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We present a systematic analysis of the low-temperature properties of glasses. In a first step we derive the
low-temperature Hamiltonian of Lennard-Jones~LJ! glasses by a combination of numerical and analytical
methods from first principles. This enables us to calculate the density of tunneling states, the coupling between
tunneling states and phonons~deformation potential!, and the extrema ofC(T)/T3 @C(T) specific heat# for LJ
glasses as functions of the velocity of sound, the density, and the glass transition temperature. In a second step
we directly apply these results to more general glasses. Comparing the predictions for the four low-temperature
parameters with experiment for a variety of glasses allows us to judge the degree to which their quantitative
values are dominated by the individual microscopic structure. The agreement is excellent for the extrema of the
specific heat and reasonable for the density of tunneling states and the deformation potential. Furthermore, we
show from scaling arguments that such an agreement cannot be found for the peak of the sound absorption.
From our simulations we can correlate the different degree of universality of the low-temperature observables
with the different spatial extension of the relevant low-temperature excitations. In agreement with intuition,
distinct collective dynamics translates into a weak dependence on the microscopic structure.

I. INTRODUCTION

One of the most fascinating aspects of the physics of
glasses is their universal behavior at low temperatures. It is
significantly different from that of their crystalline
counterparts.1 For example, most glasses show an approxi-
mately linear temperature dependence of the specific heat for
very low temperatures~T,1 K!, which has been explained
by phenomenological models. The standard tunneling model
~STM! ~Refs. 2, 3! and, more recently, the soft potential
model~SPM! ~Refs. 4–7! postulate that at low temperatures
the Hamiltonian of a glass can be decomposed according to

H5HSM1W 1HB , ~1!

where the first term describes localized excitations~soft
modes! of the glass, the second term the interaction between
soft modes and phonons, and the third term the phonon bath.
Two temperature regimes may be distinguished at low tem-
peratures. Taking the specific heatC(T) as an example, for
very low temperatures~typically T,1 K, regime I! one ob-
serves a linear temperature dependence. For higher tempera-
tures ~typically 1 K,T,10 K, regime II! C(T) increases
dramatically so that evenĈ(T)5C(T)/T3 increases. Hence
between regime I and regime IIĈ(T) displays a minimum.
For still larger temperaturesĈ(T) decreases again. The two
regimes are related to different types of soft modes. In re-
gime I, where only low-energy excitations contribute, it is
postulated that the relevant excitations can be described by
doublewell potentials~DWP’s! in the configurational space.
This means that the units of the glass can switch between
two adjacent minima of the potential energy. If, by chance,
the corresponding DWP happens to be nearly symmetric the
energy difference of the two lowest eigenstates is mainly

dominated by the tunneling splitting and hence may be very
small. In regime II the specific heat is dominated by excita-
tions of singlewell potentials~SWP’s! that correspond to lo-
calized rearrangements with very low restoring forces.

Note that the temperature dependence of the specific heat
is directly related to the so-called Boson peak measured by
Raman scattering.8 Hence the results, presented below, are
also relevant for understanding the microscopic origin of the
Boson peak.

A different feature, also related to the existence of DWP’s,
is the sound absorption peak which is observed around
20–50 K.9,10 It is typically explained via thermally activated
relaxation processes of the DWP’s.

In this paper we will deal with two basic questions related
to the low-temperature properties:~i! What is the micro-
scopic basis for the phenomenological models mentioned
above and hence for the decomposition of the total Hamil-
tonian according to Eq.~1!? ~ii ! Do the low-temperature
properties depend on the specific microscopic structure of
the glass which, of course, substantially varies among differ-
ent glasses? Both questions are basically equivalent to those
put forward by Phillips at the end of his review article. He
doubted that there would be a single theory answering these
questions.1 The present discussion will be based on the typi-
cal low-temperature parameters determined experimentally,
namely the density of DWP’sneff , the coupling constantg
between DWP’s and the heat bath~we call them bothtunnel-
ing parameters!, and the temperaturesTC,1 andTC,2 where
Ĉ(T) displays a minimum and a maximum, respectively.
Furthermore we will briefly discuss the temperatureTs , for
which the acoustic absorption displays a maximum.

Due to the complexity of the problem no analytical theory
for general glasses exists which fully derives the above de-
composition ofH on the basis of the original Hamiltonian
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of the glass and which might thus provide a check of the
assumptions of the phenomenological models. Only for spe-
cial cases like a one-dimensional model glass were analytical
calculations of the low-temperature properties possible.11,12

Generally one is restricted to computer simulations of model
glasses. It has been shown by Schober and co-workers13–15

that glasses may contain localized low-frequency soft modes
which correspond to the SWP’s postulated in the SPM. The
present authors were able to perform the above decomposi-
tion of the Hamiltonian for a Lennard-Jones~LJ! type model
glass in the tunneling regime.16 In this reference basic results
of this analysis can be found. A detailed description of this
decomposition and some specific results which are relevant
for the subsequent parts are given in Sec. II.

Monatomic LJ glasses are characterized by three param-
eters, defining the mass, the energy, and the distance scale.
Conveniently, this set of three parameters can be chosen as
the massm of the individual atoms, the average phonon ve-
locity v, and the densityr. Therefore, in principle it should
be possible to expressHSM, W , andHB and hence all
low-temperature properties as functions of~m,v,r!. In Sec.
III we will derive the quantitative relations connecting the
four low-temperature parametersneff , g, TC,1, TC,2 with the
material constants~m,v,r!.

