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X-ray scattering and x-ray fluorescence from materials with rough interfaces
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This paper discusses the influence of interface roughness on specular and nonspecular x-ray reflectivity and
glancing-incidence x-ray fluorescen@IXRF). Formulas are derived in the second-order distorted-wave Born
approximation for samples consisting of an arbitrary number of layers. The results depend on the root-mean-
square value of the interface roughness, its lateral correlation length and its degree of perpendicular correlation,
as well as on the degree of jaggedness. Either flat interfaces or graded interfaces can be used as a starting point.
It is shown that for GIXRF the latter approach is better. The consequences for diffuse scattering are discussed.
Examples are given of calculations of specular reflectivity and GIXRF for layered materials.

I. INTRODUCTION wherek is the wave vector in vacuum and describes the
interaction with the material, e.gv/=|k|%1—n?), for a ho-

As we discussed in previous publicatiohfs,various mogeneous material with a refractive indexWe will as-
complementary glancing-incidence x-ray analysis measuresume that the perpendicular wave vector is much smaller
ments exist, viz., specular reflectivity, diffuse scatteriing.,  than the inverse atomic distances, which implies that atomic
nonspecular reflectivily and glancing-incidence x-ray fluo- structure may be neglected.
rescencegGIXRF), which are well suited to nondestructive  If the average interfaces are all parallsl,can be split
depth profiling of thin-layered materials. They yield detailedinto a partVy(z) which has no lateral dependence and a part
information on layer thickness and composition, as well asv,(r) depending on the local position of the interfaces:
on various aspects of interface roughness. The possible
manifestations of surface roughness of single surfaces in V(r)=Vo(z) +Vy(r),
these measurements have already been discussed indetailynere 7 is the direction perpendicular to the smooth inter-

The present paper concentrates on the theory of x-ray.oqcf. Fig. 1). We will assume that the solutions)(r)
scattering from layered samples with rough interfaces. As thgf Eq. (1) for Vy(2) are known:
framework of the theory, we will use the distorted-wave ' 0 '
Born approximatioDWBA) > /In most previous publica- (1) = (2 explik ), @
tions this approximation has been applied using flat inter-
faces as a starting point. This approach will be used in Sec. Where ¢,(z) depends only on the perpendicular component
to work out formulas for calculating diffuse scatteritgec.  Of K, whereask, andx=(x,y) are the projections ok and
Il A), specular reflectiofSec. Il B, and GIXRF(Sec. I1Q,  the position vector parallel to the surface, respectively. The
if necessary up to second order in the DWBA. In Sec. IIl weperpendicular component &fin vacuum isky=(k’—k?)"2
will extend the theory in a simple way to the more realistic ~We will treatV,(r) as a perturbation o(z). The solu-
case in which graded interfaces, obtained by laterally avertions of Eq.(1) can then be written as
aging the interface roughness, are used as a starting point. It ©) " @
will be shown that, for GIXRF, this approach yields better d(N = (N+ (N + 7 (r)+---
results than that using flat interfaces as a starting point. The (0) : ; 8
consequences for diffuse scattering will be discussed. In Segflth ¢ic"(r) being given by Eq(2) and forn=0,
IV examples will be given of calculations of specular reflec-
tion and GIXRF for layered materials. In Sec. V conclusions ¢f<”)(r)=f A G(r,r)Va(r) e ).
will be presented.

The Green’s functiorG(r,r') can be expressed as a Fourier
Il. FLAT INTERFACES AS A STARTING POINT integral parallel to the surface:

In the theoretical treatment of x-ray scattering at glancing 1

angles from a sample with rough interfaces, we will use the G(r,r')= P J dszexp[ipH.(x—x’)]gp(z,z’),

DWBA, which implies that we will use the wave fields for a 71-

sample with smooth interfaces as a starting point and that where the integral is over all possible parallel wave veétors

will regard the roughness as a perturbation. and g,(z,z') is the one-dimensional Green's function per-
We will not consider explicitly the polarization of the X pendicular to the surface. It can be writter? as

rays, which is justified for short wavelengths at glancing

angles(cf. Ref. 1. Then the electric field obeys the Helm- 9p(2,2") == ¢hp(22) P5(2) W,

holtz equation wherez_=min(z,z"), z.=max(z,z"), andW,=¢pd¢,/dz

V2¢p+|k|?¢p—Vp=0, (1)  —4dyp/dz (the so-called Wronskign The subscriptsp
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Now we will consider the case whek&)(z) corresponds
2z to a multiple-layered sample with flat interfacésee Fig.
/l\ 1): Vy(2)=0 for z>0 and, forz<0, in layerj, Vy(2)= k
for —d;<z;<0, where the critical wave vecté; is defmed
accordlng t0k2-—|k|2(1 n?), n; is the(comple>§ refractive
index of the matenal in Iayejr d is the thickness of layer,
2 andzj=z+3|- 1d; . If we start W|th a plane wave in vacuum
33— (“Iayer” 0) W|th a wave vectok, the solution of the wave
equation is then Eq2) with, in layerj,
121

8
e
fab] L
—_
v\

d’i J ——j (z) =E;(K)explik;z) +E| (K)exp —ik;z),  (3)
H— wherek; = (k§—k3;)?is thez component of the wave vec-
torin materlalj and the amplltudeEl(k) andET(k) are the
transmitted and reflected fields, respectlvely, at the top of
§—————— layer j, which can be obtained from a matrix formali&hor
s from a recursive formalisrit.

In the following we also need the “irregular” solution,
which is, in layerj,

FIG. 1. Multilayer consisting o6—1 layers on a substrate
Layerj has a thicknesd, , and interfacg separates layejs-1 and
j. The incoming beam is in medium 0. Tlyeaxis is perpendicular
to the plane of drawing.

Yilz) = El( k)exp(ik; zJ)+ET(k)exp(—|k z), @

where E Ji(k) and EjT(k) are the reflected and transmitted
fields, respectively, at the top of laygr for a wave starting
and p denote perpendicular wave vectors which in vacuuminside the substrate They are obtained in a similar way as
are directed toward and away from the top surface, resped ! (k) and ET(k) Without loss of generality, we can_take
tively. %(k) ET(k) 1. Furthermore, we havé [(k)=E }(k)

If Vo(2)=0 (free spacgwere to be taken for the unper- =0.
turbed state, we would be in the Born approximation and the Next we will consider the case where the interfaces are
whole sample would be seen as a perturbation. A better apough. Suppose that interfageseparating layers—1 andj,
proximation is to takeVy(z) to correspond to the sample has at positionx a height deviationh;(x). Then V(r)
with flat interfaces. For a sample with one interface, this case=>}_,V' and
has already been discussed by Sirgtaal® and by the
present authot.For a multilayer the diffuse scattering was
calculated using this approach by Hay al® Here we will
extend the theory to include second-order effects and x-ray
fluorescence. An even better approximation may be that Vj=—(k2-—k2j,l) for hj(x)<z<0 if h;(x)<0,
whereVy(z) corresponds to the sample with a laterally av-
eraged refractive index, which results in graded interfaces. and V! =0 elsewhere.
The latter case will be considered in Sec. Ill. From the above it follows that, in laygr

Vi=kZ—KZ,; for 0<zj<hj(x) if hj(x)>0

1 d2 J _ s
A== 7 J T XD, X) vp(z) 2, T (PR + (7)) 2 TRk |, 5
p =1 i=j+1
where the coefficients
T (p,k)=(k5—KZ,_ ofdzx exp(—ip;- x)f Az (2 " V() (6)

form the so-calledr matrix. Substituting Eqs(3) and (4) in the Wronskian yield&V,=2ip;[E{(p)E | (p)—E|(p)E | (p)],
wherep; is the perpendicular componentpfn layerj. The Wronskian is mdependentpfand can be wntten as, for mstance

