47.8%< ¢;1<63.6%,
The quasi-invariant was found to Bé.)=N_r® whereN, is

the critical number of objects per unit volume. The mean 27.8%< ¢p:2<39.7%.

excluded volume of a disk was calculated as, .
Agreement between these values and those of Table | is

P no longer observed; two factors underlie this. First, as dis-
(Ve>=47rr3J sirfB dg, (5 cussed above, although the graphite flakes are oavbeage

0 oriented at* 6, this is by no means the upper limit: there is a

where B is the angle between the planes of two disks innon—neg_ligible numb_er within the tails of the curve, peyond
contact with each other artlrepresents the angle of greatestzoo’ which strongly influences. as brought out by Fig. 2.

disorientation of the system of disks. In other words Secondly, the laser counting carried out on the suspension of
' the particles reveals that the sizgdiametey distribution is
—9<p<+0. asymmetrically extended on the side of the higher-than-

average values, up to diameters of abou®0. This fact in
For randomly oriented disk@sotropic systey #=m/2 and itself tends to reduce the threshold since it has been
consequently, the excluded volume of a disk of radius showrt®” that when percolating objects have a large aspect
ratio, the critical concentration diminishes as the size distri-
(Vey=m?r3. bution increases. Furthermore, in their concluding remarks
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As concerns the values of 1.3% and 1.7% found for the
critical concentrations in the epoxy-FMG and
polyurethane-FMG composites, respectively, it should be
noted that the particles, their mode of incorporation and the
conditions used for the dispersion of the particles within the
matrix are all rigorously the same in the two types of com-
posites. This leads to believing that the different thresholds
arise from different physicochemical properties of the poly-
meric matrices. Whatever the case, the concept of excluded
volume leads, as suggested by E6) for disoriented par-
ticles, to the following relation of proportionality:

t
po . Y
This relationship is thus relatively well verified in the real
composite materials, since we have verified that a system of
disks of thicknes$ has a percolation threshold twice that of
a system of disks of thicknes$£.

lll. POLYMER —CARBON-FIBER COMPOSITES

So as to verify the applicability of the concept of excluded
volume to this type of composite, we have gathered together
a certain number of literature results. In all cases, the con-
ducting filler can be geometrically considered as capped, cy-
lindrical objects.

A. Experimental literature results

Table Il illustrates a certain number of values of critical

FIG. 2. Critical concentration calculated for a system of disk- concentration relative to composite materials comprising a

shaped particles of 1@m diameter and thicknegs) 0.1 um and
(b) 0.05 um (corresponding, respectively, to fillers FMG@nd
FMG,) as a function off, the maximum angular orientation be-

tween the disks. The calculation uses the two extreme values of 1.8
and 2.8 for the total excluded volun{¥,).

polymer and either carbon fibers or elongated carbon black
aggregates.

B. Calculation of excluded volume

Calculation of the excluded volume of a capped cylinder

on the effects of polydispersed particles, Charlaix, Guyonmodeled as a cylinder of lengthand diametekV and com-
and Riviet® specifically noted that a “larger statistical prising at each end a half sphere of diam&t® was carried
weight” was given to larger disks in evaluatifyfe,)=N.r>.
¢. is thus a maximum when the objects are of fixed sizecylinders in contact with each other, one oriented at an angle
otherwise it is the larger objects which determine the threshg, with respect to the axis of the system, the other by an

old.

out by Balbergetal’ If y is the angle between the two

angled; , then the average excluded voluf\&,) is such that

TABLE |lIl. Critical concentrations for indicated particles dispersed in a polymer matrix determined
experimentally(indicated referengeand calculated here based on concept of excluded volume.

Case Particles Diameter Length ¢ (vol %) Calculatedp.  Reference
1 Elongated carbon ~800 A ~5000 A 7.2 7.062¢,<13.51 17
black aggregates
2 Carbon fibers 1Qum 1 mm 0.52; 0.69; 0.72; 0.67<¢.<1.35 18
0.71; 0.86; 0.93; 1.1
3 Carbon fibers 1Qum 1.15 mm 1.4; 1.47; 1.55 0.595.<1.18 19
4 Carbon fibers 1Qum 2.85 mm 0.24; 0.25; 0.265 0.24).<0.48 19
5 Carbon fibers 8um 1 mm 0.98 0.54¢.<1.08 20
6 Carbon fibers 1Qum 1.1 mm 3 0.6Z¢.<1.23 21
7 Carbon fibers 8um 1 mm 0.90 0.54¢.<1.08 22
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Aar TABLE IV. Calculated critical concentration of polymer—
(Ve)= ?W3+ 27TW2L+2WL2<Siny)M, (8)  partially oriented carbon-fiber composites, as a function of the
maximum disorientation angle, .

where (sin y), is the average of siy when 6, and ¢, are 0, (siny),, Calc ¢, (% vol)

confined within an angle, around the axis of the system.

