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Collective dynamics in glasses and its relation to the low-temperature anomalies
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We present a systematic analysis of the low-temperature properties of glasses. In a first step we derive the
low-temperature Hamiltonian of Lennard-Jongd) glasses by a combination of numerical and analytical
methods from first principles. This enables us to calculate the density of tunneling states, the coupling between
tunneling states and phonofaeformation potentid) and the extrema oE(T)/T3 [C(T) specific hedtfor LJ
glasses as functions of the velocity of sound, the density, and the glass transition temperature. In a second step
we directly apply these results to more general glasses. Comparing the predictions for the four low-temperature
parameters with experiment for a variety of glasses allows us to judge the degree to which their quantitative
values are dominated by the individual microscopic structure. The agreement is excellent for the extrema of the
specific heat and reasonable for the density of tunneling states and the deformation potential. Furthermore, we
show from scaling arguments that such an agreement cannot be found for the peak of the sound absorption.
From our simulations we can correlate the different degree of universality of the low-temperature observables
with the different spatial extension of the relevant low-temperature excitations. In agreement with intuition,
distinct collective dynamics translates into a weak dependence on the microscopic structure.

I. INTRODUCTION dominated by the tunneling splitting and hence may be very
small. In regime Il the specific heat is dominated by excita-
One of the most fascinating aspects of the physics ofions of singlewell potential§SWP'y that correspond to lo-
glasses is their universal behavior at low temperatures. It igalized rearrangements with very low restoring forces.
significantly  different from that of their crystalline  Note that the temperature dependence of the specific heat
counterparts. For example, most glasses show an approxiis directly related to the so-called Boson peak measured by
mately linear temperature dependence of the specific heat f@faman scatterinf.Hence the results, presented below, are
very low temperature¢T <1 K), which has been explained a|so relevant for understanding the microscopic origin of the
by phenomenological models. The standard tunneling modesoson peak.
(STM) (Refs. 2, 3 and, more recently, the soft potential A different feature, also related to the existence of DWP’s,
model (SPM) (Refs. 4-7 postulate that at low temperatures js the sound absorption peak which is observed around
the Hamiltonian of a glass can be decomposed according tp0—50 K®1°|t is typically explained via thermally activated
relaxation processes of the DWP’s.
=gyt W+ Hy, (1) In this paper we will deal with two basic questions related
to the low-temperature properties(i) What is the micro-
where the first term describes localized excitatidgseft  scopic basis for the phenomenological models mentioned
modes$ of the glass, the second term the interaction betweeabove and hence for the decomposition of the total Hamil-
soft modes and phonons, and the third term the phonon battonian according to Eq(1)? (ii)) Do the low-temperature
Two temperature regimes may be distinguished at low temproperties depend on the specific microscopic structure of
peratures. Taking the specific h&2{T) as an example, for the glass which, of course, substantially varies among differ-
very low temperaturegtypically T<1 K, regime ) one ob- ent glasses? Both questions are basically equivalent to those
serves a linear temperature dependence. For higher tempegauit forward by Phillips at the end of his review article. He
tures (typically 1 K<T<10 K, regime 1) C(T) increases doubted that there would be a single theory answering these
dramatically so that eve@(T)=C(T)/T? increases. Hence questions. The present discussion will be based on the typi-
between regime | and regime @(T) displays a minimum. cal low-temperature parameters determined experimentally,
For still larger temperatureS(T) decreases again. The two namely the density of DWP's., the coupling constany
regimes are related to different types of soft modes. In rebetween DWP’s and the heat bdthe call them bothunnel-
gime |, where only low-energy excitations contribute, it is ing parameters and the temperaturek ; and T , where
postulated that the relevant excitations can be described b$(T) displays a minimum and a maximum, respectively.
doublewell potential§DWP’s) in the configurational space. Furthermore we will briefly discuss the temperattig for
This means that the units of the glass can switch betweewhich the acoustic absorption displays a maximum.
two adjacent minima of the potential energy. If, by chance, Due to the complexity of the problem no analytical theory
the corresponding DWP happens to be nearly symmetric thior general glasses exists which fully derives the above de-
energy difference of the two lowest eigenstates is mainlycomposition of 77 on the basis of the original Hamiltonian
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of the glass and which might thus provide a check of thescopic changesi.e., wetting of BO; (Ref. 17] than the
assumptions of the phenomenological models. Only for spesther low-temperature observables. This analysis is con-
cial cases like a one-dimensional model glass were analyticdfined in Sec. IV.
calculations of the low-temperature properties possibté. The universal behavior at phase transitions is related to
Generally one is restricted to computer simulations of modethe diverging correlation length which averages out all mi-
glasses. It has been shown by Schober and co-wdfkéPs Croscopic difference¥ The spatial extensions of different

. 14,19
that glasses may contain localized low-frequency soft mode€0ft modes are rather small-50 atoms™"In Sec. V we

which correspond to the SWP’s postulated in the SPM. Thehow that properties which are related to more extended soft

present authors were able to perform the above decompodfiodes nevertheless display a weaker dependence on the mi-

tion of the Hamiltonian for a Lennard-Jon@s)) type model croscopic structure. We finish with a brief summary in Sec.
glass in the tunneling regimé.n this reference basic results
of this ana_Iy5|s can be found. A_detalled des_crlptlon of this Il LOW-TEMPERATURE DECOMPOSITION
decomposition and some spec_|f|c rt_asults which are relevant OF THE HAMILTONIAN OF A MODEL GLASS
for the subsequent parts are given in Sec. Il. _ _ o

Monatomic LJ glasses are characterized by three param- In this section we determing”sy, 77, and 74 for a
eters, defining the mass, the energy, and the distance scaf@odel glass which is similar to the one analyzed by Weber
Conveniently, this set of three parameters can be chosen a8d Stillinger’° It is a diatomic LJ type glass for which the
the massn of the individual atoms, the average phonon ve-Pair potentials are given by
locity v, .and the density. There_fore, in principle it should V(1) =Agl (ar) 2= 1]exd (aur —ag) ~1,0< ayr<a,
be possible to expressZs,, 7, and .77z and hence all
low-temperature properties as functions(of,v,p). In Sec. =0, ay=a., 2