Question~ii ! deals with the reason for the variation of the
low-temperature parameters among different glasses. For ex-
ample the deformation potential of SiO2 is five times as large
as that of polystyrene~PS!. In principle this can be explained
in two different ways. First, due to the significant micro-
scopic differences between the two glasses, the observables
of both glasses have nothing in common so that the observed
ratio of five for the deformation potential is just an accident.
However, there might be a different explanation. Let us for
the moment consider the melting point of different noble
gases. The fact that the melting point varies quite signifi-
cantly can be explained by different internal energy scales
~i.e., the interaction strength between two noble gas atoms!.
This variation directly translates into a variation of the melt-
ing temperature. Since the internal energy scale can be de-
termined by other means~e.g., by analysis of the velocity of
sound! one can predict the relative melting temperatures for
different noble gases. With this example in mind one might
ask whether the large differences among the low-temperature
parameters can be related to different internal energy scales
~and/or mass scales and/or distance scales! rather than to the
microscopic differences. Whether nature prefers the first or
second option can be checked rather easily. First we simply
postulate that all glasses behave as LJ glasses. This assump-
tion enables us to predict the low-temperature parameters for
all glasses. We then check whether the predictions are con-
sistent with experimental results. Possible deviations are a
measure for the importance of the microscopic structure
which, of course, is not well represented by a LJ type glass.
We find that the agreement is excellent for the extrema of
Ĉ(T) and reasonable for the tunneling parameters. However,
we show that the temperature of the peak of sound absorp-
tion Ts does not follow a scaling relation. This behavior is in
agreement with the well-known experimental fact that the
peak of sound absorption is much more sensitive to micro-

scopic changes@i.e., wetting of B2O3 ~Ref. 17!# than the
other low-temperature observables. This analysis is con-
tained in Sec. IV.

The universal behavior at phase transitions is related to
the diverging correlation length which averages out all mi-
croscopic differences.18 The spatial extensions of different
soft modes are rather small~1–50 atoms!.14,19 In Sec. V we
show that properties which are related to more extended soft
modes nevertheless display a weaker dependence on the mi-
croscopic structure. We finish with a brief summary in Sec.
VI.

II. LOW-TEMPERATURE DECOMPOSITION
OF THE HAMILTONIAN OF A MODEL GLASS

In this section we determineHSM, W , andHB for a
model glass which is similar to the one analyzed by Weber
and Stillinger.20 It is a diatomic LJ type glass for which the
pair potentials are given by

Vkl~r !5Akl@~aklr !21221#exp@~aklr2ac!
21#,0,aklr<ac

50, akl>ac , ~2!

wherek,lP$1,2% describe which pair of atoms is considered.
80% type I and 20% type II atoms are taken. The cutoff
distanceac is given by ac51.652s, where s is the unit
length. Values for the potential parameters areA1251.5A11,
A2250.5A11, a1151, a1251.05, a2251.13. The parameters
were chosen such that fors52.2 Å andA1158200 K the
model glass is a good representative for an amorphous nickel
phosphorus mixture. All simulations were performed at con-
stant density ofr58350 kg m23. Periodic boundary condi-
tions have been implemented. Simulation boxes withN5150
and 500 particles have been used. The total Hamiltonian of
the glass reads

H5(
i51

N
mi

2 S ddt rW i D
2

1(
i, j

Vh~ i !h~ j !~r i j !, ~3!

whererW i denotes the position vector of particlei ,r i j the dis-
tance between particlesi and j ,mi the mass of particlei , and
h( i )51,2. In what follows all three termsHSM, W , and
HB will be described on a microscopic basis.

A. Material constants

We first express the average velocity of soundv and the
densityr in terms of the microscopic parameters defining the
model glass. In Ref. 21 we derived that to a good approxi-
mation

mv25
2n

51
f ~2!a2, ~4!

where f ~2! describes the second derivative of the pair poten-
tial at its minimuma. The average sound velocityv is de-
fined as 3v235v l

2312v t
23 wherev t andv l are the trans-

verse and longitudinal sound velocity, respectively. Equation
~4! has been derived for a monatomic system but can be
simply generalized to a multicomponent system if we use the
average mass and the average value off (2)a2. Summing over
the three different pairs of atoms with the appropriate statis-
tical weight yieldsf (2)a2591 000 K in the case of NiP. For
m we havem'56mp . For the potential given above we have
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a51.1s. n describes the number of atoms in the nearest
neighbors shell, hencen512 for NiP. Since we want to gen-
eralize our results to glasses with different values ofn we
will calculate all quantities for generaln. Evaluation of Eq.
~4! for NiP yieldsv52530 ms21 which compares very well
with the experimental value ofv52600 ms21.20

B. Soft modes

As a first step, we systematically search for DWP’s in a
given glass configuration which we obtain by quenching an
equilibrated computer liquid. The principle goal is to find
nearby configurations which both correspond to local energy
minima. For a monatomic LJ type glass an appropriate mea-
sure for the distance between two configurations is the Eu-
clidian distance

dist~$rW i ,L%,$rW i ,R%![A(
i

~rW i ,L2rW i ,R!2. ~5!

Furthermore we define the vectorsdW i via dW i[rW i ,L2rW i ,R and
d[dist($rW i ,L%,$rW i ,R%) where $rW i ,L% and $rW i ,R% correspond to
the left and the right glass configuration, respectively. In gen-
eral, the transition between two minimum configurations in-
volves the motion of all particles. Hence one has to look in
the high-dimensional space to locate possible DWP’s.

Recently, we presented an algorithm which for the first
time systematically finds DWP’s on a microscopic basis.16

We start from one randomly selected atom and itss'15
nearest neighbors and analyze by appropriate variation of
the positions of thes11 atoms in which direction of the
3~s11!- dimensional configurational subspace an adjacent
minimum of the potential energy may be localized. Based on
this information we then check by variation of the positions
of all atoms whether or not a second minimum can indeed be
found. This procedure is repeated for all atoms and finally
for different initial configurations. A closer description of the
algorithm can be found in Ref. 16. We located approximately
300 DWP’s withd,a and uAu, V,400 K. It turned out that
there exists approximately 1 DWP per 100 atoms. Of course,
it is principally impossible to judge whether we determined
all DWP’s in this parameter range. Nevertheless it is possible
to draw some indirect conclusions about this question. They
will be presented further below.

