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The first four cumulants of a radial distribution function of diatomic molecules and the first three cumulants
for linear triatomic systems have been derived quantum statistically. These moments are directly related to the
second- to fourth-order force constants of the chemical bond. The temperature dependence of extended x-ray-
absorption fine structure spectra of diatomic Br2 and linear triatomic HgBr2, HgCl2, AuBr2

2, and CuBr2
2

systems has experimentally been investigated not only for the single-scattering paths but for the multiple-
scattering paths. The resultantly obtained cumulants have successfully given the force constants, which are
found to be in good agreement with the vibrational data. The differences of the force constants between the gas
and solid phases are found even for the molecular crystals of HgBr2 and HgCl2.

I. INTRODUCTION

Extended x-ray-absorption fine structure~EXAFS! spec-
troscopy has widely been utilized for structure analysis in
various fields of science.1 EXAFS contains information on
local structures around x-ray-absorbing atoms and usually
gives coordination numbers and interatomic distances. Re-
cently, thermal motions have also become an attractive
subject, which are given in higher-order moments of radial
distribution functions. In the case of harmonic oscillators,
a reduction factor for the amplitude part is multiplied, which
is so called a Debye-Waller factor~the second-order
moment!. When anharmonicity cannot be neglected, the
phase part of the EXAFS function is also affected, this lead-
ing to significant errors in the interatomic distances.2 It
was of great importance to establish an analysis method in
the presence of anharmonicity, and now the cumulant-
expansion technique3 has been regarded as the most practical
method in the case of moderately disordered systems, while
for largely disordered systems, for instance, the splice
method4 has been proposed. Both techniques are free from
modeling radial distribution functions, and especially the cu-
mulant expansion method has widely been applied not only
to bulk materials,5 but also to surfaces.6,7 It can conclusively
be remarked that the analysis method for the anharmonicity
or asymmetric distribution has been established and that an-
harmonicity no longer prevents us from reliable structural
parameters, but allows us to obtain additional useful infor-
mation.

The next step for further understanding of the disorder
problem is to know the direct relationship between the inter-
atomic potential and cumulants. In the case of harmonic os-
cillators, the second-order cumulants have been formulated
quantum mechanically for Debye crystals8 and simple
molecules.9 On the other hand, Yokoyamaet al.10 have
estimated the anharmonic potentials of metals and ionic
crystals by using classic Boltzmann distribution functions
of diatomic systems. Recently Rabus11 and Frenkel and

Rehr12 have derived quantum-mechanical formulas including
third-order anharmonicity for a simple diatomic system. Al-
though these formulas are quite useful and have actually
been applied to practical polyatomic systems,5–7 quantitative
discussions using these formulas cannot be performed, be-
causeN-atom systems have 3N26 vibrational modes and
cannot be described by a single frequency. Previous studies
using the diatomic approach have, in this sense, focused only
on semiquantitative or comparative force constants. Very re-
cently, Fujikawa and Miyanaga13 have extended the theory to
a one-dimensional infinite chain including the third and
fourth-order cumulants and have emphasized the importance
of polyatomic treatments.

In the present study, we have derived the formulas of the
cumulants of the radial distribution function for a linear tri-
atomic system. In a triatomic molecule, both symmetric and
antisymmetric stretching modes contribute to the cumulants
and the polyatomic treatment is found to be essentially im-
portant. We have further measured and analyzed
temperature-dependent EXAFS spectra of diatomic Br2 ~gas
phase!, linear triatomic HgBr2(g), HgBr2~solid phase!,
HgCl2(g), HgCl2(s), AuBr2

2 and CuBr2
2. The anharmonic

potentials have subsequently been determined from the ob-
tained cumulants and compared to the reported values given
by the vibrational studies, if applicable. This EXAFS study
determines anharmonic potentials not only for linear tri-
atomic systems, but also for a simple diatomic molecular
system.

In Sec. II of this article, we first summarize the treatment
of thermal averages in the quantum-statistical perturbation
theory and the EXAFS formula based on the cumulant-
expansion technique, and subsequently we present the first
four cumulant expressions for the diatomic system and also
the first three cumulants for linear triatomic systems includ-
ing the second-nearest-neighbor~NN! shell. Section III deals
with experimental details and gives the brief results of far-
infrared spectra taken for AuBr2

2 and CuBr2
2. In Sec. IV the
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results of the diatomic Br2 system are provided, and then the
triatomic systems are discussed in detail. Section V summa-
rizes the present investigation.

II. THEORY

A. Thermal average within first-order perturbation theory

Let us first recall the formalism of thermal averages
within quantum-statistical perturbation theory.14 A quantum-
mechanical Hamiltonian of the systemH is assumed to be
given by

H5H01H8, ~1!

where H0 is the nonperturbed Hamiltonian whose Schro¨-
dinger equation is solved exactly and gives eigenvaluesEn
and eigenfunctionsun&, andH8 is the perturbed term. Let us
define the functionf ~b! as

e2bH0f ~b!5e2b~H01H8!, ~2!

whereb5(kBT)
21, kB the Boltzmann constant, andT the

temperature. Equation~2! corresponds to the density matrix
of the system including the perturbation, and we will obtain
the first-order expansion of Eq.~2!. On differentiating Eq.~2!
with b and subsequent integration, one can easily transform
Eq. ~2! to the following integral equation usingf ~0!51:

f ~b!512E
0

b

eb8H0H8 e2b8H0f ~b8!db8. ~3!