[l we will derive the quantitative relations connecting the wherek,| e{1,2} describe which pair of atoms is considered.
four low-temperature parametengy, v, Tc 1, Tc2 With the  ggo4 type | and 20% type Il atoms are taken. The cutoff
material constantem,v,p). distancea, is given by a,=1.652r, where o is the unit
Question(ii) deals W|th the reason fOI’ the Val’iation Of the |ength Values for the potentia| parameters AE.Q: 1'5A11’
low-temperature parameters among different glasses. For eX,,=0.5A,;, ay;=1, a;,=1.05, a,,=1.13. The parameters
ample the deformation potential of Si@® five times as large were chosen such that far=2.2 A andA;;=8200 K the
as that of polystyrenéPS. In principle this can be explained model glass is a good representative for an amorphous nickel
in two different ways. First, due to the significant micro- phosphorus mixture. All simulations were performed at con-
scopic differences between the two glasses, the observablstant density ofp=8350 kg m 3. Periodic boundary condi-
of both glasses have nothing in common so that the observdins have been implemented. Simulation boxes With150
ratio of five for the deformation potential is just an accident.and 500 particles have been used. The total Hamiltonian of
However, there might be a different explanation. Let us forthe glass reads

the moment consider the melting point of different noble N 2
gases. The fact that the melting point varies quite signifi- = = (_ Fil +2 Vo iy i(rii) (3)
cantly can be explained by different internal energy scales =1 2 \dt'! i< 7O

(i.e., the interaction strength between two noble gas atoms,erer : denotes the position vector of partidlg;; the dis-
This variation directly translates into a variation of the melt-i5nce petween particlésand]j, m; the mass of particlg and
ing temperature. Since the internal energy scale can be dggj)=12. In what follows all three terms%sy,, 7, and

termined by other mear(g.g., by analysis of the velocity of = 7, will be described on a microscopic basis.
sound one can predict the relative melting temperatures for

different noble gases. With this example in mind one might A. Material constants
ask whether the large differences among the low-temperature \yse first express the average velocity of soundnd the

parameters can be related to different internal energy SC&'%‘%nsityp in terms of the microscopic parameters defining the
(and/or mass scales and/or distance sgatber than to the  mpodel glass. In Ref. 21 we derived that to a good approxi-
microscopic differences. Whether nature prefers the first omation

second option can be checked rather easily. First we simply

postulate that all glasses behave as LJ glasses. This assump- 2N (2)52 (4)

. X mo2=— ,
tion enables us to predict the low-temperature parameters for Y 71

all glasses. We then check whether the predictions are cofynere @ describes the second derivative of the pair poten-
sistent with experimental results. Possible deviations are gy 4t jts minimuma. The average sound velocity is de-
measure for the importance of the microscopic structurgined as 3 3=y 3+ 2v ;3 wherev, andv, are the trans-
which, of course, is not well represented by a LJ type glassyerse and longitudinal sound velocity, respectively. Equation
We find that the agreement is excellent for the extrema of4) has been derived for a monatomic system but can be
C(T) and reasonable for the tunneling parameters. Howevesimply generalized to a multicomponent system if we use the
we show that the temperature of the peak of sound absorpwverage mass and the average valugda2. Summing over
tion T4 does not follow a scaling relation. This behavior is in the three different pairs of atoms with the appropriate statis-
agreement with the well-known experimental fact that thetical weight yieldsf(®a?=91 000 K in the case of NiP. For
peak of sound absorption is much more sensitive to microm we havem~56m, . For the potential given above we have
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a=1.10. n describes the number of atoms in the nearest
neighbors shell, henae=12 for NiP. Since we want to gen-
eralize our results to glasses with different valuesofve

will calculate all quantities for general. Evaluation of Eq.

(4) for NiP yieldsv =2530 ms* which compares very well
with the experimental value af=2600 ms*.2° 5

B. Soft modes

As a first step, we systematically search for DWP’s in a
given glass configuration which we obtain by quenching an
equilibrated computer liquid. The principle goal is to find
nearby configurations which both correspond to local energy
minima. For a monatomic LJ type glass an appropriate mea-
sure for the distance between two configurations is the Eu-
clidian distance

FIG. 1. The distributiomp;(w;) as determined from the analysis
of the DWP’s and a fit specified in E{Q) (stars:i =2; diamonds:

i =3; triangles:i =4).
dist{f; J{Fi g =\ > (FiL—Fip% 5
ALY L hE TR lies. Due to the strong correlations among the three param-

eters (e.g., DWP’s with large asymmetries typically have

gir(tjhetrnlore we defmﬁ the Yethsg'QdiErilL_ri!R %In? large potential heighjsit is not possible to directly extract
=dist(ir;  }.{ri ) where{r; } and{r; g} correspond t0 gjiapie information about nearly symmetric DWP's.

the left and th? _rightglass configurgt!on, respec_tively._ Ingen-— rpjg problem can be circumvented by parametrizing the
eral, the transition between two minimum configurations iN-H\wWe's according to

