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This paper discusses the influence of interface roughness on specular and nonspecular x-ray reflectivity and
glancing-incidence x-ray fluorescence~GIXRF!. Formulas are derived in the second-order distorted-wave Born
approximation for samples consisting of an arbitrary number of layers. The results depend on the root-mean-
square value of the interface roughness, its lateral correlation length and its degree of perpendicular correlation,
as well as on the degree of jaggedness. Either flat interfaces or graded interfaces can be used as a starting point.
It is shown that for GIXRF the latter approach is better. The consequences for diffuse scattering are discussed.
Examples are given of calculations of specular reflectivity and GIXRF for layered materials.

I. INTRODUCTION

As we discussed in previous publications,1,2 various
complementary glancing-incidence x-ray analysis measure-
ments exist, viz., specular reflectivity, diffuse scattering~i.e.,
nonspecular reflectivity!, and glancing-incidence x-ray fluo-
rescence~GIXRF!, which are well suited to nondestructive
depth profiling of thin-layered materials. They yield detailed
information on layer thickness and composition, as well as
on various aspects of interface roughness. The possible
manifestations of surface roughness of single surfaces in
these measurements have already been discussed in detail.3,4

The present paper concentrates on the theory of x-ray
scattering from layered samples with rough interfaces. As the
framework of the theory, we will use the distorted-wave
Born approximation~DWBA!.3,5–7In most previous publica-
tions this approximation has been applied using flat inter-
faces as a starting point. This approach will be used in Sec. II
to work out formulas for calculating diffuse scattering~Sec.
II A !, specular reflection~Sec. II B!, and GIXRF~Sec. II C!,
if necessary up to second order in the DWBA. In Sec. III we
will extend the theory in a simple way to the more realistic
case in which graded interfaces, obtained by laterally aver-
aging the interface roughness, are used as a starting point. It
will be shown that, for GIXRF, this approach yields better
results than that using flat interfaces as a starting point. The
consequences for diffuse scattering will be discussed. In Sec.
IV examples will be given of calculations of specular reflec-
tion and GIXRF for layered materials. In Sec. V conclusions
will be presented.

II. FLAT INTERFACES AS A STARTING POINT

In the theoretical treatment of x-ray scattering at glancing
angles from a sample with rough interfaces, we will use the
DWBA, which implies that we will use the wave fields for a
sample with smooth interfaces as a starting point and that we
will regard the roughness as a perturbation.

We will not consider explicitly the polarization of the x
rays, which is justified for short wavelengths at glancing
angles~cf. Ref. 1!. Then the electric fieldf obeys the Helm-
holtz equation

¹2f1uku2f2Vf50, ~1!

wherek is the wave vector in vacuum andV describes the
interaction with the material, e.g.,V5uku2~12n2!, for a ho-
mogeneous material with a refractive indexn. We will as-
sume that the perpendicular wave vector is much smaller
than the inverse atomic distances, which implies that atomic
structure may be neglected.

If the average interfaces are all parallel,V can be split
into a partV0(z) which has no lateral dependence and a part
V1~r ! depending on the local position of the interfaces:

V~r !5V0~z!1V1~r !,

wherez is the direction perpendicular to the smooth inter-
faces~cf. Fig. 1!. We will assume that the solutionsfk

(0)(r )
of Eq. ~1! for V0(z) are known:

fk
~0!~r !5ck~z!exp~ iki•x!, ~2!

whereck(z) depends only on the perpendicular component
of k, whereaski and x5(x,y) are the projections ofk and
the position vectorr parallel to the surface, respectively. The
perpendicular component ofk in vacuum isk05~k22k i

2!1/2.
We will treatV1~r ! as a perturbation onV0(z). The solu-

tions of Eq.~1! can then be written as

fk~r !5fk
~0!~r !1fk

~1!~r !1fk
~2!~r !1••• ,

with fk
(0)(r ) being given by Eq.~2! and forn.0,8

fk
~n!~r !5E d3r 8G~r ,r 8!V1~r 8!fk

~n21!~r 8!.

The Green’s functionG~r ,r 8! can be expressed as a Fourier
integral parallel to the surface:

G~r ,r 8!5
1

4p2 E d2piexp@ ipi•~x2x8!#gp~z,z8!,

where the integral is over all possible parallel wave vectors9

and gp(z,z8) is the one-dimensional Green’s function per-
pendicular to the surface. It can be written as8

gp~z,z8!52cp~z,!c p̄~z.!/Wp ,

wherez,5min(z,z8), z.5max(z,z8), andWp[c p̄dcp /dz
2cpdc p̄ /dz ~the so-called Wronskian!. The subscriptsp
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and p̄ denote perpendicular wave vectors which in vacuum
are directed toward and away from the top surface, respec-
tively.

If V0(z)50 ~free space! were to be taken for the unper-
turbed state, we would be in the Born approximation and the
whole sample would be seen as a perturbation. A better ap-
proximation is to takeV0(z) to correspond to the sample
with flat interfaces. For a sample with one interface, this case
has already been discussed by Sinhaet al.5 and by the
present author.3 For a multilayer the diffuse scattering was
calculated using this approach by Holy´ et al.6 Here we will
extend the theory to include second-order effects and x-ray
fluorescence. An even better approximation may be that
whereV0(z) corresponds to the sample with a laterally av-
eraged refractive index, which results in graded interfaces.7

The latter case will be considered in Sec. III.

Now we will consider the case whereV0(z) corresponds
to a multiple-layered sample with flat interfaces~see Fig.
1!: V0(z)50 for z.0 and, forz,0, in layer j , V0(z)5k c j

2

for 2dj,zj,0, where the critical wave vectorkc j is defined
according tok c j

2 5uku2~12n j
2!, nj is the ~complex! refractive

index of the material in layerj , dj is the thickness of layerj ,
andzj[z1( i51

j21di . If we start with a plane wave in vacuum
~‘‘layer’’ 0 ! with a wave vectork, the solution of the wave
equation is then Eq.~2! with, in layer j ,

ck~zj !5Ej
↓~k!exp~ ik jzj !1Ej

↑~k!exp~2 ik jzj !, ~3!

wherekj5(k 0
22k c j

2 )1/2 is thez component of the wave vec-
tor in materialj and the amplitudesE j

↓(k) andE j
↑(k) are the

transmitted and reflected fields, respectively, at the top of
layer j , which can be obtained from a matrix formalism10 or
from a recursive formalism.11

In the following we also need the ‘‘irregular’’ solution,
which is, in layerj ,

c k̄~zj !5Ej
↓~ k̄!exp~ ik jzj !1Ej

↑~ k̄!exp~2 ik jzj !, ~4!

whereE j
↓( k̄) and E j

↑( k̄) are the reflected and transmitted
fields, respectively, at the top of layerj , for a wave starting
inside the substrates. They are obtained in a similar way as
E j
↓(k) andE j

↑(k). Without loss of generality, we can take
E 0
↓(k)5E s

↑( k̄)51. Furthermore, we haveE s
↑(k)5E 0

↓( k̄)
50.

Next we will consider the case where the interfaces are
rough. Suppose that interfacej , separating layersj21 and j ,
has at positionx a height deviationhj ~x!. Then V1~r !
5( j51

s Vj and

Vj5kc j
2 2kc, j21

2 for 0,zj,hj~x! if hj~x!.0,

Vj52~kc j
2 2kc, j21

2 ! for hj~x!,zj,0 if hj~x!,0,

andVj50 elsewhere.
From the above it follows that, in layerj ,

fk
~n!~r !52

1

4p2 E d2pi

Wp
exp~ ipi•x!Fcp~zj !(

i51

j

Ti
~n!~ p̄,k!1c p̄~zj ! (

i5 j11

s

Ti
~n!~p,k!G , ~5!

where the coefficients

Tj
~n!~p,k!5~kc j

2 2kc, j21
2 !E d2x8 exp~2 ipi•x8!E

0

hj ~x8!
dzj8cp~zj8!fk

~n21!~r 8! ~6!

form the so-calledT matrix. Substituting Eqs.~3! and ~4! in the Wronskian yieldsWp52ip j [E j
↓(p)E j

↑( p̄)2E j
↑(p)E j

↓( p̄)],
wherepj is the perpendicular component ofp in layer j . The Wronskian is independent ofj and can be written as, for instance,
Wp52ip0E 0

↑( p̄).
Strictly speaking, expression~5! is not valid inside the interface layer@whereV1~r !Þ0#, but in Appendix A we will show

that it is still valid up toO[(k c j
2 2k c, j21

2 )2s j
4] @wheresj is the root-mean-square~rms! roughness of interfacej #, which is in

general sufficient. By substitutingfk
(1) in Eq. ~6!, we can express all higher-orderT-matrix elements in the first-order elements,

for instance,

FIG. 1. Multilayer consisting ofs21 layers on a substrates.
Layer j has a thicknessdj , and interfacej separates layersj21 and
j . The incoming beam is in medium 0. They axis is perpendicular
to the plane of drawing.
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Tj
~2!~k8,k!52

1

4p2 E d2pi

Wp
FTj

~1!~k8,p!(
i51

j

Ti
~1!~ p̄,k!1Tj

~1!~k8,p̄! (
i5 j11

s

Ti
~1!~p,k!G . ~7!