W,=2ipoE §(P).
Strlctly speaking, expressm(ﬁ) is not valid inside the interface laygwhereV,(r)#0], but in Appendix A we will show
that it is still valid up toO[(k 5 1)20']4] [whereo; is the root-mean-squafems) roughness of interfacg], which is in

general sufficient. By substltutmg
for instance,

in Eq. (6), we can express all higher-ordBmmatrix elements in the first-order elements,
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1 d2p j _ _ S
(2 (17 _ bl B ST E W (1) (D)Lt (1)
TPk k) 4w2f W, [TJ (Kp) 2 TP+ TR P) 2 TP k)| )

A. Diffuse scattering

To calculate both specular and nonspecular reflectivity, we will consider the perturbed wave functiordfautside the
sample:

(n) _ i dsz . . > (n)
AW (D=5 | 5o eHiprx—ped)] 2 T"(p.K). ®

This expression describes waves scattered in all directions. Up to thersrdeithe differential cross section for scattering in
the direction ofp is

S

do(p—k) 1

S
a0 " Te? 2 N (PRT K. )

To calculate the diffuse scattering, we have to take a configurational average corresponding to all possible Ipgzjtiohs
the interfaces and have to subtract the specular(pfufRefs. 3, 5. For the specular component we have to tpkek, (see the
following subsection _

We will calculate the T matrix, Eq. (6), by approximating the unperturbed functions fov'#0 by
g_//k(zj)zEjl(k)exkajz)Jr EJ—T(k)exp(—ika), also wherg;>0. This is reasonable for small valuesigfup to O(kaojz) and
also for large values df, up to O[(kZ;—kg;_1)/k§]. Then we find
TP (p,k) = (kG — ke, - DLE (P)EJ (K)Fj(py =y Py + ki) + Ef(P)EJ (K)F(py— Ky Py = K)) + B[ (P)E(K)F(py— ki, — P+ k)

+E/(PE|(KF;(p— ki, —pj—k)], (10

with

Fia @)= it | d exptia-fexdiah;01- 1),
whereq,=p,—k is the parallel wave-vector transfer.

We will calculate configurational averagéadicated by( )) by assuming thah; is a Gaussian random variable with a
standard deviatiow; , i.e., the rms roughness. We find

(TP (p.K)) =8, &, (KE—KZ ;- DLES(P)E}(K) —E[(P)E] (K)I(Fj(py—ky.pj+k))), (1)
with

(Fj(qu.a))=—1AS, Jexp — ?o?/2)— 11/q,

whereA is the irradiated detected sample surface area.
In the evaluation of the diffuse scattering, we have to evaluate averages like

(FF (ay,9i)Fi(ay,9i)) —(F} (a;,9))Fi(a;,9)) =AS;i(q;:0; i)

where
exd — (qF 202 +q20?)/2] .
Sji(a;:0;,01)= Jq*a_ L J d?x{exd a’ q;C;i(X)]—1}expliq,- X) (12)
j i
can be regarded as a structure fac¥sx—x’, and
Cji(x=x")=(h;(x)hi(x")) (13

is the correlation function between the roughness profiles of interfaaedi, which is assumed to be a function of the lateral
distance vectok—x' only.
We find
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S

do(p—k) A °
e 2 2, (ke 0™ (k&= ke - {TE] (OEF (ML EL(P)+ EJ* (E]* (P E] (W E] (P)IS; (P

=1

=k ;kj+p; vki+pi)+[Ejl*(k)Ejl*(p)EiT(k)EiT(p)"_EjT*(k)EjT*(p)Eil(k)Eil(p)]Sji(pH_kH K+ pj,—ki—pi)
+LE{* (K)E* () EHKE] (p) +EJ* (KE[* (P)E] (K)E{ (p)]S;i (b= Ky i Kj+ Py ki — pp)

+[E{* (KVEF* (p)E! (K)E}(p) +E* (KE[* (P)EHKE] (p)]S5i (py— Ky i Kj+ Py, — ki +py)

+[E* (KE* (p)EHKE! () +E[* (KE[* (P)E] (K E] (p)1Sji (p1— Ky 1kj = pj ki +p)

+[Ef* (KE]* (P)E[ (K E{(p)+E]* (K)E{* (P)EF(KE!(p)]S;i (P =K skj— Py, — ki — )

+[E/* (KE* () EHKE] (p)+E[* (K E{* (P)E! (K E} () 1S5 (p1— Ky 1Kj = pj ki —pi)

+[E* (KE* (p)E[ (K E!(p)+E[* (KE[* (P)EH(KE] (p) ]S (p1—ky 1k —pj, — ki +pi)}- (14)

This expression was published for the first time by Holy -1
et al® y Eﬁ(q|)=cﬁ=exp<— > dnlgl),
If kjoj is small,S;;(q;:9;,9;)=C;;(q), where n=i<
where j _=min(j,i) and & is a perpendicular correlation
éji(q\l)zf d2X exp(iqy- X)Cji(X). (15  length. A more realistic form will replicate low spatial fre-
quencies better than higher orfés.

The formalism of this subsection has been successfully
applied to describe diffuse-scattering measurements. Ex-
k2/(k2%—k2, ,)>1, as is apparent from the above approxi- amples of such simulations can be found in Refs. 6, 15, 16.

cj c,j— '

mations. In that limit the result is equivalent to that of the Above, the diffuse scattering was calculated in the first-

simple Born approximatiof? provided that the reflected order DWBA. In Appendix B we will show that higher-order

H 2 2
fields may be neglected with respect to the downgoing fieldd€"™s are smaller by a factor that is not larger tiiix o ).

Note that this implies that in the case of a multilayer it is'" he next subsections we will show that, as for single

. '4 _ . . _
necessary to use the complete form Etf) near the total- interfaces™* the second-order contributions to specular re
reflection area and close to Bragg peaks, whereas the Bo

mectivity and GIXRF may be as strong as the first-order con-
approximation is applicable for wave vectors far from thesembunons' H'gher'ogde; terms will be smaller again by at
least a factor oO(k{o7).

Then Eq.(14) can be greatly simplified. However, Ed.4) is
also valid for large values ofkjo;, provided that

conditions. i
For the sake of completeness we mention that the diffuse _
transmission through a stack of layers can be found using the B. Specular reflection
same method. The result fs_that all lee@$(P) andE|(p) Now we will proceed with the calculation of specular
have to be substituted y;(p) andE;(p). scattering. To do this, we have to insert, in E),

To be able to evaluate the diffuse scattering, we need g,
model for C;;(X). Spiller etal™® argued that its Fourier
transform, Eq(15), may be written as

5ky,py:(4772/A) 8(ky—py) 8(ky—p,) and we have to
take a configurational average to obtain the coherent scatter-
ing. Hence, fom>0, the specular component of Eg) in

X’pX

~ ~ ~ layer O is
Cji(a=&5(a)C;_(a, ae
~ . S
wherej.=max(,i). As in Eq.(15), C;(q,), the power spec- (M ()= : exdi(k,-X—Knz TM(Kk.K)).
tral density of interfacg, is the two-dimensional Fourier Phospel ") 2Akg Hitk 0 )];1< (k)

transform ofC;(X), the correlation function of the roughness
of interfacej, Whereasf:ﬁ(q”) is the replica factor between
interfacesj andi. A form frequently used for the correlation

function is that introduced by Sinhet al® for self-affine

When we write the specular reflection coefficient of the
multilayer with rough interfaces as