volves the motion of all particles. Hence one has to look in
the high-dimensional space to Iocat(_e possib!e DWP's. Epm(x)zB.[Wz(x/a)z—wg(x/a)3+w4(x/a)4], @
Recently, we presented an algorithm which for the first | ) ) .
time systematically finds DWP’s on a microscopic bagis. With B=mv*. The triplets (v,,w3,w,) are defined by the
We start from one randomly selected atom andsitsl5 values ofA, V andd. 'Choosmg both minima of a DWP as
nearest neighbors and analyze by appropriate variation ¢f=0 We obtain two triplets per DWP. The above parametri-
the positions of thes+1 atoms in which direction of the Zation is motivated by the soft potential model which uses a
3(s+1)- dimensional configurational subspace an adjacen§|mllar paran_]etrl_zatlon although it is often _th(_a maximum of
minimum of the potential energy may be localized. Based o€ DWP which is chosen as=0. Via a statistical analysis
this information we then check by variation of the positionsWhich is also described in Ref. 16 we showed that, to a good
of all atoms whether or not a second minimum can indeed b@PProximation, the total distributiomyga(W,,Ws,wW,) Of
found. This procedure is repeated for all atoms and finalyPWP's factorizes as
for different initial configurations. A closer description of the _
algorithm can be found in Ref. 16. We located approximately Protall W2, W3, Wa) = P2(W2) P3(W3) Pa(Wa), ®
300 DWP’s withd<a and|A|, V<400 K. It turned out that where thep; are the distribution functions of the; . Due to
there exists approximately 1 DWP per 100 atoms. Of coursethis factorization it iS now possible to obtain statistical reli-
it is principally impossible to judge whether we determinedable information about the regime of nearly symmetric
all DWP’s in this parameter range. Nevertheless it is possibl®WP’s. Note that the determination of thg is somewhat
to draw some indirect conclusions about this question. Theynvolved since one only has information about the subspace
will be presented further below. of soft modes which form DWP¥ The numerically deter-
For every DWP we parametrize the reaction path betweemined distribution functiong; are displayed in Fig. 1. To a
the two minima of a DWP with the variable such that for very good approximation thp; can be approximated as
x=0 the system is in the left well and far=d in the right

well. The Hamiltonian of this one-dimensional subsystem P2(W2) (W2 /A2)O (A — W)
reads (W, Ag)exi] — (W~ Ag)12A;],
d 2
HDWP:E & X| + Epot(x), (6) p3(W3)OCeXF(_W3 /AS)l

whereE,(x) describes the DWP with minima at=0 and Pa(Wa) > XP( = Wa/As), ©
x=d. Note that all properties of the DWP are included in with A,=0.30,A3;=0.60, andA,=0.39. Note that initially we
Epot (€.9., the number of atoms participating during the mo-did not restrict thep; to be of any specific form. The distri-
tion). In addition tod, the DWP is determined by its asym- bution functionsp; and hence thé\; slightly depend on the
metry A and its potential heighV. In practice it turns out discretization chosen for the; axis. The variance of tha,
that for the determination of it is essential to determine the allows us to estimate that the statistical erroAgfandA, is
saddle point between both minima. Nearly all DWP’s, foundof the order of 20%. The error &5 is somewhat larger since
by this algorithm, have asymmetries much larger than 1 KDWP’s typically have large values ®f; so that the determi-
and hence do not contribute to the low-temperature anomazation of p; for small values ofw; has a larger statistical
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80 . . . transition between the two energy minima tend to be rather
large. This result is essential in understanding the universal
o behavior of glasses presented below. On first sight it might
= 60 | seem surprising that, e.g., typical values(of,) are of the
- order of one whereal, is less than 0.5. One reason for this
2 40} i apparent contradiction is that there exist a few DWP’s with
2 very large values ofv, which are not captured by the expo-
g nential function exp-w,/A,). The occurrence of such
E 20} T DWP’s somewhat increases the average valuevgpf Fur-
thermore one has to keep in mind that the distribution
0 ‘ ‘ o ps(w,) does not directly represent the number of DWP’s
0 5 10 15 with some specific value/, (see the discussion abgve
p Another property concerns the relative motion of the dif-
ferent particles during the transition. Let us consider the ex-
FIG. 2. The distribution of the effective maps pression
error. Furthermore the number of DWP’s with very large =" (dlj'zrij,o)z’ (10)

values ofw, is also very small since soft modes with large i<i Mo
values ofw, tend to form single well potentials. Therefore
the nature of the final decrease p with w, can only be ~ with r;;=r;—r; and |r|=r for all vectorsr. The index 0
estimated qualitatively. denotes the intermediate configuration which is defined as
There are some characteristic features which elucidate tHée average over the left and the right configurations. The
microscopic nature of the DWP’s. The first point concernsprime indicates that the sum only extends over nearest neigh-
the effective masp of the DWP’s.p is defined asi’/dZ  bors. This expression checks whether the relative motion of
where k denotes the number of the particle which movestwo particles is correlated to their relative direction. In case
most. In the limit that only a single particle moves we havethat no correlation exists one would expgct Ei’<j(di2j/3).
p=L1. In Fig. 2 we present the distribution pf The average We evaluated the value ¢f for our DWP’s. Interestingly it
value of p is approximately 4. Hence collective dynamics is turned out that the value was approximately 60% smaller
important to explain the microscopic nature of the DWP’s.than expected for the uncorrelated case. Hence the relative
However, the DWP’s can still be regarded as very localizednotion of two near neighbor particles tends to be perpen-
excitations. For two-dimensional LJ glasses the generaflicular to their relative position vector. The effect of this
properties of DWP’'s have been recently published®y  correlation is to minimize the change in distance and hence
comparing results from the simulationsif=150 to those of in potential energy between nearest neighbors.
N=500, we checked that the absolute number of DWP’s and In Ref. 13 the time evolution of a soft sphere glass has
the distribution of the effective mass do not depend on thdeen determined via a molecular dynamigd) simulation.
size of the box. The authors report to have detected a few DWP’s with effec-
The question arises whether the potential parameters ateye masses which on average are twice as large as the effec-
connected to the size of the DWP, hence to the valup.of tive masses determined from our simulations. This discrep-
The dependence of the average valuew,ofn p is shown in  ancy might be a result of the different simulation method. A
Fig. 3. In a first approximation typical values of are in- MD simulation can only detect DWP's for which the barrier
versely proportional t@. Qualitatively this result is not sur- height is of the order okgT. Hence for low-temperature
prising. In the limit thatp is small the environment of a simulations only DWP’s with very small potential heights
DWP is very stiff and hence typical energies involved in theare detected. On the basis of our observation that DWP’s
with small energy scales tend to have larger effective masses
it is plausible that the MD simulation overestimates the av-