A. Diffuse scattering

To calculate both specular and nonspecular reflectivity, we will consider the perturbed wave function forz.0, outside the
sample:

fk
~n!~r !5

i

8p2 E d2pi

p0
exp@ i ~pi•x2p0z!#(

i51

s

Ti
~n!~p,k!. ~8!

This expression describes waves scattered in all directions. Up to the ordern51, the differential cross section for scattering in
the direction ofp is

ds~p←k!

dV
5

1

16p2 (
j51

s

(
i51

s

Tj
~1!* ~p,k!Ti

~1!~p,k!. ~9!

To calculate the diffuse scattering, we have to take a configurational average corresponding to all possible positionshj ~x! of
the interfaces and have to subtract the specular part~cf. Refs. 3, 5!. For the specular component we have to takepi5ki ~see the
following subsection!.

We will calculate the T matrix, Eq. ~6!, by approximating the unperturbed functions forVjÞ0 by
ck(zj ).E j

↓(k)exp(ik jz)1E j
↑(k)exp(2 ik jz), also whenzj.0. This is reasonable for small values ofk0 up toO(k j

2s j
2) and

also for large values ofk0 up toO[(k c j
2 2k c, j21

2 )/k 0
2]. Then we find

Tj
~1!~p,k!.~kc j

2 2kc, j21
2 !@Ej

↓~p!Ej
↓~k!F j~pi2ki ,pj1kj !1Ej

↓~p!Ej
↑~k!F j~pi2ki ,pj2kj !1Ej

↑~p!Ej
↓~k!F j~pi2ki ,2pj1kj !

1Ej
↑~p!Ej

↑~k!F j~pi2ki ,2pj2kj !#, ~10!

with

F j~qi ,q![2 i /qE d2x exp~ iqi•x!$exp@ iqhj~x!#21%,

whereqi5pi2ki is the parallel wave-vector transfer.
We will calculate configurational averages~indicated by^ &! by assuming thathj is a Gaussian random variable with a

standard deviationsj , i.e., the rms roughness. We find

^Tj
~1!~p,k!&5dpi ,ki

~kc j
2 2kc, j21

2 !@Ej
↓~p!Ej

↓~k!2Ej
↑~p!Ej

↑~k!#^F j~pi2ki ,pj1kj !&, ~11!

with

^F j~qi ,q!&52 iAdqi,0@exp~2q2s j
2/2!21#/q,

whereA is the irradiated detected sample surface area.
In the evaluation of the diffuse scattering, we have to evaluate averages like

^F j* ~qi ,qj !Fi~qi ,qi !&2^F j* ~qi ,qj !&^Fi~qi ,qi !&5ASji ~qi ;qj ,qi !,

where

Sji ~qi ;qj ,qi ![
exp@2~qj*

2s j
21qi

2s i
2!/2#

qj* qi
E d2X$exp@qj* qiCji ~X!#21%exp~ iqi•X! ~12!

can be regarded as a structure factor,X5x–x8, and

Cji ~x2x8![^hj~x!hi~x8!& ~13!

is the correlation function between the roughness profiles of interfacesj andi , which is assumed to be a function of the lateral
distance vectorx2x8 only.

We find
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ds~p←k!

dV
5

A

16p2 (
j51

s

(
i51

s

~kc j
2 2kc, j21

2 !* ~kci
2 2kc,i21

2 !$@Ej
↓* ~k!Ej

↓* ~p!Ei
↓~k!Ei

↓~p!1Ej
↑* ~k!Ej

↑* ~p!Ei
↑~k!Ei

↑~p!#Sji ~pi

2ki ;kj1pj ,ki1pi !1@Ej
↓* ~k!Ej

↓* ~p!Ei
↑~k!Ei

↑~p!1Ej
↑* ~k!Ej

↑* ~p!Ei
↓~k!Ei

↓~p!#Sji ~pi2ki ;kj1pj ,2ki2pi !

1@Ej
↓* ~k!Ej

↓* ~p!Ei
↓~k!Ei

↑~p!1Ej
↑* ~k!Ej

↑* ~p!Ei
↑~k!Ei

↓~p!#Sji ~pi2ki ;kj1pj ,ki2pi !

1@Ej
↓* ~k!Ej

↓* ~p!Ei
↑~k!Ei

↓~p!1Ej
↑* ~k!Ej

↑* ~p!Ei
↓~k!Ei

↑~p!#Sji ~pi2ki ;kj1pj ,2ki1pi !

1@Ej
↓* ~k!Ej

↑* ~p!Ei
↓~k!Ei

↓~p!1Ej
↑* ~k!Ej

↓* ~p!Ei
↑~k!Ei

↑~p!#Sji ~pi2ki ;kj2pj ,ki1pi !

1@Ej
↓* ~k!Ej

↑* ~p!Ei
↑~k!Ei

↑~p!1Ej
↑* ~k!Ej

↓* ~p!Ei
↓~k!Ei

↓~p!#Sji ~pi2ki ;kj2pj ,2ki2pi !

1@Ej
↓* ~k!Ej

↑* ~p!Ei
↓~k!Ei

↑~p!1Ej
↑* ~k!Ej

↓* ~p!Ei
↑~k!Ei

↓~p!#Sji ~pi2ki ;kj2pj ,ki2pi !

1@Ej
↓* ~k!Ej

↑* ~p!Ei
↑~k!Ei

↓~p!1Ej
↑* ~k!Ej

↓* ~p!Ei
↓~k!Ei

↑~p!#Sji ~pi2ki ;kj2pj ,2ki1pi !%. ~14!

This expression was published for the first time by Holy´
et al.6

If kjs j is small,Sji ~qi ;qj ,qi!.C̃j i ~qi!, where

C̃j i ~qi![E d2X exp~ iqi•X!Cji ~X!. ~15!

Then Eq.~14! can be greatly simplified. However, Eq.~14! is
also valid for large values ofkjs j , provided that
k 0
2/(k c j

2 2k c, j21
2 )@1, as is apparent from the above approxi-

mations. In that limit the result is equivalent to that of the
simple Born approximation,12 provided that the reflected
fields may be neglected with respect to the downgoing fields.
Note that this implies that in the case of a multilayer it is
necessary to use the complete form Eq.~14! near the total-
reflection area and close to Bragg peaks, whereas the Born
approximation is applicable for wave vectors far from these
conditions.

For the sake of completeness we mention that the diffuse
transmission through a stack of layers can be found using the
same method. The result is that all fieldsE j

↓(p) andE j
↑(p)

have to be substituted byE j
↓( p̄) andE j

↑( p̄).
To be able to evaluate the diffuse scattering, we need a

model for Cji ~X!. Spiller et al.13 argued that its Fourier
transform, Eq.~15!, may be written as

C̃j i ~qi!5 c̃ j i
'~qi!C̃j.

~qi!, ~16!

where j.[max(j ,i ). As in Eq.~15!, C̃j ~qi!, the power spec-
tral density of interfacej , is the two-dimensional Fourier
transform ofCj ~X!, the correlation function of the roughness
of interface j , whereasc̃ j i

'~qi! is the replica factor between
interfacesj and i . A form frequently used for the correlation
function is that introduced by Sinhaet al.5 for self-affine
interfaces:

Cj~X!5s j
2 exp@2~ uXu/j j !2Hj #,

wherejj is the correlation length of the roughness and the
parameterHj (0,Hj<1), describing how jagged interfacej
is, is connected to its fractal dimensionDj532Hj . Several
other functional forms with qualitatively the same behavior
have been described in the literature.4,14 The simplest form
for the replica factor is a frequency-independent one:

c̃ j i
'~qi!5cji

'5expS 2 (
n5 j,

j.21

dn /j'D ,
where j,[min( j ,i ) and j' is a perpendicular correlation
length. A more realistic form will replicate low spatial fre-
quencies better than higher ones.13

The formalism of this subsection has been successfully
applied to describe diffuse-scattering measurements. Ex-
amples of such simulations can be found in Refs. 6, 15, 16.

Above, the diffuse scattering was calculated in the first-
order DWBA. In Appendix B we will show that higher-order
terms are smaller by a factor that is not larger thanO(k j

2s j
2).

In the next subsections we will show that, as for single
interfaces,3,4 the second-order contributions to specular re-
flectivity and GIXRF may be as strong as the first-order con-
tributions. Higher-order terms will be smaller again by at
least a factor ofO(k j

2s j
2).