Solving the integral equation successively, one reaches the
first-order approximation form of the density matrix, which
is given by substitutingf ~b8!51 in the right-hand side of Eq.
~3!. A thermal average of a certain physical quantity^M & is
given exactly using the density matrix

^M &5
1

Z
Tr M e2b~H01H8!, ~4!

whereZ is the partition function of the system. The first-
order approximation gives

Tr M e2b~H01H8!>Tr M e2bH0

3S 12E
0

b

eb8H0H8 e2b8H0db8D
~5!

and

1

Z
5

1

Tr e2b~H01H8!

>
1

Z0
S 11

1

Z0
Tr e2bH0E

0

b

eb8H0H8 e2b8H0db8D ,
~6!

whereZ0 is the partition function of the nonperturbed sys-
tem. On performing the integral usingun& and En for the
nonperturbed system, one obtains

^M &>
1

Z0
(
n

e2bEn^nuM un&

1
1

Z0
(
n,n8

e2bEn2e2bEn8

En2En8
^nuM un8&^n8uH8un&

1
b

Z0
2 (

n
e2bEn^nuM un&(

n8
e2bEn8^n8uH8un8&,

~7!

where in the case ofn5n8 the 0/0 factor in the second term
should be replaced as

e2bEn2e2bEn8

En2En8
52be2bEn. ~8!

Equation~7! is the final representation which is applied to
the following calculations of cumulants.

B. Basic formula of EXAFS

The thermal average of the EXAFS oscillation function
x(k) ~k is the photoelectron wave number! for a single shell
is described within the framework of the single-scattering
and plane-wave approximations:1

x~k!5A~k!Im@eif~k!^e2ikr&#, ~9!

wherer is the distance between the x-ray-absorbing and scat-
tering atoms,f(k) is the total phase shift, and^ & denotes the
thermal average.A(k) is the real amplitude factor, which is
given in a more definite form such that

A~k!5
S0
2N

kR2
f eff~k!, ~10!

whereN the coordination number,R the average interatomic
distance,S0

2 the intrinsic loss factor due to many-electron
effects, andf eff(k) the effective backscattering amplitude in-
cluding the spherical-wave effect and a factor of the inelastic
scattering loss of the photoelectrons implicitly.

In order to evaluate^e2ikr&, the cumulant-expansion
method is often employed:1,3

^e2ikr&5expF2ikr 01(
n

~2ik !n

n!
CnG , ~11!

wherer 0 is the distance at the potential minimum, which is
usually a temperature-independent quantity, and theCn’s are
the cumulants. A usual EXAFS analysis deals with the cu-
mulants up to the third or fourth order, which are related to
the moments of the distribution function such as

R5^r &5r 01C1 , C25^~r2R!2&,
~12!

C35^~r2R!3&, C45^~r2R!4&23C2
2

and so forth. By analyzing experimental EXAFS spectra by
means of well-established procedures, one obtains structural
parameters such asN, R, C2, C3, andC4.

Here we should mention the approximations in Eqs.~9!
and~10!, whereby the functionsA(k) andf(k) are approxi-
mately excluded from the thermal average integral calcula-
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tion. Basically, the interatomic distance, effective back-
scattering amplitude, and total phase shift should show some
temperature dependences because the interatomic distance
varies due to thermal expansion and the latter two functions
depend on the distance due to the spherical-wave effect of
the emitted photoelectron. This would give some errors in
the cumulants determined by the EXAFS analysis. The order
of the errors can roughly be estimated when we perform the
first-order expansions forr , f eff(k), andf(k) with respect to
dr ~small displacement ofr !. As a result, one can find that
the power of the moments derived from the effect is always
one order greater than that of the corresponding principal
term; namely,C2 andC3 include the errors of the orders of
C3/R and C4/R, respectively. This means that the error
should be mostly less than;5%. Moreover, as described
later, we will analyze the temperature dependence of the cu-
mulants, this allowing significantly more reductions of the
error bars compared to those of the absolute values. Al-
though the relative errors can hardly be estimated precisely,
these should be roughly in a few percent order or less. For
C2, C3, andC4 the analysis, errors would be greater, which
may originate from the poor background subtraction in the
EXAFS extraction and so forth. Only for the average dis-
tance is such a correction sometimes required because of its
much higher accuracy.3

C. First four cumulants of diatomic systems

The cumulants of diatomic systems were successfully
evaluated quantum mechanically up to third order by
Rabus11 and Frenkel and Rehr.12 Although the practical pro-
cedures of the derivations are somewhat different, both re-
sults are found to be exactly the same. Here we will derive
the first four cumulants including the fourth-order force con-
stant. Let us consider a diatomic systemAB with massesM
andm for atomsA andB, respectively. An interatomic po-
tential of the diatomic systemsV(r ) is in general described
such that

V~r !5 1
2k0~r2r 0!

22k3~r2r 0!
31k4~r2r 0!

41••• ,
~13!

where r 0 is the distance at the potential minimum,k0, k3,
and k4 the force constants, andr 0, k0, k3, and k4 are as-
sumed to be temperature independent. Defining the displace-
mentx, vibrational frequencyv, and reduced massm as

x5r2r 0 , v5Ak0

m
, m5

Mm

M1m
, ~14!

the Hamiltonians are given by

H052
\2

2m

d2

dx2
1
1

2
mv2x2, H852k3x

31k4x
41••• ,

~15!

and the partition function of the nonperturbed systemZ0 is
expressed as

Z05(
n

expF2
En

kBT
G5(

n
zn5

1

12z
, ~16!

where

z5expF2
\v

kBT
G .