< 20 ' ' erage effective mass of DWP’s. Furthermore the two minima
£ of a DWP detected during the MD simulation may be quite
— 1.5k ) far apart in configuration space whereas we restricted our-
2 selves tod<a. It is reasonable to assume that DWP’s with
- large values ofl have larger effective masses, hence giving a
1L.or ' ] further possible explanation for the observed discrepancy.
For w,w,>32/9, w3, Epof(X) describes a SWHA priori,
0.5L ] no definite statements can be made about the distribution and
] absolute number of SWP’s. However, sincevgllare distrib-
E .\'\-\;_‘\’\__ uted independently in the DWP regime one is tempted to
0.0 ' * ' assume that DWP’s as well as SWP’s are described by the

same distribution functionp; . This assumption will be the
basis for our analysis of the temperature dependence of the
specific heat in regime Il. The existence of localized low-
FIG. 3. The dependence of the average valugsn the effec-  frequency excitations in glasses has already been demon-
tive massp. strated numericall’~2° The effective masses were of the
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order of 20 and hence larger than those we determined in thehe prefactod’, can be related to the material constants via
DWP regime. However, since we obtained the empirical re-
lation that the typical effective magsincreases for decreas- B

ing w; and hence for decreasing potential heig¥ti is not Iy~ ﬁ (14)
surprising that in the limit of vanishing values Wfthe av-
erage effective mass is significantly larger than in the DWRand
regime.
We briefly want to comment on the question to which _ 2B
degree we systematically find all DWP’s in the parameter Ftwﬂ' (15

range specified above. A single DWP can in principle be

found starting from different initial clusters. A necessaryAll relations have been obtained by averaging over a large
condition is that the initial cluster has a significant overlapnumber of DWP’s. The individual values &f ; may vary as
with the central part of the DWP. The number of times amuch as a factor of approximately five between different
specific DWP is found by our algorithm may be used toDWP’s.

judge how difficult it is to locate a DWP in the configura-  Furthermore one can show that the deformation potential
tional space. It turned out that this number may vary betweedisappears if the intermediate configuration has icosahedral
1 and approximately 20. First we note that the fraction ofsymmetry?! Therefore disorder is essential to enable interac-
DWP’s which has only been found once or twice is rathertion between a soft mode and the phonon bath.

small (less than 20% This indicates that most DWP’s are

reliably found by the algorithm. Furthermore we checked Ill. DETERMINATION OF THE LOW-TEMPERATURE

whether the properties of the DWP’s which were only found PARAMETERS FOR THE MODEL GLASS

once or twice are different as compared to the average prop- .
erties. First it turns out that the average valuepaor this Based on the low-temperature decomposition of the

subensemble is approximately 20% larger than the averadgamlltoman of the glass presented above it is possible to

value for the whole ensemble. This is in agreement Withcalculate the low-temperature parameters of a LJ type glass

intuition since DWP's with larger effective masses can bel0f 9iven glass parametes,v,p). For the calculation Ofi

expected to be more difficult to locate. This effect is not(th€ density of DWP's per volume and per enérgyd the

dramatic so that we are confident that our numerical distrideformation potential one has to integrate over the distribu-

bution of p in Fig. 2 is only slightly hampered. Furthermore t|r(])n of DWIT,S an(fj ﬁalculate for g_very trip!FW{%’WQ’W“)
it turns out that the average potential height of this subentn€ eigenvalues of the corresponding Hami Foman in @&g).
nd the average deformation potential as given by(E§).

semble is nearly identical to the average potential height o .

the whole ensemble. This observation is very promisingncorporating our knowledge of the absolute number of
since it indicates that the average energy scale of the DWP WP’s it IS then pos_S|bIe_to eSt'(;?Gatfeff |rlla qgantltatlve
which are hard to locate is similar to the energy scale of alivay. For NiP we obtaime=1.6x10"J m - %=0.25 e\/,
DWP’s. Hence we may conclude that even for the worst cas@nd% =0.38 eV. It turns out that all quantities depend mildly
that we missed a significant number of DWP's, the distribu-O" €nergy and hence on temperature. The above values hold

tion of DWP’s which we found by our algorithm is represen- for E=1 K (for NiP) WhereI_E denotes the energy difference
tative for all DWP’s. of the lowest two energy eigenvalues of the soft mode.

For the estimation off ; and T, one has to calculate
the specific heat on the basis of the distribution of soft
modes. In the limit that for all soft modes only the lowest

In the deformation potential approximation the interactiontwo energy levels are kept the specific heat is given by the
between a single soft mode and phonons can be written agvell-known expressi

C. The coupling between soft modes and phonons

o E2

7= Y688, (1) C(T)=3, 7z CostT 2(E/2kgT). (16)
wheree denotes the strain field of the phonon badts|,t oM .

the polarization of the corresponding phonon, apee+=1 It turns out that incorporation of higher energy levels does

whether the system is in the left or the right welFor a  not influence the value df¢ 5, whereasT . , is shifted down-

DWP y,. can be calculated via wards by approximately 10%. For NiP we numerically obtain
Tc1=2.8 K andT¢ ,=10.2 K. Similar calculations with ad-
19[FHr— 7] justable parameters have been already performed in Ref. 5 in
YoT5 T a6 (120 ‘the framework of the SPM. In our approach the values of

Tc1 and Te, have been obtained without invoking any
7| r describes the total Hamiltoniaw around the left and fitting routine. We also find that the temperature dependence
the right energy minimum, respectively. We evaluated thisof the specific heat only changes slightly f§,(w,)
formal expression for the DWP’s we found by our =exp(—w,/A,) is replaced byp,(w,)=6(w,—A,). There-
simulation®! Since we observed a correlation gf with the  fore, for many practical purposes it is possible to skip the
distanced between the two minima our results can be ex-integration ovemw,. Only for heat release experiments is the
pressed as total distribution ofw, relevant