For every DWP we parametrize the reaction path between
the two minima of a DWP with the variablex, such that for
x50 the system is in the left well and forx5d in the right
well. The Hamiltonian of this one-dimensional subsystem
reads

HDWP5
m

2 S ddt xD
2

1Epot~x!, ~6!

whereEpot(x) describes the DWP with minima atx50 and
x5d. Note that all properties of the DWP are included in
Epot ~e.g., the number of atoms participating during the mo-
tion!. In addition tod, the DWP is determined by its asym-
metry A and its potential heightV. In practice it turns out
that for the determination ofV it is essential to determine the
saddle point between both minima. Nearly all DWP’s, found
by this algorithm, have asymmetries much larger than 1 K
and hence do not contribute to the low-temperature anoma-

lies. Due to the strong correlations among the three param-
eters ~e.g., DWP’s with large asymmetries typically have
large potential heights! it is not possible to directly extract
reliable information about nearly symmetric DWP’s.

This problem can be circumvented by parametrizing the
DWP’s according to

Epot~x!5B•@w2~x/a!22w3~x/a!31w4~x/a!4#, ~7!

with B[mv2. The triplets (w2 ,w3 ,w4) are defined by the
values ofA, V, andd. Choosing both minima of a DWP as
x50 we obtain two triplets per DWP. The above parametri-
zation is motivated by the soft potential model which uses a
similar parametrization although it is often the maximum of
the DWP which is chosen asx50. Via a statistical analysis
which is also described in Ref. 16 we showed that, to a good
approximation, the total distributionptotal(w2 ,w3 ,w4) of
DWP’s factorizes as

ptotal~w2 ,w3 ,w4!'p2~w2!p3~w3!p4~w4!, ~8!

where thepi are the distribution functions of thewi . Due to
this factorization it is now possible to obtain statistical reli-
able information about the regime of nearly symmetric
DWP’s. Note that the determination of thepi is somewhat
involved since one only has information about the subspace
of soft modes which form DWP’s.16 The numerically deter-
mined distribution functionspi are displayed in Fig. 1. To a
very good approximation thepi can be approximated as

p2~w2!}~w2 /A2!U~A22w2!

1U~w22A2!exp@2~w22A2!/2A2#,

p3~w3!}exp~2w3 /A3!,

p4~w4!}exp~2w4 /A4!, ~9!

with A250.30,A350.60, andA450.39. Note that initially we
did not restrict thepi to be of any specific form. The distri-
bution functionspi and hence theAi slightly depend on the
discretization chosen for thewi axis. The variance of theAi
allows us to estimate that the statistical error ofA2 andA4 is
of the order of 20%. The error ofA3 is somewhat larger since
DWP’s typically have large values ofw3 so that the determi-
nation of p3 for small values ofw3 has a larger statistical

FIG. 1. The distributionpi(wi) as determined from the analysis
of the DWP’s and a fit specified in Eq.~9! ~stars:i52; diamonds:
i53; triangles:i54!.
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error. Furthermore the number of DWP’s with very large
values ofw2 is also very small since soft modes with large
values ofw2 tend to form single well potentials. Therefore
the nature of the final decrease ofp2 with w2 can only be
estimated qualitatively.

There are some characteristic features which elucidate the
microscopic nature of the DWP’s. The first point concerns
the effective massp of the DWP’s.p is defined asd2/d k

2

where k denotes the number of the particle which moves
most. In the limit that only a single particle moves we have
p51. In Fig. 2 we present the distribution ofp. The average
value ofp is approximately 4. Hence collective dynamics is
important to explain the microscopic nature of the DWP’s.
However, the DWP’s can still be regarded as very localized
excitations. For two-dimensional LJ glasses the general
properties of DWP’s have been recently published.22 By
comparing results from the simulations ofN5150 to those of
N5500, we checked that the absolute number of DWP’s and
the distribution of the effective mass do not depend on the
size of the box.

The question arises whether the potential parameters are
connected to the size of the DWP, hence to the value ofp.
The dependence of the average values ofwi on p is shown in
Fig. 3. In a first approximation typical values ofwi are in-
versely proportional top. Qualitatively this result is not sur-
prising. In the limit thatp is small the environment of a
DWP is very stiff and hence typical energies involved in the

transition between the two energy minima tend to be rather
large. This result is essential in understanding the universal
behavior of glasses presented below. On first sight it might
seem surprising that, e.g., typical values of^w4& are of the
order of one whereasA4 is less than 0.5. One reason for this
apparent contradiction is that there exist a few DWP’s with
very large values ofw4 which are not captured by the expo-
nential function exp~2w4/A4!. The occurrence of such
DWP’s somewhat increases the average value ofw4. Fur-
thermore one has to keep in mind that the distribution
p4(w4) does not directly represent the number of DWP’s
with some specific valuew4 ~see the discussion above!.

Another property concerns the relative motion of the dif-
ferent particles during the transition. Let us consider the ex-
pression

x5( 8
i, j

~dW i j •rW i j ,0!
2

r i j ,0
2 , ~10!

with rW i j[rW i2rW j and urWu[r for all vectors rW. The index 0
denotes the intermediate configuration which is defined as
the average over the left and the right configurations. The
prime indicates that the sum only extends over nearest neigh-
bors. This expression checks whether the relative motion of
two particles is correlated to their relative direction. In case
that no correlation exists one would expectx5( i, j8 (di j

2 /3).
We evaluated the value ofx for our DWP’s. Interestingly it
turned out that the value was approximately 60% smaller
than expected for the uncorrelated case. Hence the relative
motion of two near neighbor particles tends to be perpen-
dicular to their relative position vector. The effect of this
correlation is to minimize the change in distance and hence
in potential energy between nearest neighbors.