Here the zero-point energy is omitted for simplicity since the
factors are canceled in the calculation of thermal averages.

For the calculation of the odd termC1, the first and third
terms in Eq.~7! vanish and only the second term gives a
nonzero value. As Frenkel and Rehr12 have already shown,
C1 is given as

C15^r2r 0&5^x&5
1

Z0
(
n

(
n8

zn2zn8

En2En8
^nu2k3x

3

1k4x
4un8&^n8uxun&. ~17!

Recalling the well-known formulas for the displacementx of
harmonic oscillators, one finds that the summation overn8
gives nonzero values only in the cases ofn85n61. The
evenx4 terms therefore all vanish, and only the oddx3 terms
remain. Using

^nuxun11&5An11s, ^nux3un11&53~n11!3/2s3,

s5A \

2mv
, ~18!

one consequently obtains

C15
6k3~12z!

Z0\v
s4(

n
~n11!2zn5

6k3

\v
s4B, ~19!

where

B5
11z

12z
.

For the even terms ofC2 andC4, all the terms in Eq.~7!
should be evaluated, while the odd termC3 requires only the
second term in Eq.~7!. The consequent formulas are given as

C25^~r2R!2&>^x2&5s2B26k4s
6S 2B2

\v
1
B~B221!

kBT
D ,

~20!

C35^~r2R!3&>^x3&23C1C25
4k3s

6

\v
~3B222!,

~21!

C45^~r2R!4&23C2
2>^x4&23C2

2

523k4s
8S 2B~5B223!

\v
1
3~B221!2

kBT
D . ~22!

Note thatC1 is proportional to the leading term ofC2.

D. First three cumulants of linear triatomic systems

Let us next consider a linear triatomic systemAB2 with
massesM andm for central atomA and terminal atomsB
~each specified asB1 andB2 hereafter!, respectively. The
interatomic potentialV can be written in a form

V5 1
2k0Dr 1

21 1
2k0Dr 2

21k12Dr 1Dr 22k3Dr 1
32k3Dr 2

31••• ,
~23!

53 6113ANHARMONIC INTERATOMIC POTENTIALS OF DIATOMIC . . .



whereDr 1 andDr 2 are, respectively, the relative displace-
ments ofA-B1 andA-B2 with respect to the distance at the
potential minimum andk0, k12, and k3 are the force con-
stants. Here we neglect the force constantk4 and cross terms
higher than second order, and we omit the bending modes for
simplicity because of no contribution to the cumulants. In the
case of a harmonic approximation, the normal coordinatesq
and frequenciesv are given as

q152Am

2
~Dr 11Dr 2!, q252Am

2
~Dr 12Dr 2!,

v15Ak01k12

m
, v25Ak02k12

m
, ~24!

m5
Mm

M12m
.

q1 and v1 correspond to the symmetric stretching mode,
while q2 andv2 to the antisymmetric stretching.

The nonperturbed and perturbed HamiltoniansH0 andH8
are expressed as

H052
\2

2

]2

]q1
2 1

1

2
v1
2q1

22
\2

2

]2

]q2
2 1

1

2
v2
2q2

2 ~25!

and

H85
k3

A2m
S q13m 1

3q1q2
2

m D 1••• , ~26!

where the nonperturbed Schro¨dinger equation is exactly
solved with the eigenvalueEn,l :

En,l5n\v11 l\v2 ~n,l50,1,2,3...!. ~27!

In Eq. ~27! the zero-point energies are similarly omitted. The
partition function of the nonperturbed system is given by

Z05(
n,l

expF2
En,l

kBT
G5(

n,l
z1
nz2

l 5
1

~12z1!~12z2!
,

~28!

where

z15expF2
\v1

kBT
G , z25expF2

\v2

kBT
G . ~29!

Let us first derive the cumulants for the first NN shell,
which are described using powers of relative displacements

between central atomA and terminal atomsB1 andB2. Two
equivalent first-NN bonds~A-B1 andA-B2! equally con-
tribute to the cumulants, and hence the experimentally ob-
tainedC2 corresponds to the average

C25
1

2
$^~Dr 12C1!

2&1^~Dr 22C1!
2&%5

1

2m
^q1

2&

1
1

2m
^q2

2&2C1
2. ~30!

Since the last term ofC1
2 is neglected in the present order of

the approximation, only the thermal averages ofq1
2 andq2

2

should be calculated. Moreover, only the first term in Eq.~7!
is required because of neglect of the fourth-order force con-
stant. The resultant formula is easily given within the har-
monic approximation:

C25
1
2s1

2B11
1
2s2

2B2 , ~31!

where

B15
11z1
12z1

, B25
11z2
12z2

,

~32!

s1
25

\

2mv1
, s2

25
\

2mv2
.

One finds that both the symmetric and antisymmetric stretch-
ing modes contribute toC2 for the first-NN shell.

Since the first and third terms in Eq.~7! vanish in the
calculation of odd-order moments, the second term is a lead-
ing term forC1 or C3. From the definition,C1 is given by

C15
1

2
^Dr 11Dr 2&52

1

A2m
^q1&, ~33!

this apparently implying that the displacement only for the
symmetric stretching mode contributes toC1. Calculating
the second term of Eq.~7!, the final form ofC1 is expressed
as

C15
3k3

\v1
s1
2 @s1

2B11s2
2B2#5

3k3

k01k12
C2 . ~34!