Fe=r©@r D@

interfaces:
we haver (O'=E |(k) and, forn>0,
Ci(X)=07 exd —(|X|/&)?], e
S
where § is the correlation length of the roughness and the (n)_; Tk KD/ (2A 1
parameteH; (0<H;=<1), describing how jagged interfage Mk ']2::1< i (kKM (2Ako). 17

is, is connected to its fractal dimensi@)=3—-H;. Several

other functional forms with qualitatively the same behavior For the sake of completeness we mention that,
have been described in the literatdré.The simplest form using the same method, we can also obtain the transmis-
for the replica factor is a frequency-independent one: sion coefficient through a multilayer stack, which
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is f=t@O+tP+t@+---  with t(P=E{(k) and NC factors. This method is widely used for calculating
t(k”):izjszl(TJ(” (k,k))/(2Aks) for n>0. reflectivities?
The first-order(n=1) contribution is obtained by substi- The second-ordein=2) contribution is obtained by sub-

tuting Eg. (1) with, up to O(k?o?), (Fj(q,,q))  stituting Eq.(7) in Eq. (17) and taking configurational aver-
=iA5q”,oq012/2- For a single surface this case can be solvediges. It can be regarded as a sum of diffuse scattering distri-
self-consistently, with the result that the reflection coefficientbutions [cf. Eq. (9)], and we have to integrate ovem;

is multiplied by the so-called N@t-Croce (NC) factor  expressions as in E¢14). Here, however, we are not inter-
exp(—2k;_1k;o?).*7° It can be shown that for a ested in the details of the shape of the diffuse scattering
multilayer, up to O(kfof) andlor up to distribution as a function op,. So we can greatly simplify
O[(kZ—kZ;_1)/k?], the n=1 contribution is obtained by the calculations by proceeding up®@{k o ), which yields,
multiplying the reflection coefficients at each interfgcby  for one of the terms between brackets in Eq,

(TR DT (PK0) =Sk s AKE—KE ) (KE— K2 ) Ej(K ) E (KE; (P)E(P)Cyi(py—ky), (18
with
E;(k)=E}(k)+E/(k).
Now Eg. (7) yields

(TR0 K0) == g AATDS, (K (K~ KB (KE K [ oy GE, (I, (PIEy(pi—k). (19

To calculate Eq(19), we have to evaluate the integral oy@r. This two-dimensional integral can be transformed into pole
coordinates and then can be performed either numerical(pantially) analytically (cf. Ref. 3.
The second-order contribution describes the correlation between the radiation scattered from the various interfaces, which
in general cannot be taken into account by using simple multiplication factors for single-interface reflection coeftitients
Ref. 20. This is only possible for very large values&if all the layers are perfectly correlatéice., large¢, ), or for very small
values ofé.
We will consider in more detail these limiting cases, which depend on the vallie efk,|)&/2=k§&;/k|. We found that,
if this value is <1, (T(k", k))(TM (k' k) =O(kov% /[K]), and the first-ordefor NC) result is a good approximation. If,
on the other handgggj/|k|>l, thenC;(p,—ky) approachesﬁ?of times aé function centered &, and we find, with Eq(16),

(TP K0) == By AW, (kg =KE 1) (kG K2 ) B (KD EI(KOE;_(KIE;_(K)of & (0). (20

If the perpendicular correlation is also perfe{étﬁ(O)=1] between these two in such a way that the expression sug-
and all the interfaces have the same roughreshe com- gested in Ref. 3 is obtained for a single interface. One pos-
bined effect of first- and second-order contributions is, up tcsibility is

0O(k30?), that the total reflected field can be multiplied by a

Debye-Waller(DW) factor exg—2k30?). It can be shown fe=fr exd (ri+r@)im2]
that this is also true for large values kfo? (Ref. 20 (cf.
Appendix O. g o’ ( 0 +(1—f)HriC expri@)/r?y, (22)

Hence we have obtained expressions for both very smallheref describes the degree of correlati@=f<1). A con-
and very large correlation lengths and arbitrary roughnessenient choice fof is the ratio ofr (2) to its value for perfect
values, as well as for arbitrary correlation lengths and small ;e |ation. However, we feel that, when perpendicular cor-
roughness values. A problem is how to find a plausible interie|ation is absent, the first term in E@1) will then easily be
polation. We obtained such an expression for one '”teﬁaceoverestimated. Hence we multiplied this ratio by a factor
For multilayers such an interpolation is less obvious. If therepy s_ &+ ,(0) to obtainf. Still, we have to be aware that
is no correlation, the single-interface reflection and transmisg, & method introduced in thiad hocmanner may fail for

sion coefficients have to be combined independently. Hencgyqe yajues ok;o;, especially if the exponents involved are
it is a good approach to multiply each of them by the apProtarger than 1.

priate NC factor to obtain a multilayer reflection coefficient
r{}'c. If both lateral correlation and perpendicular correlation
are perfect, as outlined above, a single DW factor applies
and the reflectivity can be written as follows: In a previous publicatichwe gave formulas for calculat-
f=r Qexp[(r B+r&)/r9]. Now we want to interpolate ing glancing-incidence XRRGIXRF) intensities from lay-

C. Glancing-incidence x-ray fluorescence
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ered materials. We will now consider the role of interface In order to calculate the XRF intensities, we have to know
roughness in detail. In Ref. 4 this has already been done fahe electric field inside the sample. In layjethis field is as

samples with a single rough surface. Here we will extendgiven by Eq.(5). It is convenient to rewrite this expression as
that treatment to samples with many rough interfaces.

A
(=72 f d?p; exp(ip,- X)[U}"™ (p.k)explip;z) + U] (p,k)exp —ip;z;)], (22

where

1
U™ (pk)=— 5

j S
| Mg Lo (n)
aw, |EI(PZ TV(PRHE(R), X T (nk)}

1
U™ (k) =~ 2y

i s
M(p D (n)
AW, |EIP 2 TV (RO +E[(P) 2 T (p,k)] (23

The specular component of the field can be written as

¢<k?;pegr)=[<uji<”>(k,k)>exp(ika,-)+<u}<”>(k,k)>exp(—ik,—zj)]exp(iku-x).

The intensity due to the incident x rays at positiois proportional to

| k(2= O ()2 +2 R p0* (1) (1) + SO* (N G2 (1) + - 1+ () 2+ [ 6P (1) [P+ -+

We will consider XRF from atoms which are distributed homogeneously across the considereddyen has a thickness
d;. At a lateral positiorx the XRF intensity is proportional to

h;(x) 5

dzj| p(r)|* explpiz)),
hj+1(X)—dj

whereh;(x) and h;, 1(x) are the height deviations of the ideal top and bottom interfaces, respectively;dadhe linear

absorption coefficient in laygr of the XRF radiation emitted perpendicular to the surface. Now we can split the integral into

a term describing bulk absorption and two terms describing absorption in the interfacial layers:

hj(x) 0 j(x) h
,dj

h j+1(%)
hj+1(X)*dj 0 0

dZJ+lf(Z]+1_d])

Below we will consider these terms separately. Furthermore, we have to integrateanatto take a configurational average.
We will normalize to unit surface area by dividing By The total intensity of the considered fluorescent line can be obtained
from the following expressions by multiplying them by the amount of considered fluorescent atoms irj lagdr the
attenuation factor of the XRF radiation, expE |1 x,d;), then summing over all the layejsn which the atoms are present,
multiplying by the appropriate absorption coefficient, fluorescence yield, etc.

If we continue to the same order as in the previous subsection, we find that six contributions are inthpttahy):

(1) Absorption of the directly transmitted beam as though there were no roughness:

0
loIAflf dzxﬁddzﬂfl”(ko)(r)lz expl;2;)
J

1—exd — (2kj+ u )d;

exp — (— 2K/ + ;)d;]

] 1-
=|E{(k)|? +|E/(k)|2

1—exd —(2ik{ + uj)d;]

+2 Re[ Ei*(KE] (k) ,
wherek| =Re(;) andk{=—Im(k).

