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Far-infrared static electric field measurements have been made for a variety of KI point defects which
produce vibrational modes in the pure crystal phonon gap. The extremely small field-induced frequency shifts
~<0.02 cm21! of the KI gap modes associated with anion impurities were accurately determined with a
precision of60.003 cm21 by using a global analysis method. No frequency shifts were observed for the Rb1

or Cs1 gap modes, up to the maximum applied field of;100 kV/cm in the@100# direction. Most revealing are
the field-induced frequency shifts for the pocket gap modes associated with the Ag1 impurity, which are nearly
two orders of magnitude smaller than the field-induced shifts measured for low-frequency Ag1-induced reso-
nant modes. The fact that the pocket-mode displacements are sharply peaked on the~200! family of ions
renders them sensitive to the host-lattice anharmonicity near those sites, whereas the resonant modes probe the
defect and its nearest neighbors. TheseE-field measurements and earlier stress-shift measurements are ana-
lyzed using a quasiharmonic perturbed shell model. In this approach the effect of either an applied stress or an
appliedE field is to move the equilibrium positions of the ions, thereby renormalizing the harmonic force
constants via the local cubic and quartic anharmonicity. The two types of experiments produce local strains of
orthogonal symmetries, and hence provide complementary information. The theoretical analysis of theE field
and stress measurements allows us to establish firmly that the Ag1 ion in KI possesses a significant electronic
quadrupolar deformability. In turn, this finding strongly supports earlier suggestions that the silver ion quadru-
polar deformability is an important feature in the dynamics of other host-silver defect systems and of the silver
halides.

I. INTRODUCTION

Low concentrations of substitutional Ag1 ions in KI pro-
duce an unusual impurity-induced vibrational spectrum that
has been examined in some detail.1–5 The observation that
the entireT50 K spectrum disappears upon heating to 25 K
~Refs. 6–8! results from the Ag1 ion moving from the on-
center configuration to an as yet incompletely determined
off-center position.9 With increasing temperature, the~T50
K! IR ~Refs. 10 and 11! and Raman7 resonant modes simply
vanish, with a single distinguishing temperature dependence
and with very little shifting or broadening. This behavior is
quite different from that of systems exhibiting thermal insta-
bilities driven by ‘‘soft’’ modes, whose frequencies approach
zero with decreasing temperature.12 Moreover, the observed
rate at which the KI:Ag1-induced vibrational spectra disap-
pears is much faster than can be explained by population
effects associated with the Ag1 ion moving off center in a
static anharmonic potential well, suggesting that the high-

temperature configuration involves a large number of states
of nearly the same energy as the on-center configuration.6

This raises the question of the applicability of standard Lif-
shitz defect phonon theory,13–15 which assumes a single,
well-isolated, potential energy minimum.

Motivated by these experimental results, we have carried
out a series of detailed experimental/theoretical investiga-
tions of the vibrational properties of this unusual point-defect
system in theT50 K on-centerconfiguration.7,8,16Our theo-
retical approach has been to analyze the measured spectral
properties by applying a perturbed shell model within the
standard Lifshitz theory. Surprisingly, we find that, despite
this system’s highly anomalous thermal behavior, itsT50 K
on-center dynamics are well described by a quasiharmonic
defect model, which treats anharmonic effects as perturba-
tions. However, the experimental/theoretical comparisons
have revealed several unusual properties, including:~1! a
class of impurity modes, called ‘‘pocket’’ gap modes, whose
vibrational amplitudes are not peaked at the defect site but
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rather are highly localized on host lattice ions well removed
from the Ag1;8,17 ~2! anomalous stress-induced frequency
shifts measured for the pocket modes;16 ~3! small dcE-field-
induced frequency shifts for the pocket modes, which were
briefly described in a letter18 and are discussed in detail here.
The addition of theE-field measurements and their theoreti-
cal analysis demonstrate that the Ag1 ion in KI possesses a
significant electronic quadrupolar deformability. This has im-
portant implications for the dynamics of Ag1 in other sys-
tems.

Aspects of our preceding studies are relevant to the
presentE-field work. ~1! Despite the thermal instability, the
spectral features associated with theT50 K on-center vibra-
tional dynamics of KI:Ag1 are well described by a perturbed
harmonicshell model.7 A striking prediction of this model is
the existence of three very nearly degenerate local modes
with frequencies in the host KI phonon gap. These gap
modes are of three different symmetries, and their frequen-
cies are equal to within 2%.~2! Their predicted displacement
patterns are also very unusual in being strongly peaked
on the defect’s fourth-nearest-neighbor sites@~6200!,
~0620!,~0062!#, with the displacements of the defect and its
nearest neighbors more than an order of magnitude smaller
than that of the fourth-nearest neighbors. In sharp contrast,
the displacement patterns found for standard impurity-
induced localized modes are peaked on the defect or its near-
est neighbors.14,15,19~3! In Refs. 8 and 17 we showed that the
natural occurrence of a 7% isotopic abundance of41K1 iso-
topes in the KI host strongly mixes these nearly degenerate
pocket gap modes, producing an IR-active isotope gap mode
with a predicted frequency shift and relative absorption
strength in good agreement with the shift and strength mea-
sured in subsequent IR experiments. This agreement between
theoretical predictions and experiment, combined with the
failure of alternative explanations for the experimental re-
sults, provided a direct confirmation of the existence of the
nearly degenerate pocket gap modes and their very unusual
displacement patterns.

To probe the anharmonicity associated with the KI:Ag1

on-center configuration, we built upon these results by un-
dertaking studies of uniaxial stress16 and dc electric-field-
induced frequency shifts,18 both for the pocket modes, and
for the low-lying impurity-induced resonant modes3,5 that
exist below 20 cm21. The fact that the pocket-mode displace-
ments are sharply peaked on the~200! family of host ions
renders the pocket modes sensitive to the host-lattice anhar-
monicity near those sites, whereas the resonant modes probe
the defect and its nearest neighbors. Within a quasiharmonic
approach, which treats the anharmonicity perturbatively, the
effect of either applied stress or an appliedE field is to move
the equilibrium positions of the ions, thereby renormalizing
the harmonic force constants via the local cubic and quartic
anharmonicity. The two types of experiments produce local
strains of orthogonal symmetries and hence provide comple-
mentary information. Our approach to the data is to use a
quasiharmonic extension of our perturbed harmonic shell
model to fit the measured pocket-mode stress shifts and then
use the stress-fit anharmonicities to predict the pocket-mode
dcE-field-induced frequency shifts. We find that our original
model7 predictsE-field-induced shifts that are nearly two
orders of magnitude larger than the observed shifts. How-

ever, with the addition of Ag1 electronic quadrupolar de-
formability ~QD! to the original perturbed harmonic shell
model, the predicted dcE-field-induced pocket-gap-mode
frequency shifts are in good agreement with the experimental
results. In addition, this model also substantially improves
other predictions of our earlier harmonic model, as well as
reproducing the measured dcE-field-induced frequency
shifts of the KI:Ag1 low-frequencyresonantmodes, whose
measuredE-field shifts are nearly two orders of magnitude
larger than those for the pocket modes.

Besides the Ag1 QD, another important feature of the
model is its inclusion of relaxation-induced nearest-neighbor
force-constant changesbeyond the defect’s fourth-nearest
neighbors; these changes can be computed without the addi-
tion of any new parameters beyond those contained in the
original harmonic model.20 Hence, the many improvements
of the QD model result from the addition of a single param-
eter to the earlier model. In this paper we will also consider
several alternative models using other force-constant changes
and show that these models fail badly. Thus, based upon the
successes of the QD model and the failures of the alternative
models, we conclude that extended defect-induced relax-
ations and the Ag1 QD play an essential role in determining
the KI:Ag1 on-center dynamics. Our results strongly support
earlier speculations that the Ag1 QD is an important feature
in the dynamics of other host-silver defect systems and of the
silver halides,21–27 including the superionic conductivity ob-
served in AgI.25

Experimental details are provided in the next section.
First, the electric-field apparatus is described, and then the
experimental results for the Stark effect in KI:Ag1 and
KI:Cl2 are presented, followed by data analysis. For com-
parison, theE-field results for gap modes of several other
impurities in KI are included. Section III focuses on the theo-
retical aspects of the work: First, our original force-constant
change model is compared with the data and shown to be
inadequate. The QD model is then developed in a stepwise
manner and the predicted pocket-mode shifts and mixing are
shown to agree with experiment. Finally, the experimentally
observedE-field-induced mixing and shifts of the low-
frequency resonant modes are compared with the predictions
of this model and found to be in agreement. The similarities
and differences between the results for the various gap
modes are discussed in Sec. IV. General results and implica-
tions of the QD model are presented in the conclusion. The
Appendix discusses theE-field-shift theory.

II. EXPERIMENT

Far-IR spectra of KI crystals doped with Ag1 and other
impurities were obtained with a fast-scan Fourier-transform
spectrometer at resolutions between 0.1 and 0.5 cm21. A
commercial optical-access liquid-He immersion cryostat
with homemade polypropylene and/or Mylar film windows16

was used to cool the samples. A homemade sample insert
allowed the application of a dcE field to the samples during
the measurements, with the incident far-IR radiation polar-
ized either parallel or perpendicular to the applied dcE-field
direction ~i.e.,EIRiEdc or EIR'Edc!.
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A. Experimental techniques

The cryostat sample insert for the far-IRE-field measure-
ments is shown schematically in Fig. 1. Contact between a
high-voltage dc power supply and an electrode sandwiched
between two identical samples was made through a stainless-
steel covered coaxial conductor containing teflon insulation;
on opposite sides of the samples were grounded electrodes.
The flange which sealed the top of the cryostat was provided
with several compression o-ring feedthroughs permitting ad-
justment of the vertical position of the samples inside the
cryostat without allowing air into the cold sample section.
The samples could be immersed in either liquid or gaseous

He. Since very low electric fields break down gaseous He,
especially at the reduced pressure present in the cryostat,
measurements could only be carried out in liquid. Although
it was reported5 that up to 50% higher fields could be ob-
tained in normal liquid He than in superfluid He, the present
cryostat was such that the normal liquid-He bubbles would
scatter the incident far-IR radiation and add unacceptable
noise to the spectra. Therefore, all measurements reported
here were performed in superfluid He at applied fields of up
to ;100 kV/cm.

The samples used for measurements withEdc along the
@100# crystallographic direction consisted of slabs, cleaved to
a thickness of;1 mm along the direction of the applied
field, from boules grown by the Czochralski method at the
Cornell Materials Science Center’s Crystal Growing Facility.
The sample length, along the direction of propagation of the
far-IR radiation, typically was;0.75 cm, but very short
samples~;1.5 mm long! were measured in some cases. The
third dimension~perpendicular to both the propagation and
E-field directions! was;1 cm. The samples used withEdc
along the@110# direction were cut into similarly sized shapes
with a diamond string saw. The faces perpendicular to the
propagation direction were ‘‘wedged’’ to avoid interference
effects in the spectra; these faces plus the sample holder
~electrodes plus mask; see Fig. 1! acted as an aperture for the
far-IR radiation. All the KI:Ag1 samples were heated to
;200 °C prior to the measurements in order to maximize the
absorption strengths of the KI:Ag1 modes, as described
previously.28

The electrodes shown in Fig. 1 were plates of stainless
steel,;1.5 mm thick, which had been mechanically and
electrochemically polished and had the corners and edges
rounded by grinding. These precautions were taken to reduce
the likelihood of electrical breakdown. The samples and the
electrodes were held in place by tightly wrapping the whole
assembly, above and below the samples, with thin low-
temperature electrical tape. The uniformity of the field across
the samples was enhanced by making the samples smaller
than the electrodes and placing the samples in the centers of
the electrodes; this differs from the technique described in
Ref. 29. Teflon insulation was inserted wherever high-
voltage areas were in proximity to grounded parts of the
sample holder, as shown. Finally, a mask made of electrical
tape and aluminum foil was attached to the outside surfaces
of the ground electrodes to block any incident radiation not
passing through the samples from reaching the detector. Ad-
ditional details of the sample holder construction can be
found in Ref. 30.

Even with the samples submerged in liquid He, the maxi-
mum field could only be maintained for a limited amount of
time ~ranging from minutes to hours, depending on the
sample!, after which intermittent breakdown began; once
started, this breakdown couldnotbe stopped by lowering the
field and eventually led to the destruction of the samples.
The heat released during the breakdown produced bubbles in
the liquid helium, which shocked the samples, mechanically
damaging them. Therefore, measurements were generally
performed at low-field strengths first, with the maximum be-
ing reached gradually.

FIG. 1. Cryostat insert used for measuring the transmission of
samples under an applied dcE field. ~a! Expanded view of the
sample holder. The thin copper-sheet strap provides electrical con-
tact to the ground electrode away from the copper finger. The high-
voltage lead is made of thin teflon-coated single-conductor wire.
Pieces of teflon sheet;1 mm thick are used to fill the gaps between
the electrodes left by the samples as well as other areas where the
high-voltage lead passes near ground potential. The propagation
direction of the far-IR radiation is perpendicular to the plane of the
page in this view. The mask, made of thin electrical tape and alu-
minum foil, prevents radiation not passing through the samples
from reaching the detector.~b! Circuit diagram. In case of break-
down of the samples, the 500 MV resistor limits the current, which
is monitored with the two micro-ammeters.
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B. Errors

The statistical error associated with the shift at each value
of the appliedE field was determined from several indepen-
dent measurements of the shift at that field. These measure-
ments consisted of repeated cycling of the field between that
E-field value and zero, and measuring the line shape with the
field on and the field off for each such cycle. In addition, for
each mode studied, such data were generally obtained on
several samples. Systematic errors were not included; they
were considered to be negligible based on a comparison with
previousE-field results.4,5 For the linear fits to the plots of
shift vs the square of theE field, the errors in the slopes were
determined by the linear regression algorithm from the scat-
ter in the data points; these slope errors were propagated
through the equations relating the slopes to theE-field cou-
pling coefficients to determine the errors in the latter.

C. Results for KI:Ag1 and KI:Cl 2

Before presenting the newE-field results, we first de-
scribe the low-temperature absorption spectrum of KI:Ag1

in the absence of an appliedE field, below the reststrahl
region of KI. A detailed discussion of this spectrum has been
given in Refs. 6, 8, and 17. As shown in Fig. 2, the substi-
tutional Ag1 defect gives rise to two strong localized modes:
a resonant mode in the acoustic phonon region, at 17.3 cm21,
and a gap mode in the region between the acoustic and optic

phonons, at 86.2 cm21. Additional weak features due to Ag1

at 30, 44, 55.8, and 63.6 cm21 ~in the KI acoustic-phonon
region!, and at 84.5 cm21 ~in the KI gap region! caused by
39K1→41K1 host-lattice isotopic substitution,8 are also vis-
ible in the lower-temperature~1.4 K! spectrum. Small con-
centrations of other naturally occurring impurities in these
crystals give rise to additional gap modes, at 76.8 and 77.1
cm21 due to Cl2 and at 82.9 cm21 due to Cs1 ~and another
at 78.9 cm21, of unknown origin!. In the higher-temperature
spectrum of Fig. 2~11 K!, all of the Ag1 features are weaker,
while the strengths of features associated with other defects
~e.g., Cl2 and Cs1! remain unchanged; in addition, new fea-
tures associated with the Ag1 defects appear at 69 and 78.6
cm21. The inset of Fig. 2 shows the ‘‘universal’’ temperature
dependence of the strengths of the KI:Ag1 low-temperature
configuration features, including the strong resonant and gap
modes~after Ref. 6!.