B. Specular reflection

Now we will proceed with the calculation of specular
scattering. To do this, we have to insert, in Eq.~5!,
dkx ,pxdky ,py.(4p2/A)d(kx2px)d(ky2py) and we have to
take a configurational average to obtain the coherent scatter-
ing. Hence, forn.0, the specular component of Eq.~5! in
layer 0 is

fk,spec
~n! ~r !5

i

2Ak0
exp@ i ~ki•x2k0z!#(

i51

s

^Ti
~n!~k,k!&.

When we write the specular reflection coefficient of the
multilayer with rough interfaces as

r̃ k5r k
~0!1r k

~1!1r k
~2!1••• ,

we haver k
(0)5E 0

↑(k) and, forn.0,

r k
~n!5 i(

j51

s

^Tj
~n!~k,k!&/~2Ak0!. ~17!

For the sake of completeness we mention that,
using the same method, we can also obtain the transmis-
sion coefficient through a multilayer stack, which
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is t̃ k5t k
(0)1t k

(1)1t k
(2)1••• with t k

(0)5E s
↓(k) and

t k
(n)5 i( j51

s ^T j
(n)( k̄,k)&/(2Aks) for n.0.

The first-order~n51! contribution is obtained by substi-
tuting Eq. ~11! with, up to O(k j

2s j
2), ^F j (qi ,q)&

. iAdqi,0
qs j

2/2. For a single surface this case can be solved
self-consistently, with the result that the reflection coefficient
is multiplied by the so-called Ne´vot-Croce ~NC! factor
exp(22kj21kjs j

2).17–19 It can be shown that for a
multilayer, up to O(k j

2s j
2) and/or up to

O[(k c j
2 2k c, j21

2 )/k j
2], the n51 contribution is obtained by

multiplying the reflection coefficients at each interfacej by

NC factors. This method is widely used for calculating
reflectivities.2

The second-order~n52! contribution is obtained by sub-
stituting Eq.~7! in Eq. ~17! and taking configurational aver-
ages. It can be regarded as a sum of diffuse scattering distri-
butions @cf. Eq. ~9!#, and we have to integrate overpi

expressions as in Eq.~14!. Here, however, we are not inter-
ested in the details of the shape of the diffuse scattering
distribution as a function ofpi . So we can greatly simplify
the calculations by proceeding up toO(k j

2s j
2), which yields,

for one of the terms between brackets in Eq.~7!,

^Tj
~1!~k8,p!Ti

~1!~ p̄,k!&.dk
i8 ,ki

A~kc j
2 2kc, j21

2 !~kci
2 2kc,i21

2 !Ej~k8!Ei~k!Ej~p!Ei~ p̄!C̃j i ~pi2ki!, ~18!

with

Ej~k![Ej
↓~k!1Ej

↑~k!.

Now Eq. ~7! yields

^Tj
~2!~k8,k!&52dk

i8 ,ki
A/~4p2!(

i51

s

~kc j
2 2kc, j21

2 !~kci
2 2kc,i21

2 !Ej~k8!Ei~k!E d2pi /WpEj.
~p!Ej,

~ p̄!C̃j i ~pi2ki!. ~19!

To calculate Eq.~19!, we have to evaluate the integral overpi . This two-dimensional integral can be transformed into pole
coordinates and then can be performed either numerically or~partially! analytically ~cf. Ref. 3!.

The second-order contribution describes the correlation between the radiation scattered from the various interfaces, which
in general cannot be taken into account by using simple multiplication factors for single-interface reflection coefficients~cf.
Ref. 20!. This is only possible for very large values ofj if all the layers are perfectly correlated~i.e., largej'!, or for very small
values ofj.

We will consider in more detail these limiting cases, which depend on the value of~uku2ukiu!jj /2.k 0
2j j /uku. We found that,

if this value is!1, ^Tj
(2)(k8,k)&/^Tj

(1)(k8,k)&5O(k0Aj j /uku), and the first-order~or NC! result is a good approximation. If,
on the other hand,k 0

2j j /uku@1, thenC̃j ~pi2ki! approaches 4p
2s j

2 times ad function centered atki and we find, with Eq.~16!,

^Tj
~2!~k8,k!&.2dk

i8 ,ki
A/Wk(

i51

s

~kc j
2 2kc, j21

2 !~kci
2 2kc,i21

2 !Ej~k8!Ei~k!Ej.
~k!Ej,

~ k̄!s j.
2 c̃ j i

'~0!. ~20!

If the perpendicular correlation is also perfect@c̃ j i
'(0)51#

and all the interfaces have the same roughnesss, the com-
bined effect of first- and second-order contributions is, up to
O(k 0

2s2), that the total reflected field can be multiplied by a
Debye-Waller~DW! factor exp~22k0

2s2!. It can be shown
that this is also true for large values ofk0

2s2 ~Ref. 20! ~cf.
Appendix C!.

Hence we have obtained expressions for both very small
and very large correlation lengths and arbitrary roughness
values, as well as for arbitrary correlation lengths and small
roughness values. A problem is how to find a plausible inter-
polation. We obtained such an expression for one interface.3

For multilayers such an interpolation is less obvious. If there
is no correlation, the single-interface reflection and transmis-
sion coefficients have to be combined independently. Hence
it is a good approach to multiply each of them by the appro-
priate NC factor to obtain a multilayer reflection coefficient
r k
NC. If both lateral correlation and perpendicular correlation
are perfect, as outlined above, a single DW factor applies
and the reflectivity can be written as follows:
r̃ k5r k

(0)exp[(r k
(1)1r k

(2))/r k
(0)]. Now we want to interpolate

between these two in such a way that the expression sug-
gested in Ref. 3 is obtained for a single interface. One pos-
sibility is

r̃ k5 f r k
~0! exp@~r k

~1!1r k
~2!!/r k

~0!#

1~12 f !r k
NC exp~r k

~2!!/r k
~0!), ~21!

wheref describes the degree of correlation~0<f<1!. A con-
venient choice forf is the ratio ofr k

(2) to its value for perfect
correlation. However, we feel that, when perpendicular cor-
relation is absent, the first term in Eq.~21! will then easily be
overestimated. Hence we multiplied this ratio by a factor
P j51

s c̃ j , j21
' (0) to obtain f . Still, we have to be aware that

the method introduced in thisad hocmanner may fail for
large values ofkjs j , especially if the exponents involved are
larger than 1.

C. Glancing-incidence x-ray fluorescence

In a previous publication1 we gave formulas for calculat-
ing glancing-incidence XRF~GIXRF! intensities from lay-
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ered materials. We will now consider the role of interface
roughness in detail. In Ref. 4 this has already been done for
samples with a single rough surface. Here we will extend
that treatment to samples with many rough interfaces.

In order to calculate the XRF intensities, we have to know
the electric field inside the sample. In layerj this field is as
given by Eq.~5!. It is convenient to rewrite this expression as

fk
~n!~r !5

A

4p2 E d2pi exp~ ipi•x!@Uj
↓~n!~p,k!exp~ ip jzj !1Uj

↑~n!~p,k!exp~2 ip jzj !#, ~22!

where

Uj
↓~n!~p,k!52

1

AWk
FEj
↓~p!(

i51

j

Ti
~n!~ p̄,k!1Ej

↓~ p̄! (
i5 j11

s

Ti
~n!~p,k!G ,

Uj
↑~n!~p,k!52

1

AWk
FEj
↑~p!(

i51

j

Ti
~n!~ p̄,k!1Ej

↑~ p̄! (
i5 j11

s

Ti
~n!~p,k!G . ~23!

The specular component of the field can be written as

fk,spec
~n! ~r !5@^Uj

↓~n!~k,k!&exp~ ik jzj !1^Uj
↑~n!~k,k!&exp~2 ik jzj !#exp~ iki•x!.

The intensity due to the incident x rays at positionr is proportional to

ufk~r !u25ufk
~0!~r !u212 Re@fk

~0!* ~r !fk
~1!~r !1fk

~0!* ~r !fk
~2!~r !1•••#1ufk

~1!~r !u21ufk
~2!~r !u21••• .

We will consider XRF from atoms which are distributed homogeneously across the considered layerj which has a thickness
dj . At a lateral positionx the XRF intensity is proportional to

E
hj11~x!2dj

hj ~x!

dzj ufk~r !u2 exp~m j zj !,

wherehj ~x! andhj11~x! are the height deviations of the ideal top and bottom interfaces, respectively, andmj is the linear
absorption coefficient in layerj of the XRF radiation emitted perpendicular to the surface. Now we can split the integral into
a term describing bulk absorption and two terms describing absorption in the interfacial layers:

E
hj11~x!2dj

hj ~x!

dzj f ~zj !5E
2dj

0

dzj f ~zj !1E
0

hj ~x!

dzj f ~zj !2E
0

hj11~x!

dzj11f ~zj112dj !.