In Ref. 13 the time evolution of a soft sphere glass has
been determined via a molecular dynamics~MD! simulation.
The authors report to have detected a few DWP’s with effec-
tive masses which on average are twice as large as the effec-
tive masses determined from our simulations. This discrep-
ancy might be a result of the different simulation method. A
MD simulation can only detect DWP’s for which the barrier
height is of the order ofkBT. Hence for low-temperature
simulations only DWP’s with very small potential heights
are detected. On the basis of our observation that DWP’s
with small energy scales tend to have larger effective masses
it is plausible that the MD simulation overestimates the av-
erage effective mass of DWP’s. Furthermore the two minima
of a DWP detected during the MD simulation may be quite
far apart in configuration space whereas we restricted our-
selves tod,a. It is reasonable to assume that DWP’s with
large values ofd have larger effective masses, hence giving a
further possible explanation for the observed discrepancy.

Forw2w4.32/9, w 3
2, Epot(x) describes a SWP.A priori,

no definite statements can be made about the distribution and
absolute number of SWP’s. However, since allwi are distrib-
uted independently in the DWP regime one is tempted to
assume that DWP’s as well as SWP’s are described by the
same distribution functionspi . This assumption will be the
basis for our analysis of the temperature dependence of the
specific heat in regime II. The existence of localized low-
frequency excitations in glasses has already been demon-
strated numerically.13–15 The effective masses were of the

FIG. 2. The distribution of the effective massp.

FIG. 3. The dependence of the average valueswi on the effec-
tive massp.
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order of 20 and hence larger than those we determined in the
DWP regime. However, since we obtained the empirical re-
lation that the typical effective massp increases for decreas-
ing wi and hence for decreasing potential heightsV it is not
surprising that in the limit of vanishing values ofV the av-
erage effective mass is significantly larger than in the DWP
regime.

We briefly want to comment on the question to which
degree we systematically find all DWP’s in the parameter
range specified above. A single DWP can in principle be
found starting from different initial clusters. A necessary
condition is that the initial cluster has a significant overlap
with the central part of the DWP. The number of times a
specific DWP is found by our algorithm may be used to
judge how difficult it is to locate a DWP in the configura-
tional space. It turned out that this number may vary between
1 and approximately 20. First we note that the fraction of
DWP’s which has only been found once or twice is rather
small ~less than 20%!. This indicates that most DWP’s are
reliably found by the algorithm. Furthermore we checked
whether the properties of the DWP’s which were only found
once or twice are different as compared to the average prop-
erties. First it turns out that the average value ofp for this
subensemble is approximately 20% larger than the average
value for the whole ensemble. This is in agreement with
intuition since DWP’s with larger effective masses can be
expected to be more difficult to locate. This effect is not
dramatic so that we are confident that our numerical distri-
bution ofp in Fig. 2 is only slightly hampered. Furthermore
it turns out that the average potential height of this suben-
semble is nearly identical to the average potential height of
the whole ensemble. This observation is very promising
since it indicates that the average energy scale of the DWP’s
which are hard to locate is similar to the energy scale of all
DWP’s. Hence we may conclude that even for the worst case
that we missed a significant number of DWP’s, the distribu-
tion of DWP’s which we found by our algorithm is represen-
tative for all DWP’s.

C. The coupling between soft modes and phonons

In the deformation potential approximation the interaction
between a single soft mode and phonons can be written as

W 5gsesz , ~11!

wheree denotes the strain field of the phonon bath,s5l ,t
the polarization of the corresponding phonon, andsz561
whether the system is in the left or the right well.1 For a
DWP gs can be calculated via

gs5
1

2

]@HR2HL#

]e
. ~12!

HL,R describes the total HamiltonianH around the left and
the right energy minimum, respectively. We evaluated this
formal expression for the DWP’s we found by our
simulation.21 Since we observed a correlation ofgs with the
distanced between the two minima our results can be ex-
pressed as

gs5Gs~d/a!. ~13!

The prefactorGs can be related to the material constants via

G l'
B

An
~14!

and

G t'
2B

3An
. ~15!

All relations have been obtained by averaging over a large
number of DWP’s. The individual values ofGl ,t may vary as
much as a factor of approximately five between different
DWP’s.

Furthermore one can show that the deformation potential
disappears if the intermediate configuration has icosahedral
symmetry.21 Therefore disorder is essential to enable interac-
tion between a soft mode and the phonon bath.

III. DETERMINATION OF THE LOW-TEMPERATURE
PARAMETERS FOR THE MODEL GLASS

Based on the low-temperature decomposition of the
Hamiltonian of the glass presented above it is possible to
calculate the low-temperature parameters of a LJ type glass
for given glass parameters~m,v,r!. For the calculation ofneff
~the density of DWP’s per volume and per energy! and the
deformation potential one has to integrate over the distribu-
tion of DWP’s and calculate for every triplet (w2 ,w3 ,w4)
the eigenvalues of the corresponding Hamiltonian in Eq.~6!
and the average deformation potential as given by Eq.~13!.
Incorporating our knowledge of the absolute number of
DWP’s it is then possible to estimateneff in a quantitative
way. For NiP we obtainneff51.631046 J21 m21, gt50.25 eV,
andgl50.38 eV. It turns out that all quantities depend mildly
on energy and hence on temperature. The above values hold
for E51 K ~for NiP! whereE denotes the energy difference
of the lowest two energy eigenvalues of the soft mode.

For the estimation ofTC,1 andTC,2 one has to calculate
the specific heat on the basis of the distribution of soft
modes. In the limit that for all soft modes only the lowest
two energy levels are kept the specific heat is given by the
well-known expression1

C~T!5(
SM

E2

4kBT
2 cosh

22~E/2kBT!. ~16!