The E-field-induced changes in the acoustic phonon re-
gion of KI:Ag1 have been studied in detail previously.4,5Our
results for an applied@100# dc E field, covering the entire
spectral region below the KI reststrahl region, are shown in
Fig. 3. Here, as elsewhere in this paper, the change in the
absorption coefficienta induced by the dcE field is given as
Da[a~field on!2a~field off!. The results in the acoustic-
phonon region, including the shift of theT1u-symmetry IR-
active resonant mode and the field-induced IR activity of a
lower-frequencyEg-symmetry Raman-active resonant mode,
are very similar to those in Fig. 2 of Ref. 5~which were
obtained at a higher field!. The higher resolution of the
present data reveals additional detail, such as the splitting of
the broad field-induced mode at 25 cm21 in Ref. 5 into two
sharper modes at 25 and 28 cm21, the narrower linewidth of

FIG. 2. Absorption coefficient of KI10.4 mole % AgI below the
reststrahl region of KI, at 1.4 K~upper trace! and 11 K ~lower
trace!. The resolution is 0.1 cm21. The two spectra are displaced by
a division on the ordinate axis for clarity; also, the ordinate scale in
the region between 25 and 75 cm21 has been expanded 103 to
show the weak modes in the acoustic-phonon region. Asterisks
identify the low-temperature modes associated with KI:Ag1. These
spectra are similar to those of Ref. 6, but at higher resolution. The
dominant features are the KI:Ag1 gap and resonant modes at 86.2
and 17.3 cm21, respectively; additional features are identified in the
text. The inset shows the temperature dependence of the strengths
of the KI:Ag1 features~after Ref. 8!.

FIG. 3. Changes in the absorption of KI10.1 mole % AgI below
the reststrahl region of KI, induced by a@100# E field of 77 kV/cm.
The resolution is 0.3 cm21 and the temperature is 1.4 K.~a!
EIRiEdc. ~b! EIR'Edc. The region below 50 cm21 should be com-
pared to Fig. 2 of Ref. 5. The sharp ‘‘wiggles’’ near 60 cm21 are
probably due to 60 Hz pickup in the high-voltage power supply and
leads. Note that the absorption of the resonant and gap modes at
17.3 and 86.2 cm21, respectively, is nearly saturated in this sample.
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the field-induced feature at 30 cm21, and additional weak
features at 53.5 and 55 cm21, just above the upper limit of
the spectral region studied previously.5 In addition, as seen in
Fig. 3~b!, weak spectral changes are observed forEIR'Edc,
whereno changes were reported previously;5 it is not likely
that the latter are artifacts of imperfect polarization since
they do not correspond directly to features in theEIRiEdc
spectrum of Fig. 3~a!.

Prior to the results presented in this paper, none of the
previous E-field studies, including those of the KI:Ag1

modes4,5 as well as those of activated modes due to various
other lattice-defect systems,19,29,31–33 extended to high
enough frequency to examine the effect of an appliedE field
on gap modes. Although the main focus of the present study
is on the gap modes due to Ag1, we have also measured the
E-field dependence of gap modes due to other lattice-defect
systems for purposes of comparison to the Ag1 results. In

particular, since Cl2 is typically present as a natural impurity
in pure KI and gives rise to gap modes whose structure has
been carefully analyzed previously,34 we have studied in
some detail theE-field dependence of the KI:Cl2 gap modes.
Note that a similar comparison between the Ag1 and Cl2 gap
modes in KI was carried out in our previous uniaxial stress
study.16

Extremely smallE-field-induced shifts in the positions of
the KI:Ag1 gap modes are observed. The disparity between
the shift of the main gap mode at 86.2 cm21 and that of the
resonant mode at 17.3 cm21 is brought out clearly in Fig. 4,
where the spectra are displaced along the abscissa to facili-
tate the comparison. Note that these shifts of the gap modes
correspond to themaximumapplied field withEIRiEdc@100#
~which gives rise to the largest effects!. The small size of the
gap-mode shift in Fig. 4~a! makes the line shape under the
maximum applied field nearly indistinguishable from the
zero-field line shape; by contrast, the much larger shift of the
resonant mode is apparent in Fig. 4~b!. The normalized field-
induced changes in the absorption coefficient for the gap and
resonant modes of KI:Ag1 are shown in Fig. 4~c!; in order to
plot both spectral regions on the same ordinate axes, the gap
mode curve in Fig. 4~c! was expanded 203, as indicated.
The appearance of a field-activated resonant mode just below
the 17.3 cm21 IR-active resonant mode, discussed in Ref. 5,
is evident in Fig. 4~b! and~c!; no such field-activated modes
are observed in the gap mode region.

Since the KI:Ag1 gap mode line shapes in Fig. 4~a! are
nearly indistinguishable, the line shapes of the main and iso-
tope gap modes of KI:Ag1, with and without an appliedE
field, are displayed on expanded scales in Fig. 5. This figure
clearly shows that the small shifts of these two pocket modes

FIG. 4. E-field-induced shifts of the KI:Ag1 ~a! gap and~b!
resonant modes forEIRiEdc @100# at 1.4 K; each spectrum is dis-
placed along the abscissa by the frequency of the mode,v0, for
clarity. ~a! Gap mode region of KI10.04 mole % AgI at 0.1 cm21

resolution,v0586.2 cm21. Solid line: zero field, dotted line: 87
kV/cm. ~b! Resonant mode region of KI10.1 mole % AgI at 0.3
cm21 resolution,v0517.3 cm21. Dash-dotted line: zero field, dot-
ted line: 77 kV/cm.~c! Comparison of the gap and resonant mode
regions;Da/a[@a~field on!2a~field off!#/a~field off!. Solid line:
gap mode region, dash-dotted line: resonant mode region. An ex-
panded~203! version of the gap mode data is also shown.

FIG. 5. Spectra of the KI:Ag1 pocket gap modes withno ap-
pliedE field ~solid lines! and with an applied@100# E field ~dashed
lines!, for EIRiEdc. The resolution is 0.1 cm

21 and the temperature
is 1.4 K; the nominal sample composition is KI10.04 mole % AgI.
~a! The 86.2 cm21 main pocket gap mode at 87 kV/cm.~b! The 84.5
cm21 isotope pocket gap mode at 94 kV/cm. Note that the ordinate
scale in~b! is expanded 103 relative to that in~a!.
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are ‘‘rigid’’ ~in the sense that no field-induced changes in the
strengths of these modes are observed at this value of field!
and comparable in size.

The corresponding field-induced changes in the absorp-
tion coefficient over the spectral region covering both the
Ag1 and Cl2 gap modes are shown in Fig. 6, forEdc along
@100# and for the two orthogonal polarization directions. As
seen in Fig. 6~a!, all of the Ag1 and Cl2 gap modes shift
~slightly! to higher frequencies forEIRiEdc@100#; the shifts
are somewhat larger for Ag1 than for Cl2. ForEIR'Edc@100#
in Fig. 6~b!, however, only the Ag1 pocket gap modes ex-
hibit shifts to lower frequencies comparable in magnitude to
those forEIRiEdc@100#; the Cl2 gap modes have no shifts
within experimental error. Note that these shifts of the Ag1

pocket gap modes forEIR'Edc@100# are unusual: no other
previous studies on localized modes have found frequency
shifts for this configuration of applied field and
polarization,4,5,19,29,31–33although we have observed very
small shifts in this configuration for the KI:Ag1 resonant
mode, as shown in Fig. 3~a!. Figure 6~c! shows the corre-
sponding impurity-induced spectrum at zero applied field for
comparison. A very weak line occurs at 75 cm21 in ~c! and
according to~a! it shifts with field in a directionoppositeto
that of the stronger Ag1 and Cl2 gap modes. In addition, also
seen in~a! @but not in ~c!# is a weak field-induced mode at
75.7 cm21, whose strength grows with the field. The source
of the unusual field-induced effects for these weak absorp-
tion lines remains unexplained.

A closer look at Fig. 6 reveals that theEIRiEdc@100# fre-
quency shifts of the KI:Cl2 gap modes are more complex

than those of the KI:Ag1 modes: there are actuallyfour over-
lapping Cl2 modes~caused by the natural abundances of Cl2

and K1 isotopes34!, each shifting to higher frequency in the
parallel polarization by adifferentamount; for the two stron-
ger modes, this is seen more clearly in Fig. 7. Thus, the
strongest and highest-frequency mode due to35Cl2 at 77.1
cm21 shifts the least, the weaker middle mode due to37Cl2

at 76.8 cm21 shifts somewhat more, while the extremely
weak lowest frequency mode at 76.5 cm21, which appears
only as a shoulder in Fig. 6~c! and is due to a perturbation of
the 35Cl2 mode by the41K1 isotope,34 shifts the most. The
different sizes of the frequency shifts of the three KI:Cl2 gap
modes cause their signatures in theDa plot @Fig. 6~a!# to be
similar in size despite the different strengths of the modes
involved, particularly in the case of the weak35Cl2:41K1

mode at 76.5 cm21; however, note thatno analogous behav-
ior was observed in the uniaxial stress measurements on the
Cl2 gap modes.16 In addition, as seen in Fig. 6~b!, whereas
the Ag1 gap modes show substantial perpendicular polariza-
tion frequency shifts,no such frequency shifts are observed
for the Cl2 gap modes, within experimental error. Finally, no
frequency shifts were observed for fields along@110# for ei-
ther the KI:Ag1 or the KI:Cl2 modes, forany polarization,
within experimental error. However, the signal-to-noise ratio
of the @110# data was somewhat worse than that of the@100#
data.

D. Data analysis

The extremely small field-induced frequency shifts of the
KI gap modes, presented above, were accurately determined
by using the ‘‘global’’ analysis method previously developed
by us for determining frequency shifts induced by uniaxial

FIG. 6. Changes in the absorption coefficient of KI10.04
mole % AgI induced by a@100# E field of 87 kV/cm. The resolution
is 0.1 cm21 and the temperature is 1.4 K.~a! EIRiEdc. ~b! EIR'Edc.
~c! The corresponding spectrum at zero applied field. This spectral
region shows both the KI:Ag1 ~84.5 and 86.2 cm21! and KI:Cl2

~77.1, 76.8, and 76.5 cm21! gap modes, for comparison; in addition,
as seen in~a!, for EIRiEdc a weak field-induced mode~markedi !
appears at 75.7 cm21, just below the Cl2 modes, and another weak
unidentified mode at 75 cm21 @also seen in~c!# shifts with field in
a directionoppositeto that of the stronger Ag1 and Cl2 gap modes.

FIG. 7. Spectra of the KI:Cl2 gap modes withnoappliedE field
~solid lines! and with an applied@100# E field ~dashed lines! of 87
kV/cm, forEIRiEdc. The resolution is 0.1 cm

21 and the temperature
is 1.4 K; the nominal sample composition is KI10.04 mole % AgI,
and the Cl2 is present as a natural impurity.~a! The 76.8 cm21

37Cl2 gap mode.~b! The 77.1 cm21 35Cl2 gap mode. Note that the
ordinate scale in~a! is expanded 23 relative to that in~b!.
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stress. This method, described in detail in Ref. 16, consists of
overlaying the shifted lineshape at some given nonzero field
onto the corresponding line shape at zero field and varying
the position and width of the nonzero field line shape until
the area between the two curves is minimized. The accuracy
of the method also allowed us to search for other field-
induced line shape changes~such as changes in linewidths or
strengths, or the appearance of additionalE-field-induced
modes!: no such effects were detected for the KI:Ag1 pocket
gap modes, as summarized in Table I, i.e., the frequency
shifts appear to be ‘‘rigid’’.

The frequency shifts of the KI:Ag1 pocket gap modes
obtained for a@100# dcE field are plotted against the square
of the magnitude of the field in Fig. 8. The two Ag1 modes
are seen to have very similarE-field behavior: for
EIRiEdc@100# the modes exhibit very small shifts to higher
frequency, while forEIR'Edc@100# the shifts are to lower
frequency. The frequency shifts of the main Ag1 pocket gap
mode at 86.2 cm21 @Fig. 8~a!# are about twice as large for
EIRiEdc@100# than forEIR'Edc@100#, while the shifts of the

Ag1 isotope pocket gap mode at 84.5 cm21 @Fig. 8~b!# are
about the same size in both polarizations. Analogous plots
are shown in Fig. 9 for the two relatively strong KI:Cl2 gap
modes. By contrast, these two Cl2 modes have significantly
smaller frequency shifts than the Ag1 modes for
EIRiEdc@100#, and no measurable shifts forEIR'Edc@100#.
ForEIRiEdc@100#, the shifts of the stronger KI:

35Cl2 mode at
77.1 cm21 @Fig. 9~a!# are about half as large as those of the
weaker KI:37Cl2 mode at 76.8 cm21 @Fig. 9~b!#, in agree-
ment with the discussion of Figs. 6 and 7. Note that the
excellent linear fits in the plots of Figs. 8 and 9 indicate that
the shifts of both the Ag1 and Cl2 gap modes are quadratic
in the magnitude of the applied field.

As a point of reference, it is useful to note that themaxi-
mumshift observed foranyof these gap modes,;0.02 cm21

at ;100 kV/cm forEIRiEdc@100# for the main Ag1 pocket
gap mode at 86.2 cm21 @Fig. 8~a!#, is much smaller than the
full width at half maximum~FWHM! of ;0.5 cm21 of this
mode, and is also about two orders of magnitude smaller
than the shift of the Ag1 resonant mode at 17.3 cm21, which

TABLE I. Full widths at half maximum~FWHM’s! and strengths of the KI:Ag1 pocket gap modes under
a dcE field in the @100# direction, relative to their zero-field values, at 1.4 K. The 86.2 cm21 mode is the
main gap mode, and the 84.5 cm21 mode is caused by the natural abundance of41K1, as discussed in Refs.
8 and 17. The values of the strengths and FWHM’s are averages of at least 12 independent measurements; the
errors quoted are statistical, not systematic.

Mode
~cm21!

Electric field
~kV/cm! Polarization Rel. FWHM Rel. strength

86.2 94 i 0.99960.019 0.98760.026
' 0.99960.003 0.99760.010

84.5 77 i 1.00460.014 1.00760.024
' 1.00260.003 1.02160.024

FIG. 8. Frequency shifts of the KI:Ag1 main and isotope pocket
gap modes at 1.4 K vs the square of the magnitude of the@100# E
field: ~a! the 86.2 cm21 pocket gap mode;~b! the 84.5 cm21 isotope
pocket gap mode. The circles~triangles! are the data and the solid
~dashed! lines are the best linear fits forEIRiEdc ~EIR'Edc!.

FIG. 9. Frequency shifts of the KI:Cl2 gap modes at 1.4 K vs
the square of the magnitude of the@100# E field: ~a! the 77.1 cm21

mode;~b! the 76.8 cm21 mode. The circles~triangles! are the data
and the solid~dashed! lines are the best linear fits forEIRiEdc
~EIR'Edc!.
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has a similar FWHM, at the same value of the applied field;5

this is clearly seen in Fig. 4@but note the different resolutions
of the spectra in Figs. 4~a! and 4~b!#. The size of the Ag1

resonant mode shift is comparable to the shifts of resonant
modes of other lattice-defect systems;19,29,31–33 thus, the
small sizes of the shifts appear to be a general property of
gap modes.

All of the frequency shifts observed to date, for both reso-
nant and gap modes~including those of the Ag1 gap and
resonant modes! are quadratic in the applied field; however,
theEIR'Edc@100# results for the Ag

1 pocket gap modes are
unusual: the typical behavior is alack of any shift in this
polarization, as is observed for the Cl2 gap modes and as
was previously observed for various resonant modes,29 in-
cluding that of Ag1.5 Finally, note that the difference be-
tween the shifts of the two relatively strong Cl2 gap modes
~Fig. 9! is difficult to understand, in that the dynamics of
these two modes should be nearly identical~changed only by
the mass of the Cl2 ion!. Experimentally, one might suspect
this difference to be due in part to the weak 76.5 cm21 35Cl2:
41K1 mode, mentioned above, which could not be analyzed
separately and which appears to shift substantially more than
the neighboring and much stronger 76.8 cm21 37Cl2 mode;
however, our analysis technique is insensitive to the presence
of such a weak mode.