Below we will consider these terms separately. Furthermore, we have to integrate overx and to take a configurational average.
We will normalize to unit surface area by dividing byA. The total intensity of the considered fluorescent line can be obtained
from the following expressions by multiplying them by the amount of considered fluorescent atoms in layerj and the
attenuation factor of the XRF radiation, exp(2( i51

j21m idi), then summing over all the layersj in which the atoms are present,
multiplying by the appropriate absorption coefficient, fluorescence yield, etc.

If we continue to the same order as in the previous subsection, we find that six contributions are important~I 0 to I 5!:
~1! Absorption of the directly transmitted beam as though there were no roughness:

I 05A21E d2xE
2dj

0

dzj ufk
~0!~r !u2 exp~m j zj !

5uEj
↓~k!u2

12exp@2~2kj91m j !dj #

2kj91m j
1uEj

↑~k!u2
12exp@2~22kj91m j !dj #

22kj91m j

12 ReHEj
↓* ~k!Ej

↑~k!
12exp@2~2ik j81m j !dj #

2ik j81m j
J ,

wherekj85Re(kj) andkj952Im(kj).
~2!, ~3! The first- and second-order contributions, respectively, due to the change brought about in the transmitted intensity

by the roughness:
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2 ReK A21E d2xE
2dj

0

dzjfk
~0!* ~r !fk

~n!~r !exp~m j zj !L
52 ReF E

2dj

0

dzjfk
~0!* ~r !fk,spec

~n! ~r !exp~m j zj !G
52 ReHEj

↓* ~k!^Uj
↓~n!~k,k!&

12exp@2~2kj91m j !dj #

2kj91m j

1Ej
↑* ~k!^Uj

↑~n!~k,k!&
12exp@2~22kj91m j !dj #

22kj91m j

1@Ej
↓* ~k!^Uj

↑~n!~k,k!&1Ej
↑~k!^Uj

↓~n!* ~k,k!&#
12exp@2~2ik j81m j !dj #

2ik j81m j
J .

For n51, Eqs.~23! and~11! can be substituted to giveI 1. An equivalent result is obtained when NC factors are used in the
calculation of the fields inI 0. This implies that the reflection coefficients are multiplied by exp(22kj21kjs j

2) ~cf. Sec. II B!
and the transmission coefficients by exp[(kj2kj21)

2s j
2/2].18 The intensity calculated in this way is equal toI 01I 1 up to

O(k j
2s j

2). Forn52, Eqs.~23! and~19! can be substituted to giveI 2. If k 0
2j j /k!1, I 2 can be neglected; ifk 0

2j j /k@1, Eq.~20!
can be used.

We will use a procedure similar to that used for specular reflectivity in Sec. II B to extrapolate our results to the case of a
greater degree of roughness. That is, if bothj andj' are small, the NC result~for layer j ! is multiplied by exp(I 2/I 0). For the
perfectly correlated case, the zero-order fields have to be multiplied by the appropriate DW factors, which are
exp@2(k02kj )

2s2/2# for the downgoing field and exp@2(k01kj )
2s2/2# for the upgoing field~see Appendix C!. Equivalently,

we can consider the three terms~due to downgoing x rays, upgoing x rays, and interference! in the intensity separately and
multiply each zero-order term by the exponent of the first- and second-order terms summed, divided by the zero-order term.

~4! Absorption of diffusely scattered radiation:

I 35K A21E d2xE
2dj

0

dzj ufk
~1!~r !u2 exp~m j zj !L

5
A

4p2 E d2pi H ^uUj
↓~1!~p,k!u2&

12exp@2~2pj91m j !d#

2pj91m j

1^uUj
↑~1!~p,k!u2&

12exp@2~22pj91m j !d#

22pj91m j
12 ReS ^Uj

↓~1!* ~p,k!Uj
↑~1!~p,k!&

12exp@2~2ip j81m j !d#

2ip j81m j
D J .

In calculating configurational averages like^uU j
↓(1)(p,k)u2&, we have to evaluate averages of products ofT i

(1)(p,k). As in the
previous subsection, we have to integrate overpi and are not interested in the details of its shape. Hence we assume that we
are allowed to use an expression similar to Eq.~18!. With Eq. ~23! we find

^uUj
↓~1!~p,k!u2&5

1

AuWku2
(
i51

s

(
i 851

s

~kci
2 2kc,i21

2 !* ~kc,i 8
2

2kc,i 821
2

!C̃ii 8~pi2ki!

3Ei* ~k!Ei 8~k!H uEj
↓~p!u2Ei* ~ p̄!Ei 8~ p̄! if i< j , i 8< j ,

uEj
↓~ p̄!u2Ei* ~p!Ei 8~p! if i. j , i 8. j ,

Ej
↓* ~p!Ej

↓~ p̄!Ei* ~ p̄!Ei 8~p! if i< j , i 8. j ,

Ej
↓* ~ p̄!Ej

↓~p!Ei* ~p!Ei 8~ p̄! if i. j , i 8< j ,

and analogous expressions for^uU j
↑(1)(p,k)u2& and ^Uj

↓(1)* (p,k)Uj
↑(1)(p,k)&. If k 0

2j j /k!1, I 3 may be neglected; if
k 0
2j j /k@1, we can substitute Eq.~16! with C̃j ~qi!.4p2s j

2d~qi! in the above expressions.
~5! Absorption of the direct beam in the rough interfacial layers. At the top interface (j ),
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I 4,15K A21E d2xE
0

hj ~x!

dzj ufk
~0!~r !u2 exp~m j zj !L

5K A21E d2xS uEj
↓~k!u2

exp@~2kj91m j !hj~x!#21

2kj91m j

1uEj
↑~k!u2

exp@~22kj91m j !hj~x!#21

22kj91m j
12 ReHEj

↓* ~k!Ej
↑~k!

exp@~2ik j81m j !hj~x!#21

2ik j81m j
J D L

5uEj
↓~k!u2

exp@~2kj91m j !
2s j

2/2#21

2kj91m j
1uEj

↑~k!u2
exp@~22kj91m j !

2s j
2/2#21

22kj91m j

12 ReHEj
↓* ~k!Ej

↑~k!
exp@~2ik j81m j !

2s j
2/2#21

2ik j81m j
J .

Absorption by the considered fluorescent atoms of layerj at the bottom interface~j11!:

I 4,252exp~2m jdj !K A21E d2xE
0

hj11~x!

dzj11ufk
~0!~r !u2 exp~m j zj11!L

52exp~2m jdj !S uEj11
↓ ~k!u2

exp@~2kj119 1m j !
2s j11

2 /2#21

2kj119 1m j
1uEj11

↑ ~k!u2
exp@~22kj119 1m j !

2s j11
2 /2#21

22kj119 1m j

12 ReHEj11
↓* ~k!Ej11

↑ ~k!
exp@~2ik j118 1m j !

2s j11
2 /2#21

2ik j118 1m j
J D .

~6! Correction to~5! due to the change in the intensity caused by the roughness. At the top interfacej ,

I 5,152 ReK A21E d2xE
0

hj ~x!

dzjfk
~0!* ~r !fk

~1!~r !exp~m j zj !L
.2 ReK 1

4p2 E d2pi E d2x exp@ i ~pi2ki!•x#@Ej
↓~k!1Ej

↑~k!#* @Uj
↓~1!~p,k!1Uj

↑~1!~p,k!#hj~x!L .
Again, we only continue to second order inkjhj ~x!. That implies thatU j

↓(1)(p,k) andU j
↑(1)(p,k) only have to be evaluated

up to the first order inkjhj ~x!. Then Eq.~10! can be written as

Tj
~1!~p,k!.~kc j

2 2kc, j21
2 !Ej~p!Ej~k!E d2x exp@ i ~pi2ki!•x#hj~x!.

This leads to the product ofhj ~x! andhi~x! in I 5,1. The configurational average results in the correlation functionCji ~x!. We
obtain

I 5,1.2 ReH 2
1

4p2Wk
Ej* ~k!E d2pi(

i51

s

~kci
2 2kc,i21

2 !C̃j i ~pi2ki!Ej.
~p!Ej,

~ p̄!Ei~k!J .
At the bottom interface~j11!,

I 5,252 ReK 2exp~2m jdj !A
21E d2xE

0

hj11~x!

dzj11fk
~0!* ~r !fk

~1!~r !exp~m j zj11!L
.2 ReH 1

4p2Wk
exp~2m jdj !Ej11* ~k!E d2pi(

i51

s

~kci
2 2kc,i21

2 !C̃j11,i~pi2ki!Ei1.

~p!Ei1,

~ p̄!Ei~k!J ,
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wherei 1.
[max(j11,i ) and i 1,

[min(j11,i ). As for I 2 and
I 3, if k 0

2j j /k!1, I 5 may be neglected, and ifk 0
2j j /k@1, we

can substituteC̃j ~qi!.4p2s j
2d~qi!.