So far we have discussed the low temperature parameters
v.=I,(d/a). (13 for a specific choice ofm,v,p). The question arises whether
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TABLE |. The parameters, o,,,ci(sim) which were used for Pares rather well with the results of our numerical analysis.
estimating the experimental data, the parambtey, as determined ~ Differences are due to the logarithmic corrections and the

from our simulations, the exponent(SPM) as calculated within ~use of the more general distribution functigns This simi-
the soft potential model and the deviations between estimated larity indicates that the values of the exponents are rather

and experimental parameters for the deformation potefitial), insensitive to the exact structure of the distribution functions
the productngyy”(i=2), the minimum of C(T)(i=3), and the and hence do not depend on the details of our numerical
maximum of C(T)(i=4). simulations. Let us briefly discuss the intuitive meaning of
_ _ ¢,>>0. In the limit of large masses tunneling is only possible
i Di sim bi exp ci(sim) ci(SPM Y for small values ofd. Since y<d the average value of
1 29 o5 02 016 023 decreases fqr Iarg(_ar masses, heoceO.
For the discussion of the temperature dependence of the

2 0.0035 0.003 0.4 0.5 0.43 . L

specific heat and hence of the energy distribution of soft
3 0.008 0.011 2/3 2/3 0.14 S .

modes it is important to realize that very low valuesotan
4 0.027 0.033 0.5 0.5 0.08

only occur via tunneling. Hence below some crossover en-
ergy E, the soft modes are dominated by DWP’s. The mini-

it is possible to obtain general expressions relating the lowU™M value oft for SWP's is obtained fow,=w;=0. The

temperature parameters to material constants. We will shol\.gyerage VaILtj.e 0‘;’4 '?hA“' Sol\t/_lng ﬂ:['e (t:'o rlrespongtln_g Schr:)
that this can be achieved on the basis of rather simple dime funger equation for 1,3159293‘3{ IC potential one obtains Ba

sional arguments. Let” be a dimensionless observable, 'S Proportional toBA;"u =, " hencec;=2/3, again in good
First, we note that? has to depend on dimensionless com-

agreement with our numerical result. In the regilBe E;
binations of material constants. In the classical regimg., the density of SWP’s and, correspondingly, the specific heat
at the glass transitigmo dimensionless combination of the

dramatically increase due to the linear increas@.nfSince
parameters, m, andp exists, hence in that regime; does

the distributionp, levels off aroundw,=A, the strong in-
not depend on material constants. This simple fact is equivaq.rel?j.se otfhthe de_nsny QrféS\_:_VP_T_hslovx_/s dowln ar(}lﬁd E
lent to the law of corresponding states. However, this stateY'€'dINg theé maximum | (T). The eigenvalue of the cor-

R R ; : 003/2 —-1/2
ment is no longer true in the quantum regime where obser\f-?Spc.md'ng harmonic SWP.'S pI‘OpOI’tIOI’]a|. B .
ables may also depend on the Planck constantet us yielding c,=1/2 once more in agreement with our simula-

: ; . L tions.
define the dimensionless quantigyvia Apart from theu dependence the above analysis shows
w=(0.0118)8/3 ~ 103,213 ~2, (17) that the values oE; andE, and hence off ; and T, are

insensitive to numerical uncertaintiesAg andA,. Further-
For the choice of the numerical factor 0.011 see below. Aparinore we see that the value @f does not enter the low-
from numerical factorsu is the only dimensionless combi- temperature parameters. However, it is easy to check that the
nation of (m,v,p,%). Therefore<” may depend on the mate- number of DWP’s relative to the number of SWP’s depends
rial constants only vigu. In order to determine the depen- on A;. The smallerA; the larger is the relative number of
dence of” on the material constants it is therefore sufficientbwpP’s. We will discuss this aspect further below.

to calculate the dependence gn In summary, we have succeeded in calculating the four
Combining the above arguments one can write for thdow-temperature parameters fall LJ glasses. In contrast to
low-temperature parametefiss=1) the soft potential model which is able to predict the relative
i values of the low-temperature parameters for different
y=Bn "1 (u), (18 glasses, we are able to estimate the absolute values. Unfor-
) S tunately it is not possible to compare our data with experi-
Nerry™=pvn~~fa(u), (19 mental data on LJ systems, since these have a strong ten-
dency to crystallize, hampering the determination of bulk
Tc1=Bfa(w), (20 |ow-temperature properties for nonmetallic LJ glasses.
Therefore, we have to generalize our results to other glasses
Tc2=Bfa(w), (21 ike silicate glasses or polymers in order to compare our

with dimensionless function(x). They can be determined predictions with a larger amount of experimental data.
by repeating the above calculations for NiP for different val-

ues ofm a_nd hence for diff_erent values @f. For th_e,u_ IV. APPLICATION TO GENERAL GLASSES
values of interest we obtain, to a good approximation,
fi(u)=bj smu” . Thec; andb; 4, are given in Table I. The results presented above are valid for the set of all LJ

At this point we would like to mention that the four ex- glasses. The question arises to which degree the physics of
ponentsc; given above can in principle also be obtained inthe low-temperature properties depends on the microscopic
the framework of the soft potential model with the standardnature of the glass. Let us simply assume that it does not
assumptions thaf) p,(w,) is linear inw, for smallw, and  depend on the microscopic structure at all, and then predict
finally levels off, (i) ps(ws) is constant, andiii) p,(w,) is  the low-temperature parameters of all glasses. Comparison
a delta function for some valus,. Apart from logarithmic ~ with experimental data will reveal whether or not this as-
correctionsc; andc, can be estimated by analyzing the Ja-sumption is reasonable.
cobi determinants for the transformation to the tunneling For LJ glasses we expressed the low-temperature param-
parameteré. One obtainsc;=1/6 andc,=1/2 which com- eters in terms of the velocity of sound the densityp, and
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TABLE Il. The experimental data and its references as used in this paper.