It turns out that incorporation of higher energy levels does
not influence the value ofTC,1, whereasTC,2 is shifted down-
wards by approximately 10%. For NiP we numerically obtain
TC,152.8 K andTC,2510.2 K. Similar calculations with ad-
justable parameters have been already performed in Ref. 5 in
the framework of the SPM. In our approach the values of
TC,1 and TC,2 have been obtained without invoking any
fitting routine. We also find that the temperature dependence
of the specific heat only changes slightly ifp4(w4)
5exp~2w4/A4! is replaced byp4(w4)5d(w42A4). There-
fore, for many practical purposes it is possible to skip the
integration overw4. Only for heat release experiments is the
total distribution ofw4 relevant.

23

So far we have discussed the low temperature parameters
for a specific choice of~m,v,r!. The question arises whether
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it is possible to obtain general expressions relating the low
temperature parameters to material constants. We will show
that this can be achieved on the basis of rather simple dimen-
sional arguments. LetO be a dimensionless observable.
First, we note thatO has to depend on dimensionless com-
binations of material constants. In the classical regime~e.g.,
at the glass transition! no dimensionless combination of the
parametersv, m, andr exists, hence in that regime,O does
not depend on material constants. This simple fact is equiva-
lent to the law of corresponding states. However, this state-
ment is no longer true in the quantum regime where observ-
ables may also depend on the Planck constant\. Let us
define the dimensionless quantitym via

m[~0.011B!8/3v210/3r22/3\22. ~17!

For the choice of the numerical factor 0.011 see below. Apart
from numerical factorsm is the only dimensionless combi-
nation of ~m,v,r,\!. ThereforeO may depend on the mate-
rial constants only viam. In order to determine the depen-
dence ofO on the material constants it is therefore sufficient
to calculate the dependence onm.

Combining the above arguments one can write for the
low-temperature parameters~kB51!

g l5Bn21/2f 1~m!, ~18!

neffg
25rv2n21f 2~m!, ~19!

TC,15Bf3~m!, ~20!

TC,25Bf4~m!, ~21!

with dimensionless functionsf i~m!. They can be determined
by repeating the above calculations for NiP for different val-
ues ofm and hence for different values ofm. For them
values of interest we obtain, to a good approximation,
f i(m)5bi ,simm2ci. Theci andbi ,sim are given in Table I.
At this point we would like to mention that the four ex-

ponentsci given above can in principle also be obtained in
the framework of the soft potential model with the standard
assumptions that~i! p2(w2) is linear inw2 for smallw2 and
finally levels off, ~ii ! p3(w3) is constant, and~iii ! p4(w4) is
a delta function for some valuew4

0. Apart from logarithmic
correctionsc1 andc2 can be estimated by analyzing the Ja-
cobi determinants for the transformation to the tunneling
parameters.7 One obtainsc151/6 andc251/2 which com-

pares rather well with the results of our numerical analysis.
Differences are due to the logarithmic corrections and the
use of the more general distribution functionspi . This simi-
larity indicates that the values of the exponents are rather
insensitive to the exact structure of the distribution functions
and hence do not depend on the details of our numerical
simulations. Let us briefly discuss the intuitive meaning of
c1.0. In the limit of large masses tunneling is only possible
for small values ofd. Sinceg}d the average value ofg
decreases for larger masses, hencec1.0.

For the discussion of the temperature dependence of the
specific heat and hence of the energy distribution of soft
modes it is important to realize that very low values ofE can
only occur via tunneling. Hence below some crossover en-
ergyE1 the soft modes are dominated by DWP’s. The mini-
mum value ofE for SWP’s is obtained forw25w350. The
average value ofw4 is A4. Solving the corresponding Schro¨-
dinger equation for this quartic potential one obtains thatE1
is proportional toBA4

1/3m22/3,7 hencec352/3, again in good
agreement with our numerical result. In the regimeE.E1
the density of SWP’s and, correspondingly, the specific heat
dramatically increase due to the linear increase ofp2. Since
the distributionp2 levels off aroundw25A2 the strong in-
crease of the density of SWP’s slows down aroundE5E2
yielding the maximum inĈ(T). The eigenvalue of the cor-
responding harmonic SWP is proportional toA 2

1/2Bm21/2

yielding c451/2 once more in agreement with our simula-
tions.

Apart from them dependence the above analysis shows
that the values ofE1 andE2 and hence ofTC,1 andTC,2 are
insensitive to numerical uncertainties inA2 andA4. Further-
more we see that the value ofA3 does not enter the low-
temperature parameters. However, it is easy to check that the
number of DWP’s relative to the number of SWP’s depends
on A3. The smallerA3 the larger is the relative number of
DWP’s. We will discuss this aspect further below.

In summary, we have succeeded in calculating the four
low-temperature parameters forall LJ glasses. In contrast to
the soft potential model which is able to predict the relative
values of the low-temperature parameters for different
glasses, we are able to estimate the absolute values. Unfor-
tunately it is not possible to compare our data with experi-
mental data on LJ systems, since these have a strong ten-
dency to crystallize, hampering the determination of bulk
low-temperature properties for nonmetallic LJ glasses.
Therefore, we have to generalize our results to other glasses
like silicate glasses or polymers in order to compare our
predictions with a larger amount of experimental data.

IV. APPLICATION TO GENERAL GLASSES

The results presented above are valid for the set of all LJ
glasses. The question arises to which degree the physics of
the low-temperature properties depends on the microscopic
nature of the glass. Let us simply assume that it does not
depend on the microscopic structure at all, and then predict
the low-temperature parameters of all glasses. Comparison
with experimental data will reveal whether or not this as-
sumption is reasonable.