Although only q1 contributes toC1, the resultant formula
contains the term of the antisymmetric stretching mode
through the perturbed Hamiltonian or, in other words, due to
the phonon-phonon coupling between the symmetric and an-
tisymmetric modes. One derives the resultant formula ofC3
in a similar manner as

C35
1

2
$^~Dr 12C1!

3&1^~Dr 22C1!
3&%>2

1

~2m!3/2
^q1

3&2
3

2mA2m
^q1q2

2&23C1C2

5
k3s1

6

\v1
~3B1

222!1
9k3s1

2s2
4

2\v1
~B2

221!1
9k3s2

6

\v1~s2 /s1!
224\v2~m/m! S 12 B2

22
2v2

v1
B1B21

1

2D . ~35!
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For the second-NN shell, the cumulants can be calculated
easily since we have already evaluated the thermal averages
of q1, q1

2, andq1
3. The resultant formulas are the following:

C15^Dr 11Dr 2&52A2

m
^q1&5

6k3

\v1
s1
2@s1

2B11s2
2B2#,

~36!

C25^~Dr 11Dr 22C1!
2&>

2

m
^q1

2&52s1
2B1 , ~37!

C35^~Dr 11Dr 22C1!
3&>2S 2mD 3/2^q13&23C1C2

5
8k3s1

6

\v1
@3B1

222#. ~38!

Note that, although for both the diatomic system and the
first-NN shell of the linear triatomic systemC1 is simply
proportional toC2 as seen in Eqs.~19! and ~34!, such a
relationship cannot be expected for the second-NN shell of
the triatomic system. These equations are employed in the
following analysis of temperature dependence of EXAFS
spectra obtained experimentally.

III. EXPERIMENTAL DETAILS

A. Vibrational spectra

~n-C4H9!4NAuBr2 and ~n-C4H9!4NCuBr2 were prepared
and purified according to the literature.15,16Although the fre-
quencies of the symmetric and antisymmetric stretching
modes have been reported for CuBr2

2,17 these may not be
exactly the same as those of the present samples since the
previous spectrum17 was taken in a solution. We have thus
carried out the measurements of far-infrared spectra of solid
~n-C4H9!4NAuBr2 and ~n-C4H9!4NCuBr2 to verify the anti-
symmetric stretching frequencies. The spectra were recorded
with a Bruker IFS 113v spectrometer for a energy range of
60–650 cm21 with a resolution of 1 cm21. A silicon bolom-
eter ~Infrared Lab.! was used as a detector. Crystalline
samples were ground and mounted on a white-polyethylene
disk of 1 mm thickness. For the correction of the spectra, an
absorption spectrum of the blank disk was subtracted from
the raw data.

The resonance frequencies for AuBr2
2 were found at 255

and 76 cm21. The former is assigned to the antisymmetric
stretching mode and the latter to the bending mode. The
antisymmetric stretching frequency of 255 cm21 is consistent
with the reported value of 254 cm21.15 For CuBr2

2 the anti-
symmetric stretching and bending modes were found at 324
and 81 cm21, respectively. The value of 324 cm21 is again in
good agreement with the reported one of 322 cm21. These
findings imply that the stretching frequencies reported in the
literature are available not only for the antisymmetric mode,
but also for the symmetric stretching one. The numerical
values are summarized in Table I, together with the force
constantsk0 andk12.

B. EXAFS

Temperature dependence of EXAFS spectra was investi-
gated at BL-10B~Ref. 21! of the Photon Factory in the Na-
tional Laboratory for High Energy Physics~the ring energy
of 2.5 GeV and the stored ring current of 350–250
mA!. EXAFS spectra were recorded with the transmission

FIG. 1. ~a! Br K-edge EXAFS oscillation functionsk3x(k) and
~b! their Fourier transforms of gaseous Br2 at 300 K~solid line! and
at 543 K~short-dashed line!. The EXAFS function at 300 K calcu-
lated withFEFF6 is also depicted~long-dashed line!.

TABLE I. Symmetric and antisymmetric stretching frequencies
v1 andv2 and force constantsk0 andk12 of HgBr2(g), HgCl2(g),
AuBr2

2 and CuBr2
2 . A stretching frequency and a force constant of

diatomic79Br81Br are also given.

Sample v1 ~cm21! v2 ~cm21! k0 ~mdyn/Å! k12 ~mdyn/Å2!

Br2
a 323.2 2.459

HgBr2
b 222 293 2.282 0.035

HgCl2
c 358 413 2.655 0.022

AuBr2
2 d 209 254 1.867 0.190

CuBr2
2 e 193 322 1.570 0.182

-aReference 18 dReference 15
bReference 19 eReference 17
cReference 20
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mode for a BrK edge for Br2(g) at 300 and 543 K, HgL III
edges for HgBr2(g) at 656 and 838 K, HgBr2(s) at 58 and
300 K, HgCl2(g) at 618 and 747 K, and HgCl2(s) at 104 and
300 K, an AuL III edge for AuBr2

2 at 23 and 299 K, and a Cu
K edge for CuBr2

2 at 26 and 300 K. Commercially available
Br2, HgBr2, and HgCl2 were used without further purifica-
tion. Ionization chambers were employed for the measure-
ments of intensities of incident~I 0! and transmitted (I ) x
rays, which were filled, respectively, with N2 for I 0 and Ar
for I .