As shown previously,29 the second-order Stark-effect op-
erator has the same symmetry as the uniaxial stress operator.
This implies that the same symmetries of coupling apply to
both the quadraticE-field effect and to the uniaxial stress
effect. Thus, for an on-center monatomic defect~Oh symme-
try!, analogs of theA(A1g), B(Eg), and C(T2g) stress-
coupling coefficients discussed in Refs. 3 and 16 can be de-
fined for the quadratic E-field perturbation. The
corresponding coefficients in theE-field case are calleda1,
a3, anda5 in analogy with Ref. 29. As shown in Table II, the
equations relating the frequency shifts to the square of the
magnitude of theE field are identical to those presented in

Table III of Ref. 16 for uniaxial stress, with appropriate sub-
stitutions. For the Ag1 and Cl2 gap modes, the slopes ob-
tained from the measured frequency shifts in Figs. 8 and 9
~for @100# field! are summarized in Table III; these slopes
were used to determine the values of thea1 anda3 E-field
coupling coefficients given in Table IV. For the@110# field
direction, the slopes given in Table III are estimated upper
bounds obtained from the maximum frequency shifts consis-
tent with the data; thea5 coupling coefficients calculated
from these estimates are also included in Table IV, although
their values are not well defined.

E. Stark effect for other KI gap modes

Since no otherE-field measurements on gap modes exist
in the literature, we have measured the effect of an applied
dc E field on a few other KI gap modes, for the purpose of
comparing to the results presented above. However,no fre-
quency shifts greater than60.003 cm21 were observed for
any other gap mode due to a cation defect~other thanAg1!,
up to the maximum applied field of;100 kV/cm in the@100#
direction. For example, the Cs1 and Rb1 gap modes shown
in Fig. 10 have no measurable shifts for eitherEIRiEdc@100#
@see Fig. 10~a!# or EIR'Edc@100# @see Fig. 10~b!#, within ex-
perimental error; this is in spite of the fact that the KI:Cl2

TABLE III. Measured slopes~Dv/DE2! of the frequency shift vs the square of the applied dcE field for
various polarizations of the far-IR radiation~EIR! and dcE field ~Edc!, for the KI:Ag

1 and KI:Cl2 gap modes
at 1.4 K, corresponding to Figs. 8 and 9.

Mode Frequency~cm21! Edc EIR Dv/DE2 @1026 cm21/~kV/cm!2#

KI:Ag1 86.2 @100# @100# 1.7060.09
@100# @010# 20.9360.05
@110# @110# 0.0860.36
@110# @11̄0# 0.2060.29

KI:Ag1 84.5 @100# @100# 1.1360.10
@100# @010# 21.1160.08
@110# @110# 20.2560.46
@110# @11̄0# 0.1760.20

KI:Cl2 77.1 @100# @100# 0.2960.02
@100# @010# 0.0060.05
@110# @110# 0.1260.12
@110# @11̄0# 0.0860.04

KI:Cl2 76.8 @100# @100# 0.6960.02
@100# @010# 0.0060.05
@110# @110# 0.2460.16
@110# @11̄0# 0.0460.16

TABLE II. Frequency shiftsDv of theT1u states with the square
of the magnitude of the dcE field DE2 along the@100# and @110#
crystal directions, for polarization parallel and perpendicular to the
applied dcE field ~after Ref. 29!.

Electric field Polarization Dv/DE2 @1026 cm21/~kV/cm!2#

@100# @100# a114a3
@100# @010# a122a3
@110# @110# a11a31a5/2
@110# @11̄0# a11a32a5/2
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gap modes in the same sample~due to naturally occurring
Cl2 impurities!, which are similar in strength to the Cs1 and
Rb1 modes@see Fig. 10~c!#, shift noticeably with field for
EIRiEdc@100#, as noted in the discussion of Figs. 6 and 7. The
estimated uncertainties in the Cs1 and Rb1 results are listed
in Table V. Analogous results were also obtained for the
KI:NCO2 gap mode at 78.4 cm21 ~Ref. 35! in a sample
whose spectrum is not shown: this mode also had no mea-
surable E-field shifts for either EIRiEdc@100# or
EIR'Edc@100# as noted in Table V.

In contrast, the isotopically split KI:Br2 gap mode dou-
blet at 88.1 and 88.65 cm21 ~Ref. 36! displayed a very small
and qualitatively different effect, as shown in Fig. 11~a!: for
EIRiEdc@100#, the lower-frequency mode appears to shift
down and the upper-frequency mode appears to shift up with
increasing field. This leads to an unusual signature in the
difference spectrum, where the derivative-like line shapes of
the two members of the Br2 doublet have opposite signs,
unlike the case of the Cl2 doublet, whose derivative-like line

shapes have the same signs. The different signatures of these
doublets in Fig. 11~a! can best be appreciated by reference to
the zero-field spectrum of Fig. 11~c!, where the Br2 and Cl2

doublets are seen to be similar. The shift of the Br2 mode at
88.1 cm21 to lower frequency with increasing field is highly
unusual: all other modes studied to date, including all other
KI gap modes studied in this work, shift to higher frequency
with increasing field. Smaller effects are observed for the
Br2 doublet forEIR'Edc@100#, as seen in Fig. 11~b!. In ad-
dition, as shown in Fig. 11~a! and~b! nomeasurableE-field-
induced shift is observed for either polarization for the rela-
tively strong KI:Br2 pair mode at 74 cm21 seen in Fig. 11~c!.

The unusual shifts for the KI:Br2 doublet at 88.1 and
88.65 cm21 for EIRiEdc@100# are shown on an expanded
scale in Fig. 12. In addition to the opposite signs of the shifts
of the two modes mentioned above, this figure also reveals a
possible transfer of absorption strength from the higher- to
the lower-frequency member of the doublet. This is again
qualitatively different from the case of the KI:Cl2 gap modes
discussed above, which shiftrigidly to higher frequencies
with increasing field~albeit at different rates; see Fig. 9!.

Several other peculiar characteristics of the KI:Br2

sample deserve mention: First, the absorption strength per
impurity for Br2 in KI is lower than that for any other im-
purity measured@cf. the Cs1 and Rb1 gap modes in Fig.
10~c!, and note the order-of-magnitude difference between
the impurity concentration of the sample used for the spec-
trum of Fig. 10~c! and that used for Fig. 11~c!#. This com-
parison also applies to Ag1 @see Fig. 6~c!#, although the ef-
fective Ag1 concentration is more difficult to define due to

FIG. 10. Changes in the absorption coefficient of KI10.02
mole % CsI10.02 mole % RbI induced by a@100# E field of 85
kV/cm. The resolution is 0.1 cm21 and the temperature is 1.4 K.~a!
EIRiEdc. ~b! EIR'Edc. ~c! The corresponding spectrum at zero ap-
plied field. Note thatno frequency shifts are observed for the
KI:Rb1 gap mode doublet~at 86.3 and 86.9 cm21! and for the Cs1

gap mode~at 82.9 cm21!. The Cl2 gap modes at 76.8 and 77.1
cm21 are nearly saturated in this sample, as is the 86.9 cm21 Rb1

mode.

TABLE IV. Measured quadraticE-field coupling coefficients (a1 ,a3 ,a5) of the KI:Ag
1 and KI:Cl2 gap

modes, calculated from the slopes in Table III, at 1.4 K. The units are 1026 cm21/~kV/cm!2.

Mode
Frequency

~cm21! a1 a3 a5

KI:Ag1 86.2 20.0560.04 0.4460.02 20.1260.46
84.5 20.3660.06 0.3760.02 20.4260.50

KI:Cl2 76.8 0.1060.02 0.0560.01 0.0460.13
77.1 0.2360.02 0.1260.01 0.2060.23

TABLE V. Frequency shifts of the KI:Cs1, KI:Rb1, and
KI:NCO2 gap modes under an applied dcE field in the @100# di-
rection at 1.4 K. The values are given relative to the zero-field
values and represent averages of at least six independent measure-
ments; the errors quoted are statistical, not systematic.

Mode
Frequency

~cm21!
Field

~kV/cm!
Polarization

~i or'!
Shift

~cm21!

Cs1 82.9 85 i 0.00060.003
' 0.00060.001

Rb1 86.3 85 i 0.00160.003
' 0.00160.002

Rb1 86.9 85 i 0.00060.002
' 20.00160.002

NCO2 78.4 97 i 0.00060.001
' 0.00060.001

6084 53ROSENBERG, SANDUSKY, CLAYMAN, PAGE, AND SIEVERS



its peculiar ‘‘aging’’ effect.28 Second, the high concentrations
required to observe the Br2 gap modes lead to relatively
large changes in the average lattice constant of the KI host
and hence to shifts in the frequencies of the impurity modes
and broadening of the line shapes: thus, the frequencies of
the Br2 modes reported here are;0.4 cm21 lower than those
in Ref. 36 and the frequencies of the Cl2 modes, due to the
naturally occurring Cl2 impurities in this sample, are;0.05
cm21 higher than measured in a crystal with much lower
impurity concentrations; the Cl2 modes are also broadened
in this sample~compare Fig. 11 to Fig. 6!. The shift in the
frequencies of the Cl2 modes are in good agreement with
Vegard’s law,19 which predicts a shift of 0.03 cm21 using the
Cl2 A1g stress coupling coefficient measured previously16

and a nominal Br2 concentration of 0.15 mole %. Finally,
although Fig. 11 shows that the shifts of the two relatively
strong Cl2 gap modes in this sample are approximately the
same size as in an unstrained sample~cf. Fig. 6!, no evidence
is observed of the unusually large shift of the weak KI:Cl2

mode at 76.5 cm21: noted in Fig. 6: the strain induced by the
high Br2 concentration in this sample appears to perturb the
‘‘asymmetrical’’ 35Cl2:41K1 gap mode34 much more strongly
than either of the ‘‘symmetrical’’35Cl2 and37Cl2 gap modes.

An attempt was also made to investigate theE-field effect
on the strong KI:F-center gap mode at 82.7 cm21.37 An ex-
cimer laser was used to create theF centers in a KI crystal at
room temperature prior to the measurement, as described
previously,16 and the far-IR spectra following irradiation
showed anF-center gap mode comparable in strength to the
other KI gap modes discussed above. However, it was found

that the irradiated samples could not sustain even a field of
,40 kV/cm for more than a few minutes: apparently, theF
centers are still somewhat mobile under an appliedE field
even at liquid-He temperatures.

III. THEORY

In our original harmonic perturbed shell model for the
KI:Ag1 on-center configuration dynamics,7 the defect is
characterized by its mass and by assumed defect/nearest
neighbor ~021n! longitudinal force-constant changes,
d152DFxx~000,100!, and relaxation-induced nearest-
neighbor/fourth-nearest neighbor (1n24n) longitudinal
force-constant changes,d252DFxx~100,200!. All of the
other short- and long-range force constants are assumed to
remain unperturbed by the defect. We will refer to this as the
~d1,d2! model, which is discussed extensively in Ref. 8. The
force-constant changes~d1,d2! are fit to the measuredT1u
resonant and gap mode frequencies of 17.3 and 86.2 cm21,
respectively, yielding the values given in the first row of
Table VI. The model then predicts anEg resonant mode at
20.5 cm21, in fair agreement with the measured Raman peak
at 16.1 cm21.5,7 In addition, as discussed in the introduction,
the model also predicts nearly degenerate pocket gap modes
of different symmetries: anA1g ~nondegenerate! mode at
87.2 cm21, anEg ~twofold degenerate! mode at 86.0 cm21,
and theT1u ~threefold degenerate! mode at 86.2 cm21. The
displacement patterns of these modes are peaked strongly
away from the defect, on the family of six~200! sites.8

In Ref. 16 we combined this harmonic model with a
simple model for the anharmonicity in order to fit nearest-
neighbor cubic anharmonicities near the~200! sites to mea-

FIG. 12. Spectra of the relatively strong isotopically split
KI:Br2 gap mode doublet withno appliedE field ~solid lines! and
with an applied@100# E field ~dashed lines! of 85 kV/cm for
EIRiEdc. The resolution is 0.1 cm21 and the temperature is 1.4 K;
the sample is the same as in Fig. 11.~a! The 88.1 cm21 81Br2 gap
mode.~b! The 88.65 cm21 79Br2 gap mode. Note that the ordinate
scale in~a! is expanded 23 relative to that in~b!.

FIG. 11. Changes in the absorption coefficient of KI10.15
mole % KBr10.02 mole % CsI induced by a@100# E field of 85
kV/cm. The resolution is 0.1 cm21 and the temperature is 1.4 K.~a!
EIRiEdc. ~b! EIR'Edc. ~c! The corresponding spectrum at zero ap-
plied field. Note that very small frequency shifts are observed for
the KI:Br2 gap mode doublet~at 88.1 and 88.65 cm21! but not for
the Br2 pair mode at 74 cm21. Other weak modes seen here, iden-
tified previously as being due to Br2 ~Ref. 36!, show no measurable
shift with field. The KI:Cs1 gap mode at 82.9 cm21 is saturated in
this sample.
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sured stress-induced frequency shifts of theT1u IR-active
pocket gap mode. The resulting stress-fit anharmonicities
were unusual, in that they predicted that a stress-induced
decrease in the~100!-~200! ion separation would cause the
~100!-~200! longitudinal force constant toweaken, in sharp
contrast to the force-constant strengthening expected for the
usual repulsive-dominated model potentials which describe
typical alkali-halide nearest-neighbor interactions.38 How-
ever, the standard alkali-halide potential anharmonicities are
unable to reproduce the measured anomalousEg symmetry
stress coupling, which is responsible for our unusual stress-
fit anharmonicities in the first place.16

The stress-fit anharmonicities amount to a reparametriza-
tion of the pocket-mode stress measurements. In order to
check these anharmonicities, we have developed a theory for
the dc E-field-induced frequency shifts analogous to our
stress theory, and we combine it with our stress-fit anharmo-
nicities to predict the pocket-gap-mode staticE-field-induced
frequency shifts. These are then compared to the measured
shifts discussed earlier. In our theory, the dcE-field-induced
force-constant changes linear in the applied field are deter-
mined from the predictedE-field-induced microscopic
‘‘strains’’ via cubic anharmonicities. These force constant
changes are then combined with computed pocket-gap-mode
normalized displacement patterns to calculate the predicted
field-induced frequency shifts. This procedure for calculating
the field-induced pocket-gap-mode shifts is outlined in Fig.
13 and is described in greater detail in the Appendix.

The local ‘‘strains’’ needed are theE-field-induced ionic
displacements near the defect. As was the case for the local
stress-induced ionic displacements discussed in Ref. 16,
these field-induced displacements will be strongly affected
by the force-constant changes~d1,d2! in our model. For the
case where the applied forces in the pure and defect crystals
are identical, Elliot, Krumhansl, and Merrett39 have shown
how to relate the local microscopic defect-crystal strains to
their pure-crystal counterparts, using zero-frequency per-
turbed harmonic Green’s functions. As long as we assume
that the effective charges coupling the field to the ions re-

main unchanged by the introduction of the defect, this
method applies to theE-field-induced strains as well as to
the stress-induced strains. As a result, the pure-crystal
E-field-induced ionic displacements can be readily converted
to local displacements near the defect.

For a dc field applied along thex̂ direction, we find that
the resulting displacements are strongly dominated by those
on the Ag1 impurity and its two nearest-neighbor I2 ions at

TABLE VI. Theoretical KI:Ag1 resonant and gap mode frequencies, and the force-constant changes
~d1,d2! for the three harmonic defect models considered in the text, compared with experiment. The~d1,d2!
model is the model used in Refs. 1, 7, 8, and 17. The~d1,d2,d3! model adds a relaxation-induced force-
constant change,d350.6d2, to the ~d1,d2! model; this is done without adding any free parameters to the
~d1,d2! model, as discussed in the text. The QD model adds both the relaxation-induced force-constant
change,d350.6d2, and a Ag1 electronic quadrupolar deformability force-constant change to the~d1,d2!
model. For all three models,d1 andd2 are fit to the experimentalT1u resonant and gap mode frequencies. The
additional quadrupolar force constant change present in the QD model is fit to the experimentalEg resonant
mode frequency. The force-constant changes are given as fractions of the KI nearest-neighbor longitudinal
overlap~shell-shell! force constant,k518.84 N/m, of the breathing shell model. All frequencies are given in
cm21.