p Tg v " Nef¥{ Te1 Tepe
kgm™3] [K] [1ms?Y [ev] [100Im?3] [K] [K] n Ref.
Sio, 2200 1473 4.1 0.65 0.87 21 10 4 6, 27
Se 4300 304 1.17 0.14 0.1 0.7 31 6 27, 37
PMMA 1180 374 1.70 0.27 0.11 35 6 27, 37
PS 1050 355 1.67 0.13 0.12 0.9 34 6 27, 37
Epoxy 1200 350 1.66 0.22 0.14 1.0 37 6 27, 34
BK7 2510 836 4.19 0.65 1.19 4 27
As,S; 3200 444 1.69 0.17 0.15 6 27
LASF7 5790 957 3.95 0.92 0.87 6 27
SF4 4780 693 2.48 0.48 0.65 4 27
SF59 6260 635 2.13 0.49 2.8 4 27
V52 4800 593 2.51 0.52 4.9 6 27
BALNA 4280 520 2.59 0.45 4.8 6 27
LAT 5250 723 3.1 0.65 3.7 6 27
Zn glass 4240 570 2.58 0.38 3.6 6 27
PC 1200 418 1.86 0.18 4.1 6 27
LiCl-7H,0O 1200 139 2.5 7.2 33 107 6 6, 27
GeG, 3600 830 2.6 2.1 81 4 6, 35
B,O3 1800 523 2.06 13 54 6 38, 39
PB 930 186 1.69 1.4 51 6 6, 38
(Si0y)p7NaO)g s 2440 735 35 35 135 4 36, 38
the mass of the elementary units. Furthermore we esti- In what follows we compare the theoretical predictions

mated the influence of the coordination numbeifTrivially — with experimental data. The data and references we used are
for a LJ glass the elementary units are given by the indilisted in Table Il. The tunneling parameters are taken exclu-
vidual atoms. For a more complex glass the elementary unitsively from the data collection in the work of Berret and
are typically the molecular units. For some glasses the moMeissner?’ We omitted the value of the deformation poten-
lecular units can be reliably identified. For example for SiO tial of LiCI-7H,O since this value is hard to access experi-
the molecular units are the Sj@etrahedra, since at low tem- mentally (see the discussion in Ref. R7Furthermore we
peratures the tetrahedral structure is very stable whereas tloenit the data for the $&e,_, semiconductors. They will be
tetrahedra are mobile with respect to each other. Unfortudiscussed in Sec. V.

nately, for some glasses like, e.g., silicate blends it is hard to The result of the comparison with experimental data is
say which molecular unit should be taken in order to define gresented in Figs. 4—7. In principle we could use ¢hand
massm. Recently, Heuer and Spiess have shown for a num-

ber of glasses that to a good approximatmran be related

to the glass transition temperatufg via ngcqmu2 with 1.0
cg~0.011.24 This criterion can be considered as a generali- [
zation of the Lindemann melting criteridR.Therefore we i b7 |
may alternatively express the dependence of the low- A LAT x * i
temperature parameters 6Ry,v,p), without resorting to the I V52 % SF5:SF4
somewhat arbitrary choice ah. Hence for a given glass | BALNA ¥

with parameters(Ty,v,p) we may calculate the low-
temperature parameters under the assumption that it behaves
like a LJ glass. Of course, we could have started from the
very beginning with characterizing a LJ glass 0¥, ,v,p) I Epoxy %
instead ofim,v,p). However, since the atomic mass is a more
natural choice for LJ glasses we feel that it is helpful to show so
that these choices can be related Vig= cgmv2 and hence *x ps
the value ofT 4 is an excellent measure of the internal energy 0.1 )
scale. It should be noted that the glass transition temperature 0.1

is not a well defined value but depends for example on the (West V]
cooling rate or on the molecular weight in the case of

polymers?® However, these uncertainties are relatively small  FiG. 4. A comparison of the estimated deformation potential
and can be neglected for our subsequent analysis. The onind the experimental deformation potential. A single adjustable pa-
remaining uncertainty is the choice of We choosen=4 for  rameter has been used to scale the estimated data relative to the
tetrahedral glasses=12 for NiP, andn=6 elsewhere. experimental data.

LaSF7 %

Zn-Glass

PMMA

(Do [EV]

PC
* As2Ss

1.0
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FIG. 5. The same analysis as in Fig. 4 for the density of tunnel- FIG. 7. The same analysis as in Fig. 4 T

ing systems.
tations of some trivial correlations. For example the mere

bi sim @s derived from our LJ glass analysis in order to predicfact that theT ; for SiO, are higher than those for, e.g., PS
the low-temperature parameters. For practical reasons we dean be simply understood by the fact that silicate glasses are
cided to treat the prefactors as adjustable parameétess. much stiffer than polymers, which is for example expressed
Of course, finally we have to check thbf g, and b; oy, by the higher glass transition temperature. However, obvi-
agree within reasonable limits. In order to quantify the scatously this picture breaks down in the case of LiCl,ZH
tering of the data we define the relative deviatignas the  which among all analyzed glasses has the smallest glass tran-
average value ofX; sim—Xi exd/X exp Where x; denotes the sition temperature but one of the highest value§ gf. Of
corresponding low-temperature parameter. The results for theourse, the reason for this behavior is the strong dependence
fitted proportionality constants; ., and the average relative of Tc; on u. In this sense the correlations in Figs. 4-7
deviationso; are also listed in Table I. contain much more information than guessed intuitively. To

For all four quantities significant correlations can be ob-stress this point, we analyze the correlationTef,/ T, and
served. Hence one can already conclude that the individudlc o/ T4 with w. The corresponding plot can be seen in Fig. 8.
microscopic structure does not dominate the actual lowOne can clearly see that the predicted behavior
temperature behavior. From the values it is obvious that Tc1/Tgeu 22 and Te Jf Tyoen V2 is very well fulfilled. In
the correlations for the extrema of the specific heat are bettgrrinciple the exponents; could have been derived directly
than those for the tunneling parameters. We will come backrom this plot with good accuracy. We see again that the
to this point in the next section. Finally it turns out that the internal energy scale as well asdetermine the temperature
b; exp@gree very well with the simulated valules,. Hence — dependence of the specific heat.
the physics of the LJ glasses as derived from our simulations The previous analysis indicates that to a large degree all
guantitativelyagrees with typical experimental data.