Solid samples were diluted with boron nitride, pressed to
make disks with a diameter of 10 mm, and cooled down to
the temperatures using a closed-cycle refrigerator. The ab-
sorption jumps at the edges were found to be less than 1.5 for
all the solid samples, which implies fewer effects of higher
harmonics at the present ring energy of 2.5 GeV. The sample
temperature was monitored by an electric resistance of a Si
diode placed closely to the sample disk.

For gaseous samples, solid HgBr2 or HgCl2 was put in a
Pyrex-and-quartz cell with thin~;0.5 mm! quartz windows
and the cell was subsequently evacuated and sealed, while
gaseous Br2 was just introduced to the same evacuated cell at
ambient temperature. The cells were then heated up to the
desired temperatures. These gases are known to be stable
around the temperatures investigated. The total absorption
coefficient of the gaseous samples including the quartz win-
dows was less than 4 for the present energy range, this again
indicating the lesser importance of higher harmonics.

IV. RESULTS AND DISCUSSION

A. Br 2

Let us first discuss the diatomic system of Br2 prior to the
triatomic systems. The EXAFS oscillation functionk3x(k)
was obtained with well-established procedures: pre- and
post edge background subtractions and subsequent normal-
ization with the absorption coefficients given in the
literature.1,22The EXAFS functionsk3x(k) taken at 300 and
543 K are shown in Fig. 1~a! together with the theoretically

calculated one described below. Although strong oscillations
due to Br-Br single scattering can be seen at both tempera-
tures, the amplitude reduction at 543 K should be noted es-
pecially at a high-k region. This is based on the enhancement
of thermal vibration at higher temperature. The EXAFS
functions were subsequently Fourier transformed intor
space, these being depicted in Fig. 1~b!. Dominant features
appearing at;2 Å can be easily assigned to the single-
scattering first-NN Br-Br shell.

In order to obtain structural parameters and also to verify
the reliability of the present theoretical standards, calcula-
tions were performed using theFEFF6 program package.23

FEFF6 includesab initio calculations of atomic potentials to
derive partial phase shifts and multiple-scattering EXAFS
calculations using exact spherical-wave approaches. This
calculation requires only a few undetermined parameters to
reproduce EXAFS spectra, which areS0

2 andDE0 . DE0 is
the shift of the edge energy, which has tentatively been cho-
sen at the inflection point of the experimental data. For the
calculation of the BrK-edge EXAFS of Br2 at 300 K, the
interatomic distanceR of 2.2836 Å was taken from a rota-
tional spectroscopic study18 and the mean-square relative
displacementC2 of 0.002 07 Å was calculated from the vi-
brational frequencyv of 323.2 cm21.18 C3 was neglected
for simplicity. Figure 1 includes the results of theFEFF6cal-
culation, which was obtained using optimized parameters of
S0
251.05 andDE050.56 ~eV!. Agreements between the ex-

perimental and theoretical spectra are found to be excellent.
A refinement of the interatomic distance was subsequently

carried out by means of the curve-fitting analysis ink space.
Details of the analysis parameters are summarized in Table
II, together with those of triatomic systems described below.
After the inverse Fourier transformation of the first-NN
Br-Br shell of interest~DRfit51.6–2.4 Å!,22 the extracted
k3x(k) was fitted using the backscattering amplitude and the
phase shift derived by the presentFEFF6 calculation. Since
the fitting k range isDkfit54–13 Å21, the number of inde-
pendent data pointsNI is obtained to be;5.6 using the
well-known formula ofNI52DkDR/p11, while only the

TABLE II. Details of the present EXAFS analysis.NI is the number of the independent data points, and
DkFT , DRfit , andDkfit are the employed ranges for Fourier transformation, Fourier filtering, andk-space
fitting, respectively. In the refinements ofFEFF, the curve-fitting analysis forknx(k) has been performed with
S0
2, DE0, andR as fitting parameters, whileC2 is fixed to the value calculated from the IR-Raman frequen-

cies. In the analysis of temperature dependence~Temp.!, the amplitude-ratio and phase-difference method has
been adopted withDC2, DR, and DC3 as fitting parameters. For the second-NN shell, no curve-fitting
analysis usingFEFF parameters was conducted.

Sample Shell DkFT ~Å21! DRfit ~Å!

FEFF Temp.

Dkfit ~Å21! NI Dkfit ~Å21! NI

Br2(g) first 2.7–13.75 1.6–2.4 3.5–13.5 6.1 6.0–13.5 4.8
HgBr2(g) first 2.5–11.5 1.5–2.5 3.0–11.0 6.1 6.0–11.0 4.2

second 2.5–11.5 3.5–4.8 6.0–11.0 4.2
HgCl2(g) first 3.85–12.5 1.4–2.3 4.5–12.0 5.9 6.0–12.0 4.4
HgCl2(s) first 3.85–12.5 1.4–2.3 4.5–12.0 5.9 6.0–12.0 4.4
AuBr2

2 first 3.1–15.9 1.75–2.5 4.0–15.5 6.5 6.0–15.5 5.5
second 3.1–15.9 3.8–4.8 6.0–12.0 4.8

CuBr2
2 first 2.5–16.0 1.7–2.3 3.5–15.5 5.6 6.0–15.5 4.6

second 2.5–16.0 3.6–4.5 6.0–12.0 4.4
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three fitting parameters ofS0
2, R, andDE0 were employed

~C2 was fixed to the values given by the Raman frequencies!.
The obtained distanceRex is 2.28660.010 Å, which is in
good agreement with the reported value of 2.2836 Å, indi-
cating a high reliability of theFEFF calculation. Here and
hereafter the error bar includes both errors in the data and the
fit.