Other contributions will not be taken into account, since
they are smaller by at least a factor ofO(k 0

2s j
2) ~cf. Appen-

dix B!. We note that, for small values ofjj , only corrections
~2! and~5! apply. In existing algorithms1 only correction~2!
is used. This is not completely correct since, as will be seen
below, contribution~5! may also have an appreciable influ-
ence.

III. GRADED INTERFACES AS A STARTING POINT

A better starting point for the DWBA than that corre-
sponding to flat interfaces may be that corresponding to
graded interfaces resulting from a lateral averaging of the
refractive index.7 This will be the case unless the lateral cor-
relation length of the roughness is very large~jk0

2/uku@1: cf.
Ref. 4!. The lateral width over which averaging has to take
place is equal to the coherence length of the x rays, which is
2p/~k0Du!, whereDu is the divergence of the incident x rays.

For a Gaussian distribution of interface heights, the
refractive-index profile is an error function. In that case the
Helmholtz equation~1! cannot be exactly solved. We will not
use a profile that can be solved exactly instead~like a tangent
hyperbolicus7,21,22!, but will look for a suitable approxima-
tion.

Hence we will considerV0(z) to be an error function
around each average interface position, whereasV1~r ! repre-
sents the actual jump in refractive index minusV0(z). We
will assume that the unperturbed solution of Eq.~1! can be
written in a form analogous to Eq.~3!, but with depth-
dependent amplitudes and wave vectors. Then the perturbed
fields will have a form analogous to Eq.~5!, the T matrix
being calculated using these unperturbed fields. The first-
order specular contribution to theT matrix will consist of a
term containing the average of the integral of the refractive
index minus a term containing the integral of the average of
the refractive index. This contribution vanishes.

To be able to calculate the higher-order contributions, we
have to incorporate the right depth dependence of amplitudes
and wave vectors. We will make the simplifying assumption
that in the graded region around interfacej the electric field
can be written as

ck~zj !5Eg
↓~k!exp~ ikgzj !1Eg

↑~k!exp~2 ikgzj !; ~24!

i.e., we suppose that in good approximation one effective
wave vector and one set of amplitudes can be used for the
interfacial region. Then the diffuse-scattering cross section,
for instance, can be written in a form very similar to Eq.
~14!, with the interfacial amplitudes and wave vectors being
substituted byEg

↓(k), Eg
↑(k), andkg .

Before we discuss the consequences of this approach in
more detail, we will try to find a good approximation for
calculating Eq.~24! for the case of graded interfaces. One
possible approach is to take the self-consistent fields which
contain the reflection and transmission coefficients multi-
plied by the appropriate NC factors. In Secs. II B and II C,
we mentioned that this is a good approximation for calculat-
ing reflectivity and GIXRF for rough interfaces with Gauss-
ian height distributions. If the fields obtained in this way

were to be good approximations to the real fields, the
diffuse-scattering cross section would be given by Eq.~14!
with the amplitudes calculated for the rough interfaces. This
suggestion was made for a single interface by Weber and
Lengeler,23 and a similar approach was followed by
Kopecky.24 However, as mentioned above, the electric fields
obtained in this way are only correct for small values of
k j
2s j

2 and/or small small values of (k c j
2 2k c, j21

2 )/k j
2. ~The

reason for this is that, in deriving the NC formulas, the fields
are approximated by the expressions strictly valid at one side
of the interface only.19,21!

In Fig. 2 we see that serious errors may indeed be made.
In this figure the intensity due to the incident x rays is drawn
in the neighborhood of a rough air-gold interface at an inci-
dence angle close to the critical angle. Note that here neither
k j
2s j

2 nor (k c j
2 2k c, j21

2 )/k j
2 is small. Above the interface

there is an x-ray standing wave due to interference of the
incident and reflected beams and below the interface an eva-
nescent wave. The numerical solution obtained via the slice
method mentioned above~short dashes! and the solution ob-
tained with the aid of NC factors~solid line! are both indi-
cated. Away from the interface both solutions coincide sur-
prisingly well. ~The phase of the reflected wave is slightly
different: cf. Ref. 21.! This indicates that it is correct to
calculate the reflectivity and transmissivity by using NC fac-
tors. In the neighborhood of the interface, however, the two
differ. The approximate solution has a discontinuity at the
interface, whereas the real solution varies smoothly. It can be
seen that close to the interface the field for a flat interface is
a better approximation than that obtained using NC factors.
This is in agreement with the findings of Holy´,25 who did a
scattering calculation using the numerical solutions as a
starting point.

Another approach is to solve Eq.~1! numerically by di-
viding the error-function profile into many very thin slices in
which the refractive index may be considered constant. Then
the fields can be found using standard methods.10,11 As we
will see below, these fields can be used directly to calculate
the GIXRF intensities for the case of small lateral correla-
tion. It is not feasible to use these fields directly for calcu-

FIG. 2. X-ray intensity vs depth for CuKa radiation with a
perpendicular wave vectork050.375 nm21 on a gold sample with a
rms roughness of 1.5 nm. Dash-dotted line, no roughness; solid line,
calculated using NC factors; long-dashed line, approximation~see
text!; short-dashed line, calculated for error-function profile using
slice method.
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lating diffuse scattering. One possibility is to use the fields
found for the middle of the graded region, but these fields
will not be correct at the borders of the graded region.~The
same holds for the calculation ofr k

(2), I 2, I 3, andI 5.!
We can try to make a better approximation by assuming

that the fields obtained using the NC factors are correct ex-
cept in an interfacial region.26 Inside this region we calculate
the wave vectorkg using the average of the refractive indices
of the neighboring layers~which is correct at the average
interface position!. Then the amplitudesEg

↓(k) and Eg
↑(k)

can be calculated by assuming that the electric fields are
continuous at the two boundaries.~The derivatives are not
continuous.! The intensity obtained in this way has also
been plotted in Fig. 2~long dashes!. It seems to be a reason-
able approximation to that obtained using the slice method
~short dashes!.

We will now consider the consequences of this method for
GIXRF in the case of small correlation lengths, i.e., forI 0,
I 1, andI 4 of Sec. II C. Outside the interfacial regions we can
use the NC factors to calculate the fields to obtainI 0. From
the above discussion it follows that the first-order contribu-
tion I 1 vanishes. HenceI 01I 1 remains essentially the same.
The correction due to absorption in the rough interfacial lay-
ers~I 4! will differ, however, since it involves the fields close
to the interface. We will use the amplitudes and wave vectors
obtained using the new method to calculateI 4.

As an example, we will discuss the results obtained for a
rough gold sample, i.e., the same case as that of Fig. 2. In
Fig. 3 we compare the GIXRF intensities as a function of the
perpendicular incident wave vectork0, calculated in different
approximations. In Fig. 3 of Ref. 4, we already gave the
result of calculations when flat interfaces are used as a start-
ing point for the DWBA@reproduced as the long-dashed line
in Fig. 3~c!#. Here we show the results for two cases: a
gold bulk sample and a submonolayer of impurities at the
interface. In the bulk case@Fig. 3~a!#, the intensity has been
multiplied by the imaginary part of the wave vector~while
mAu has been neglected!. Qualitatively, the results are similar

to those of Ref. 4, but both cases only yield the same result
@dash-dotted line in Fig. 3~c!# if there is no roughness. Dif-
ferent results are obtained for the rough samples: Fig. 3~a!
for gold bulk and Fig. 3~b! for the submonolayer at the in-
terface, also shown as the short-dashed and solid curve of
Fig. 3~c!, respectively. Note that the contribution due to ab-
sorption in the rough interfacial layers@long dashes in Figs.
3~a! and 3~b!# is appreciable. The reason why the total inten-
sity is lower for the submonolayer case is that a large part of
the interface lies deeper with respect to the average interface,
where the x-ray intensity is lower~cf. Fig. 2!. We also did
calculations using the slice method for the error-function
profile @short-dashed lines in Figs. 3~a! and 3~b!#. It can be
seen that the agreement with the results obtained using the
approximate method~solid lines! is very good. We conse-
quently also consider the approximate method a reliable
method for calculating diffuse scattering andr k

(2).
As an example of diffuse scattering calculations, we com-

pare in Fig. 4 intensities obtained for a single interface using
the various approximations.27 The example, a transverse~or
rocking! scan on a rough aluminum sample, is the same as
that given by Weber and Lengeler.23 They fitted their experi-
mental data using the fields calculated with the aid of NC
factors. The intensities calculated with this method, shown as
the solid lines in Fig. 4, fit their data well. We compare these
with those calculated using the unperturbed fields@dashed
line in Fig. 4~a!# and those obtained using our method~i.e.,
using the approximate fields for the interfacial region, dashed
line in Fig. 4~b!#. There are significant differences between
the three. Moreover, with somewhat different parameters it is
possible to obtain intensities very similar to the original data
@dot-dashed lines in Figs. 4~a! and 4~b!#, using both the un-
perturbed fields28 and the perturbed fields.