Model d1/k d2/k T1u T1u Eg A1g

~d1,d2!
a 20.563 20.531 17.3~fit! 86.2 ~fit! 20.5 37.3

~d1,d2,d3! 20.585 20.291 17.3~fit! 86.2 ~fit! 26.3 41.5
QD 20.585 20.291 17.3~fit! 86.2 ~fit! 16.1 ~fit! 41.5
Experimentb 17.3 86.2 16.1 c

aSee Ref. 8.
bSee Ref. 7.
cNot observed~see Ref. 7!.

FIG. 13. Schematic diagram illustrating the procedure for cal-
culating the staticE-field-induced mixing for both the KI:Ag1

pocket gap modes and low-frequency resonant modes. Note that the
defect-crystalE-field-induced displacements and the normalized
mode-displacement patterns are both determined from the harmonic
defect theory. The anharmonicity is only needed to determine the
force-constant changes produced by the localE-field-induced dis-
placements in the defect crystal.
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~6100!. This is consistent with the large force-constant
weakening at the defect and nearest-neighbor sites in our
~d1,d2! model.

The first-order defect-crystalE-field-induced ionic dis-
placements, when combined with cubic anharmonicity, pro-
duce harmonic force-constant changes linear in the applied
field. These force-constant changes would not affect an iso-
latedT1u mode. However, they canmix the nearly degenerate
A1g, Eg , andT1u pocket gap modes, producing frequency
shifts and IR activity for modes of all three symmetries. We
treat these force-constant changes as small and perform a
nearly degenerate perturbation-theory calculation in order to
determine this mixing. Although these force-constant
changes are linear in the applied field, it turns out that for our
QD model, which will be discussed later, the predicted mix-
ing is sufficiently small that force-constant changes produced
by second-order~;Edc

2 ! E-field-induced strains generate fre-
quency shifts which are comparable to shifts predicted by the
mixing. Our procedure for calculating the force-constant
changes produced by these higher-order strains is outlined in
Fig. 14 and is described in more detail in the Appendix. In
essence, we use the stress-fit cubic anharmonicities, coupled
with calculated first-order defect-crystalE-field-induced
strains, to determine quadratic~;Edc

2 ! cubic-anharmonicity
corrections to the first-order strains. We then compute the
lowest-order force-constant changes produced by theseEdc

2

strains. Notice that the cubic anharmonicity is used twice
here: once to calculate the second-order strains, and again to
determine the force-constant changes produced by these
strains. Hence, we will refer to theE-field-induced force-
constant changes and the resulting mode coupling produced
by these second-order displacements as ‘‘cubic-cubic’’ force-
constant changes and mode coupling.

In addition to the cubic-cubic mechanism, the first-order
field-induced displacements, when coupled toquartic anhar-
monicity, also produce force-constant changes quadratic in
Edc. Moreover, the coupling produced by these force-
constant changes has the same symmetry properties as the
cubic-cubic coupling. Hence, these two second-order effects
cannot be separated on the basis of symmetry arguments.
Unfortunately, the stress calculation only determinescubic
anharmonicities. We will estimate the shifts produced by the
quartic anharmonic mechanism using Born-Mayer anharmo-
nicities whenever these second-order effects cannot be ne-
glected.

A. „d1,d2… model pocket-mode shifts and mixing

We will now apply the quasiharmonic theory outlined
above to our~d1,d2! model and predict theE-field-induced
frequency shifts and mixing for the KI:Ag1 pocket gap
modes using the nearest-neighbor stress-fit cubic anharmo-
nicities determined in Ref. 16. In that work, we assumed that
the dominant stress-induced force-constant changes arise
from the strong and rapidly varying short-range overlap
forces and, as a result, we restricted our attention to nearest-
neighbor cubic anharmonicities. Furthermore, we assumed
that these anharmonicities are derivable from central poten-
tials, and we make the same assumptions here. Since the
pocket modes are strongly peaked on the fourth-neighbor
sites,~6200!, ~0620!, and~0062!, we will first identify the
cubic anharmonic coefficients needed to calculate the
E-field-induced force-constant changes between the~200!
site and its nearest neighbors. As we will show, the set of
anharmonic coefficients needed to determine these force-
constant changes includes the anharmonic coefficients neces-
sary to determine theE-field-induced force-constant changes
between all of the nearest-neighbor pairs of ions used in the
pocket-mode field-induced frequency shifts calculation.
Hence, the anharmonicities between the~200! site and its
nearest neighbors are the only independent anharmonicities
we need to consider for our~d1,d2! model.

In our pocket-mode stress study,16 we reduced to three the
number of independent anharmonic coefficients needed to
determine the pocket-mode stress-induced frequency shifts
by using various symmetry and model consistency argu-
ments and, for clarity, we now summarize those arguments.
Symmetry considerations, together with the central potential
assumption, reduce to nine the number of independent cubic
anharmonic coefficients needed to determine the force-
constant changes between the~200! site and its nearest
neighbors. Only six of these nine coefficients are needed to
determine the stress andE-field induced frequency shifts:

A1[Fxxx~100,100,200!, A2[Fxxx~200,200,300!,

B1[Fyxy~100,100,200!, B2[Fxxz~200,200,201!,

B3[Fyxy~200,200,300!, C2[Fxxx~200,200,201!.

These coefficients are appropriate to the zero-field, un-
stressed defect-crystal equilibrium configuration, of course.
Since in our~d1,d2! model only the~000!-~100! and ~100!-
~200! longitudinal force-constant changes are perturbed, we
will treat A2, B2, B3, andC2 as pure crystal coefficients, as

FIG. 14. Schematic diagram illustrating the procedure for cal-
culating the staticE-field-induced cubic-cubicEdc

2 frequency shifts
for the KI:Ag1 gap modes. Note that the anharmonicity is needed to
determine both the second-orderE-field-induced displacements and
the force-constant changes produced by these displacements.
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we did in the stress paper.16 This leads toC2[0 andB3[B2 .
Moreover,B2 involves justV8(r ) andV9(r ), both of which
may be obtained from the known nearest-neighbor overlap
~shell-shell! force constants of the breathing shell model,40

together with the Coulomb interaction. KnowingB2, this
leaves us with three unknown independent anharmonic pa-
rameters, namelyA1, A2, andB1, which were fit to the three
measured stress-induced coupling coefficients.16 Note that
sinceA2 andB2 are coefficients appropriate to the pure crys-
tal, we have at the same time determined the anharmonic
coefficients necessary to calculate theE-field-induced force-
constant changes between any two adjacent host ions, other
than the~100!-~200! family involved in our ~d1,d2! model.
Since the pocket modes have such small displacements on
the defect and the defect’s nearest neighbors, these are the
only anharmonicities we need in addition to the anharmo-
nicities between the~200! site and its nearest neighbors, in
order to calculate the field-induced pocket-gap-mode shifts.

As was the case with the stress calculation,16 we found it
necessary to include contributions from other sites besides
the fourth neighbors in our staticE-field calculations of the
gap-mode mixing. In particular, for the~d1,d2! model, we
included contributions from the~100!, ~200!, ~300!, ~400!,
~500!, ~600!, ~101!, ~201!, and~301! sites, together with sites
equivalent to these by symmetry. Calculations including ad-
ditional displacements produce changes of less than 1% in
the predictedE-field-induced gap-mode coupling coeffi-
cients. This small change in the coupling is negligible com-
pared to the larger uncertainties~;13%! in our stress-fit cu-
bic anharmonicities, and we will thus neglect these
additional displacements in our calculations. Furthermore,
similar arguments show that we do not need to consider ad-
ditional displacements beyond those listed above in order to
determine theE-field-induced mode coupling for any of the
other models considered in this paper.

As shown in the Appendix, a dcE-field applied along the
@100# direction mixes theEg2, T1ux, andA1g pocket modes.
Here T1ux denotes theT1u partner which couples to
x-polarized radiation, andEg2 denotes one of the two degen-
erateEg partners. For the strongest@100# applied field in our
experiments, namely 87 kV/cm, we predict three mixed
modes, at frequencies 84.5, 86.8, and 88.2 cm21; as the field
is reduced to zero, these become the unperturbedEg , T1u,
andA1g pocket modes at 86.0, 86.2 and 87.2 cm21, respec-
tively. The absorption strengths of these mixed modes for 87
kV/cm are, relative to that of the zero-fieldT1u pocket gap
mode,Sx50.38, 0.11, and 0.51, respectively. Thus the origi-
nal IR-activeT1u pocket mode loses most of its absorption
strength, while the original even-parityA1g andEg pocket
modes acquire substantialT1u character and consequent IR
activity.

The measured parallel polarization shift in peak position
of the T1u pocket gap mode at 1.4 K is shown by the solid
curve in Fig. 15~a! for the same applied field considered
above. The other panels of Fig. 15 compare the experimental
difference spectra with the predictions of our~d1,d2,d3! and
QD models, which will be discussed in Secs. III B and III C,
respectively. The measured spectrum shown in this figure
was created by subtracting the IR-absorption spectrum mea-
sured with the field off from the spectrum measured with the
field on. To compare this result to our model predictions in

Fig. 15, we assigned a Voigt line shape to each of the mixed
modes and subtracted this spectrum from our predicted zero-
field spectrum. The Voigt line shape was determined from
the measured zero-field line shape for the IR-activeT1u
pocket gap mode.8,17For the nonzero field case, we also used
this line shape, but at our predicted frequency and with a
strength obtained by combining the observed zero-field
strength with our predictedrelative strength for each IR-
active pocket mode. This procedure was followed for each of
the three model calculations shown in Fig. 15. For our
~d1,d2! model of Fig. 15~a!, the mixing is large and, hence,
second-order effects, such as the cubic-cubic coupling, were
neglected in our calculation of the predicted difference spec-
trum. Notice that the predicted~d1,d2! model difference
spectrum differs dramatically from the measured spectrum.
The measured difference spectrum corresponds to anE-field-
induced frequency shift of;0.015 cm21, which is small
compared to the unperturbed mode linewidth~FWHM! of
;0.5 cm21. In sharp contrast, our~d1,d2! model predicts
frequency shifts nearly two orders of magnitude larger. Car-
rying through the stress-fit anharmonicity uncertainties in the
calculation does not significantly improve the agreement be-
tween theory and experiment. In addition, note that the shape

FIG. 15. Experimental Stark-effect difference spectra for the
Ag1 pocket modes, compared with the predictions of the three
models. The measured spectrum,Da[a~Edc587 kV/cm!
2a~Edc50 kV/cm! for EIRiEdc@100#, is given by the solid curves.
The theoretical predictions are given by the dashed curves:~a!
~d1,d2! model, ~b! ~d1,d2,d3! model, and~c! QD model. Both the
~d1,d2! and~d1,d2,d3! model predictions are an order of magnitude
too large. In order to generate the predicted difference spectra, we
assigned a Voigt line shape to each mode predicted by our mixing
calculation, as discussed in the text.~Note that the QD model cal-
culated frequency shifts of Table X are given directly by the theory,
with no line-shape assumptions needed.!
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of the measured difference spectrum closely resembles the
derivative of the unperturbed line shape, which is what one
would expect when the mode is shifted rigidly in frequency
by the field with no mixing. In contrast, the three-peak dif-
ference spectrum predicted by our~d1,d2! model reflects the
strong mixing in this model, where both of the even-parity
pocket modes acquire significantT1u character and IR activ-
ity.

If we use cubic anharmonicities calculated from Coulomb
plus Born-Mayer potentials consistently fit to our model’s
defect-induced harmonic force constant changes and breath-
ing shell model parameters~see Ref. 16!, the predicted
E-field-induced mixing turns out to be over an order of mag-
nitude smaller than that predicted using the stress-fit anhar-
monicities. In Ref. 16, we were able to obtain Born-Mayer-
like nearest-neighbor stress-fit anharmonicities~i.e.,
anharmonicities consistent with a repulsive-dominated po-
tential! using our~d1,d2! model by weakening ourd2 force-
constant change beyond its fit value to the measured IR spec-
tra. However, we were not able to find ad2 force constant
weak enough to do this and also maintain a reasonable fit to
the measured IR spectra. This suggests that in order to rec-
oncile our theory for the on-center dynamics of KI:Ag1 with
the measured pocket-gap-mode stress andE-field results, we
should attempt to reproduce these Born-Mayer-like stress-fit
anharmonicities and maintain our agreement with the IR
spectra by adding other harmonic force-constant changes to
our original ~d1,d2! model. The question is whether we can
do this without introducing an unreasonable number of new
parameters and without destroying the successful results of
Refs. 8 and 17 and for the pocket-mode isotope effect.

B. „d1,d2,d3… model pocket-mode shifts and mixing

Our ~d1,d2! model assumes that defect-induced inward
static relaxation of the silver ion’s six nearest neighbors rela-
tive to their pure crystal positions produces the force-
constant changed252DFxx~100,200!. The magnitude of its
fit value is roughly half the pure KI nearest-neighbor overlap
force constant~see Table VI!. This large value implies that
the ~100!-~200! relaxation is substantial, suggesting that
~200!-~300! relaxation-induced force-constant changes could
also be important. Moreover, ad3[2DFxx~200,300! force-
constant change would have a strong effect on the pocket-
gap-mode frequencies since the displacement patterns for
these modes are peaked on the fourth-neighbor sites,~200!.
Page20 has shown that this force-constant change~and its
analogs dn[2DFxx[(n21)00,n00]! can be determined
without introducingany new parameters, as follows. If we
make the reasonable assumption that the presence of an iso-
electronic defect, such as Ag1, in theunrelaxedcrystal pro-
duces radial forces on just the defect’s six nearest neighbors
and work within a linearized theory~i.e., small relaxations!,
we can use the pure crystal harmonic shell model static
Green’s functions to compute the static displacements
throughout the lattice,relative to those on the defect’s six
nearest neighbors. These ‘‘relative’’ static relaxations are
largest along the six~100! directions. If we combine these
relative relaxations with the assumption of cubic anharmo-
nicity arising from central potentials between adjacent host
lattice ions, we can then compute the force-constant change
d3 uniquely in terms of d2. For KI this procedure yields

d350.6d2.
20 This result has been obtained without adding

any free parameters to the~d1,d2! model.
For this new ‘‘relaxation model’’~d1, d2,d3!, we again fit

d1 and d2 to the measured IRT1u resonant and gap mode
frequencies. Table VI summarizes the results of these fits. As
before, we find three nearly degenerateA1g, Eg , and T1u
pocket gap modes with displacements strongly peaked on the
defect’s fourth-neighbor sites. The predictedEg andA1g gap-
mode frequencies are 86.0 and 87.8 cm21, respectively,
which are almost identical to the frequencies predicted by the
~d1,d2! model. The second row of Table VII lists other pre-
dicted harmonic properties for the~d1,d2,d3! model, and all
are seen to be in substantially better agreement with experi-
ment than for the~d1,d2! model, except the predicted pocket
gap mode isotope strength, which remains essentially un-
changed. Despite the improvements shown in Table VII and
the fact that the~d1,d2,d3! model is well motivated physi-
cally, this model has at least one serious drawback: it pre-
dicts a Raman-activeEg symmetry resonant mode at 26.3
cm21, 10 cm21 above the measured frequency and 6 cm21

above the~d1,d2! model prediction, as indicated in Table VI.
We now turn to the anharmonic predictions of this model.

In the ~d1,d2,d3! model, the~200!-~300! longitudinal force
constant is perturbed in addition to the~000!-~100! and
~100!-~200! longitudinal force constants. In Sec. III A, we
used the fact that the~d1,d2! model only perturbs the~000!-
~100! and ~100!-~200! force constants in order to justify
treating just the A15Fxxx~100,100,200! and
B15Fyxy~100,100,200! cubic anharmonic coefficients as
defect-crystal coefficients, and all others as pure crystal co-
efficients. For consistency, we now need to treat
A25Fxxx~200,200,300! andB35Fyxy~200,200,300!, in ad-
dition to A1 andB1, as defect-crystal anharmonicities. This
introduces two new free anharmonic parameters into our
quasiharmonic theory. However, we can use the same defect-
induced relative relaxations argument outlined above and
used for computing the harmonic force constantd3 in terms
of d2, to show that (A22A3)50.6(A12A3) and
(B42B3)50.6(B42B1), where we have introduced the
pure-crystal anharmonic coefficientsA35Fxxx~300,300,400!