The temperature dependence of the EXAFS spectra was
finally analyzed by means of the amplitude-ratio and phase-
difference methods. The logarithmic ratio of the amplitude
part G(k)5A(k)exp[22C2k

212C4k
4/3] betweenT1 and

T2 can be expressed as

lnFG~k,T2!

G~k,T1!
G>22@C2~T2!2C2~T1!#k

2

1
2

3
@C4~T2!2C4~T1!#k

4, ~39!

and when the experimentally obtained logarithmic ratio is
plotted as a function ofk2, DC2 andDC4 can be obtained
through linear least-squares fittings with a second-order
polynomial. Similarly, the difference of the phase partC(k)
divided byk is written as

C~k,T2!2C~k,T1!

k
52@R~T2!2R~T1!#

2
4

3
@C3~T2!2C3~T1!#k

2,

~40!

and when the experimental left-side function in Eq.~40! is
plotted versusk2, the slope andy intercept lead to the differ-
ences inC3 andR, respectively. Figure 2 shows the plots for
the present Br2 system~T15300 K andT25543 K!. We used
Dkfit56–13 Å21, this implyingNI5;4.6.
On the other hand, in the fitting procedure only one fitting
parameter for the amplitude part~DC2! and two fitting pa-
rameters~DR andDC3! for the phase part were employed
with the assumption of the sameDE0 andS0

2 between 300
and 543 K. In the fitting procedure, one has to care about the
correlation betweenS0

2 andC2 . Since we investigate only
the temperature dependence,S0

2 does not vary essentially,
but might be modified due to a poor estimation of the ab-
sorption edge jump. However, we have observed exactly the
same edge jumps~discrepancy of less than 0.3%! between
300 and 543 K because we did not touch the sample cell
during the continual EXAFS measurements. This implies
that the error of theS0

2 difference does not affect the esti-
mated result ofDC2 since the major error should originate
from poor background subtraction of them0 spline function.
Actually, one can see discrepancies between the experimen-
tally obtained curves and the fitted lines, the former of which
gives slight artificial oscillations. The resultant values are
obtained from Fig. 2 to beDR50.0022 Å,DC250.001 24~6!
Å2, andDC350.000 024~5! Å3. Using the values ofDC2 and
DC3 , the force constantsk0 and k3 are evaluated as
k052.43~10! ~mdynÅ! andk351.5~3! ~mdyn/Å2!. These val-
ues are consistent with the literature data ofk052.459
~mdyn/Å! andk351.76~mdyn/Å2!,18 implying high accuracy
of the present EXAFS analysis. Although in the present cal-
culation we have employedDC3 instead ofDR for the cal-
culation ofk3 because of the greater reliability ofDC3 , the
estimatedDR from the obtainedk0 and k3 is 0.0023 Å,

which is also in excellent agreement with the value ofDR
50.0022 Å given independently from the phase analysis.

B. Triatomic systems

Experimental EXAFS functionsx(k) of the triatomic sys-
tems were obtained in a similar manner to the Br2 case, and,
as an example, the HgL III edgek

2x(k) of gaseous HgBr2 at
656 K is depicted in Fig. 3~a!, and Fourier transforms of the
triatomic systems studied are shown in Fig. 3~b! @HgBr2(g)#
and Fig. 4@the other samples HgCl2(s) not shown#. Note that
k3x(k) was employed for all the spectra except for HgBr2.
In all the Fourier transforms, the strong first-NN shells ap-
pear at;2 Å and higher-shell contributions are also clearly
seen around;4 Å. Since no single-scattering contribution is
expected around;4 Å in the present cases where the central
atoms of the triatomic systems is x-ray-absorbing atoms,
these features should be attributed exclusively to the
multiple-scattering paths. In order to give a detailed under-
standing of the whole feature,FEFF6calculations were simi-
larly performed for HgBr2(g), HgCl2(g), AuBr2

2, and
CuBr2

2. In these four examples, the EXAFS functions could
be described within one molecule even in the cases of the
solids ~C4H9!4NAuBr2 and ~C4H9!4NCuBr2. In the cases of

FIG. 2. ~a! Logarithmic ratio of the amplitude functions and~b!
phase difference divided byk as functions ofk2, for gaseous Br2
between 300 and 543 K.
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HgBr2(s) and HgCl2(s), neighbor molecules should also
contribute to the EXAFS spectra and theFEFF simulations
have not been carried out since these calculations are beyond
the present purpose. Actually, the feature appearing at;3 Å
in the Fourier transform@Fig. 4~a!# can be ascribed to the
intermolecular Hg-Br shell withN54 andR53.23 Å.24

In the cases of linear triatomicAB2 systems, the total
EXAFS functionx(k) is given by

x~k!5x I~k!1x II~k!1x III ~k!1x IV~k!, ~41!

where xI(k) corresponds to the first-NN shell~single-
scattering pathA-B-A! andxII(k), xIII (k), andxIV(k) to the

multiple-scattering paths, being, respectively, associated with
A-B1-B2-A ~double scattering!, A-B1-A-B2-A ~triple scat-
tering!, andA-B1-A-B1-A ~triple scattering!. Here higher-
order multiple-scattering paths with longer distances were
neglected. The results of theFEFF calculation are also given
in Figs. 3 and 4. In these calculations, similarly to the case of
the Br2 calculation, the interatomic distancesR were referred
to from the structural studies in the literature25–28 and the
mean-square relative displacementsC2 were evaluated from
the vibrational frequencies. The mean cubic relative dis-
placementsC3 were neglected. The parameters to be opti-
mized are thusS0

2 and DE0 for all the triatomic systems.
These parameters are summarized in Table II. It is worth-
while mentioning that agreements between experimental and
calculated spectra are excellent not only for the first-NN
shell, but also for the multiple-scattering contributions
around;4 Å in spite of the employment of only two fitting
parameters.