For LJ glasses we expressed the low-temperature param-
eters in terms of the velocity of soundv, the densityr, and

TABLE I. The parametersbi ,exp,ci(sim) which were used for
estimating the experimental data, the parameterbi ,sim as determined
from our simulations, the exponentci~SPM! as calculated within
the soft potential model and the deviationssi between estimated
and experimental parameters for the deformation potential~i51!,
the productneffg

2~i52!, the minimum of Ĉ(T)( i53), and the
maximum ofĈ(T)( i54).

i bi ,sim bi ,exp ci~sim! ci~SPM! si

1 22 25 0.2 0.16 0.23
2 0.0035 0.003 0.4 0.5 0.43
3 0.008 0.011 2/3 2/3 0.14
4 0.027 0.033 0.5 0.5 0.08
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the mass of the elementary unitsm. Furthermore we esti-
mated the influence of the coordination numbern. Trivially
for a LJ glass the elementary units are given by the indi-
vidual atoms. For a more complex glass the elementary units
are typically the molecular units. For some glasses the mo-
lecular units can be reliably identified. For example for SiO2
the molecular units are the SiO4 tetrahedra, since at low tem-
peratures the tetrahedral structure is very stable whereas the
tetrahedra are mobile with respect to each other. Unfortu-
nately, for some glasses like, e.g., silicate blends it is hard to
say which molecular unit should be taken in order to define a
massm. Recently, Heuer and Spiess have shown for a num-
ber of glasses that to a good approximationm can be related
to the glass transition temperatureTg via Tg5cgmv

2 with
cg'0.011.24 This criterion can be considered as a generali-
zation of the Lindemann melting criterion.25 Therefore we
may alternatively express the dependence of the low-
temperature parameters on~Tg ,v,r!, without resorting to the
somewhat arbitrary choice ofm. Hence for a given glass
with parameters ~Tg ,v,r! we may calculate the low-
temperature parameters under the assumption that it behaves
like a LJ glass. Of course, we could have started from the
very beginning with characterizing a LJ glass by~Tg ,v,r!
instead of~m,v,r!. However, since the atomic mass is a more
natural choice for LJ glasses we feel that it is helpful to show
that these choices can be related viaTg5cgmv

2 and hence
the value ofTg is an excellent measure of the internal energy
scale. It should be noted that the glass transition temperature
is not a well defined value but depends for example on the
cooling rate or on the molecular weight in the case of
polymers.26 However, these uncertainties are relatively small
and can be neglected for our subsequent analysis. The only
remaining uncertainty is the choice ofn. We choosen54 for
tetrahedral glasses,n512 for NiP, andn56 elsewhere.

In what follows we compare the theoretical predictions
with experimental data. The data and references we used are
listed in Table II. The tunneling parameters are taken exclu-
sively from the data collection in the work of Berret and
Meissner.27 We omitted the value of the deformation poten-
tial of LiCl-7H2O since this value is hard to access experi-
mentally ~see the discussion in Ref. 27!. Furthermore we
omit the data for the SexGe12x semiconductors. They will be
discussed in Sec. V.

The result of the comparison with experimental data is
presented in Figs. 4–7. In principle we could use theci and

FIG. 4. A comparison of the estimated deformation potential
and the experimental deformation potential. A single adjustable pa-
rameter has been used to scale the estimated data relative to the
experimental data.

TABLE II. The experimental data and its references as used in this paper.

r
@kg m23#

Tg
@K#

v
@103 m s21#

gt
@eV#

neffg t
2

@107 J m23#
TC,1
@K#

TC,2
@K# n Ref.

SiO2 2200 1473 4.1 0.65 0.87 2.1 10 4 6, 27
Se 4300 304 1.17 0.14 0.1 0.7 3.1 6 27, 37
PMMA 1180 374 1.70 0.27 0.11 3.5 6 27, 37
PS 1050 355 1.67 0.13 0.12 0.9 3.4 6 27, 37
Epoxy 1200 350 1.66 0.22 0.14 1.0 3.7 6 27, 34
BK7 2510 836 4.19 0.65 1.19 4 27
As2S3 3200 444 1.69 0.17 0.15 6 27
LASF7 5790 957 3.95 0.92 0.87 6 27
SF4 4780 693 2.48 0.48 0.65 4 27
SF59 6260 635 2.13 0.49 2.8 4 27
V52 4800 593 2.51 0.52 4.9 6 27
BALNA 4280 520 2.59 0.45 4.8 6 27
LAT 5250 723 3.1 0.65 3.7 6 27
Zn glass 4240 570 2.58 0.38 3.6 6 27
PC 1200 418 1.86 0.18 4.1 6 27
LiCl•7H2O 1200 139 2.5 7.2 3.3 10.7 6 6, 27
GeO2 3600 830 2.6 2.1 8.1 4 6, 35
B2O3 1800 523 2.06 1.3 5.4 6 38, 39
PB 930 186 1.69 1.4 5.1 6 6, 38
~SiO2!0.75~NaO!0.25 2440 735 3.5 3.5 13.5 4 36, 38

53 615COLLECTIVE DYNAMICS IN GLASSES AND ITS RELATION . . .



bi ,sim as derived from our LJ glass analysis in order to predict
the low-temperature parameters. For practical reasons we de-
cided to treat the prefactors as adjustable parametersbi ,exp.
Of course, finally we have to check thatbi ,sim and bi ,exp
agree within reasonable limits. In order to quantify the scat-
tering of the data we define the relative deviationsi as the
average value ofuxi ,sim2xi ,expu/xi,exp where xi denotes the
corresponding low-temperature parameter. The results for the
fitted proportionality constantsbi ,exp and the average relative
deviationssi are also listed in Table I.

For all four quantities significant correlations can be ob-
served. Hence one can already conclude that the individual
microscopic structure does not dominate the actual low-
temperature behavior. From thesi values it is obvious that
the correlations for the extrema of the specific heat are better
than those for the tunneling parameters. We will come back
to this point in the next section. Finally it turns out that the
bi ,expagree very well with the simulated valuesbi ,sim. Hence
the physics of the LJ glasses as derived from our simulations
quantitativelyagrees with typical experimental data.