We have to note that this approach to diffuse scattering is
only valid in the case of small correlation lengths
~jk0

2/uku,1, a condition which is only just fulfilled in the
above case!. In Ref. 4 we obtained formulas for the scatter-
ing at a single interface in the case of large correlation

FIG. 3. Calculated GIXRF intensities vs perpendicular incident wave vectork0 for CuKa radiation incident on a gold sample with a rms
roughness of 1.5 nm. All the intensities have been normalized to unity at a high angle.~a! Au bulk intensity~multiplied bykAu9 !. Dash-dotted
line, bulk absorption (I 01I 1); long dashes, correction due to absorption in rough interfacial layer~I 4!; solid line, total intensity; short dashes,
calculated using error-function graded interface.~b! Intensity for a submonolayer surface layer. Dash-dotted line, absorption if the layer were
flat (I 01I 1); long dashes, correction due to absorption in rough interfacial layers~I 4!; solid line, total intensity; short dashes, calculated
using error-function graded interface.~c! Dash-dotted line, no roughness; long dashes, calculated using flat interfaces as a starting point;
short dashes, calculated using the method for bulk@cf. ~a!#; solid line, calculated using the method for the surface layer@cf. ~b!#.
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lengths.~Unfortunately, such a formalism is not yet known
for layered materials, for which one has to take into account
the correlation between the various interfaces, as explained
in the discussion in Sec. II B.! In Fig. 4~c! we show the
results obtained using this approach~dashed line!. We were
unable to fit the original data in this model@cf. dot-dashed
line in Fig. 4~c!#. This indicates that the correlation length is
too small for this model to be applicable.

Next we will consider how we can deal with specular
reflectivity using the method. As in the case of GIXRF, the
zero-order contribution is essentially that obtained using NC
factors, whereas the first-order contribution vanishes. Hence
r k
(0)1r k

(1) remains the same. Since the DW result should be
obtained in the case of perfect correlation, we will use the
unperturbed fields to obtain the first term of Eq.~21!. For the
second term, however, we will use the fields obtained using
the method presented here.29 ~Although this approach differs
somewhat from that of Ref. 3, we found that the differences
for a single interface can be neglected.!

This same procedure will be followed to obtain the con-
tribution I 2 to the GIXRF intensities. For the contributionsI 3

and I 5, we will use the fields obtained using graded inter-
faces, unlessjk0

2/uku@1. Below we will give some examples
of the calculation of reflectivity and GIXRF for samples with
more than one rough interface.

IV. EXAMPLES OF CALCULATIONS FOR LAYERED
MATERIALS

First we will show calculations for a single layer of 30 nm
silicon on a gold substrate. In that case waveguidelike behav-
ior may occur just above the critical angle for silicon,1 yield-
ing a dip in the reflectivity at approximately 0.18 nm21. Fig-
ure 5 shows the reflectivity for various values of the rms
roughness and correlation lengths. In Fig. 5~a! both inter-
faces have the same roughness, in Figs. 5~b! and 5~c! the
interfaces have different roughnesses. When the case without
roughness~long dashes in all three figures! is compared with
the cases with roughness but without correlation~solid lines!,
it can be seen that the effect of the NC factor may be to

FIG. 4. Calculated scattered intensity vs parallel wave-vector transfer in a transverse scan atk01p050.495 nm21 for scattering of x rays
with a wavelength of 0.177 nm on an aluminum sample with a rms roughness of 4 nm. In all three figures the solid line was obtained using
NC factors, a correlation lengthj5400 nm andH51. ~a! Dashed line, calculated using unperturbed fieldsj5400 nm andH51. Dot-dashed
line, calculated using unperturbed fields,j5600 nm, andH50.7. ~b! Dashed line, calculated using graded interfaces as a starting point,
j5400 nm andH51. Dot-dashed line, calculated using graded interfaces as a starting point,j5800 nm andH51. ~c! Dashed line,
calculated using the method for large correlation lengths,j5400 nm andH51. Dot-dashed line, calculated using the method for large
correlation lengths,j51000 nm andH51.

FIG. 5. Calculated reflectivity for CuKa incident on a sample consisting of 30 nm Si on Au with different interface roughnesses:~a!
sair/Si52 nm,sSi/Au52 nm. ~b! sair/Si50 nm,sSi/Au52 nm. ~c! sair/Si52 nm,sSi/Au50 nm. Long dashes~upper curve!, no roughness;
solid line, j50, j'50; widely spaced dashes, error-function profiles; short dashes,j5`, j'50; dot-dashed line,j5`, j'5`.
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reduce the overall reflectivity and/or to affect the fringe am-
plitude. In general, there is good agreement with the error-
function profile ~widely spaced dashes!, although at large
values ofk0 the slicing method may cause false oscillations
@Fig. 5~a!#. ~The manner of slicing affects this behavior.! In
the case that lateral and perpendicular correlations are both
perfect, the DW factor can be used and the reflectivity is
reduced even more than in the NC case@Fig. 5~a!, dot-dashed
line#. As for single interfaces,3 the difference between the
two is maximum at the critical angle and goes to a constant
factor at large angles of incidence. In Figs. 5~b! and 5~c! the
case of perfect correlation~dot-dashed lines! is unphysical,
since the roughnesses of the two interfaces are different.
However, we may see what the trend of the effect of corre-
lation is. In Fig. 5~b! a reduction of the reflectivity can again
be seen. In Fig. 5~c! the result is a reduction of fringe
maxima and an enhancement of fringe minima. We believe
that the reversion of the order of maxima and minima is an
artifact of the calculation. If there is no perpendicular corre-
lation ~short dashes!, the reflectivity is somewhere in be-
tween.

Next we will consider the effect of a finite lateral corre-
lation length. In Fig. 6 we show the results of calculations for
the sample of Fig. 5~a!. We chose the same valuej for the
correlation lengths of the two interfaces and assumed the
correlation between the two interfaces to be perfect. We see a
gradual change between the NC and DW cases, as also ob-
tained for a single interface.3 We also performed calculations
for the same sample without perpendicular correlation. Here
we found that atj&1000 nm the results were hardly distin-
guishable from those obtained for perfect correlation, but at
very large values ofj the same results as shown in Fig. 5~a!
were obtained.

Figure 7 shows the results of calculations of the Si
GIXRF intensity~normalized at the high-angle value! for the
sample of Fig. 5~a!, again with various degrees of correla-
tion. The large amplitude of the oscillations is due to
waveguidelike behavior.1 When compared with the case
without roughness@Fig. 5~a!, long dashes#, the general effect

of interface roughness is a reduction of the amplitude of the
GIXRF fringes. Again, there is good agreement between the
results obtained using the NC@Fig. 7~a!, solid line# and the
error-function method@Fig. 7~a!, short dashes#. The absorp-
tion of the diffusely scattered radiation is appreciable in Figs.
7~c! and 7~d! ~long dashes!, where both the rms roughness
and the lateral correlation length of the silicon-gold interface
are large. The correction due to absorption in the rough in-
terfacial layers~short dashes! is small in all cases. To account
for the effect of roughness, we used the theory with graded
interfaces as a starting point. We found that the results ob-
tained using flat interfaces as a starting point are approxi-
mately the same.

The same kind of calculations can be performed for peri-
odic multilayers. As an example, Fig. 8 shows the reflectivity
for a tungsten-carbon multilayer with the first Bragg peak at
approximately 1.1 nm21. Again, there is a good agreement
between the results of calculations using the NC method and
those performed using error-function profiles. Since the dif-
ference is negligible, both are indicated by the solid line in
Fig. 8~a!. The effect of the lateral correlation length@Fig.
8~c!# is small. Only in the Bragg peak do we see a decrease
in intensity with an increasing correlation length. A decrease
in the perpendicular correlation length leads to an increase in
the Bragg peak intensity@Fig. 8~b!#. Unfortunately, we found
that unphysically large intensities may be obtained when the

FIG. 6. Influence of lateral correlation lengthj on reflectivity
calculated for CuKa incident on the sample of Fig. 5~a! with
j'5`. Solid line, j50; short dashes,j5100 nm; long dashes,
j51000 nm; dot-dashed line,j5`.