TABLE VII. Predicted harmonic properties for the three defect
models discussed in the text, compared with experiment. First col-
umn: frequency shifts of theT1u resonant mode for a defect isotope
substitution~107Ag1→109Ag1!. Second column: shifts of theT1u
pocket gap mode for a host isotope substitution~39K1→41K1!.
Third column: ratio of the absorption strength of the isotope pocket
gap mode to that of the unperturbed 86.2 cm21 pocket gap mode for
a 7% natural abundance of41K1. Fourth column: the absorption
strength ratio for theT1u gap and resonant modes. None of the
parameters of these models were adjusted to fit the measurements.

Model
Dv ~cm21!
res. mode

Dv ~cm21!
gap mode Si /Sg Sg/Sr

~d1,d2! 20.05 21.46 0.073 1.4
~d1,d2,d3! 20.12 21.63 0.074 3.0
QD 20.12 21.64 0.073 3.0
Expt. 20.1460.03a 21.7 0.04 3b

aReference 2.
bReference 7.
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and B45Fyxy~300,300,400!. In order to derive these rela-
tions, we have assumed that the dominant relaxation-induced
change in these cubic anharmonicities is produced by pure-
crystal quartic anharmonicity arising from nearest-neighbor
central potentials. Furthermore, we have assumed thatA3 and
B4 are pure crystal anharmonicities since the~300!-~400!
harmonic force constants are not perturbed in the~d1,d2,d3!
model. Furthermore, point symmetry and the central poten-
tial assumption lead to B45B25Fxxz(200,200,201)
52.019331011 dyn/cm2. Using these approximations, we
have again reduced to three the number of free anharmonic
parameters, which can then be fit to the three measured
pocket-gap-mode stress coefficients, exactly as for the
~d1,d2! model.

The resulting stress-fit anharmonicities for the~d1,d2,d3!
model are listed in Table VIII, and the correspondingE-field-
induced difference spectrum predicted using these fit anhar-
monicities is given in Fig. 15~b!. Notice that the~d1,d2,d3!
model stress-fit anharmonicities given in Table VIII are simi-
lar to our earlier~d1,d2! model anharmonicities, and hence
they suffer from the same shortcomings. More importantly,
notice that the~d1,d2,d3! model prediction for theE-field-
induced difference spectrum shows little or no improvement
over the~d1,d2! model spectrum—the predicted field-induced
frequency shifts for the~d1,d2,d3! model also exceed the
measured shifts by nearly two orders of magnitude.

C. QD model pocket-mode shifts and mixing

A consistent explanation of the measured stress and
E-field pocket-gap-mode shifts is obtained by adding
to the ~d1,d2,d3! model a Ag1 quadrupolar deformability
~QD! induced harmonic force-constant change,dQD
[DFxx~100,2100!52DFxy~100,010!, together with
symmetry-related terms reflecting theOh symmetry of the
defect, such asDFyy~010,0210!52DFxz~100,001!5dQD.
Quantum mechanically, such force-constant changes arise
from virtual s-d electronic transitions and have been argued
to be important for the Ag1 ion.21–27,41This force-constant
change couples exclusively toEg symmetry modes, and thus
we expect it to have a strong effect upon theEg symmetry
resonant-mode frequency and stress-induced displacements,
which are the quantities we want to change.

Our QD model adds but asinglefree harmonic parameter
to those included in the original~d1,d2! model; d3 is still

determined uniquely in terms ofd2, as described above. As
before, we obtain the force-constant changesd1 and d2 by
fitting the measured IR resonant and pocket-gap-mode peaks
at 17.3 and 86.2 cm21, and hence we necessarily obtain the
previous~d1,d2,d3! model values sincedQD does not affect
T1u symmetry modes. Having fit two of the three harmonic
model parameters, we then adjustdQD to reproduce the mea-
sured 16.1 cm21 Eg Raman peak. The results of these fits are
summarized in Table VI. The QD model still predicts three
nearly degenerateA1g, Eg , and T1u pocket gap modes,
which are virtually identical in frequencies and displacement
patterns to the pocket gap modes predicted by the~d1,d2! and
~d1,d2,d3! models. Moreover, the resulting predicted har-
monic properties of Table VII~third row! are seen to retain
the markedly improved agreement with experiment of the
~d1,d2,d3! model. Hence, by the addition of the singledQD
force-constant change parameter, we have been able to cor-
rect the only serious drawback of the harmonic predictions of
the ~d1,d2,d3! model, namely its predictedEg resonant mode
frequency, without losing the~d1,d2,d3! model’s improved
agreement with other experimental harmonic results.

The QD model values for the stress-fit anharmonicities
are listed in the third row of Table VIII, and we see that they
are now ‘‘normal,’’ i.e., they are consistent with standard
repulsive dominated nearest-neighbor potentials~in particu-
lar, A1 is negative!. Figures 16 and 17 compare the predicted
QD model and pure-crystal harmonicA1g and Eg2 stress-
induced displacements, respectively. Inspection of Fig. 17~b!
reveals that the~100!-~200! separation actually increases un-
der anEg symmetry stress, in contrast with the separation
decrease exemplified by the pure-crystal displacements
shown in Fig. 17~a! and the ~d1,d2! model displacements
given in Ref. 16. Notice that no such increase is seen for the
QD modelA1g symmetry strains. Our predictedEg symme-
try stress-induced increase in the~100!-~200! separation
means that a normal fit value of the~100!-~200! anharmonic-
ity ~A1,0! produces a weakened~100!-~200! force constant,
and this weakening partially cancels the stress-induced stiff-

TABLE VIII. Anharmonic parameters determined from the
KI:Ag1 T1u gap mode stress coupling coefficients,A, B, andC,
measured in Ref. 16, for the three harmonic defect models dis-
cussed in the text. For comparison, the last row gives the anharmo-
nicities obtained by fitting a Coulomb plus Born-Mayer potential to
the harmonic parameters of the QD model. The units are 1012

dyn/cm2.

Model A1 A2 B1

~d1,d2!
a 661 21763 364

~d1,d2,d3! 962 2761 2.362.7
QD 20.5660.37 24.260.5 2.362.7
BM-QD 24.18 25.11 0.004 03

aReference 16.

FIG. 16. Calculated KI:Ag1 stress-inducedA1g symmetry dis-
placements in thex-y plane for~a! the pure crystal and~b! the QD
model. The pure-crystal and defect-crystal strains are plotted to the
same scale. The displacements are linear in the applied stress, and
the scale was chosen to show the displacement pattern clearly. Since
none of the calculations of this paper require knowledge of the
absolute equilibrium positions of the ions in the unstressed, zero
E-field, defect lattice, the stress-induced displacements shown here
and in Fig. 17 are drawn with respect to the pure host-crystal equi-
librium positions.
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ening of other force constants, leading to the smallEg stress
coupling seen experimentally for theT1u pocket gap mode.
In contrast, the~d1,d2! and ~d1,d2,d3! models could only ac-
count for the necessary stress-induced force-constant weak-
ening by using an unphysical fit value~A1.0! for the cubic
anharmonicity.

Figure 18 shows theE-field-induced mixing predicted by
the QD model for a@100# appliedE field of 87 kV/cm. The
QD model predicted first-order mixing and frequency shifts
for these modes are orders of magnitude smaller than for the
~d1,d2! model.

The mixing effects predicted for the pocket gap mode by
the QD model are in fact so small that higher-order effects
are important, as we have already anticipated. In particular,
we find that the QD model;Edc

2 cubic-cubic pocket-gap-
mode frequency shifts are comparable to those obtained from
the first-orderE-field-induced mixing. In the Appendix, it is
shown that the second-orderE-field-induced displacements,
which give rise to the cubic-cubic shifts, are given by@Eq.
~A26!#

ja
2~n!52

1

2 (
mb lgkl

Gab~nm!Fbgl~mlk!jg
~1!~ l !jl

~1!~k!,

~1!

where the$ja
~1!(m)% appearing on the right-hand side of this

equation are the defect-crystal first-orderE-field-induced
displacements determined from the harmonic theory and the
$Gab(mn)% are zero-frequency harmonic Green’s-function
elements for the defect lattice. Equation~1! formally re-
sembles a harmonic response problem, with forces deter-
mined by sums over the products of the first-orderE-field-
induced displacements multiplied by the cubic anharmonic
coefficients. Indeed, as shown in the Appendix, once we
have found these ‘‘effective forces’’ using calculated first-
order displacements and stress-fit cubic anharmonic coeffi-
cients, we can determine the pure-crystal harmonic displace-
ments induced by these forces using pure-crystal zero-
frequency Green’s functions. These pure-crystal
displacements are then converted into defect-crystal cubic-
cubic displacementsj~2! needed to calculate the defect-
crystal cubic-cubic shifts, following the same procedure we
used to convert pure-crystal first-orderE-field-induced dis-
placements into defect-crystal first-order displacements.
Note that the determination of the pure-crystal displacements
from the effective forces is simply a formal procedure used
to simplify our calculation of the defect-crystal displace-
ments. In particular, this approach allows us to easily adapt
the numerical machinery we have developed to solve the
stress problem in Ref. 16 to this cubic-cubic problem, which
has the same symmetry properties as the stress problem.

The first-orderE-field-induced displacements predicted
for the QD model are very similar to the~d1,d2! model dis-
placements, in that for both models theE-field-induced dis-
placements near the defect are an order of magnitude larger
than the displacements farther out in the lattice. This sug-
gests that the effective forces which produce the second-
order displacements in the neighborhood of the defect, as
described above, will be determined primarily by the large
first-order displacements near the defect. Indeed, we find in
our calculations that, for an applied@100# E field, the effec-
tive force on the~100! site is nearly two orders of magnitude
larger than the effective forces on the other sites we consid-
ered. In order to determine these effective forces, we as-
sumed nearest-neighbor cubic anharmonicity derivable from
central potentials, as we did in the first-order calculation.
However, the calculation of the effective force on the~100!
site involves the~000!-~100! longitudinal cubic anharmonic
coefficient A05Fxxx~000,000,100!, and our pocket-gap-
mode stress fits do not determine this cubic anharmonic co-
efficient. A similar calculation for the 17.3 cm21 T1u reso-
nant mode, whose displacement pattern is strongly peaked

FIG. 17. Calculated KI:Ag1 stress-inducedEg2 symmetry dis-
placements in thex-y plane for~a! the pure crystal and~b! the QD
model. Displacements for only one of the twoEg partners are
shown, and the pure-crystal and defect-crystal strains are plotted to
the same scale. The displacements are linear in the applied stress,
and the scale was chosen to show the displacement pattern clearly.
As for Fig. 16, the stress-induced displacements shown here are
drawn with respect to the pure host-crystal equilibrium positions.
Notice in ~b! that the~200!-~100! separation actuallyincreasesun-
der stress. When coupled with normal repulsive-dominated anhar-
monicity, this is consistent with the experimental observation of a
small pocket-gap-modeEg-stress coupling coefficient, as discussed
in the text.

FIG. 18. QD model predicted mixing of the nearly degenerate
A1g, Eg2, andT1ux pocket gap modes in KI:Ag

1, under an applied
87 kV/cm Edc@100# static E field. The Sx fractions give the
strengths of thex̂-polarized absorption relative to the zero-field ab-
sorption, and the dashed lines connect the zero-field modes with the
mixed modes that they evolve into as the field magnitude varies
from zero to 87 kV/cm. The predicted mixing for theA1g symmetry
pocket gap mode at 87.8 cm21 is an order of magnitude smaller
than the mixing shown here for theT1u andEg symmetry modes.
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on the defect site, can give us this anharmonicity. The results
of such a calculation are given in Table IX, where we have fit
the anharmonic coefficients A05Fxxx~000,000,100!,
A15Fxxx~100,100,200!, andB05Fxyx~000,000,010! to the
measured KI:Ag1 17.3 cm21 T1u resonant mode stress cou-
pling coefficients given in Ref. 3. For comparison, we have
also reported the results of similar calculations using the
~d1,d2! and~d1,d2,d3! models. TheA1 coefficient used in this
fit was also used in the pocket-gap-mode stress fit. Compar-
ing the results in Table IX to the pocket-mode stress fits
given in Table VIII, we see that, within the uncertainties, the
QD model is the only model which produces consistent gap
and resonant mode stress-fit values forA1.

Returning to the cubic-cubic calculation, we were able to
calculate the effective forces produced by anEdc @100# field
for the ~6100!, ~6200!, ~6300!, ~0610!, and ~0061! sites
by using the resonant and pocket-mode stress-fit anharmo-
nicities listed in Tables VIII and IX.~For A1, we used the
pocket-mode stress-fit values of Table VIII.! Even though the
effective forces on the~6200!, ~6300! sites are much
smaller than the~6100! effective force, we included these
forces in our calculation because they are close to the pock-
ets where the gap modes have large displacements. We in-
cluded the~0610!, ~0061! effective forces because they di-
rectly act upon ions affected by the QD force constant, and
we have found these forces to be significant for determining
theEIR'Edc@100# shifts.

For the sameE field considered in Fig. 18, the predicted
cubic-cubicT1ux mode shift is 0.009 cm

21, which is compa-
rable to the first-order shift shown in Fig. 18. In comparison,
using quartic anharmonicities estimated from a Coulomb
plus Born-Mayer potential fit to the harmonic parameters of
the QD model, the second-order quartic anharmonic Stark-
effect shift predicted for this same field is 0.003 cm21. This
is a significant fraction of our cubic-cubic shift, but, since we
do not have better estimates of the quartic anharmonicities
needed to determine this shift, we are going to omit it from
our calculations, keeping in mind that this neglected term
might produce a slight increase in our overall predicted
shifts.

Figure 15~c! compares the measuredE-field-induced dif-
ference spectrum to the spectrum predicted by our QD model
using our QD model stress-fit anharmonicities. The calcu-
lated difference spectrum includes both first-order mixing
and second-order cubic-cubic shifts. The QD model results
are a vast improvement over the~d1,d2! and~d1,d2,d3! model

predictions given in Figs. 15~a! and 15~b!. The measured and
computed shifts corresponding to the difference spectra in
Fig. 15~c! are listed in Table X, along with shifts for other
probe-field geometries. Note that these predictions are given
directly by the theory, with no line-shape assumptions
needed. The computed shifts are determined from strength-
weighted frequency averages,v̄[S iSiv i /S iSi , as a function
of appliedE-field strength. Of course, only field-induced IR-
active modes near the 86.2-cm21 mode are included in the
average, since the small contribution to the predicted differ-
ence spectra from these modes strongly overlaps with the
86.2-cm21 contribution. Thus, for example, we included the
field-induced IR-activeEg gap mode near 86.0 cm21, when
it appears, in our averages, but did not include the field-
inducedA1g mode at 87.8 cm21. Over the range of field
strengths attained in the present study, our predicted QD
model shifts are found to be quadratic in the field to within
1%, despite the mixing and in agreement with the experi-
mental results. This is not surprising considering that the
cubic-cubic mechanism taken alone gives frequency shifts
which are purely quadratic in the field, and the mixing
mechanism alone gives an approximately quadratic depen-
dence for sufficiently small fields, such as those considered
here. The uncertainties in the predicted shifts given in Table
X arise from uncertainties in the stress measurements, which
are propagated through our calculations via the computed
uncertainties in the stress-fit anharmonicities. The predicted
and measured shifts for theEIRiEdc@100# probe-field geom-
etry are seen to overlap, while the predicted shift for
EIR'Edc@100# is half the measured shift. The predicted and
measured shifts forEdc@110# also overlap, but the uncertainty
in the measured shifts for this field direction precludes strong
conclusions. The corresponding shifts for the isotope pocket
gap mode are given in Table XI, and we see that the pre-
dicted and measured values for this mode are also in good
agreement.

As mentioned above, we neglected the second-order shifts
produced by quartic anharmonicity. For theEIRiEdc@100#
shifts given in Table X, the estimated quartic anharmonic
shift is roughly 1/3 of the predicted shift, so including this
shift could slightly improve the agreement between the pre-
dicted and measured shifts. In contrast, the quartic anhar-
monic shift for theEIR'Edc@100# probe-field geometry is two
orders of magnitude smaller than the shift given in Table X.