(2), (3) The first- and second-order contributions, respectively, due to the change brought about in the transmitted intensity
by the roughness:
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0
zRe<A1fd2xf ddzj¢<k°>*<r>¢(k”><r>expmjzj>>
|

0
=2 R{j . de(Z')f(O)*(r)(ls(k?gpeér)exrl(/"“]zj)
Y

1—exd — (2K + uj)d;]

=2 R% EF* (K)(UF™(k,k))

1—ex — (— 2K+ u))d;]

T* T(n)
+EJ (U] 7 (k) ——

1—exd —(2ik{ + uj)d;]

LB (U] (kk)) B (kU™ (k,K))] KT
J J

Forn=1, Egs.(23) and(11) can be substituted to givg. An equivalent result is obtained when NC factors are used in the
calculation of the fields ing. This implies that the reflection coefficients are multiplied by exﬁkj_lkjajz) (cf. Sec. Il B
and the transmission coefficients by exg[k;_,)?c 7/2]."® The intensity calculated in this way is equal ltp+ 1, up to
O(k?a?). Forn=2, Eqs.(23) and(19) can be substituted to givg. If k3&;/k<L1, 1, can be neglected; K§&/k>1, Eq.(20)
can be used.

We will use a procedure similar to that used for specular reflectivity in Sec. Il B to extrapolate our results to the case of a
greater degree of roughness. That is, if boind ¢, are small, the NC resulfor layerj) is multiplied by exp(,/1,). For the
perfectly correlated case, the zero-order fields have to be multiplied by the appropriate DW factors, which are
exd —(ko—k;)?0?/2] for the downgoing field and ekp (ko +k;)?0*/2] for the upgoing fieldsee Appendix € Equivalently,
we can consider the three terr@ue to downgoing x rays, upgoing x rays, and interfergitehe intensity separately and
multiply each zero-order term by the exponent of the first- and second-order terms summed, divided by the zero-order term.

(4) Absorption of diffusely scattered radiation:

0
I3=<A—1fdzxf_d_dzj|¢<k”<r>|2exrxujzj>>
]

1—exp[—(2pj’~l—,uj)d]

A
=12 dzp‘<|Uji(l)(p,k)|2>

1—exp[—(—2pj’+,uj)d]
—2ptay

1—ex — (2ip] +u;)d]

1) 2
+<|U] (p!k)| > 2ipj,+luj

+2 Re(<U}“>*<p,k)u}“><p,k>>

|

In calculating configurational averages lik&J })(p,k)|?), we have to evaluate averages of product¥ Bf(p,k). As in the
previous subsection, we have to integrate qyesind are not interested in the details of its shape. Hence we assume that we
are allowed to use an expression similar to Ed@). With Eq. (23) we find

1 S S .
(U = gz & 2 (kG kei-0)* (ke —keyr ) Cur(pr—k)

[E/(P)’EF (D)Ein(p) i <], i'<],
[E/{(P)I’E} (D)Ein(p) if i>], i'>],
EF*(DEHPEN(P)E(p) if i<j, i">],
E*(D)E[(p)Ef (P)Ei(p) if i>], i'<],

X Ef (KE;/(K)

and analogous expressions foiU [®Y(p,k)[?) and (U/™M*(p,k)u/P(p,k)). If ki&/k<1, I3 may be neglected; if
k§&/k>1, we can substitute Eq16) with C;(q)=47"c7&q,) in the above expressions.
(5) Absorption of the direct beam in the rough interfacial layers. At the top interfgice (
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hi(x)
I4’1=<A1J’ dzxfo’ dz| ¢l (r)? expw,-z,->>

. -1 2 ! 2 exr[(ij’—l—,uJ)hJ(X)]—l
_<A fd x(|Ej(k)| 2K+,

expl(— 2K+ p)h; ()] 1

+[E] (K)[?

2ik{ +uphi(x)]-1
+2Re[Ejl*(k)EjT(k) exd (2ik; + u)h;(x)] ])>

, exf (2K + mi)?ofl2] -1

, (= 2K+ uj)®0f/2]— 1

=|E}(K)|

J

+|E/ (k)]

2ik! + w)2a%12] -1
+2Re[Ejl*(k)EjT(k) exd (2ik] + uj)*oi/2] ]

Absorption by the considered fluorescent atoms of layat the bottom interfacg +1):

i+ 10
14,2=—exp<—ujd,-><A1fd2xfo‘ dzj+1|¢<k°><r>|2exrmjzj+1>>

exp{(2k3’+1+ ,u,j)20'1-2+ 1/2]-1
2k3/+1+ M

, X (—2K,  +u)?07, /2] -1

= 2K\ uj

=—exp<—de,->(|Ejh1(k>|2 +|E/ (k)|

exl (2iK], + pj) 207, 4/2]— 1] )

I 1* 7
2R€< EjT1(KE;j (k) 2iK{ 1+

(6) Correction to(5) due to the change in the intensity caused by the roughness. At the top intgrface
“1 [ g2y [y, 40 (1)
l51=2Reg A fd xf dzig " (r) oy (r)explu;z;)
0

1
=2 R{mfdzpfdzx exili(p—ky) - XI[EL(K)+ E] () T*[U} P(p,k) +U] (k) Th;(x) ).

Again, we only continue to second orderkjh;(x). That implies that) }(p,k) andU |®)(p,k) only have to be evaluated
up to the first order irkjhj(x). Then Eq.(10) can be written as

T}“(p,k):(ké—ki,,»-pEj(p)E,-(k)f dx exifi(p—k)-xIh;(x).

This leads to the product df;(x) andh;(x) in I ;. The configurational average results in the correlation fundligtx). We
obtain

1 ° . _
I51=2 R@{ T 12w, Ej*(k)f dzp”;l (kgi_kg,i—l)cji(pl_kI)Ej>(p)Ej<(p)Ei(k)]-

At the bottom interfacdj +1),
1 [ 2y [P (0)% (1)
I5,=2 Reg —exp(—u;d))A d<x . dz 10" (1) @ (r)exp(pizj 1)

1 > ~ -
=2 Re{ 720, exq_ﬂjdj)E}k+1(k)j dzpuzl (k(Z:i_kg,i1)Cj+l,i(pl_kII)Ei1>(p)Ei1<(p)Ei(k)}a
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wherei; =max(+1,i) andi;_=min(j+1;). As for I, and
I3, if k§&/k<1, 15 may be neglected, and kij¢;/k>1, we
can substitute; (q) =4m*o 7 &)

Other contributions will not be taken into account, since
they are smaller by at least a factor@tk o %) (cf. Appen-
dix B). We note that, for small values &f, only corrections
(2) and(5) apply. In existing algorithnfsonly correction(2)
is used. This is not completely correct since, as will be seen
below, contribution(5) may also have an appreciable influ-
ence.

intensity

Ill. GRADED INTERFACES AS A STARTING POINT

A better starting point for the DWBA than that corre-
sponding to flat interfaces may be that corresponding to _ _ - ,
graded interfaces resulting from a lateral averaging of the F'C: 2. X-ray intensity vs depth for Ca radiation with a
refractive index. This will be the case unless the lateral cor- PerPendicular wave vecté=0.375 nm - on a gold sample with a
relation length of the roughness is very Ial@kg/|k|>1: of. rms roughnes_s of 1.5 nm. De}sh-dotted line, _no roughne_ss, s_olld line,

. . . calculated using NC factors; long-dashed line, approximatsee
32294%'5-I(-EZ(Zellzlitt(e)r?figvé%tf?e?gﬁéevﬁglﬁgtf?\grt%ge”r:(gr:;: i(;hﬁiﬁe;téext); short-dashed line, calculated for error-function profile using
27/(koA6), whereAd is the divergence of the incident x rays. lice method.