The calculation ofsiny),, is compleX and leads to the fol- 0 0 16.05< ¢, <29.53

lowing when the cylinders are randomly orientéde., /6 0.44 1.06=¢.=<1.99

6,=l2): 4 0.60 0.75< ¢, <1.49
72 0.78=ml4 0.58<¢.<1.15

a
<Sin‘y>ﬂzz,

Finally, we must examine the case of materials compris-

in other words. an excluded volume of ing oriented cylindrical particles. A study carried out on car-

' bon fiberé® of diameter8—9 um and length 1 mm oriented
dor - in an epoxy resin yield a critical conggntratiop of 1.6 vol,%.
(Vo) = — W3+ 27WAL + — WL2 Although the authors gave no specific details on the fiber
3 2 orientation, one can attempt to find this value by calculating

Using Eq.(4) once again, linking the excluded volume the excluded volume using, as before, 1.4 and 2.8 for the

- . Hjmiting values of(V,,). Table IV regroups the critical con-
and the critical concentration, we thus have for a system Olentrations that can thus be determined through use of Eqs
randomly oriented, capped cylinders of voluivie 9 as-

(4) and(8) as well as the results of calculatikgin y),, given
by Balberget al.’ for certain values ot), . We recall that the
¢C=1—exp( _ <VEX>V) case §,=m/2 corresponds to a system of objects with no
(Vo) preferential orientation wherea,=0 is identified with a
) 3 system of perfectly parallel objects. An average diameter of
zl—exp< _ (Vex [ (/4) WL+ (/6) W] _ the fibers of 8.5um was used in these calculations.
[(4m/3)W*+ 27W2L + (m/2)WL?] As in the case of disks, the effect of orienting the cylin-
ders on the position of the threshold is significant. Based on
As concerng(Ve,), the value of 1.4(see Table ) was ob- the values of Table IV, and assuming that the polymer does
tained by simulation based on infinitely thin cylinders. Oncenot affect the dispersion of the particles, it is seen that an

again calculation of the critical concentration of the systemexperimental percolation threshold of 1.6% would corre-
of real cylindrical particles should be carried out using forspond to a maximum orientation af30°.

(Vg the lower limit 1.4 and as an upper limit that corre-
sponding to spheres, 2.8. We can therefore write

1.4V 2.8V IV. CONCLUSIONS
1= eXp( a m) Se=1- exp( a m) ' In this paper, through the use of several different methods,
we have treated the problem of determining the percolation

Based on this double inequality, the critical- threshold for composites comprising an insulating matrix
concentrations corresponding to objects the geometry ofharged with conducting disks. Among the three approaches
which is described in Table Ill were calculated. The results;seq, that based on the excluded volume vyields the best re-
are presented in the second last column of Table IlI. sults and it is observed that the calculated critical concentra-

All these different results concern systems of randomlyon, s 5 strong function of both particle orientation and size

dispersed, anisometric objects. As we have note_d_ above, tQ)‘?stribution. The concept of excluded volume was also ap-
agreement between measured and calculated critical concefyz. 44 analysis of polymer—carbon-fiber composites based

trations is good. Sometimes, however, the experiment on literature data and was found to give good results. For

value lies outside the range of estimated values. This ca oth disk-and fiber-based composites. notable deviations
probably be explained in terms of interactions between thg . P ' .
rom predicted values o, may be observed according to

polymeric matrix and the conducting particles, these interac- = " © =" ; e )
tions influencing the state of dispersion of the filler within th€ intrinsic properties of the polymers utiliz¢discosity,

the matrix. These have been shown to modify the criticaSUrface tension, particle wetting, crystallinity, presence of
concentration through the physicochemical properties of théurfactants, etg. In spite of all these possible contributions,
matrix, in particular, the viscosity and surface tension at thdt has been shown here that reasonably good agreement can
time of synthesizing the composit& Furthermore, this ex- be observed between calculated and experimental values of
plains the range of different values cited in Ref. 18. In thiscritical concentration taking into account only the particle
case it was observed that the threshold rose preparing tigorphology. Work is currently in progress concerning the
polymer-particle mixtures at increasingly higher tempera-variation of electrical conductivity with temperature and
tures which resulted in increasingly lower values of viscosressure so as to understand the conduction processes and in
ity; this reference cites a value ¢f.=1.6% for a composite particular the role and nature of the particle-particle inter-
prepared using a low viscosity solution. face.
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