The interatomic distances for the first-NN shells were fur-
ther refined by means of nonlinear least-squares routines,
using effective backscattering amplitudes and phase shifts
given byFEFF6. The fittingk rangesDkfit and the number of
the independent data point,NI , are summarized in Table II.
The resultant valuesRex are given in Table III and those for
HgBr2(g), HgCl2(g), HgCl2(s), AuBr2

2, and CuBr2
2 are

found to be in good agreement with those of the diffraction
studies.25–29The deviation between the present EXAFS and
x-ray crystallographic studies24 is, however, significant in the
case of solid HgBr2(s). This might be because the x-ray-
diffraction data were quite old and thus somewhat doubtful
for the quantitative intramolecular distances. Actually, in
solid HgCl2 as well, the Hg-Cl distances given in Ref. 24 are
2.23 and 2.27 Å, which are much smaller than both the
present finding and the new x-ray study.29

Figure 5~a! shows k2x(k), k2xI(k), k
2xII(k), k

2xIII (k),
and k2xIV(k) of HgBr2 obtained from the presentFEFF cal-
culation, and their Fourier transforms~absolute values only!
for the range of 3–6 Å are given in Fig. 5~b!. This figure
clearly shows that for the second-NN feature at;4 Å the
triple scatteringxIII (k) is the most important and the double
scatteringxII(k) should also be taken into consideration,
while the triple scatteringxIV(k) can be neglected com-
pletely. Although the sidelobe of the strong first-NN feature
still remains in the range around 4 Å, we will also neglect the
contribution in the following temperature-dependent analysis
because the first-NN shell might exhibit much weaker tem-
perature dependence than the second-NN shell. The EXAFS
function for the second-NN shell,xs(k), can thus be ex-
pressed as the sum ofxII(k) andxIII (k). Since the cumulants
for the two scattering paths are exactly the same, this leads to

xS~k!>x II~k!1x III ~k!5exp$22C2k
2%Im[exp$ i (2kR2 4

3 C3k
3)%$AII~k!exp$ if II~k!%1AIII ~k!exp$ if III ~k!%%]

5AS~k!exp$22C2k
2%sin(2kR2 4

3 C3k
31fS~k!). ~42!

FIG. 3. ~a! Hg L III -edgek
2x(k) and~b! its Fourier transform of

gaseous HgBr2 at 656 K~solid line!, together with those calculated
with FEFF6 ~dashed line!.
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Equation~42! implies thatxS(k) can be analyzed in a similar
manner to the case of the single-shell analysis.

Both the first- and second-NN shells have thus been ana-
lyzed by means of the amplitude-ratio and phase-difference
methods which are well established for the single-shell EX-
AFS analysis. Details of the analysis parameters are given in
Table II. Using Eqs.~39! and ~40!, the difference of the cu-
mulants between two temperatures were evaluated. Figure 6
shows the logarithmic ratio of the amplitude functions and
the phase difference divided byk of HgBr2(g) ~T15656 K
andT25838 K! as functions ofk2. The determined cumu-

lants from the plots are summarized in Table IV, together
with the results of the other materials. In the cases of
HgCl2(g) and HgCl2(s), the second-NN shell could not pro-
vide reasonable plots as Figs. 2 and 6, possibly because with
the increase ink, the backscattering amplitude of a chlorine
atom is damped much more quickly than that of bromine,
this leading to difficulty in the reliable analysis of the
multiple-scattering paths. Only the results of the first-NN
shells are thus presented for HgCl2.

In order to evaluatek0 andk3 ~we usedC3 for the esti-
mation of k3!, the cross termk12 is required. Although the

FIG. 4. Fourier transforms of
~a! Hg L III edge k2x(k) of
HgBr2(s) at 58 K, ~b! Hg L III
edgek3x(k) of HgCl2(g) at 618
K, ~c! Au L III edge k3x(k) of
AuBr2

2 at 23 K, and~d! Cu K
edgek3x(k) of CuBr2

2 at 26 K.
Experimental data are given as
solid lines. In ~b!, ~c!, and ~d!,
those calculated withFEFF6 are
also depicted as dashed lines.

TABLE III. Employed parameters in theFEFFcalculations. S0
2 andDE0 were optimized so as to repro-

duce the experimental spectra most satisfactorily, whileR1 ~1 denotes the first NN! andC2 were taken,
respectively, from the structural~Refs. 18, 24–29! and vibrational~Refs. 15, 17, 20! data. The distanceRex
is the refined value given by the curve-fitting analysis, namely, the distance determined by EXAFS.C21 is
the mean-square relative displacement for the first-NN shell, whileC22 andC228 are for the second-NN shell,
the paths of which correspond toA-B1-A-B2-A ~or A-B1-B2-A! andA-B1-A-B1-A, respectively.

Sample T ~K! S0
2 DE0 ~eV! R1 ~Å! Rex ~Å! C21 ~Å2! C22 ~Å2! C228 ~Å2!