One might argue that the above results are just manifes-

tations of some trivial correlations. For example the mere
fact that theTC,i for SiO2 are higher than those for, e.g., PS
can be simply understood by the fact that silicate glasses are
much stiffer than polymers, which is for example expressed
by the higher glass transition temperature. However, obvi-
ously this picture breaks down in the case of LiCl-7H2O
which among all analyzed glasses has the smallest glass tran-
sition temperature but one of the highest values ofTC,2. Of
course, the reason for this behavior is the strong dependence
of TC,i on m. In this sense the correlations in Figs. 4–7
contain much more information than guessed intuitively. To
stress this point, we analyze the correlation ofTC,1/Tg and
TC,2/Tg with m. The corresponding plot can be seen in Fig. 8.
One can clearly see that the predicted behavior
TC,1/Tg}m22/3 and TC,2/Tg}m21/2 is very well fulfilled. In
principle the exponentsci could have been derived directly
from this plot with good accuracy. We see again that the
internal energy scale as well asm determine the temperature
dependence of the specific heat.

The previous analysis indicates that to a large degree all

FIG. 5. The same analysis as in Fig. 4 for the density of tunnel-
ing systems.

FIG. 6. The same analysis as in Fig. 4 forTC,1.

FIG. 7. The same analysis as in Fig. 4 forTC,2.

FIG. 8. A plot of TC,1/Tg and TC,2/Tg vs m. The solid lines
correspond to a scaling withm22/3 andm21/2, respectively.
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low-temperature properties are independent of the micro-
scopic structure. Hence it might be surprising that there ex-
ists another low-temperature parameter which cannot be ana-
lyzed in analogy to the quantities discussed until now. The
temperature dependence of the absorption of sound displays
a maximum around 30 K~for SiO2!, hence defining a tem-
peratureTs . At these elevated temperatures the dynamics of
the DWP’s can already be described in classical terms10

~however, see Ref. 17 for some recent aspects of the sound
absorption!. Since the relaxation of DWP’s determines the
sound absorption for these temperatures one can already con-
clude from dimensional arguments thatTs}B}Tg if mea-
sured in approximately the same frequency region~Ts only
depends logarithmically on frequency!. In Table III we
present for four glasses the values ofTs andTs/Tg . Obvi-
ously the ratioTs/Tg is far from being constant. This means
that the temperature of the peak of sound absorption strongly
depends on the microscopic structure of the glass. As men-
tioned before this finding is in agreement with the experi-
mental observation that slight modifications of a glass may
significantly alter the value ofTs .

17

V. DISCUSSION

In the preceding section we analyzed the question whether
or not the low-temperature parameters depend on the micro-
scopic structure, and showed that there is only a weak de-
pendence, so that all glasses can be mapped onto LJ glasses,
at least for the low temperature data.

First we briefly want to discuss possible experimental un-
certainties. The quantityneffg

2/rv2 can be derived either
from the plateau of the sound absorption, or from the tem-
perature dependence of the sound velocity.1 It turns out that
for LASF-7, for example, both values vary by a factor of 2
indicating some experimental or theoretical incon-
sistencies.28 However, in the work of Berret and Meissner,
all glasses have been analyzed consistently so that the rela-
tive error should be smaller. Nevertheless we cannot exclude
the possibility that the residual scattering in Figs. 4 and 5 is
due partly to inconsistencies in the experimental data, like
the one mentioned. In contrast, the extrema ofĈ(T) can be
reliably extracted from the temperature dependence of the
specific heat. The same holds for the peak of the sound ab-
sorption.

Next we want to comment on the reliability of our nu-
merical results. As we have shown in Sec. III the values of
the exponentsci can already be roughly estimated by the
general properties of thepi so that they are quite insensitive
to numerical details. Hence all statements which are related

to correlations and possible dependences on the microscopic
structure can be deduced from very general arguments. In
contrast, the prefactorsbi ,sim strongly depend on details of
our simulation and hence are sensitive to possible remaining
uncertainties like those discussed in Sec. II. Although we do
not stress the excellent agreement between thebi ,sim and the
bi ,exp, it clearly demonstrates the reliability of our results.

It is somewhat surprising that most of the low-
temperature properties are insensitive to the exact micro-
scopic structure, which implies that, e.g., silicate glasses or
polymers are not very different from LJ glasses at low tem-
peratures. Let us take as an example a simple polymer like
PS and identify the monomers as generalized LJ atoms. One
of the main differences between PS and a LJ glass is the fact
that monomers not only interact by long-range forces but
also by covalent forces which fix the distance of monomers
along a polymer chain. However, from the systematic analy-
sis of the microscopic structure of the DWP’s we found~see
Sec. III! that two adjacent atoms tend to keep their relative
distance fixed during the transition between the two walls.
Hence, additional forces fixing the distance of some atoms
would only mildly effect the nature of the DWP’s. Therefore
the main structural difference between polymers and LJ
glasses is not relevant for the nature of soft modes. Further-
more, one should keep in mind that a soft mode typically
corresponds to collective motion of a number of adjacent
units, implying an average over microscopic details. This
argument is similar to the explanation of universal behavior
near phase transitions where the correlation length far ex-
ceeds the microscopic length scale.18

The second argument implies that the degree of universal-
ity should be correlated with the effective massp of the soft
modes. This observation can be used to explain the different
degrees of universality for the low-temperature parameters.
As already discussed in Sec. III we expect SWP’s to have
much larger values ofp than DWP’s. Since the extrema of
Ĉ(T) are related to the energy distribution of SWP’s it is not
surprising that the degree of universality is very high forTC,1
andTC,2. In contrast, the values ofg, neffg

2, andTs depend
on the properties of DWP’s. It has been shown for SiO2 that
the relaxational behavior nearTs is dominated by DWP’s
with barrier heights of the order of 500 K.10 It is easy to
check from application of the WKB formula that potentials
with barrier heights of this order have negligible tunneling
matrix elements.1 Stated differently, at temperatures near 1 K
only DWP’s with significantly smaller barrier heights are
relevant. According to our simulations~see Fig. 2! this im-
plies that DWP’s relevant for the sound absorption nearTs
are much more localized than those which are important at 1
K. This argument explains why the degree of universality for
g andneffg

2 is still rather high whereas there is no universal
behavior at all forTs .