TABLE IX. Anharmonic parameters determined from the
KI:Ag1 T1u resonant mode stress coupling coefficients,A, B, and
C, measured in Ref. 3. Stress-fit anharmonicities determined from
the three harmonic defect models discussed in the text are given.
The values for the anharmonicitiesA2 andA3 from the pocket-gap-
mode stress fits are included in the calculation; neglecting these
pocket-mode stress-fit terms changes the stress-fit values listed here
by roughly 10%. The units are 1012 dyn/cm2.

Model A0 A1 B0

~d1,d2! 34615 295637 0.1460.09
~d1,d2,d3! 2461 121679 0.0660.04
QD 21.460.3 214623 0.0660.04

TABLE X. Measured and QD model predictedE-field-induced
frequency shifts for theT1u pocket gap mode. The values in paren-
theses give the predicted minimum and maximum shifts produced
by anharmonic parameters consistent with the uncertainties in the
measuredT1u gap and resonant mode uniaxial stress coefficients.

Edc EIR Dv/DE2 @1026 cm21/~kV/cm!2#

@100# @100# Experiment 1.7060.09
QD model 1.13~0.67/1.67!

@100# @010# Experiment 20.9360.05
QD model 20.42 ~20.28/20.58!

@110# @110# Experiment 0.0860.36
QD model 0.32~0.12/0.54!

@110# @11̄0# Experiment 0.2060.29
QD model 0.39~0.27/0.55!
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Furthermore, there is no mixing predicted for this geometry
and, hence, theEIR'Edc@100# shift is solely a cubic-cubic
effect. The measured pocket gap modeEIR'Edc@100# shift is
very unusual in that no other gap or resonant mode has ever
been reported with a frequency shift for this probe field ge-
ometry. If we set our quadrupolar force constant change to
zero when determining the cubic-cubic displacements from
the effective forces, we find that the resultingEIR'Edc@100#
shift is a factor of 4 smaller than the shift predicted with the
silver ion QD force-constant change included. Hence, we see
that the silver ion QD also plays an essential role in produc-
ing this unusualEIR'Edc@100# field-induced shift.

D. Resonant mode electric-field-induced shifts and mixing

Using the resonant mode stress-fit QD anharmonicitiesA0
andB0 given in Table IX~again takingA1 from Table VIII!,
together with our calculated first-orderE-field-induced
strains and resonant mode displacement patterns, we can pre-
dict theT1u andEg low-frequencyresonantmodeE-field-
induced mixing. In Fig. 19, the results of this calculation are
compared with the mixing measured by Kirby.4,5 The pre-
dicted and measured shifts are found to be in excellent agree-
ment for all four defect/probe geometries considered by
Kirby. It is worth noting that the measured 17.3-cm21 mode
frequency shifts forEIRiEdc@100# are consistently slightly
smaller than the predicted shifts. This might indicate that the
T1u mode is being mixed with another mode to produce one
of the weakE-field-induced IR-active modes seen by Kirby
at frequencies above 20 cm21. However, the slight disagree-
ment between theory and experiment seen in Fig. 19~a! is too
small to draw any conclusions on this point.

It is instructive to extend our predictions for the gap-mode
mixing beyond the maximum field strengths attained here.
The solid and dashed curves in Fig. 20~a! show the predicted
frequencies for theT1ux and Eg2 pocket gap modes as a
function of the dc field strength for anEIRiEdc@100# geom-
etry. For comparison, the experimentally measured IR fre-
quencies for the pocket gap mode are included as squares.
Notice that the experimental points lie very slightly below
the predictedT1ux frequencies. However, as discussed in
Sec. III C and just below, the predictedT1ux frequency shifts
alone do not determine the observable frequencies, owing to

the experimental linewidth, the smallness of the shifts, and
the mode mixing produced by the applied field. The applica-
tion of the static field mixes theT1ux andEg2 modes, so that
the Eg2 mode acquires someT1ux character and becomes
field-induced IR active. This is shown in Fig. 20~b!, which
plots the predicted IR strengths for the mixed modes as a
function of dc field strength. As the magnitude of the dc field
increases, the ‘‘Eg2’’ mode ~named for its symmetry at zero
applied field! is seen to gain strength from the ‘‘T1ux’’ mode,
due to the mixing. Because of the relatively large experimen-
tal pocket-mode linewidth~0.5 cm21 FWHM!, the mixing
and frequency separation of the two modes for the applied
field strengths used in our experiments are sufficiently small
that the mixing effects and mode shifts are not separately
resolvable. This is clearly shown in Fig. 15~c!. For such a
small-mixing case, it is appropriate to use a strength-
weighted frequency average in order to compare the pre-
dicted frequency shifts to the experimental shifts. Doing this
brings the predicted shifts into better agreement with the
experimental shifts shown in Fig. 20~a!. At the largest fields
shown in Fig. 20, the predictedT1ux2Eg2 mixing increases
dramatically. For example, atEdc5500 kV/cm, the theoreti-
cal Eg2 mode strength is nearly one third of theT1ux
strength. Our QD model predicts that for such large fields,
the field-induced IR-active ‘‘Eg2’’ mode should be readily
observable.

IV. DISCUSSION

It is interesting to compare theE-field-induced frequency
shifts of the gap modes, presented in this paper, with the

TABLE XI. Measured and QD model predictedE-field-induced
frequency shifts for the isotope pocket gap mode. The values in
parentheses give the predicted minimum and maximum shifts pro-
duced by anharmonic parameters consistent with the uncertainties
in the measuredT1u gap and resonant mode uniaxial stress coeffi-
cients.

Edc EIR Dv/DE2 @1026 cm21/~kV/cm!2#

@100# @100# Experiment 1.1360.10
QD model 1.14~0.79/1.60!

@100# @010# Experiment 21.1160.08
QD model 20.38 ~20.25/20.53!

@110# @110# Experiment 20.2560.46
QD model 0.38~0.27/0.53!

@110# @11̄0# Experiment 0.1760.20
QD model 0.38~0.27/0.53!

FIG. 19. Comparison between the QD model predicted and the
measuredE-field-induced T1u2Eg resonant-mode mixing for
KI:Ag1. This figure plots the mode frequencies as a function of
applied field for ~a! EIRiEdc@100#, ~b! EIRiEdc@110#, and ~c!
EIR@11̄0#'Edc@110#. The symbols give the frequencies measured in
Ref. 5, while the solid curves are the QD model predictions and the
dashed curves encompass the range of predicted shifts consistent
with the uncertainties in the stress-fit anharmonicities. No shifts are
predicted or measured for theEIR@001#'Edc@110# field-probe geom-
etry. The higher frequency mode in these figures becomes the IR-
active T1u resonant mode at zero field, and the lower frequency
mode becomes theEg resonant mode, which is field-induced IR-
active for nonzero fields due to mixing with theT1u mode.
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E-field-induced shifts measured previously for resonant
modes: the frequency shifts of the KI:Ag1 and KI:Cl2 gap
modes are at least two orders of magnitude smaller than that
of the T1u resonant modes of KI:Ag1 ~Ref. 5! and of
NaI:Cl2,29 for the same applied field. Previously, some reso-
nant mode systems, such as NaCl:Cu1 and KBr:Li1, were
also found to exhibit very smallE-field effects, perhaps
within an order of magnitude of the gap-mode results; how-
ever, those measurements were not accurate enough to per-
mit a detailed comparison with the gap mode.29 In addition,
the gap modes of Cs1 and Rb1 in KI show noE-field shift at
all within our experimental precision. In contrast, the
uniaxial stress coupling coefficients are comparable for both
the gap and resonant modes of the same system.16 Note that
from a purely experimental point of view, for the gap modes
studied in this work the frequency shifts at the maximum
sustainable dcE field are 1–2 orders of magnitude smaller
than the shifts measured at the maximum sustainable
uniaxial stress;16 this comparison points out the different lev-
els of difficulty associated with these two experiments.

The Stark effect observed in the course of this work for
the KI:Ag1 pocket-gap modes is unusual in additional re-
spects. First, Ag1 appears to be the only substitutional cation
defect whose gap modes showany measurableE-field-
induced shifts. Second, even though small, the KI:Ag1

pocket-gap-modeE-field-induced shifts are significantly
larger than any otherE-field effect measured for gap modes
due to other impurities, such as those due to substitutional
anion defects, e.g., Cl2 and Br2 in KI. Finally, the shifts of
the Ag1 pocket-gap modes forEIR'Edc@100# are fairly
unique in that only one of the previously measured resonant
modes, due to KBr:Li1, showedany E-field effect in this
polarization;29 even those other gap modes which were found
to have small shifts forEIRiEdc@100# in the course of this
work ~e.g., Cl2! show no effect for EIR'Edc@100#, qualita-
tively similar to the case of the resonant modes.

Although very small at the maximum fields sustainable in
the present apparatus, intriguing effects were found for both
the Cl2 and Br2 gap modes in KI. For Cl2, it is surprising
~1! that the two stronger gap modes due to the two naturally
occurring Cl2 isotopes have such differentE-field-induced
shifts, and~2! that the weak mode identified previously as
arising from a perturbation of the strong isotopically split
doublet by the presence of host-41K1 isotopes has a much
largerE-field-induced shift than the unperturbed doublet due
to the two Cl2 isotopes only. It is unfortunate that this mode
is so weak that itsE-field effect is difficult to measure in
samples with only natural abundances of the various K1 and
Cl2 isotopes; similar experiments on KI:Cl2 samples with
isotopically pure Cl2 might serve to clarify the situation. For
Br2, the two members of what appeared originally to be a
simple isotopically split doublet~due to the two naturally
occurring Br2 isotopes! also behave ‘‘anomalously’’ under
an applied dcE field, suggesting that these modes may, in
fact, involve another defect, which would be consistent with
the low absorption strength per impurity compared to other
substitutional defect systems and also with the fact that the
two lines shift in opposite directions with appliedE field.

As noted, the QD model results for KI:Ag1 are a vast
improvement over the~d1,d2! and ~d1,d2,d3! model predic-
tions. Not only is the QD model able to provide a consistent
explanation for the pocket-gap-mode stress andE-field mea-
surements, but it also predicts a largeE-field-induced mixing
for the T1u andEg resonant modes, in excellent agreement
with the experimental results. Thus, the QD model has
passed a stringent test by providing a consistent explanation
for these dramatically different gap and resonant mode
E-field-induced shifts, together with the unusual gap-mode
stress shifts reported previously.16 Note thatnoneof the pa-
rameters used in the QD model were adjusted to produce this
agreement. The harmonic parameters were all fit to the mea-
sured zero-field, zero-stress IR-absorption and Raman-
scattering spectra, while the anharmonic parameters were fit
solely to the stress data. The QD model also significantly
improves upon most of the original~d1,d2! model harmonic
predictions; those properties which are not improved remain
the same. Finally, the QD model provides a natural explana-
tion for the unusual KI:Ag1 gap-mode stress behavior in
terms of unusualEg symmetry strains, rather than anomalous
host-ion nearest-neighbor cubic anharmonicities. A full sum-
mary of the experimental data and the agreement and dis-

FIG. 20. Predicted frequencies~a! and relative strengths~b! for
T1ux andEg 2 pocket gap modes in KI:Ag

1, as a function of the dc
field strength for anEIRiEdc@100# probe/field geometry. For com-
parison the measured pocket-mode frequencies are given by the
squares in panel~a!. The curves in panel~b! give the predicted IR
strengths relative to the zero-fieldT1ux strength. In both panels the
solid curves are for theT1ux mode, while the dashed curves are for
theEg2 mode. The~b! panel shows clearly how theEg2 mode gains
strength with increasing applied field as this mode acquires partial
T1ux character, as discussed in the text. Notice that the range of
applied field strength in this figure extends well beyond that of the
highestE field used in our experiments. At these high fields, the
Eg2 pocket gap mode is predicted to acquire sufficient IR strength
that it should be separately observable in the spectra. This is unlike
the case for the smaller fields used here, where theT1ux andEg2
modes remain sufficiently close that they are not separately resolv-
able within the relatively large experimental pocket-mode linewidth
~;0.5 cm21 FWHM!. The applied static field should also mix the
A1g pocket gap mode with theT1ux andEg2 modes, but even for
the highest field shown above, this mixing produces a field-induced
IR-activeA1g mode having only a 2% strength relative to that of the
zero-field T1ux mode. Accordingly, theA1g mode has not been
included in this figure.
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agreement obtained for the three different models is pre-
sented in Table XII; the first 11 items compare the low-
temperature experimental results with the harmonic
approximation, while items 12–17 include anharmonic con-
tributions.

We should mention that, besides the~d1,d2,d3! and QD
models, we have also considered a QD model withoutd3.
This model also predicted pocket-gap modeE-field-induced
shifts that differed dramatically from the measured shifts.
Thus both the Ag1 quadrupolar deformability and the ex-
tended relaxation-induced force-constant changed3 are es-
sential features of our model. Models that also failed badly
included those employing other force-constant changes, such
as iodine-iodine second-neighbor longitudinal,~000!-~010!
transverse,~100!-~110! transverse, and three-body van der
Waals interactions.42 Most of these alternative models repro-
duced neither the position of the low-frequencyEg resonant
mode nor the unusualEg symmetry strains necessary to
bring the pocket-gap-mode stress andE-field results into
agreement, without giving up the fit to the measured IR-
resonant and gap-mode frequencies. Those models with
force-constant changes which came close to reproducing the
pocket-gap-mode stress andE-field results without ruining
the IR fit had other serious drawbacks, such as additional,
unobserved absorption peaks in their predicted IR spectra.
The successes of our QD model and the failures of these
alternatives demonstrate that the silver ion possesses a sig-
nificant electronic quadrupolar deformability in the KI:Ag1

system and that this deformability plays an essential dynami-
cal role.

The simultaneous presence of the pocket-gap modes, with
displacements patterns peaked away from the defect, and the
low-frequency resonant modes, with displacements peaked at
the defect and its nearest neighbors, has allowed us to deter-
mine the anharmonicity between host ions in the lattice as
well as between the defect and its nearest neighbors. This has
been done by fitting nearest-neighbor cubic anharmonicities
to measured uniaxial stress-induced frequency shifts, and
these have led to predictedE-field shifts in accord with ex-
periment. The anharmonicity results for our QD model, listed
in Tables VIII and IX, are qualitatively comparable to the
Born-Mayer values listed in the fourth row of Table VIII.
Hence, we have found no evidence of anomalously strong
anharmonicity in this system. Of course, it is essential to
consider the ratio of anharmonic to harmonic terms in order
to determine the importance of the anharmonic effects, and
our QD model predicts substantial harmonic softening for
the KI:Ag1 on-center system. This softening might enhance
the relative importance of the anharmonicity for the KI:Ag1

dynamics beyond that suggested by the magnitude of the
stress-fit anharmonicities.

V. CONCLUSIONS

This study originally was an attempt to learn more about
the anomalous thermally driven KI:Ag1 on-center to off-
center transformation by modeling the low-temperature, on-
center dynamics. In particular, we were interested in recon-
ciling the fact that the KI:Ag1 on-center dynamics appear to
be well described by a perturbed harmonic model, whereas
the system’s observed thermal instability suggests the pres-

ence of strong anharmonicity. We were looking for behavior
which could not be explained by a standard quasiharmonic
defect model, which treats the anharmonicity as a perturba-
tion. Indeed, given that measurements for several of the on-
center configuration anharmonic properties are very unusual,
such as the measured pocket-gap-mode stress andE-field-
induced frequency shifts, it was not obviousa priori that a
successful quasiharmonic model could be constructed for the
on-center dynamics. However, the QD model has been
shown here to account naturally for these unusual anhar-
monic properties within a quasiharmonic framework that
uses normal anharmonicities and the unusualEg symmetry
stress-induced strains near the~200! family of pockets pre-
dicted by our harmonic model. Besides the Ag1 QD force-
constant change, the model also includes relaxation-induced
force-constant changes~d3! beyond those already contained
in the original~d1,d2! model; nevertheless, these relaxation-
induced force-constant changes are computed without the ad-
dition of any harmonic parameters beyond those already con-
tained in the model, namely,d1, d2, anddQD.