Br2(g) 300 1.07 0.56 2.284a 2.286 0.002 07 0.008 28
HgBr2(g) 657 0.92 21.02 2.383b 2.374 0.004 07 0.007 96 0.015 82
HgBr2(s) 58 20.70 2.48c 2.443
HgCl2(g) 618 0.98 1.95 2.252d 2.250 0.003 43 0.006 74 0.013 72
HgCl2(s) 104 20.03 2.283e 2.299
AuBr2

2 23 0.93 8.52 2.385f 2.388 0.001 26 0.002 02 0.005 04
CuBr2

2 26 0.83 4.84 2.226g 2.240 0.001 70 0.002 19 0.006 80

aReference 18.
bReference 25.
cReference 24.
dReference 26.
eReference 29. Solid HgCl2 is known to contain two different intramolecular Hg-Cl distances of 2.292 and
2.274 Å, and here the average value is given.
fReference 27.
gReference 28.
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value is usually small enough to neglect compared tok0, the
ratio k12/k0 was referred to from the vibrational data15,17,19,20

in the present analysis. The numerical values ofk0 andk3 are
also given in Table IV. Although the values fluctuate some-

what between the results of the first- and second-NN shells,
the finally estimated values with error bars are tabulated in
Table V, together with the interatomic distances. Agreement
of k0 between the present EXAFS and vibrational data is
nonetheless fairly good, and we can expect thatk0 can be
obtained within error bars of less than610%. It is interesting
to compare the force constantsk0 andk3 and the distanceR

FIG. 5. ~a! FEFF6 results of totalk2x(k) ~solid line!, k2xI(k)
~first-NN shell A-B1-A, long-dashed line!, k2xII(k) ~double-
scattering second-NN shellA-B1-B2-A, short-dashed line!,
k2xII(k) ~triple-scattering second-NN shellA-B1-A-B2-A, dotted
line!, andk2xIV(k) ~triple-scattering second-NN shellA-B1-A-B1-
A, dot-dashed line!, and~b! their Fourier transforms.

FIG. 6. ~a! Logarithmic ratio of the amplitude functions and~b!
phase difference divided byk as functions ofk2, for gaseous HgBr2
between 656 and 838 K.

TABLE IV. The results of the analysis of temperature-dependent EXAFS of Br2, HgBr2, HgCl2, AuBr2
2 ,

and CuBr2
2 . For the calculations ofk0 of the triatomic systems, the ratiok12/k0 was taken from the

vibrational data given in Table I.

Sample Shell
T2
~K!

T1
~K!

DR
~Å!

DC2
~Å2!

DC3
~Å3!

k0
~mdyn/Å!

k3
~mdyn/Å2!

Br2(g) first 543 300 0.0022 0.001 24 0.000 24 2.43 1.5
HgBr2(g) first 838 656 0.0030 0.001 06 0.000 075 2.33 3.0

second 833 656 0.0119 0.002 76 0.000 344 1.77 3.1
HgBr2(s) first 300 58 0.0131 0.001 76 0.000 166 1.39 4.7
HgCl2(g) first 747 618 0.0029 0.000 69 0.000 051 2.45 3.6
HgCl2(s) first 300 104 20.0027 0.000 87 0.000 069 1.90 5.8
AuBr2

2 first 299 23 0.0054 0.001 25 0.000 036 1.82 2.3
second 299 23 0.0095 0.002 61 0.000 117 1.71 4.1

CuBr2
2 first 300 26 0.0055 0.001 05 0.000 044 1.88 3.2

second 300 26 0.0097 0.002 96 0.000 132 1.53 3.4
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between the gas and solid phases of HgBr2 and HgCl2.
Largerk0 and smallerR in the gas phases indicate stronger
intramolecular Hg-Br bonds than in the solid phase, and cor-
respondingly anharmonicity in the gas phase is smaller be-
cause of smallerk3. Although HgBr2 and HgCl2 are regarded
as molecular crystals in which intermolecular interaction is
of a van der Waals force, the force constants have been re-
vealed to vary significantly through the intermolecular inter-
action.

V. CONCLUSIONS

Since the vibrational frequency concerning heavy metals
such as transition metal-ligand bonds is usually in the far-
infrared region, vibrational studies seem sometimes difficult
for the systems investigated. The temperature-dependent
EXAFS technique is thus useful for studying dynamic prop-
erties of the chemical bonds for many systems such as sur-
faces, which can be hardly studied by means of far-infrared
or Raman spectroscopy. Although the main purpose of the
present work is a further fundamental understanding of EX-
AFS spectroscopy itself, the formalism and analysis method
might be applicable to a practical use.

The present study has given the formulas of the first four
cumulants for diatomic systems and the first three cumulants
for linear triatomic systems by taking the thermal averages of
moments of normal coordinates within quantum-statistical
first-order perturbation theory. The cumulants are directly re-

lated to the force constants of the NN bond. In the case of the
linear triatomic system, these are dependent on both the sym-
metric and antisymmetric stretching modes, this implying the
importance of the polyatomic treatments.

The temperature dependence of EXAFS spectra of di-
atomic Br2 and linear triatomic HgBr2, HgCl2, AuBr2

2, and
CuBr2

2 systems has been analyzed. The theoretical standards
FEFF6yield excellent agreement with the experimental spec-
tra for both the single- and multiple-scattering paths. The
interatomic distances determined are consistent with recent
structural studies within error bars of;0.01 Å. The second-
and third-order force constants have been calculated from the
cumulants obtained, which are also found to be in fairly good
agreement with the ones obtained from the vibrational data.
The difference of the force constants between the gas and
solid phases has been clarified for HgBr2 and HgCl2, this
finding corresponding to the difference of the interatomic
distance.
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