One might argue that the above results are just manifes-

1 ——
SRR
10— .
(=il °
—_ (SiOz)0.75 (NaO)ozs 1 |_E‘s LICI-7Hz0
X * LiCI-7Hz20
e ] 0.01f
g GeO:2 ;
-~ %/ %Si0z ] e
to PB 3
Epoxy 203
1 FPMMA X -
L Ps ] N
se ] Si0z
1 0.001 i L Si0:,
1 0.1 1.0 10.0
1 10 u
(T [K1

FIG. 8. A plot of T¢c /Ty and T¢ o/ Ty vs u. The solid lines

FIG. 6. The same analysis as in Fig. 4 o ;. correspond to a scaling with =% and x =2, respectively.
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TABLE Ill. The ratio of T and T for four glasses. to correlations and possible dependences on the microscopic
structure can be deduced from very general arguments. In
Ts [K] T Ty o [MHz] Ref. contrast, the prefactons; g, strongly depend on details of
. our simulation and hence are sensitive to possible remainin
SIO, 45 0.03 20 29 uncertainties like those discussed in Sec. PI Although we dog
LASF7 110 0.11 30 28 not stress the excellent agreement betweerbthg, and the
B20; 83 0.16 20 29 bi exps it Clearly demonstrates the reliability of our results.
GeG, 170 0.20 20 29 It is somewhat surprising that most of the low-

temperature properties are insensitive to the exact micro-
scopic structure, which implies that, e.g., silicate glasses or
polymers are not very different from LJ glasses at low tem-
peratures. Let us take as an example a simple polymer like
low-temperature properties are independent of the microPS and identify the monomers as generalized LJ atoms. One
scopic structure. Hence it might be surprising that there exef the main differences between PS and a LJ glass is the fact
ists another low-temperature parameter which cannot be anthat monomers not only interact by long-range forces but
lyzed in analogy to the quantities discussed until now. Thealso by covalent forces which fix the distance of monomers
temperature dependence of the absorption of sound displagong a polymer chain. However, from the systematic analy-
a maximum around 30 Kfor Si0,), hence defining a tem- sis of the microscopic structure of the DWP's we fousde
peratureT . At these elevated temperatures the dynamics oSec. Il)) that two adjacent atoms tend to keep their relative
the DWP’s can already be described in classical t&¥ms distance fixed during the transition between the two walls.
(however, see Ref. 17 for some recent aspects of the sourkience, additional forces fixing the distance of some atoms
absorption. Since the relaxation of DWP’s determines thewould only mildly effect the nature of the DWP’s. Therefore
sound absorption for these temperatures one can already caite main structural difference between polymers and LJ
clude from dimensional arguments thb{<BxT, if mea-  glasses is not relevant for the nature of soft modes. Further-
sured in approximately the same frequency redibponly = more, one should keep in mind that a soft mode typically
depends logarithmically on frequencyln Table Ill we corresponds to collective motion of a number of adjacent
present for four glasses the valuesTafand T(/T,. Obvi-  units, implying an average over microscopic details. This
ously the ratioT /T is far from being constant. This means argument is similar to the explanation of universal behavior
that the temperature of the peak of sound absorption stronglyear phase transitions where the correlation length far ex-
depends on the microscopic structure of the glass. As merseeds the microscopic length scifte.
tioned before this finding is in agreement with the experi- The second argument implies that the degree of universal-
mental observation that slight modifications of a glass mayty should be correlated with the effective mgssf the soft
significantly alter the value of ;.%’ modes. This observation can be used to explain the different
degrees of universality for the low-temperature parameters.
As already discussed in Sec. Il we expect SWP’s to have
V. DISCUSSION much larger values op than DWP’s. Since the extrema of
C(T) are related to the energy distribution of SWP’s it is not
In the preceding section we analyzed the question whethesurprising that the degree of universality is very highTer;
or not the low-temperature parameters depend on the micrand T ,. In contrast, the values of, Ney’, and T depend
scopic structure, and showed that there is only a weak desn the properties of DWP’s. It has been shown for Sikat
pendence, so that all glasses can be mapped onto LJ glasst#® relaxational behavior nedr, is dominated by DWP’s
at least for the low temperature data. with barrier heights of the order of 500 ¥.It is easy to
First we briefly want to discuss possible experimental uncheck from application of the WKB formula that potentials
certainties. The quantity4y”/pv? can be derived either with barrier heights of this order have negligible tunneling
from the plateau of the sound absorption, or from the temmatrix elements.Stated differently, at temperatures near 1 K
perature dependence of the sound velotityturns out that  only DWP’s with significantly smaller barrier heights are
for LASF-7, for example, both values vary by a factor of 2 relevant. According to our simulatior(see Fig. 2 this im-
indicating some experimental or theoretical incon-plies that DWP's relevant for the sound absorption near
sistencie$® However, in the work of Berret and Meissner, are much more localized than those which are important at 1
all glasses have been analyzed consistently so that the relg: This argument explains why the degree of universality for
tive error should be smaller. Nevertheless we cannot exclude andng7# is still rather high whereas there is no universal
the possibility that the residual scattering in Figs. 4 and 5 ibehavior at all forT,.
due partly to inconsistencies in the experimental data, like We would like to mention that at higher temperatures also
the one mentioned. In contrast, the extrema¢T) can be a different kind of DWP may occur. MD simulations at el-
reliably extracted from the temperature dependence of thevated temperatures have shown that it is possible the adja-
specific heat. The same holds for the peak of the sound alzent soft modes merge together and form extended soft
sorption. modes which can probably be decomposed into a few more
Next we want to comment on the reliability of our nu- localized soft mode¥® They are not included in our statisti-
merical results. As we have shown in Sec. Ill the values okal analysis.
the exponents; can already be roughly estimated by the It has been pointed out in literature that the height of the
general properties of thg, so that they are quite insensitive bump of C(T)/T2 is related to the fragility of glassé&sThis
to numerical details. Hence all statements which are relatetlas been interpreted to mean that the ratio of SWP’s to
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DWP's is larger for strong glasses. Since this ratio is deterlowed us to determine the low-temperature parameters in a
mined by the parametek;, we expectA; to be smaller for quantitative way. Second, for the estimation gk and y
strong glasses. Most strong glasses are network glass@sarshin used the atomic mass as a valuerfoather than the
which tend to stabilize the soft modes. Since the valugpf molecular mass. Therefore it is not surprising that he still
is a measure for the instability of the corresponding softobtains large deviations between the estimations and the ac-
mode it is consistent that strong glasses typically have lowetual experimental values. As shown above a more convenient
values ofw;. On the basis of our analysis we are in a posi-way for any quantitative analysis is to introduce the glass
tion to check whether there are additional correlations of theéransition temperature as the appropriate internal energy
low-temperature properties with the fragility of glasses. Thescale. Third, he relates the similarity of the low-temperature
strongest glasses analyzed in Figs. 6 and 7 arg &t parameters for many glasses to the interaction of the soft
GeG,. No anomalous behavior with respect to their values ofmodes. In a different context this argument has been already
Tc, and T¢, can be observed. Therefore we can concludeput forward®?23In contrast, we believe that this universality
that in contrast t&\; the values ofA, andA, are not signifi- can be explained without postulating a strong interaction.
cantly correlated with the fragility. Rather it is the collective dynamics of several adjacent mol-
We believe that the number of glasses analyzed is largecules or atoms which to first approximation reduce any de-
enough to be able to identify some generic behavior of strucpendences on the microscopic structure.
tural nonmetallic glasses at low temperatures. This implies
that for any major deviations one should be able to point out VI. SUMMARY
microscopic peculiarities. One example for glasses which do