We would like to mention that at higher temperatures also
a different kind of DWP may occur. MD simulations at el-
evated temperatures have shown that it is possible the adja-
cent soft modes merge together and form extended soft
modes which can probably be decomposed into a few more
localized soft modes.13 They are not included in our statisti-
cal analysis.

It has been pointed out in literature that the height of the
bump ofĈ(T)/T3 is related to the fragility of glasses.8 This
has been interpreted to mean that the ratio of SWP’s to

TABLE III. The ratio of Ts andTg for four glasses.

Ts @K# Ts/Tg v @MHz# Ref.

SiO2 45 0.03 20 29
LASF7 110 0.11 30 28
B2O3 83 0.16 20 29
GeO2 170 0.20 20 29

53 617COLLECTIVE DYNAMICS IN GLASSES AND ITS RELATION . . .



DWP’s is larger for strong glasses. Since this ratio is deter-
mined by the parameterA3, we expectA3 to be smaller for
strong glasses. Most strong glasses are network glasses
which tend to stabilize the soft modes. Since the value ofw3
is a measure for the instability of the corresponding soft
mode it is consistent that strong glasses typically have lower
values ofw3. On the basis of our analysis we are in a posi-
tion to check whether there are additional correlations of the
low-temperature properties with the fragility of glasses. The
strongest glasses analyzed in Figs. 6 and 7 are SiO2 and
GeO2. No anomalous behavior with respect to their values of
TC,1 andTC,2 can be observed. Therefore we can conclude
that in contrast toA3 the values ofA2 andA4 are not signifi-
cantly correlated with the fragility.

We believe that the number of glasses analyzed is large
enough to be able to identify some generic behavior of struc-
tural nonmetallic glasses at low temperatures. This implies
that for any major deviations one should be able to point out
microscopic peculiarities. One example for glasses which do
not follow the standard behavior are glasses which form a
very strong tetrahedral network like Se60Ge40.

30 It turns out
that the deformation potential is more than twice as small as
expected from the correlation expressed in Fig. 4. This can
be understood from our analysis of the deformation potential.
As already mentioned, the value of the deformation potential
is generally larger for glasses with strong disorder. We
showed in Ref. 21 that for LJ glasses with approximate
icosahedral symmetry around a DWP the corresponding de-
formation potential strongly decreases. We have checked that
similar arguments hold for tetrahedral symmetry. A detailed
analysis of this problem is beyond the scope of the paper.
The disorder of a network glass is somewhat reduced com-
pared to a fragile glass, perhaps explaining why the defor-
mation potential of strong tetrahedral network glasses is
smaller than expected. We also observed that the simulated
and experimental extrema of the specific heat of glycerole6

differ by a factor of 2. This seems to indicate that the hydro-
gen bonds somewhat influence the low-temperature proper-
ties.

We should note that near the temperatureTC,2 the inter-
action between the soft modes starts to dominate the dynam-
ics. It has been proposed that this effect is responsible for a
decrease ofĈ(T) with further increasing temperature.7,31As
outlined above, the occurrence of the maximum in the spe-
cific heatĈ(T) can be also be explained on the basis of the
distribution of soft modes. Unfortunately, both explanations
for the occurrence of the maximum yield the samem depen-
dence of f 4~m!. Therefore we cannot distinguish between
both mechanisms.

Recently, Parshin has extensively applied the SPM to the
explanation of the low-temperature properties. Although his
approach has some similarities with our analysis we would
like to stress some significant differences. First, in contrast to
the phenomenological approach of the SPM our analysis
started from a microscopic description of the glass. This al-

lowed us to determine the low-temperature parameters in a
quantitative way. Second, for the estimation ofneff and g
Parshin used the atomic mass as a value form rather than the
molecular mass. Therefore it is not surprising that he still
obtains large deviations between the estimations and the ac-
tual experimental values. As shown above a more convenient
way for any quantitative analysis is to introduce the glass
transition temperature as the appropriate internal energy
scale. Third, he relates the similarity of the low-temperature
parameters for many glasses to the interaction of the soft
modes. In a different context this argument has been already
put forward.32,33 In contrast, we believe that this universality
can be explained without postulating a strong interaction.
Rather it is the collective dynamics of several adjacent mol-
ecules or atoms which to first approximation reduce any de-
pendences on the microscopic structure.

VI. SUMMARY

We have presented an extensive analysis of the low-
temperature properties of glasses. In the first step we ob-
tained the low-temperature Hamiltonian of a LJ glass largely
from a systematic analysis of simulated glasses. The main
ingredient is a systematic search routine for DWP’s. In this
way we can extract important information about the statistics
of the DWP’s, the geometric properties of the DWP’s, the
coupling of the DWP’s to the phonon bath, and the relation
of the size of the DWP’s to its energy parameters. This step
can be viewed as a microscopic derivation of the standard
tunneling model and the soft potential model. In a second
step we expressed the low-temperature parameters of LJ
glasses in terms of macroscopic parameters~r,v,Tg!. Finally
we applied this formalism to the estimation of the low-
temperature parameters of more general glasses. The devia-
tions from experimental data can be used as a measure for
the relevance of the individual microscopic structure. A
quantitative analysis of the deviations reveals that apart from
the peak of sound absorption all low-temperature properties
are only mildly influenced by the individual microscopic
structure. Hence it is possible to speak of a universal low-
temperature behavior in a quantitative sense. It is not only
the mere existence of phenomena like the bump of the spe-
cific heat bath also theabsolute values of the low-
temperature parameters which, after appropriate scaling, are
approximately identical for many different glasses. Further-
more it turns out that the degree of universality is determined
by the spatial extension of the relevant soft modes. This is in
agreement with intuition and directly explains why the peak
of sound absorption is much more sensitive to microscopic
variations of the glass than, e.g., the number of DWP’s.
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