For a Gaussian distribution of interface heights, th
refractive-index profile is an error function. In that case th
Helmholtz equatioril) cannot be exactly solved. We will not
use a profile that can be solved exactly instdée a tangent
hyperbolicu$?1?3, but will look for a suitable approxima-
tion.

Hence we will consideNVy(z) to be an error function
around each average interface position, whek8&s) repre-
sents the actual jump in refractive index minvg(z). We

Cwvere to be good approximations to the real fields, the
edif“fuse-scattering cross section would be given by @4)

with the amplitudes calculated for the rough interfaces. This
suggestion was made for a single interface by Weber and
Lengele® and a similar approach was followed by
Kopecky?* However, as mentioned above, the electric fields
obtained in this way are only correct for small values of
k#a# and/or small small values ok§;—kZ;_1)/k?. (The
reason for this is that, in deriving the NC formulas, the fields

W'I.I assume tpat the ur|1perturbed éolsutmg of 'f—ﬂk)] c;n bhe are approximated by the expressions strictly valid at one side
written in a form analogous to Ed3), but with depth- of the interface onl)]/.g*ﬂ)

dependent amplitudes and wave vectors. Then the perturbed In Fig. 2 we see that serious errors may indeed be made

fields will have a form analogous to E¢p), the T matrix ._In this figure the intensity due to the incident x rays is drawn
th the neighborhood of a rough air-gold interface at an inci-

order specular contribution to tfe matrix will consist of 8 yance angle close to the critical angle. Note that here neither
term containing the average of the integral of the refractivg .2 2 . (k2—k2._)/k? is small. Above the interface
cj” Mej-1)1R :

index minus a term containing the integral of the average of\ore is an x-ray standing wave due to interference of the
the refractive index. This contribution vanishes.

) I incident and reflected beams and below the interface an eva-
To be able to calculate the higher-order contributions, w

. ) > W& ascent wave. The numerical solution obtained via the slice
have to incorporate the right depth dependence of amp“tqu*ﬁethod mentioned abovshort dashesand the solution ob-

and wave vectors. We will make the simplifying assumption;sineq with the aid of NC factorésolid line) are both indi-
that in the.graded region around interfgcthe electric field cated. Away from the interface both solutions coincide sur-
can be written as prisingly well. (The phase of the reflected wave is slightly
_rl ; T o . different: cf. Ref. 21). This indicates that it is correct to
vz =Bg(k)explikgz) +Eg()exp(—ikgz)): 4 o1C iate the reflectivity and transmissivity by using NC fac-
i.e., we suppose that in good approximation one effectivdors. In the neighborhood of the interface, however, the two
wave vector and one set of amplitudes can be used for thdiffer. The approximate solution has a discontinuity at the
interfacial region. Then the diffuse-scattering cross sectioninterface, whereas the real solution varies smoothly. It can be
for instance, can be written in a form very similar to Eq. seen that close to the interface the field for a flat interface is
(14), with the interfacial amplitudes and wave vectors beinga better approximation than that obtained using NC factors.
substituted byE §(k), E{(k), andk,. This is in agreement with the findings of Hefywho did a
Before we discuss the consequences of this approach srattering calculation using the numerical solutions as a
more detail, we will try to find a good approximation for starting point.
calculating Eq.(24) for the case of graded interfaces. One Another approach is to solve E(l) numerically by di-
possible approach is to take the self-consistent fields whickiding the error-function profile into many very thin slices in
contain the reflection and transmission coefficients multi-which the refractive index may be considered constant. Then
plied by the appropriate NC factors. In Secs. 1l B and Il C,the fields can be found using standard meth8diAs we
we mentioned that this is a good approximation for calculatwill see below, these fields can be used directly to calculate
ing reflectivity and GIXRF for rough interfaces with Gauss- the GIXRF intensities for the case of small lateral correla-
ian height distributions. If the fields obtained in this way tion. It is not feasible to use these fields directly for calcu-
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FIG. 3. Calculated GIXRF intensities vs perpendicular incident wave végtfor Cu K « radiation incident on a gold sample with a rms
roughness of 1.5 nm. All the intensities have been normalized to unity at a high @dle.bulk intensity(multiplied byk},,). Dash-dotted
line, bulk absorptionlp+14); long dashes, correction due to absorption in rough interfacial ldygrsolid line, total intensity; short dashes,
calculated using error-function graded interfa@®.Intensity for a submonolayer surface layer. Dash-dotted line, absorption if the layer were
flat (1o+14); long dashes, correction due to absorption in rough interfacial laygrssolid line, total intensity; short dashes, calculated
using error-function graded interfacE) Dash-dotted line, no roughness; long dashes, calculated using flat interfaces as a starting point;
short dashes, calculated using the method for beflk(a)]; solid line, calculated using the method for the surface lager(b)].

lating diffuse scattering. One possibility is to use the fieldsto those of Ref. 4, but both cases only yield the same result
found for the middle of the graded region, but these fielddash-dotted line in Fig.(8)] if there is no roughness. Dif-
will not be correct at the borders of the graded regide  ferent results are obtained for the rough samples: Ha. 3
same holds for the calculation of?, 1,, |5, andls.) for gold bulk and Fig. &) for the submonolayer at the in-
We can try to make a better approximation by assumingerface, also shown as the short-dashed and solid curve of
that the fields obtained using the NC factors are correct exFig. 3(c), respectively. Note that the contribution due to ab-
cept in an interfacial regioff. Inside this region we calculate sorption in the rough interfacial layeflong dashes in Figs.
the wave vectok, using the average of the refractive indices 3(a) and 3b)] is appreciable. The reason why the total inten-
of the neighboring layergwhich is correct at the average sity is lower for the submonolayer case is that a large part of
interface position Then the amplitudeEé(k) and Eg(k) the interface lies deeper with respect to the average interface,
can be calculated by assuming that the electric fields areshere the x-ray intensity is lowdicf. Fig. 2). We also did
continuous at the two boundaried.he derivatives are not calculations using the slice method for the error-function
continuous. The intensity obtained in this way has also profile [short-dashed lines in Figs(88 and 3b)]. It can be
been plotted in Fig. 2long dasheks It seems to be a reason- seen that the agreement with the results obtained using the
able approximation to that obtained using the slice metho@pproximate methodsolid lineg is very good. We conse-

(short dashes qguently also consider the approximate method a reliable
We will now consider the consequences of this method fomethod for calculating diffuse scattering anfj).
GIXRF in the case of small correlation lengths, i.e., Fgr As an example of diffuse scattering calculations, we com-

I,, andl, of Sec. Il C. Outside the interfacial regions we canpare in Fig. 4 intensities obtained for a single interface using
use the NC factors to calculate the fields to obiginFrom  the various approximatiorf.The example, a transverger
the above discussion it follows that the first-order contribu-rocking scan on a rough aluminum sample, is the same as
tion |, vanishes. Henck,+ |, remains essentially the same. that given by Weber and LengeférThey fitted their experi-
The correction due to absorption in the rough interfacial lay-mental data using the fields calculated with the aid of NC
ers(l,) will differ, however, since it involves the fields close factors. The intensities calculated with this method, shown as
to the interface. We will use the amplitudes and wave vectorghe solid lines in Fig. 4, fit their data well. We compare these
obtained using the new method to calculbte with those calculated using the unperturbed fidldashed