FIG. 7. Si Ka GIXRF ~excited by CuKa! calculated for a
sample consisting of 30 nm Si on Au withsair/Si52 nm,sSi/Au52
nm @cf. Fig. 5~a!#. ~a! and~b! j50, j'50; ~c! j5`, j'5`; ~d! j5`,
j'50. For ~a!, long dashes,I 0 ~sair/Si5sSi/Au50!; small dashes,
calculated using error-function profile; solid line, total intensity for
rough interfaces@see~b!#. For ~b!, dot-dashed line, absorption of
directly transmitted radiation (I 01I 1); short dashes, absorption in
rough interfaces~I 4!; solid line, total intensity. For~c! and ~d!,
dot-dashed line, absorption of directly transmitted radiation
(I 01I 11I 2); long dashes, absorption of diffusely scattered radia-
tion ~I 3!; short dashes, absorption in rough interfaces (I 41I 5); solid
line, total intensity.
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perpendicular correlation is not perfect, since the second-
order term of Eq.~21! may become very large. This is the
cause of the false oscillations in the neighborhood of the
critical angle in Fig. 8~b! ~short dashes!.

Figure 9 shows the W GIXRF intensities obtained for the
same multilayer. Figures 9~a! and 9~b! are for the case with
negligible correlation, showing the effect of what is used as
starting point of the calculation. Figures 9~c! and 9~d! deal
with the influence of correlation. In all cases a modulation
near the Bragg peak is seen, caused by the x-ray standing
wave formed due to interference between the incoming and
reflected beams~cf. Ref. 1 and references therein!. The anti-
nodes of the x-ray standing wave are in the low-density~car-
bon! layers at the low-angle side and in the high-density
~tungsten! layers at the low-angle side of the Bragg peak. In
Figs. 9~a! and 9~b! the case of a small correlation length is
dealt with in two approximations: using flat interfaces as a
starting point@Fig. 9~a!# and using graded interfaces as a
starting point@Fig. 9~b!#. When we compare the results with
those obtained in the case without roughness@Fig. 9~a!, long
dashes#, we see that roughness with small correlation lengths
has two effects: The modulation of the transmission
~I 01I 1 , dot-dashed line! is reduced, and the absorption in
the rough interfaces~I 4, short dashes! is appreciable and has
the opposite phase of modulation. The total intensity is
shown as solid lines. When flat interfaces are taken as a
starting point@Fig. 9~a!#, the effect of the absorption in the
rough interfaces is so great that the modulation changes sign.
This result is unphysical, since it would indicate a reversal of
the densities of tungsten and carbon. When graded interfaces
are taken as a starting point@Fig. 9~b!#, the effect is that there
is hardly any modulation left. This is the expected effect,
since the interface roughness is almost as large as the layer
thicknesses. The agreement with the results of a calculation
using error-function profiles@long dashes in Fig. 9~b!# is very
good. This is a clear example of the method of Sec. III yield-
ing results which are physically more acceptable than those
obtained using flat interfaces as a starting point. For perfectly
correlated interfaces@Fig. 9~c!#, the correction for absorption
in the rough interfaces~I 41I 5 , short dashes! has a sign op-
posite to that for noncorrelated interfaces. The transmission

~I 01I 11I 2 , dot-dashed line! has a dip which largely cancels
the absorption of the diffusely scattered radiation~I 3, long
dashes!. The behavior of the total intensity~solid line! is
qualitatively similar to that observed for layers without any
roughness. For the case of no perpendicular correlation and
j5` @Fig. 9~d!#, we find unphysical results in the neighbor-
hood of the critical angle, as in Fig. 8~b!. At the Bragg peak
the result is similar to that obtained for small values ofj
@Fig. 9~b!#.

V. CONCLUSIONS

A rough interface often can be considered as self-affine;
that is, it can be characterized by three parameters: its rms
roughness, its lateral correlation length, and its jaggedness
parameter. For a multilayer at least one additional parameter
is required, e.g., the perpendicular correlation length. We
have presented a theory enabling the calculation of specular
and diffuse reflectivity and GIXRF expressed in these param-
eters. Together with the results discussed in previous
publications,3,4 this leads to the following picture.

In the case of small lateral correlation lengths
~k 0

2j j /uku!1!, diffuse scattering may be neglected with re-
spect to the specular reflectivity and a possible approach is to
use the slicing method for graded interfaces. Alternatively,
the reflection and transmission coefficients can be obtained
in a self-consistent way, which results in NC factors.17,21

However, in the latter case the fields close to the interfaces
are not calculated correctly~see Fig. 2!. Especially in cases
of appreciable roughness and close to the critical wave vec-
tor or to Bragg peaks, the effect may be substantial.

In cases of greater lateral correlation lengths, in which
diffuse scattering may not be neglected, the DWBA can be
successfully applied. When the lateral correlation lengths are
large ~k 0

2j j /uku@1! and the rms roughness is appreciable,
however, the DWBA for the calculation of diffuse scattering
may break down, especially in the total-reflection region. In
that case the Rayleigh approximation yields the correct be-
havior for single interfaces.4 Such an approach is not~yet!
available to calculate diffuse scattering for multilayers. The
approach described in Appendix C for the specular case is,

FIG. 8. Reflectivity calculated for CuKa from samples consisting of 15 periods of 1.5 nm W and 1.5 nm C on a silicon substrate. We
assumeds50.7 nm for all interfaces unless otherwise indicated.~a! Long dashes, no roughness; solid line,j50, j'50. ~b! Short dashes,
j5`, j'50; solid line, j5`, j'5`. ~c! j'5` and various values of the lateral correlation length. Solid line,j50 for all interfaces;
dot-dashed line,j5300 nm for all interfaces; dashed line,j5` for all interfaces.
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however, similar to the Rayleigh approximation. Far from
total reflection and Bragg peaks, the simple Born approxima-
tion may suffice to give a good description of diffuse-
scattering data.12

A point which we were able to settle in this paper is which
fields to use as a starting point for the DWBA. If the rms
roughness and reflectivity are both appreciable, one should
use the solutions for the graded interface, as is clearly shown
by the GIXRF examples@Figs. 3 and 9~a!, 9~b!#. Since the
fields obtained by using NC factors are not correct close to
the interfaces, we have suggested a simple interpolation
method for obtaining approximate fields which can be used
as a starting point for the DWBA. The results obtained for
GIXRF are very good.

For diffuse scattering the effect of this method is that the
fields to be substituted are smaller, which results in intensi-
ties which are smaller by approximately a factor of 2@see
Fig. 4~b!#.

We also investigated the effect of second-order terms in
the DWBA. For diffuse scattering this effect is negligible,
except in the case of substantial reflectivity, when the lateral
correlation length and rms roughness are both large~Appen-
dix B!. This is in accordance with the aforementioned break-
down of the~first-order! DWBA.

For specular reflectivity and GIXRF, the first- and second-
order perturbation terms are both of second order in the rms
roughness. Only in the case of small lateral correlation
lengths~k 0

2j j /uku!1! may the second-order contribution be
neglected. A problem is that, strictly speaking, the DWBA is
only valid for small roughness values~k0s j,1! or far above
the critical wave vector. We found a plausible way of ex-
trapolating the results in the case of single interfaces.3 For
layered materials we found a reasonable description for the
case of considerable correlation@cf. Figs. 6 and 8~c!#. If the
perpendicular correlation is small, however, the DWBA may
yield incorrect results for appreciable rms roughness values
close to the critical wave vector@Figs. 8~b! and 9~d!#.

In the case of GIXRF, there are several terms contributing
up to second order~Sec. II C!. A term which is also present
for small correlation lengths, but which has so far been
neglected,1 is the absorption in the rough interfacial layers
~I 4!. This term is appreciable when both the rms roughness
and the absorption coefficient are not too small. In the case
of silicon ~Fig. 7!, this has hardly any effect, but in the case
of heavy materials like gold or tungsten it may not be ne-
glected~Figs. 3 and 9!.

In practice, we have so far found no samples with a lateral
correlation length that is so large that second-order effects
have to be considered. It will be interesting to look for such
materials to test the applicability of the theory. Specular and
nonspecular reflectivity measurements will yield the order of
magnitude of rms roughness and lateral correlation length,
which will indicate whether second-order effects should be
considered. This information is also necessary for a reliable
quantification of the compositional depth profile based on
GIXRF data.

APPENDIX A: THE SCATTERED FIELD IN AN
INTERFACIAL LAYER

We will now consider the field forn51 inside the rough
layer at interfacej , e.g., forhj ~x!,zj,0. The field is then
given by theiÞ j contributions to Eq.~5!, plus ani5 j con-
tribution amounting to

2
1

4p2 E d2pi

Wp
exp~ ipi•x!E d2x8 exp@ i ~ki2pi!•x8#Fc p̄~zj !E

0

zj
dz8cp~z8!Vjck~z8!

1cp~zj !E
zj

hj ~x8!
dz8c p̄~z8!Vjck~z8!G .