not follow the standard behavior are glasses which form We have presented an extensive analysis of the low-

%emperature properties of glasses. In the first step we ob-

very strong tetrahedral network like §6e,,.%° It turns out : o

tha%/the degformation potential is morg%thegcr)l twice as small a%alned the Iow-temperaturg Ham!lton|an of a LJ glass Iargely
expected from the correlation expressed in Fig. 4. This ca?rzor;;;ezﬁger;it'ztzgqﬂﬁi'sseogr;mrgljﬁi ?(L?SS\E;\?I.D’;—hﬁw rt‘;]?én
be understood from our analysis of the deformation potential. g yste . ; P
As already mentioned, the value of the deformation potentiaYvay we can ,extract Important mformapon about the Stf"‘t's“cs
is generally larger for glasses with strong disorder. WeOf thg DWP's, the gtyeometnc properties of the DWP’s, t.he
showed in Ref. 21 that for LJ glasses with approximateCOUplmg. of the DWPs,to th? phonon bath, and the rglatlon
icosahedral symmetry around a DWP the corresponding deo-f the size of the DWP’s to its energy parameters. This step

formation potential strongly decreases. We have checked tkflfr?nglei}nwen\;vc?geﬁzn?j r;;]lgr(;?to p'gtgri:;a;g:j;f fzeasirl%if
similar arguments hold for tetrahedral symmetry. A detaile te weg exoressed the Iow—ttlaom erature arémeters of LJ
analysis of this problem is beyond the scope of the papels P P P P

The disorder of a network glass is somewhat reduced Conglasses In terms of macroscopic parametgss, T). Finally

pared to a fragile glass, perhaps explaining why the deforVe applied this formalism to the estimation of the low-
X ; ' .lemperature parameters of more general glasses. The devia-

mation potential of strong tetrahedral network gla_sses 3 ng from ex%erimental data cangbe usedgI as a measure for

smaller than expected. We also observed that the smulateﬁe relevance of the individual microscopic structure. A

and experimental extrema of the specific heat of glycérole o . T
differ by a factor of 2. This seems to indicate that the hydrc)_quantlta'uve analysis of the deviations reveals that apart from

gen bonds somewhat influence the low-temperature prope[Jje peak of sound absorption all low-temperature properties
fies are only mildly influenced by the individual microscopic

We should note that near the temperatlie, the inter- structure. Hence it is possible to speak of a universal low-
. emperature behavior in a quantitative sense. It is not only

action between the soft modes starts to dominate the dynar@ee mere existence of phenomena like the bump of the spe-
ics. It has been proposed that this effect is responsible for a._; P P P
- cific heat bath also theabsolute values of the low-

decrease o€(T) with further increasing temperatufe: As temperature parameters which, after appropriate scaling, are
outlined gbove, the occurrence of the maximum in the P& onimatelp identical for mar,1 differgﬁt pIasses Furt%er-
cific heatC(T) can be also be explained on the basis of the PP y y 9 )

distribution of soft modes. Unfortunately, both expIanationsg]O{ﬁét;u;?izlog)tt?ﬁéighneo(jfiﬁ;ereegvi'::;ﬁff?lr%ésegefl_ehrg"igeig
for the occurrence of the maximum yield the samdepen- y P '

dence off,(u). Therefore we cannot distinguish between agreement with Intuition and directly exp!a_uns Why.the peal§
both mechanisms. of sound absorption is much more sensitive to microscopic

Recently, Parshin has extensively applied the SPM to thé’ar"’monS of the glass than, e.g., the number of DWPs.
explanation of the low-temperature properties. Although his ACKNOWLEDGMENTS
approach has some similarities with our analysis we would
like to stress some significant differences. First, in contrastto We greatly acknowledge fruitful discussions with D. Dab,
the phenomenological approach of the SPM our analysi§. Hunklinger, D. A. Parshin, and H. W. Spiess, and financial
started from a microscopic description of the glass. This alsupport from the NSF.
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