As an example, we will discuss the results obtained for dine in Fig. 4a)] and those obtained using our methe.,
rough gold sample, i.e., the same case as that of Fig. 2. lasing the approximate fields for the interfacial region, dashed
Fig. 3 we compare the GIXRF intensities as a function of thdine in Fig. 4b)]. There are significant differences between
perpendicular incident wave vectky, calculated in different the three. Moreover, with somewhat different parameters it is
approximations. In Fig. 3 of Ref. 4, we already gave thepossible to obtain intensities very similar to the original data
result of calculations when flat interfaces are used as a staifedlot-dashed lines in Figs(d and 4b)], using both the un-
ing point for the DWBA[reproduced as the long-dashed line perturbed field® and the perturbed fields.
in Fig. 3(c)]. Here we show the results for two cases: a We have to note that this approach to diffuse scattering is
gold bulk sample and a submonolayer of impurities at theonly valid in the case of small correlation lengths
interface. In the bulk casgFig. 3@)], the intensity has been (£k3/|k|<1, a condition which is only just fulfilled in the
multiplied by the imaginary part of the wave vectavhile = above case In Ref. 4 we obtained formulas for the scatter-
ma, has been neglectedQualitatively, the results are similar ing at a single interface in the case of large correlation
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FIG. 4. Calculated scattered intensity vs parallel wave-vector transfer in a transverselggap@t0.495 nm'* for scattering of x rays
with a wavelength of 0.177 nm on an aluminum sample with a rms roughness of 4 nm. In all three figures the solid line was obtained using
NC factors, a correlation leng#=400 nm andd =1. (a) Dashed line, calculated using unperturbed figld€l00 nm andH =1. Dot-dashed
line, calculated using unperturbed fieldss600 nm, andH=0.7. (b) Dashed line, calculated using graded interfaces as a starting point,
£=400 nm andH=1. Dot-dashed line, calculated using graded interfaces as a starting $e®®0 nm andH=1. (c) Dashed line,
calculated using the method for large correlation lengéss400 nm andH=1. Dot-dashed line, calculated using the method for large
correlation lengths§&=1000 nm andH =1.

lengths.(Unfortunately, such a formalism is not yet known and |5, we will use the fields obtained using graded inter-
for layered materials, for which one has to take into accounfaces, unlesgk¥|k|>1. Below we will give some examples
the correlation between the various interfaces, as explainegf the calculation of reflectivity and GIXRF for samples with
in the discussion in Sec. Il B.In Fig. 4(c) we show the more than one rough interface.
results obtained using this approagtashed ling We were
unable to fit the original data in this modedf. dot-dashed
line in Fig. 4c)]. This indicates that the correlation length is IV. EXAMPLES OF CALCULATIONS FOR LAYERED
too small for this model to be applicable. MATERIALS
Next we will consider how we can deal with specular
reflectivity using the method. As in the case of GIXRF, the . : . .
First we will show calculations for a single layer of 30 nm

zero-order contribution is essentially that obtained using NC i Id sub In th idelike beh
factors, whereas the first-order contribution vanishes. Hencg''cOn On a gold substrate. In that case waveguidelike behav-
r(k0)+r(k1) remains the same. Since the DW result should bd®" May occur just above the critical angle for silicbpield-

obtained in the case of perfect correlation, we will use thd"d @ dip in the reflectivity at approximately 0.18 nfn Fig-
unperturbed fields to obtain the first term of Ej1). For the ~ Ure 5 shows the reflectivity for various values of the rms
second term, however, we will use the fields obtained usingoughness and correlation lengths. In Figa)Sboth inter-

the method presented hefe(Although this approach differs faces have the same roughness, in Figs) &nd Sc) the
somewhat from that of Ref. 3, we found that the differencednterfaces have different roughnesses. When the case without
for a single interface can be neglecbed. roughnesglong dashes in all three figuneis compared with

This same procedure will be followed to obtain the con-the cases with roughness but without correlatgulid lines,

tribution I, to the GIXRF intensities. For the contributiohs it can be seen that the effect of the NC factor may be to

1x10°
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FIG. 5. Calculated reflectivity for CK « incident on a sample consisting of 30 nm Si on Au with different interface roughnes&@@s:
Caisi=2 M, agija,=2 NM. (b) 04iysi=0 NM, ogjac=2 NM. (C) T,iysi=2 NM, asya,=0 NM. Long dashe&upper curvg no roughness;
solid line, £=0, £ =0; widely spaced dashes, error-function profiles; short dasghes, £ =0; dot-dashed lineé=o, ¢ =».
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FIG. 6. Influence of lateral correlation lengthon reflectivity
calculated for CuKe incident on the sample of Fig.(& with PR
& =. Solid line, ¢=0; short dashesg=100 nm; long dashes, 5005 o 0% 08 To
£=1000 nm; dot-dashed ling=c-. K, (nm™)

reduce the overall reflectivity and/or to affect the fringe am- ) .
plitude. In general, there is good agreement with the error- F!G- 7 SiKa GIXRF (excited by CuKa) calculated for a
function profile (widely spaced dashgsalthough at large SamPle consisting of 30 nm Si on Au Withysi=2 N, osja,=2
values ofk, the slicing method may cause false oscillations"™[Cf- Fig- Sa]. (8 and(b) £=0, £, =0 (¢) £==», & ==; (d) &=,
[Fig. 5@)]. (The manner of slicing affects this behavjorin =0 For (@, long dashes]o (vainsi=0siau=0); small dashes,
the case that lateral and perpendicular correlations are bofi§/cuiated using error-function profile; solid line, total intensity for
-~ “."tough interfacegsee(b)]. For (b), dot-dashed line, absorption of
perfect, the DW factor can be used _and the reflectivity ISdirectly transmitted radiationl §+1,); short dashes, absorption in
r_educed even more Fhan in the NC C_EE@' 5@), dot-dashed rough interfaceql,); solid line, total intensity. Forc) and (d),
line]. As for single mterfgc;e%,the difference between the q jashed line, absorption of directly transmitted radiation
two is maximum at the critical angle and goes to a constan; 4|, +1,): long dashes, absorption of diffusely scattered radia-
factor at large angles of incidence. In Figsbpand 5c¢) the  {ion (1,); short dashes, absorption in rough interfadas(); solid
case of perfect correlatioot-dashed lingsis unphysical, jine, total intensity.
since the roughnesses of the two interfaces are different.
However, we may see what the trend of the effect of correof interface roughness is a reduction of the amplitude of the
lation is. In Fig. 8b) a reduction of the reflectivity can again GIXRF fringes. Again, there is good agreement between the
be seen. In Fig. ®) the result is a reduction of fringe results obtained using the NEig. 7(a), solid ling] and the
maxima and an enhancement of fringe minima. We believerror-function methodFig. 7(a), short dashdgs The absorp-
that the reversion of the order of maxima and minima is artion of the diffusely scattered radiation is appreciable in Figs.
artifact of the calculation. If there is no perpendicular corre-7(c) and 7d) (long dashes where both the rms roughness
lation (short dashes the reflectivity is somewhere in be- and the lateral correlation length of the silicon-gold interface
tween. are large. The correction due to absorption in the rough in-
Next we will consider the effect of a finite lateral corre- terfacial layergshort dashess small in all cases. To account
lation length. In Fig. 6 we show the results of calculations forfor the effect of roughness, we used the theory with graded
the sample of Fig. &). We chose the same valdgefor the  interfaces as a starting point. We found that the results ob-
correlation lengths of the two interfaces and assumed theined using flat interfaces as a starting point are approxi-
correlation between the two interfaces to be perfect. We seemately the same.
gradual change between the NC and DW cases, as also ob- The same kind of calculations can be performed for peri-
tained for a single interfacéWe also performed calculations odic multilayers. As an example, Fig. 8 shows the reflectivity
for the same sample without perpendicular correlation. Herdéor a tungsten-carbon multilayer with the first Bragg peak at
we found that a&=1000 nm the results were hardly distin- approximately 1.1 nmt. Again, there is a good agreement
guishable from those obtained for perfect correlation, but abetween the results of calculations using the NC method and
very large values of the same results as shown in Figas  those performed using error-function profiles. Since the dif-
were obtained. ference is negligible, both are indicated by the solid line in
Figure 7 shows the results of calculations of the SiFig. 8@). The effect of the lateral correlation lengfFig.
GIXRF intensity(normalized at the high-angle vajuer the  8(c)] is small. Only in the Bragg peak do we see a decrease
sample of Fig. &), again with various degrees of correla- in intensity with an increasing correlation length. A decrease
tion. The large amplitude of the oscillations is due toin the perpendicular correlation length leads to an increase in
waveguidelike behavidr. When compared with the case the Bragg peak intensifyFig. 8b)]. Unfortunately, we found
without roughnes§Fig. 5@a), long dashef the general effect that unphysically large intensities may be obtained when the
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FIG. 8. Reflectivity calculated for CKa from samples consisting of 15 periods of 1.5 nm W and 1.5 nm C on a silicon substrate. We
assumedr=0.7 nm for all interfaces unless otherwise indicat@ll.Long dashes, no roughness; solid lige;0, £ =0. (b) Short dashes,
&=, £ =0; solid line, é=x, ¢ =x. (c) £ =« and various values of the lateral correlation length. Solid lige0 for all interfaces;
dot-dashed lineé&=300 nm for all interfaces; dashed lings- for all interfaces.