The QD force-constant changedQD corresponds physi-
cally to vibrationally induced deformations of the Ag1 elec-
tronic charge cloud, of quadrupolar symmetry. As noted ear-
lier, dQD arises quantum mechanically from virtuals-d
electronic transitions, and it couples exclusively to perturbed
modes ofEg symmetry. Thus both the 16.1 cm

21 Eg resonant
mode and theEg stress-induced static displacements, which
were not well described in our previous models, are strongly
affected bydQD. This is the key element of the QD model’s
success.

The QD model not only provides a consistent explanation
for the pocket-mode stress andE-field measurements, but, as
indicated in Table XII, it also reproduces many of the other
on-center configuration measurements as well; as a result 25
pieces of experimental data are described with eight theoreti-
cal parameters, within experimental errors. However, there
are a few exceptions~see Table XII!: the pocket-gap-mode/
isotope-gap-mode relative strength~item 6!, the absolute
strength of the pocket gap mode~item 8!, the absolute
strength of the impurity-inducedT1u spectrum~item 9!, the
fine structure in the acoustic spectrum~item 10!, one of the
pocket-gap-modeE-field measurements~item 14!, and one
of the isotope pocket-gap-modeE-field measurements~item
15!. Nevertheless, the fits are remarkably good considering
that several alternative models do not come even remotely
close to reproducing these results. In particular, none of the
alternative models could consistently account for both the
unusual pocket-gap-mode stress andE-field-induced fre-
quency shifts without seriously compromising their fits to the
low-temperature IR and Raman spectra. In fact, using
pocket-mode stress anharmonicities, most of the alternative
models predict pocket-gap-modeE-field-induced shifts two
orders of magnitude larger than the observed shifts. The suc-
cess of our QD model, combined with the dramatic failures
of these alternative models, convincingly demonstrates that
the QD model correctly describes the on-center dynamics of
KI:Ag1. The model’s success, then, actually deepens the
mystery surrounding the anomalous on/off center thermal in-
stability by showing that this system’sT50 K on-center dy-
namics are well described by a quasiharmonic model, albeit
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TABLE XII. Comparison of the KI:Ag1 on-center experimental results with calculated results based on perturbed shell models.~a! the
two-harmonic-parameter~d1,d2! model;~b! the two-harmonic-parameter~d1,d2,d3! model, and~c! the three-harmonic-parameter QD model.

Experimental results~Ref.! SM results

~a! ~b! ~c!
Harmonic approx. Harmonic approx. Harmonic approx.

d152DFxx~000,100!
d252DFxx~100,200!

dQD5DFxx~100,2100!
52DFxy~100,010!

1. T1u resonant and gap mode freqs.
~17.3 cm21, 86.2 cm21! ~Refs. 1 and 5!

Fit to 2-param.
~d1,d2! model

Fit to 2-param.
~d1,d2,d3! model

Fit in 3-param.
QD model

2. Eg resonant mode
~16.1 cm21! ~Refs. 5 and 7!

Fair agreement
~20.5 cm21!

Poor agreement
~26.3 cm21!

Fit in 3-param.
QD model

3. RelativeT1u gap/resonant mode
strengths~;3! ~Refs. 5–7!

Fair agreement
~1.4!

Good agreement
~3.0!

Good agreement
~3.0!

4. Resonant mode isotope frequency
shift ~20.1460.03! ~Ref. 2!

Poor agreement
~20.05!

Good agreement
~20.12!

Good agreement
~20.12!

5. Gap mode isotope frequency shift
~21.7! ~Ref. 17!

Good agreement
~21.46!

Good agreement
~21.63!

Good agreement
~21.64!

6. Relative gap mode isotope strength
~0.04! ~Refs. 8 and 17!

Fair agreement
~0.073!

Fair agreement
~0.074!

Fair agreement
~0.073!

7. A1g resonant mode
not observed~Refs. 5 and 7!

A1g resonant mode
~37.3 cm21!

A1g resonant mode
~41.5 cm21!

A1g resonant mode
~41.5 cm21!

8. AbsoluteT1u gap mode
strength~theory/experiment! ~Ref. 6!
~Ag1/Ag concentration ratio in
the crystal is not known.!

Poor agreement
~7!

Poor agreement
~10!

Poor agreement
~10!

9. Strength of the broad acoustic
T1u absorption spectrum~Ref. 8!

Poor agreement Poor agreement Poor agreement

10. Weak absorption peaks at 30,
44, 55.8, and 63.6 cm21 ~Refs. 5, 6, and 8!

Poor agreement Poor agreement Poor agreement

11. A1g andEg gap modes not
observed in Raman~Ref. 7!

PredictsA1g andEg

pocket modes with
negligible Raman

strengths.
~87.2 cm21, 86.0 cm21!

Same Same

Stress and electric field dependence
Anharmonic QD model

A05Fxxx~000,000,100!
A15Fxxx~100,100,200!
A25Fxxx~200,200,300!
B05Fxyx~000,000,010!
B15Fyxy~100,100,200!

12. T1u pocket gap mode and
resonant mode stress effect~Refs. 3 and 16!

Five parameter fit to the
Anharmonic QD model

13. Isotope pocket mode stress effect~Ref. 16! Good agreement
14. Pocket-gap-mode Stark effect Data agree with predictions

of the QD model using
stress-fit anharmonicities

~with no additional
parameters!

15. Isotope pocket-mode Stark effect Good agreement
16. Stark effect forT1u andEg resonant modes~Ref. 5! Excellent agreement
17. Large gap mode linewidth in comparison

to other gap mode systems
~0.5 cm21↔0.14 cm21! ~Ref. 16!

Outside of the model
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a model which has revealed some fascinating unexpected
behavior.

Table XII also lists experimental effects that are outside
the framework of theT50 K quasiharmonic model~items
18–21!. A possibility raised by our results is that the on-
center to off-center transformation might be related to the
Ag1 QD, which has been suggested24 to play a role in deter-
mining the observed Ag1 off-center configuration in the ru-
bidium halides.33,43–48It remains to be seen whether the har-
monic force-constant weakening, the Ag1 QD or, possibly, a
combination of both effects, plays an important role in the
KI:Ag1 on-center to off-center transformation.

Electronic quadrupolar deformability has also been pro-
posed as an explanation for several of the unusual properties
of silver halides.21,23,25,41In particular, calculations suggest
that the Ag1 QD is primarily responsible for the high mobil-
ity seen for the silver ion in AgCl and AgBr.26,27Moreover,
the Ag1 QD could also be responsible for the superionic
conductivity seen in AgI.25 However, these suggestions have
been vigorously debated, and several alternate mechanisms
have been proposed. For instance, a three-body van der
Waals interaction has been suggested to account for phonon
properties and strong Cauchy relation violations in AgCl and
AgBr, previously attributed to the Ag1 QD.42 In addition, all
of these calculations include many assumptions about the
nature of interatomic potentials unrelated to the Ag1 QD.
Given the uncertainties associated with these auxiliary as-
sumptions, the status of the Ag1 QD as an important effect in
these earlier studies is far from clear.

To compare our QD results with these earlier studies, we
note that the value of our QD force-constant changedQD for
KI:Ag1, reexpressed in terms of the Ag1 QD parameter
SEg used in Refs. 21–23 and 41, isSEg52dQD52280 dyn/
cm. This is within the range of values determined from
quantum-mechanical estimates of the Ag1 QD for AgCl and
AgBr,41 or obtained from phenomenological shell model fits
to the phonon spectra of these same crystals;21–23 these val-
ues vary fromSEg5542 dyn/cm~Ref. 22! to 2580 dyn/cm,41

depending upon the additional assumptions that were made
in the various models. A more quantitative comparison is
unwarranted, because the Ag1 QD force-constant change
should depend on the strength of the overlap interaction be-
tween the Ag1 defect and its nearest-neighbor halide ions,24

which is quite different for the nearly unstable KI:Ag1 on-

center configuration and for the silver halides.
The above discussion highlights an important component

of our combined detailed theoretical-experimental study. By
means of a large number of experiments~IR, Raman, dielec-
tric response, isotope, uniaxial stress, staticE-field!, and be-
cause of the complementary aspects of the low-frequency
resonant modes and pocket gap modes in KI:Ag1, which
have allowed us to probe in great detail the anharmonicity
bothat the defect and in the host lattice near the~200! family
of sites, we have been able to establish that the Ag1 QD
plays an essential role in the KI:Ag1 dynamics. This in turn
strongly supports the earlier suggestions that the Ag1 elec-
tronic quadrupolar deformability is an important general fea-
ture in the dynamics of other host-silver systems and of sil-
ver halides.
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APPENDIX: ELECTRIC-FIELD SHIFT THEORY

In the main text, we gave a qualitative outline of how we
extended our harmonic defect model in order to describe the
dc E-field-induced frequency shifts for the pocket-gap
modes. Here we present a more detailed discussion. Addi-
tional details for the theoretical calculations of this paper are
given in Ref. 49.

In the presence of external forces, the equation of motion
for N ions interacting via harmonic forces is

Mü52Fu1Fext, ~A1!

TABLE XII. ~Continued!.

Experimental results~Ref.! SM results

Temperature dependence
Observations~with increasing temperature! Temperature-dependent properties

are outside the framework of the
anharmonic QD model

18. Disappearance of theT1u andEg resonant
andT1u pocket-mode strengths~Refs. 6, 7, and 11!

19. Weak broad IR gap mode~78.6 cm21!
appears and then levels off~Ref. 6!

20. Raman resonant mode (A1g1Eg) ~12.2 cm21!
appears and then disappears~Ref. 7!

21. Temperature-dependent pocket gap mode
A andB stress coefficients~Ref. 16!
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whereu5$ua( l )% is the 3N-dimensional vector containing
the ion displacements from their equilibrium positions,
F5$Fab( lm)% is the harmonic force-constant matrix,
M5$Mldab% is the diagonal mass matrix, and
Fext5$~Fext!a~l!% contains external forces acting upon each of
the ions. Here,l ,m51,...,N label the ion sites, whilea,b
5x,y,z denote Cartesian components.

Our adaptation of the method of Ref. 39 to determine the
defect-crystal response to an externalE field exploits the fact
that for a given applied field, theexternalforces acting upon
the defect and pure crystal are identical. This will be the case
provided we assume that the effective charges coupling theE
field to the ions remain unchanged by the introduction of the
defect. The first-order field-induced static displacements for
the defect crystal,j~1!, can thus be related to the pure-crystal
field-induced displacements,j0

~1! , by solving Eq.~A1! for the
external forces and equating the resulting pure-crystal and
defect-crystal expressions to yield

@F01C~0!#j~1!5F0j0
~1! , ~A2!

where the perturbing matrix,C~v2![DF2v2DM is evalu-
ated at zero frequency, sincej~1! andj0

~1! arestaticdisplace-
ments. Multiplying this equation on the left by the unper-
turbed crystal zero-frequency Green’s functionG0~0!5F0

21,
yields the equation

@ I1G0~0!C~0!#j~1!5j0
~1! . ~A3!

This can be partitioned into two equations involving quanti-
ties inside and outside the defect space, defined by the sites
associated with nonzero elements ofC. The resulting equa-
tions are

jI
~1!5~ I II1G0IICII !

21j01
~1! , ~A4!

and

jR
~1!52G0RICIIjI

~1!1j0R
~1! , ~A5!

where theI andR subscripts refer to components inside and
outside the defect space, respectively. If the defect space is
small, which is usually the case for isoelectronic defects, one
can readily solve Eq.~A4! to determine the defect-space ion
displacements in terms of the pure-crystal field-induced dis-
placements and the defect-space zero-frequency Green’s
function elements. Equation~A5! then determines the defect-
crystal field-induced displacements outside the defect space.
Due to the localized nature of the pocket gap modes, we
need only a limited number of field-induced displacements
outside the defect space to determine theE-field-induced fre-
quency shifts.

In order to determine the Green’s-function elements
needed for Eqs.~A4! and ~A5!, the static Green’s function
can be rewritten as

G0~0!5(
f

x~ f !x̃~ f !/v f
2,

where x( f ) is the normal mode displacement pattern for
mode f normalized according tox̃( f )M0x( f )51. For the
pure crystal, the normal modes are conveniently taken as
complex plane waves:xa~lb uk j !}ea~buk j !exp@2ik•R( lb)#,
where j denotes the polarization branch,ea~buk j ! is a polar-

ization vector,k is the wave vector, andR( lb) is the equi-
librium position for the (lb) ion. The preceding equation is
then

G0~0!5(
k j

x~k j !x†~k j !/vk j
2 , ~A6!

and a given Green’s-function element,G0ab( l ,m), can be
calculated by directly summing over the pure-crystal normal
modes determined by the breathing shell model.

Before we can determine the defect-crystal response to an
appliedE field, we first need to know the pure-crystal re-
sponse. In the static limit, we can determine the pure-crystal
harmonic response,j0

~1! , to an externalE field by multiplying
Eq. ~A1! on the left by the zero-frequency harmonic Green’s
function,G0~O!, which yields the expression

j0
~1!5G0~0!Fext. ~A7!

Experimentally, one studies a crystal section inserted be-
tween two capacitor plates. In contrast, the shell model used
in this paper is for an infinite crystal, with periodic boundary
conditions. An apparent difference between the model and
the experimental situation is the presence of polarization
charges on the surface of the KI:Ag1 dielectric. In our shell
model, the external forces occurring in Eq.~A7! are those
produced solely by chargesexternalto the crystal, with the
effects due to all of the internal charges included via the
Green’s function. The presence of the surface polarization
charges in the experimental situation raises the question of
whether we should treat the polarization charges as external
charges when computing the field-induced displacements.
However, it is a simple exercise in electrostatics to show
that, forboth the infinite crystal and the experimental finite
slab geometry, the longitudinal static macroscopic field due
to internal sources is given byEint

l 524pPl , wherePl is the
longitudinal polarization. These are the appropriate quanti-
ties to compare because, as discussed in more detail below,
the staticE field is longitudinal in character. Hence for lon-
gitudinal staticE fields, our infinite-lattice shell model cor-
responds to the finite slab geometry of the experiment, with
no surface polarization corrections needed. As a result, when
calculating the external forcesFext occurring in Eq.~A7!, we
need to include only the field due to external sources, i.e., the
charges on the plates. Note that in the main body of the
paper,Edc always refers to the applied field determined by
dividing the voltage difference measured across the metal
plates by the plate separation. A standard electrostatic calcu-
lation shows that the externalE field due to the charges on
the plates is related to the applied field byEext5Edc/e0,
wheree0 is the pure-crystal dielectric constant.

If the ions within the pure crystal were truly rigid, the
external force would be given by the equation

Fext5ZEext, ~A8!

whereEext5$~Eext!a( l )% is a 3N-dimensional vector describ-
ing the externalE field acting on each of the ions, andZ is a
diagonal matrix containing ionic chargesZab( lm)
56qdabd lm . Hereq is the ionic charge and the1~2! sign
denotes a cation~anion! site. However, the ions arenot rigid,
and the electronic response to the externalE field produces
internal forces which modify this rigid-ion expression. The
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electronic response can be included in Eq.~A8! by replacing
the charge,q, appearing there by alongitudinal effective
charge,q8,15 so-called because the applied staticE field is
longitudinal in character@see the discussion following Eq.
~A14! below#. We calculated the value of this effective
charge in two different ways, finding agreement to within
2%. First, we determined the effective charge fraction
ZL[q8/e via the phenomenological expression

ZL5S e02e`

e0e`
D 1/2S mV0

4pe2D
1/2

vLO ~A9!

obtained on p. 66 of Ref. 15. In this equatione0 ande` are
the static and high-frequency dielectric constants, respec-
tively, vLO is the longitudinal optic-mode frequency,V0 is
the unit-cell volume, andm is the reduced mass for the ions
in a unit cell. All of these quantities are for the host crystal,
and when we substitute the values used in computing the KI
breathing shell-model phonons50 we obtainZL[0.4081. This
value differs markedly from the total ionic chargeq50.9e in
the KI breathing shell model. Accordingly, it is now clarify-
ing to replace the phenomenological expression~A9! by a
fully microscopic shell-model expression.