FIG. 9. W Ma GIXRF ~excited by CuKa! calculated for
samples consisting of 15 periods of 1.5 nm W and 1.5 nm C on a
silicon substrate. We assumeds50.7 nm for all interfaces unless
otherwise indicated.~a! j50, j'50, flat interfaces as a starting
point; ~b! j50, j'50, graded interfaces as a starting point;~c! j5`,
j'5`; ~d! j5`, j'50. For ~a!, long dashes,I 0 ~no roughness!;
dot-dashed line,I 01I 1 ~absorption of direct transmitted radiation!;
small dashes,I 4 ~absorption in rough interfaces!; solid line, total
intensity. For ~b!, dot-dashed line,I 01I 1 ~absorption of directly
transmitted radiation!; short dashes,I 4 ~absorption in rough inter-
faces!; solid line, total intensity; large dashes, error-function profile.
For ~c! and ~d!, dot-dashed line,I 01I 11I 2 ~absorption of directly
transmitted radiation!; long dashes,I 3 ~absorption of diffusely scat-
tered radiation!; short dashes,I 41I 5 ~absorption in rough inter-
faces!; solid line, total intensity.
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The difference with respect to the field obtained forzj outside the rough region can be written asDfk
(1)(r ). We will show that

in general this difference may be neglected.
The total field in the interfacial layer can be written asfk

(1)(r )1Dfk
(1)(r ), with fk

(1)(r ) being given by Eq.~5! and

Dfk
~1!~r !5Wk

21 exp~ iki•x!E
0

zj
dz8Vj@c k̄~zj !ck~z8!ck~z8!2ck~zj !c k̄~z8!ck~z8!#

.~kc j
2 2kc, j21

2 !exp~ iki•x!@O~zj
2!1O~kjzj

3!1O~kj
2zj

4!#.

This yields, as a contribution toT j
(2)(k8,k) @Eq. ~6!#,

DTj
~2!~k8,k!.~kc j

2 2kc, j21
2 !2E d2xE

0

hj ~x!

@O~zj
2!1O~kjzj

3!1O~kj
2zj

4!#

5~kc j
2 2kc, j21

2 !2E d2x@O„hj
3~x!…1O„kjhj

4~x!…1O„kj
2hj

5~x!…#.

The configurational average is

^DTj
~2!~k8,k!&.O@A~kc j

2 2kc, j21
2 !2kjs j

4#.

Hence the contribution to the reflectivity, Eq.~17!, is

Dr k
~2!.O@~kc j

2 2kc, j21
2 !2s j

4#,

which in general is!1.
The same consideration holds for the XRF contributionsI 2, where we find a contribution ofO[(k c j

2 2k c, j21
2 )2s j

4/kj ], and
I 5, where we find a contribution ofO[kj (k c j

2 2k c, j21
2 )s j

4].

APPENDIX B: DIFFUSE SCATTERING IN THE SECOND-ORDER DWBA

Here we will estimate the order of magnitude of the second-order contribution to diffuse scattering. For the sake of
simplicity, we will evaluate the contribution from interfacej and will neglect the smaller cross terms between the interfaces.

The leading term of the first-orderT matrix, Eq.~10!, can be written as

Tj
~1!~p,k!.~kc j

2 2kc, j21
2 !Ej~p!Ej~k!E d2x exp@ i ~pi2ki!•x#@hj~x!1O~kjhj

2~x!#.

This yields a contribution to the diffuse-scattering cross section, Eq.~9!, proportional to

^uTj
~1!~p,k!u2&.Aukc j

2 2kc, j21
2 u2uEj~p!u2uEj~k!u2s j

2j j
2 exp@2~pi2ki!

2j j
2/4#

on the assumption ofHj51. For the second-order contribution withi5 j , Eq. ~7! yields

Tj
~2!~p,k!52

1

4p2 E d2pi8

Wp8
Tj

~1!~p,p8!Tj
~1!~p8,k!

.
~kc j

2 2kc, j21
2 !2

4p2 Ej~p!Ej~k!E d2pi8

Wp8
Ej~p8!Ej~p8!E d2xE d2x8 exp@ i ~pi2pi8!•x1 i ~pi82ki!•x8#$hj~x!hj~x8!

1O@kjhj
2~x!hj~x8!#1O@kjhj~x!hj

2~x8!#%.

This yields a contribution to the diffuse-scattering cross section proportional to 2 Re^Tj
(1)* (p,k)Tj

(2)(p,k)&1^uTj
(2)(p,k)u2&. We find

^Tj
~1!* ~p,k!Tj

~2!~p,k!&

.
1

4p2 ukc j
2 2kc, j21

2 u2~kc j
2 2kc, j21

2 !uEj~p!u2uEj~k!u2E d2pi8

Wp8
Ej~p8!Ej~p8!E d2xE d2x8E d2x9 exp@ i ~pi2pi8!•x

1 i ~pi82ki!•x82 i ~pi2ki!•x9#$^hj~x!hj~x8!hj~x9!&1O@kj^hj~x!hj~x8!hj~x9!2&#1•••%,

where••• indicates terms with anotherhj squared. All these terms contribute to the same order.
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Now we will assume that the probability distribution of height deviations atn lateral positions is ann-dimensional Gaussian
distribution,30 implying ^hj ~x!hj ~x8!hj ~x9!&50 and

^hj~x!hj~x8!hj~x9!hj~x-!&5^hj~x!hj~x8!&^hj~x9!hj~x-!&1^hj~x!hj~x9!&^hj~x8!hj~x-!&1^hj~x!hj~x-!&^hj~x8!hj~x9!&.

We then obtain

^Tj
~1!* ~p,k!Tj

~2!~p,k!&5OH kj ukc j2 2kc, j21
2 u2~kc j

2 2kc, j21
2 !uEj~p!u2uEj~k!u2s j

4E d2pi8

Wp8
Ej~p8!Ej~p8!

3E d2xE d2XE d2X8 exp@ i ~pi2pi8!•X1 i ~pi82ki!•X8#exp@2~X21X82!/j j
2#J .

The integral overx equals the sample areaA. The integrals overX andX8 yield C̃j (pi2pi8) and C̃j (pi82ki), respectively.
If k 0

2j j /uku@1, one of these terms will approach ad function, yielding

^Tj
~1!* ~p,k!Tj

~2!~p,k!&5OHAkj ukc j2 2kc, j21
2 u2~kc j

2 2kc, j21
2 !uEj~p!u2uEj~k!u2

Ej~k!Ej~ k̄!

Wk
s j
4j j

2 exp@2~pi2ki!
2j j

2/4#J .
Hence the ratio to the first-order contribution is

^Tj
~1!* ~p,k!Tj

~2!~p,k!&/^uTj
~1!~p,k!u2&5O@kj~kc j

2 2kc, j21
2 !s j

2Ej~k!Ej~ k̄!/Wk#.

For a single interface the last three factors givei (kj211kj )
21 and we have

^Tj
~1!* ~p,k!Tj

~2!~p,k!&/^uTj
~1!~p,k!u2&5O~Ej

↑kj
2s j

2!.

If k 0
2j j /uku!1, the two-dimensional integral overpi8 is of the order of an angular integral which is approximately~ukuj!21

times a one-dimensional integral overupi8u from ukiu2j21 to ukiu1j21, which is of the orderAuku/j. The result is
^Tj

(1)* (p,k)Tj
(2)(p,k)&/^uTj

(1)(p,k)u2&5O(k0Aj j /ukuEj
↑kj

2s j
2).

In a similar way we can estimate the contribution from^uT j
(2)(p,k)u2&. We find

^uTj
~2!~p,k!u2&/^uTj

~1!~p,k!u2&5O~ uEj
↑u2kj

2s j
2! for k0

2j j /uku@1,

^uTj
~2!~p,k!u2&/^uTj

~1!~p,k!u2&5O~k0
2j j /ukuuEj

↑u2kj
2s j

2! for k0
2j j /uku!1.

Hence, even ifk j
2s j

2 is appreciable, the second-order contributions may be neglected, except in the case thatk 0
2j j /uku@1,

and the reflectivity is considerable.

APPENDIX C: REFLECTION AND TRANSMISSION FOR LARGE CORRELATION LENGTHS

In this appendix we will consider a multilayer in which all the interfaces have very large roughness correlation lengths and
a very high degree of perpendicular correlation. At a lateral positionx, all the interfaces will have the same height deviation
h~x! with respect to the position of the smooth interfaces. If compared with the smooth situation, the incident wave field is
multiplied by a phase factor exp@ik0h~x!#, the transmitted wave field in layerj by exp@ik jh~x!#, and the reflected wave field in
layer j by exp@2ik jh~x!#. Hence, with respect to the incident field, the amplitude for transmission is multiplied by
exp@i (kj2k0)h~x!# and the amplitude for reflection by exp@2i (kj1k0)h~x!#. If h is a Gaussian random variable with a
standard deviations, we obtain a factor exp@2(k02kj )

2s2/2# for transmission and a factor exp@2(k01kj )
2s2/2# for reflection.

In particular, for j50, the reflection coefficient of the whole multilayer is multiplied by a factor exp~22k0
2s2!.
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