perpendicular correlation is not perfect, since the secondd,+1,+1,, dot-dashed linehas a dip which largely cancels
order term of Eq(21) may become very large. This is the the absorption of the diffusely scattered radiatibg, long
cause of the false oscillations in the neighborhood of thalashes The behavior of the total intensit{solid line) is
critical angle in Fig. &) (short dashes qualitatively similar to that observed for layers without any
Figure 9 shows the W GIXRF intensities obtained for theroughness. For the case of no perpendicular correlation and
same multilayer. Figures(8 and 9b) are for the case with &=« [Fig. 9(d)], we find unphysical results in the neighbor-
negligible correlation, showing the effect of what is used ashood of the critical angle, as in Fig(l8. At the Bragg peak
starting point of the calculation. Figure$c® and 9d) deal the result is similar to that obtained for small values éof
with the influence of correlation. In all cases a modulation[Fig. 9b)].
near the Bragg peak is seen, caused by the x-ray standing

wave formed due to interference between the incoming and
. : V. CONCLUSIONS
reflected beamé&f. Ref. 1 and references thergiThe anti-
nodes of the x-ray standing wave are in the low-dengiy- A rough interface often can be considered as self-affine;

bon) layers at the low-angle side and in the high-densitythat is, it can be characterized by three parameters: its rms
(tungsten layers at the low-angle side of the Bragg peak. Inroughness, its lateral correlation length, and its jaggedness
Figs. 9a) and 9b) the case of a small correlation length is parameter. For a multilayer at least one additional parameter
dealt with in two approximations: using flat interfaces as ais required, e.g., the perpendicular correlation length. We
starting point[Fig. 9a)] and using graded interfaces as ahave presented a theory enabling the calculation of specular
starting pointFig. 9b)]. When we compare the results with and diffuse reflectivity and GIXRF expressed in these param-
those obtained in the case without roughnésg. 9a), long  eters. Together with the results discussed in previous
dashe} we see that roughness with small correlation lengthgublications>* this leads to the following picture.

has two effects: The modulation of the transmission In the case of small lateral correlation lengths
(Io+14, dot-dashed lineis reduced, and the absorption in (k%gj/|k|<1), diffuse scattering may be neglected with re-
the rough interfacef 4, short dashess appreciable and has spect to the specular reflectivity and a possible approach is to
the opposite phase of modulation. The total intensity isuse the slicing method for graded interfaces. Alternatively,
shown as solid lines. When flat interfaces are taken as the reflection and transmission coefficients can be obtained
starting point[Fig. 9a)], the effect of the absorption in the in a self-consistent way, which results in NC factbté!
rough interfaces is so great that the modulation changes sighlowever, in the latter case the fields close to the interfaces
This result is unphysical, since it would indicate a reversal ofare not calculated correctligee Fig. 2 Especially in cases
the densities of tungsten and carbon. When graded interface$ appreciable roughness and close to the critical wave vec-
are taken as a starting poifig. 9b)], the effect is that there tor or to Bragg peaks, the effect may be substantial.

is hardly any modulation left. This is the expected effect, In cases of greater lateral correlation lengths, in which
since the interface roughness is almost as large as the laydiffuse scattering may not be neglected, the DWBA can be
thicknesses. The agreement with the results of a calculatiosuccessfully applied. When the lateral correlation lengths are
using error-function profiledong dashes in Fig.(®)] is very  large (k§§1/|k\>1) and the rms roughness is appreciable,
good. This is a clear example of the method of Sec. Ill yield-however, the DWBA for the calculation of diffuse scattering
ing results which are physically more acceptable than thoseay break down, especially in the total-reflection region. In
obtained using flat interfaces as a starting point. For perfectlyhat case the Rayleigh approximation yields the correct be-
correlated interface$ig. 9(c)], the correction for absorption havior for single interface$.Such an approach is noyet)

in the rough interfacef ,+ 15, short dasheshas a sign op- available to calculate diffuse scattering for multilayers. The
posite to that for noncorrelated interfaces. The transmissioapproach described in Appendix C for the specular case is,



intensity

0.0
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FIG. 9. W Ma GIXRF (excited by CuKa) calculated for
samples consisting of 15 periods of 1.5 nm W and 1.5 nm C on
silicon substrate. We assumed=0.7 nm for all interfaces unless
otherwise indicated(a) ¢=0, ¢ =0, flat interfaces as a starting
point; (b) £=0, £ =0, graded interfaces as a starting poio; &=,

& =; (d) &=, ¢ =0. For (a), long dashes|, (no roughness
dot-dashed linely+ 14 (absorption of direct transmitted radiatjon
small dashesl, (absorption in rough interfacgssolid line, total
intensity. For(b), dot-dashed line|y+1, (absorption of directly
transmitted radiation short dashed,, (absorption in rough inter-
faces; solid line, total intensity; large dashes, error-function profile.
For (c) and(d), dot-dashed linelg+1,+1, (absorption of directly
transmitted radiation long dashesl 5 (absorption of diffusely scat-
tered radiatiojy short dashesl,+15 (absorption in rough inter-
faceg; solid line, total intensity.
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For diffuse scattering the effect of this method is that the
fields to be substituted are smaller, which results in intensi-
ties which are smaller by approximately a factor ofsee
Fig. 4b)].

We also investigated the effect of second-order terms in
the DWBA. For diffuse scattering this effect is negligible,
except in the case of substantial reflectivity, when the lateral
correlation length and rms roughness are both |&fgmen-

dix B). This is in accordance with the aforementioned break-
down of the(first-ordey DWBA.

For specular reflectivity and GIXRF, the first- and second-
order perturbation terms are both of second order in the rms
roughness. Only in the case of small lateral correlation
Iengths(k(z)gj/|k|<l) may the second-order contribution be
neglected. A problem is that, strictly speaking, the DWBA is
only valid for small roughness valugis,o;<1) or far above
the critical wave vector. We found a plausible way of ex-
trapolating the results in the case of single interfacEsr
layered materials we found a reasonable description for the
case of considerable correlatipef. Figs. 6 and &)]. If the
perpendicular correlation is small, however, the DWBA may
yield incorrect results for appreciable rms roughness values
close to the critical wave vect§Figs. §b) and 9d)].

a In the case of GIXRF, there are several terms contributing
up to second ordefSec. Il Q. A term which is also present
for small correlation lengths, but which has so far been
neglected, is the absorption in the rough interfacial layers
(I,). This term is appreciable when both the rms roughness
and the absorption coefficient are not too small. In the case
of silicon (Fig. 7), this has hardly any effect, but in the case
of heavy materials like gold or tungsten it may not be ne-
glected(Figs. 3 and @

In practice, we have so far found no samples with a lateral
correlation length that is so large that second-order effects
have to be considered. It will be interesting to look for such
materials to test the applicability of the theory. Specular and
nonspecular reflectivity measurements will yield the order of
magnitude of rms roughness and lateral correlation length,

however, similar to the Rayleigh approximation. Far fromwhich will indicate whether second-order effects should be
total reflection and Bragg peaks, the simple Born approximaconsidered. This information is also necessary for a reliable

tion may suffice to give a good description of diffuse-
scattering dat&?

guantification of the compositional depth profile based on
GIXRF data.