The shell model used to determine the pure KI phonons
includes the electronic degrees of freedom explicitly. Each
ion is described by a ‘‘core,’’ consisting of the nucleus plus
the ion’s tightly bound~unpolarizable! electrons, attached via
an isotropic harmonic spring to a massless spherical shell,
which describes the ion’s polarizable electrons. The cores
and shells of different ions then interact via short-range over-
lap harmonic forces and the harmonic part of their long-
range Coulomb forces. The shells are massless in accordance
with the Born-Oppenheimer approximation, so that their in-
stantaneous equilibrium positions are determined by the in-
stantaneous core positions plus any external forces that are
present. For an applied staticE field, the core and shell equa-
tions may be written as

XEext5Fccj0Ec1Fcsj0Es , ~A10!

YEext5Fscj0Ec1Fssj0Es , ~A11!

where the subscriptsc ands denote core and shell displace-
ments,X and Y are diagonal matrices containing the core
and shell charges, respectively, andEext is the applied exter-
nal field. The sumX1Y for each ion gives the ion’s total
charge. These equations can be reduced formally to an equa-
tion involving only the core displacements by solving Eq.
~A11! for j0ES and substituting the result into Eq.~A10!.
Doing this yields

Fj0Ec5~2FcsFss
21Y1X!Eext, ~A12!

where the ion-ion ‘‘formal’’ force constant matrix is given by

F[Fcc2FcsFss
21Fsc .

This is the effective ion-ion, or formal force-constant matrix
which we have used throughout this paper. It should be noted
that the breathing shell model used in this work also includes
a ‘‘breathing’’ degree of freedom which describes adiabatic
isotropic deformations of the ions’ electron clouds. This ad-
ditional electronic degree of freedom can also be eliminated,
analogous to the above elimination of the shell degrees of

freedom. For clarity, we are not explicitly discussing this
additional degree of freedom here, although it has been in-
cluded in our calculations.

Comparing Eq.~A12! with Eq. ~A8!, we see that the ma-
trix containing the longitudinal effective charges coupling
the ion ~core! displacements to theE field is given by

ZL52FcsFss
21Y1X. ~A13!

The periodic symmetry of the pure crystal reduces the
6Nc36Nc normal mode problem to a 636 problem for each
of theNc phonon wave vectors, whereNc is the number of
unit cells. Hence, the above longitudinal effective charges
are readily determined from the KI breathing shell-model
matrices forFsc , Fcs , Y, andX. In this way we find that Eq.
~A13! predicts the magnitude of the longitudinal effective
charge to be

ZL50.4033,

which differs by less than 2% from our earlier phenomeno-
logical result of Eq.~A9!. For consistency, we used the
above result of our shell-model longitudinal effective-charge
calculation in all of the calculations of this paper.

Using the expression forG0~0! given by Eq.~A6!, we can
rewrite Eq.~A7! as

j0
~1!5(

k j
8@x~k j !x†~k j !/vk j

2 #ZEext, ~A14!

where the sum excludes the threevt50 uniform translational
modes which do not contribute to the crystal response. Since
the static field is uniform throughout the crystal, only the
k50 modes give a nonzero contribution to the scalar product
in Eq. ~A14!. We have three uniform translational modes,
one longitudinal optic~LO! mode and two transverse optic
~TO! modes, all withk50. As mentioned above, the transla-
tional modes clearly do not contribute to Eq.~A14!, which
leaves only the TO and LO modes as possible contributors.
In the electrostatic approximation used to determine the un-
perturbed crystal modes, thek50 TO and LO displacement
patterns are identical; hence, at first sight it appears that both
of these modes might contribute equally to Eq.~A14!. How-
ever, the situation changes when we consider the limiting
case of a small, but nonzerok. A static field slowly varying
in space only hask’s aligned parallel to the field direction;
otherwise,“3EÞ0 and the field would no longer be static.
Hence, such a field only couples to the LO modes. In the
static uniform field limit, then, we should include only the
k50 LO modes in the sum occurring in Eq.~A14!, with the
mode polarization vectors parallel toE.

For simplicity, we now consider an external field directed
along thex̂ axis,E5Eext x̂. The x̂-polarized LO-mode dis-
placement pattern is thus given by

xa~ l uLO!56
dxa

m6
Am

Nc
, ~A15!

where the1~2! sign corresponds to a cation~anion! site,
andm[m1m2/(m11m2) is the reduced mass for the ions
within the unit cell. Substituting this result into Eq.~A14!
yields
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j0a
~1!~ l !56

dxa

m6

q8Eext

vLO
2 . ~A16!

We will have similar results for externalE fields directed
along theŷ and ẑ axes. Since superposition holds for the
pure crystal harmonic response that we are calculating here,
we can write in general

j0a
~1!~ l !56

q8~Eext!a

m6vLO
2 , ~A17!

where this equation relates the displacements directly to the
externalE field.

The first-orderE-field-induced displacements are deter-
mined following the methods described above. To lowest or-
der in theseE-field-induced displacements, the corrections to
the unperturbed defect-crystal force-constant changes are
given by

dFab
1 ~ lm!5(

ng
Fabg~ lmn!jg

~1!~n!, ~A18!

where theFabg( lmn) are the cubic anharmonic coefficients
and the 1 superscript emphasizes that these are first-order
quantities linear in the appliedE field.

The nearly degenerateTlu , Eg , andAlg pocket modes can
be mixed strongly by an appliedE field, necessitating the use

of nearly degenerate perturbation theory to calculate the
E-field-induced frequency shifts for these modes. The nearly
degenerate perturbation equations are

~BE2Dv2!a50, ~A19!

whereBE, f f 85x̃( f )dF1x( f 8) is the 636 matrix coupling
the six degenerate pocket modes, andDv2 gives theE-field-
induced squared frequency shifts. The components of the
eigenvectora determine the zeroth-order displacement pat-
terns,c, as linear combinations of the six nearly degenerate
pocket modes:c5( fafx( f ), where the indexf denotes the
pocket gap modes:

f51:T1ux, f52:T1uy,

f53:T1uz, f54:Eg1,

f55:Eg2, f56:A1g .

The normalization conditionc̃( i )Mc( i )51 implies that
( f51

6 a f
2( i )51 for normalizedx’s.

Using standard group-theoretic symmetry arguments, it
can be shown that the matrixBE coupling the pocket gap
modes can be written in general as

B51
0 0 0 0 BTEEx BTAEx

0 0 0
A3
2

BTEEy 2
1

2
BTEEy BTAEy

0 0 0 2
A3
2

BTEEz 2
1

2
BTEEz BTAEz

0
A3
2

BTEEy 2
A3
2

BTEEz 0 0 0

BTEEx 2
1

2
BTEEy 2

1

2
BTEEz 0 0 0

BTAEx BTAEy BTAEz 0 0 0

2 ~A20!

whereE5Eext is the staticE field due toexternalsources.
Note that we have dropped the external field subscript here
and in the remainder of the Appendix, in order to keep the
expressions such as Eq.~A20! as compact as possible. To
convert this matrix into an expression involving the applied
E field, we would simply divide bye0 and replace the exter-
nal field with the applied field wherever the external field
occurs in this expression. TheBTA andBTE coupling coeffi-
cients occurring in this equation can be determined easily by
calculating theA1g2T1ux and Eg22T1ux mode coupling
for a @100# appliedE field. In order to determine the splitting
for the pocketisotopemodes, we found it easiest to add the
isotope mass perturbation to the staticE-field coupling given

by Eq. ~A20! and then determined the effects of the applied
E field upon the isotope mode by solving the full field plus
mass perturbation problem.

From the form of Eq.~A20!, we see that the first-order
E-field-induced coupling cannot affect the isolated gap
modes ~no diagonal coupling!. However, it can mix the
nearly degenerate even- and odd-parity modes. Recall that
the odd-parity modes are IR active, whereas the even-parity
modes are Raman active~with predicted strengths too weak
to be measured!. Under theE-field induced mixing, the even-
parity modes will acquire some odd-parity character and be-
comeE-field-induced IR active. If we assume that the ap-
plied E field does not alter the effective charges which
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determine the absorption strengths for the IR-active gap
modes, then thex̂-polarized IR absorption strength for thei th
mode determined from the nearly degenerate perturbation
theory is given by8

Si5
2p2N

cn~v i !V
S n`

212

3 D 2@M̃xx~T1ux!#2aT1ux
2 ~ i !,

~A21!

wheren`5Ae` is the high-frequency index of refraction and
c is the speed of light in vacuum. The index of refraction,
n~v!, is taken to have its pure-crystal value owing to our
assumption of low defect concentrations. This expression is
just the zero-field absorption strength multiplied by theT1ux
fraction,aT1ux

2 ( i ), for the i th, isotope mode and by an index

of refraction correction,n(vT1u
)/n(v i).

8 Hence, the relative
x̂-polarized IR absorption strengths for theE-field mixed
modes are simply given by theseT1ux fractions. Similar ex-
pressions exist for theŷ- and ẑ-polarized IR absorption.

For the QD model, the first-order field-induced mixing is
small and we have to consider higher-order effects, such as
frequency shifts produced by force constant changes arising
from second-orderE-field-induced strains via cubic anhar-
monicity. Before discussing the second-order strains, we
briefly mention the standard description of the quadratic
Stark effect.19 This second-order effect arises from force-
constant changes produced by the first-orderE-field-induced
displacements via quartic anharmonicity, and it leads to
E-field-induced force-constant changes that vary asEdc

2 . The
expression for these quartic anharmonicity second-order
force-constant changes is

dFab
Q2~kl !5

1

2 (
mngl

Fabgl~klmn!jg
~1!~m!jl

~1!~n!,

~A22!

where theFabgl(klmn) are the quartic anharmonic coeffi-
cients. Thus, this second-order Stark effect arises from quar-
tic anharmonicity, as opposed to the cubic-cubic second-
order Stark effect discussed below. Unfortunately, the
second-order field-induced force-constant changes produced
by the quartic anharmonicity lead to mode coupling which
has the same symmetry form as the coupling produced by
cubic-cubic coupling, so that the cubic-cubic and quartic an-
harmonicity effects cannot be separated on the basis of sym-
metry arguments.

The E-field-induced displacements linear inEdc used in
Eq. ~A22! are the crystal’s harmonic response to the applied
field. Cubic anharmonic corrections to these harmonically
determined E-field-induced displacements also produce
field-induced force-constant changes proportional toEdc

2 . In
order to determine the second-orderE-field-induced strains,
we need to consider the anharmonic version of Eq.~A1!,
which determines the harmonic crystal response to an exter-
nal force. The anharmonic generalization of this equation for
the static case is

(
mb

Fab~nm!jb~m!1
1

2 (
mb lg

Fabg~nml!jb~m!jg~ l !1•••

5Fa~n!, ~A23!

where, as before,F is the external force andj is the static
displacement induced by this force. Next, we formally ex-
pand the static displacements in orders,j5j~1!1j~2!1••• ,
where j~1! is the harmonic response and the higher-order
terms are the corrections to this response produced by the
presence of anharmonicity. To lowest order in the appliedE
field, Eq. ~A23! is just the harmonic equation that we used
previously to determine the first-orderE-field-induced dis-
placements:

Fj~1!5F. ~A24!

The second-order equation is

(
mb

Fab~nm!jb
~2!~m!

52
1

2 (
mb lg

Fabg~nml!jb
~1!~m!jg

~1!~ l !. ~A25!

Since the first-order displacements occurring on the right-
hand side of this equation are linear in theE field, we see
that the second-order displacements will be proportional to
theE-field strength squared. An expression for these second-
order displacements is easily obtained by multiplying Eq.
~A25! on the left by the zero-frequency defect-lattice har-
monic Green’s functionG~0!5F21, which yields

ja
~2!~n!52

1

2 (
mb lgkl

Gab~nm!Fbgl~mlk!jg
~1!~ l !jl

~1!~k!.

~A26!

It is convenient to map this problem formally onto the first-
order displacement problem discussed earlier in Eqs.~A1!–
~A5!. We replacej~1! appearing there byj~2!, j0

~1! by j0
~2! , and

$~Fext!a(n)% by $2(1/2)(mb lgFabg(nml)j b
(1)(m)j g

(1)( l )%.
This last term can be treated formally as an applied force,
with j0

~2! then giving the pure host-crystal response to this
force. Expressing the problem this way allows us to calculate
the second-order field-induced displacements via the same
techniques used for calculating the previous first-order field-
induced displacements.

Once the neededja
~2!(n) displacements are determined,

we can calculate the lowest-order cubic-cubicE-field-
induced force-constant changes by simply replacing the first-
order displacements occurring in Eq.~A18! with the second-
orderE-field-induced displacements, which yields

dFab
2CC~ lm!5(

ng
Fabg~ lmn!jg

~2!~n!, ~A27!

where theCC superscript labels theseE-field-induced force-
constant changes as cubic-cubic changes.

Equation~A26!, which determines the second-order dis-
placements, involves products of two first-order displace-
ments which haveT1u symmetry. From standard group-
theoretic arguments, analogous to those used in deriving
selection rules,51 the second-order displacements transform
as the direct productT1u3T1u. This direct product can be
broken down uniquely intoA1g, Eg , andT2g symmetry con-
tributions, and hence the second-order displacements can
also be broken down into displacements with these symme-
tries.
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With the cubic-cubic coupling included, Eq.~A19!, which
determines the first-orderE-field-induced frequency shifts,
generalizes to

~BE1C E2Dv2!a50, ~A28!

where BE is still the first-order coupling and
C E, f f85x̃( f )dF2CCx~f 8! is the 636 matrix giving the
cubic-cubic coupling for the degenerate pocket modes. Using
standard group-theoretic symmetry arguments, similar to

those used to determine the first-order field-induced cou-
pling, it can be shown that the matrixC E coupling the pocket
gap modes can be written in general as

C E5E2SCodd

0
0

Ceven
D ,

whereE5uEu is the magnitude of theE field due to external
sources and the 333 matrices occurring in this expression
are

Codd5S CE112CE2~2Ex
22Ey

22Ez
2!/E2

CE3ExEy /E
2

CE3ExEz /E
2

CE3ExEy /E
2

CE112CE2~2Ey
22Ex

22Ez
2!/E2

CE3EyEz /E
2

CE3ExEz /E
2

CE3EyEz /E
2

CE112CE2~2Ez
22Ex

22Ey
2!/E2

D
~A29!

and

Ceven5S CE41CE5e
)CE5r
)CE6r

)CE5r
CE42CE5e

CE6e

)CE6r
CE6e
CE7

D ,
~A30!

with e[(2E x
22E y

22E z
2)/E2 and r[(E y

22E z
2)/E2. The

second-order coupling coefficients occurring in Eqs.~A29!
and ~A30! can be determined by calculating the following
matrix elements:

CE114CE25x̃~T1ux!dF2CC~E@100# !x~T1ux!/E2,

CE122CE25x̃~T1uy!dF2CC~E@100# !x~T1uy!/E2,

CE352x̃~T1ux!dF2CC~E@110# !x~T1uy!/E2,

CE412CE55x̃~Eg1!dF2CC~E@100# !x~Eg1!/E2,

CE422CE55x̃~Eg2!dF2CC~E@100# !x~Eg2!/E2,

2CE65x̃~A1g!dF2CC~E@100# !x~Eg2!/E2,

CE75x̃~A1g!dF2CC~E@100# !x~A1g!/E
2,

where dF2CC(E[ lmn]) are the cubic-cubic force-constant
changes induced by an externalE field aligned along the
[ lmn] direction.

In order to determine the splitting for theisotopepocket
gap modes, we found it easiest to add the isotope mass per-
turbation to the staticE-field coupling given by Eqs.~A20!,
~A29!, and ~A30! and then determine the effects of the ap-
plied E field upon the isotope mode by solving the full field
plus mass perturbation problem.
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