A point which we were able to settle in this paper is which

fields to use as a starting point for the DWBA. If the rms
roughness and reflectivity are both appreciable, one shou

use the solutions for the graded interface, as is clearly shown

by the GIXRF example§Figs. 3 and €a), 9(b)]. Since the
fields obtained by using NC factors are not correct close t

Id  APPENDIX A: THE SCATTERED FIELD IN AN

INTERFACIAL LAYER

(o]

the interfaces, we have suggested a simple interpolation We will now consider the field fon=1 inside the rough
method for obtaining approximate fields which can be usedayer at interfacg, e.g., forh;(x)<z;<0. The field is then
as a starting point for the DWBA. The results obtained forgiven by thei # | contributions to Eq(5), plus ani=j con-

GIXRF are very good.

1

 4x?

stz | " a2 e Wi
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The difference with respect to the field obtained Zpoutside the rough region can be Writtenm(kl)(r). We will show that
in general this difference may be neglected.
The total field in the interfacial layer can be written @S)(r)+A¢(kl)(r), with q’>(kl)(r) being given by Eq(5) and

AP () =W, explik;-x) f:‘dz'vi[mzj)¢k<z'>¢fk<z'>—m(z,-)w;(z')wk(z')]

= (k& —kZ_pexp(ik;-x)[0(z) +O(k;z%) + O(k’z)].

This yields, as a contribution t®{*(k’ k) [Eq. ()],
hj(x)
ATP (k' k)= (KZ— kgyj,l)Zf d2xf ‘ [0(z])+0O(k;z}) +O(K:z)]
0

=(k5—kZ;_1)? f d2X[O(h}(x))+ O(k;h!(x)) + O (K?h®(x))].
The configurational average is

(AT (k' k) =O[A(KS K2 ;_ )%k 1.
Hence the contribution to the reflectivity, E{.7), is

ArP=0[ (K3~ K2, 12?1,
which in general is<1.
The same consideration holds for the XRF contnbutlbgsxvhere we find a contribution c[’r)[(k CJ %o 4/k ], and
|5, where we find a contribution @®[k;(kg;—k&;_1)o]].
APPENDIX B: DIFFUSE SCATTERING IN THE SECOND-ORDER DWBA

Here we will estimate the order of magnitude of the second-order contribution to diffuse scattering. For the sake of
simplicity, we will evaluate the contribution from interfageand will neglect the smaller cross terms between the interfaces.
The leading term of the first-orddr matrix, Eqg.(10), can be written as

TV (p.k)=(KZ—kZ ;1) E;(P)E; (k)J d?x exd i (py—k;) - x][h;(x)+ O(k;hZ(x)].
This yields a contribution to the dlffuse -scattering cross section(®gproportional to
(TP (0, k) B =AlKS = K2 1P| Ej(p) PIEj(K) [P0 & exd — (p—k))?&}/4]

on the assumption dfi;=1. For the second-order contribution witk j, Eq. (7) yields

1 d? _
TP (k== 7 Wp” T(p,p") TP (p" k)
(kc'_ C'—)
S e [ | p”E(p)E(p [ @[ @ exiticp,—pi)x+ite k) x iy G0 )

+O[k,-hjz(x)hj(x')]+O[k,-hj(x)hj (X1}
This yields a contribution to the diffuse-scattering cross section proportional t¢T8"Rép,K) Ti(p,k)) +(| T (p,k)[3). We find

(T (p,k) T (p,k))

1
~ o KK 022 E () |E<k>|2f @) [ i e [ e exico ) -x

+i(py—ky) - X" =i(py— k) - X"H{{h; () hy(x")hi( XH))+O[kj<hj(x)hj(x/)hj(xn)2>]+"'},

where--- indicates terms with anothér; squared. All these terms contribute to the same order.
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Now we will assume that the probability distribution of height deviations latteral positions is an-dimensional Gaussian
distribution® implying (h;(x)h;(x")h;(x"))=0 and
(hj ) (X" hi(X")hj(x™)) = (hj () hj (X)) (hj (X)) (X)) + Chi ()i (X)) Ch (X hy (X)) + (hy () h (X7) ){hj (X )i (X))
We then obtain

d?p|
<T§“*<p,k>T§2>(p,k>>=0{kjlki,-—ki,j_llz(ké—ki,,-_l)lE,-(mlzlEj<k>|za,f‘ W, W Ei(PE(P)

<J x| aex [ ax exdi<pu—pﬁ>-><+i<pi—k>-><']exp[—<x2+X’2>/§;2]}‘

The mtegral ovex equals the sample aréa The integrals oveK and X’ yield C. i(py—p;) and éj(pu' —ky), respectively.
If kO§J/|k|>1 one of these terms will approachsgunction, yielding

* E.(K)E;(k)
(Tj¥ (p,k)T}2><p,k>>=O[Akjlki,-—ki,j_llz e~ )| Ej(P)I71E; (k|2 =—=— of¢] exp[—(pl—klozsfm]}.

Hence the ratio to the first-order contribution is

(TR (p, k) T (p, k)Y TV (k) |2) = O k; (K& — k2 ;- 1) 0P (K)E; (K) /Wi ].

For a single interface the last three factors gifle _, + kj)‘1 and we have
(T (PR T (P kDT P (p.K)[2) = O(E K o).

If kO§J/|k|<1 the two-dimensional integral ovef is of the order of an angular integral which is approximatghys) 1
times a one-dimensional integral ovp/| from |k|—&* to |k|+¢& % which is of the ordery|k|/&. The result is
(T (TP, k)T (P, k)% = O(ko V& 11K[E[ K 0?).

Ina S|m|lar way we can estimate the contr|but|0n fr()ﬁﬁ 2)(p, k)|2> We find

(T2 Pk BT (pok) 2= O(E] Pk for G /Ik|=1,
(TP (p.RIHIIT (k012 = O(kaE /IKIE[IPkf o) for kgéj /K| <1.

Hence, even ikl-zaj2 is appreciable, the second-order contributions may be neglected, except in the cakﬁﬂhdt»l,
and the reflectivity is considerable.

APPENDIX C: REFLECTION AND TRANSMISSION FOR LARGE CORRELATION LENGTHS

In this appendix we will consider a multilayer in which all the interfaces have very large roughness correlation lengths and
a very high degree of perpendicular correlation. At a lateral posijaill the interfaces will have the same height deviation
h(x) with respect to the position of the smooth interfaces. If compared with the smooth situation, the incident wave field is
multiplied by a phase factor efioh(x)], the transmitted wave field in laygrby exdik;h(x)], and the reflected wave field in
layer j by exd—ik;h(x)]. Hence, with respect to the incident field, the amplitude for transmission is multiplied by
exfli (kj—ko)h(x)] and the amplitude for reflection by dxpi(k;+ko)h(x)]. If h is a Gaussian random variable with a
standard deviatiom, we obtain a factor exp-(k,—k;)?c*/2] for transmission and a factor exp(ko+ k;)°0?/2] for reflection.
In particular, forj =0, the reflection coefficient of the whole multilayer is multiplied by a factor(e>akooz)
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