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A Monte Carlo world-line algorithm for a CuO2 plane based on a breakup of the plane into five-site cells,
CuO4 has been suggested. The algorithm has fast convergency and gives the possibility of investigating the
superconducting state symmetry. The calculation of pairing correlation functions was made with an advent of
additional imaginary-time slices to the Monte Carlo scheme. The characteristics of a two-dimensional Cu-O
cluster with number of sitesNa5768 (16316 CuO2 cells! were calculated. It has been shown within the
chosen interval of parameters of the Emery Hamiltonian (Ud56t, «5123t, Up5V50), temperatures
(T>0.125t), and carrier concentrations (0.7<x<1.5) that ~i! the long-range off-diagonal order associated
with the superconducting state was not observed in the thermodynamic limit in any pairing channels and~ii ! a
tendency to divergence ins* channels anddx22y2 channels, which is noted as the temperature decreases, is due
to the antiferromagnetic ordering rather than the superconducting pairing. If the carrier concentrationx is equal
to 1.0 ~undoped dielectric state! the pairing correlations have maximum amplitude and demonstrate clear
antiferromagnetic ordering in the copper sublattice, and the characteristic correlation length is close to the
earlier-reported antiferromagnetic length.

I. INTRODUCTION

Recently the discussion of the high-temperature supercon-
ductivity is concentrated basically around a problem of the
superconducting order parameter’s symmetry.1,2 The solution
of this question would give additional information on the
nature of pairing interaction and considerably reduce the
number of discussed theoretical models.3–5

In experimental works an unambiguous answer to the type
of symmetry of the superconducting order parameter is not
yet given. Indeed, the measurements of the gap’s anisotropy
in Josephson contacts and superconducting quantum interfer-
ence devices,6–11 as well as the experiments on the nuclear
magnetic resonance,12 Raman scattering,13 and tunnel
microscopy,14 are interpreted as proof ofdx22y2 symmetry,
while the other data~for example, angular photoemission15

and Josephson-junction measurements16! specify s symme-
try.

It must be emphasized, that in the majority of cases6–17 a
strong anisotropy of the order parameter’s modulus is ob-
served; however, the occurrence of the zeroth superconduct-
ing order parameter does not proved symmetry, since the
order parameter can also be equal to zero at the strong an-
isotropics pairing.2,3 To check the existence ofd pairing it is
necessary to measure the order parameter’s phase.2 In addi-
tion, the same results have been interpreted as mixeds* and
dx22y2 pairing.

17,18

The small correlation length scale, weak isotope effect,
and a number of other abnormal properties of high-
temperature superconductivity~HTSC! provided a basis for
research of the high-temperature superconductivity nature
within the framework of nonphonon models. In this connec-
tion the most adequate models of HTSC are those of
Hubbard19 and Emery.20 In our opinion, the Emery model~as
an extended Hubbard model! is the best one, since it imme-

diately describes the basic structural element of high-
temperature superconductors — the CuO2 plane. The analyti-
cal study is a stubborn problem in the context of these
models,21,22 which is why the exact diagonalization23,24 and
Monte Carlo25–27 ~MC! methods are of paramount impor-
tance, because they enable us, in principle, to calculate the
model characteristics without the approximation and simpli-
fications of the model Hamiltonian as well as without re-
course to the ground-state type.

The exact diagonalization method was used for the
Cu4O8 cluster of the Emery model to study the binding en-
ergies and the correlation functions of excess carriers.28–35It
was asserted that there is a tendency to carrier pairing in a
wide range of model parameters.

As to the question of the symmetry of pairing, the calcu-
lation of pairing correlations in the Cu4O8 cluster by exact
diagonalization fors, s* , and dx22y2 channels was inter-
preted as being indicative of the prevalence ofs*
symmetry.36 The exact diagonalization data in the framework
of the t-J model37 suggestd symmetry.

Unfortunately, the major restriction of the exact diagonal-
ization method, the small size of the system, does not allow
us to reveal unequivocally the existence of superconductivity
in some pairing channel, since to attain these ends one needs
to prove the divergence of the pairing correlators in the mo-
mentum space in the thermodynamic limit.1,2 Therefore, to
trace the scaling of the system characteristics with respect to
the cluster size, one should use quantum Monte Carlo
methods,25–27 which enable us to calculate the thermody-
namic averages of physical quantities of large clusters with
Na5100–200. The shortcoming of these methods is the in-
accessibility of the low-temperature region, where statistical
fluctuations make the evaluation of quantities impossible.
Nevertheless, it is believed that MC data over an achieved
temperature range may be sufficient for the study of the
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long-size correlation effects determining the superconducting
state.27 In particular, it has been shown that a divergence of
the pairing in thes channel is observed at any electron filling
for a single-band two-dimensional~2D! attractive Hubbard
model.38 On the other hand, in the case of the repulsion in
the 2D Hubbard model,39 s pairing was not observed~the
correlations do not diverge asNa→`). The same result was
reported in Ref. 40.

In the case of the Emery model, the absence of the long-
range off-diagonal order in thes channel of the pairing in the
thermodynamic limit has been demonstrated by the pairing
correlation scaling.27 Alternatively, there is a great body of
Monte Carlo simulation data41–46 in which a systematic
analysis of the finite-size effects in pairing correlators and
susceptibilities is not pursued, however, the authors come to
a conclusion about the feasibility ofs* anddx22y2 channels
of pairing for the single-band 2D Hubbard model with
repulsion,41 the t-J model,17 and the Emery model.42–45

Thus, there is a need to perform the pairing correlation
scaling for revealing the pairing in thes* anddx22y2 chan-
nels in the thermodynamic limit for the Emery model. It
must be underscored that the maximum cluster in the CuO2
plane calculated by the currently available Monte Carlo
methods is 838 CuO2 cells (Na5192). Moreover, the scal-
ing data are presented only for two clusters: 434 and
838 cells.27 The main data about the symmetry of the pair-
ing have been derived from the calculation of the systems
with 434 and 636 CuO2 cells (Na548 and 108,
respectively!.42 Notice that the real correlation length scale is
close to the linear size of these clusters.1,26

For the standard determinant and variational MC algo-
rithms, the time taken for convergence grows with the sys-
tem size asNa

3 . This restricts the potentialities of these meth-
ods for clusters with numbers of sitesNa.200.

Recently the new world-line Monte Carlo algorithm for
the 2D Cu-O clusters was developed.26 This algorithm has
fast convergence~the Monte Carlo simulation time is propor-
tional toNa). However, the known limitation of the world-
line MC— the impossibility of calculating the thermody-
namic averages that do not conserve the fermion number
locally ~within the CuO2 cells! — does not allow to use this
algorithm for studying nonlocal pairing correlations. Be-
sides, the scheme of Ref. 26 is anisotropic in space. It does
not rule out the calculation of the local characteristics but
makes the study of symmetry properties rather difficult.

In this work the new world-line quantum Monte Carlo
algorithm based on a breakup of the CuO2 plane into the
five-site cells CuO4 is offered. The scheme of the method is
spatially isotropic. To study the nonlocal pairing correlations,
we enter an additional temporal slice into the configuration
space resulting in a breakup of the fermion trajectories. All
information is retrieved from this slice. This circumstance
reduces the convergence rate a little, which, however, is still
proportional toNa . It is also important that the world-line
MC is realized in the canonical ensemble, and the calculation
is carried out at fixed filling and projection of the full spin on
thez axis, which essentially reduces the configuration space.

With this method we perform the calculations of pairing
correlations in thes, s* , anddx22y2 channels for a series of
2D clusters withNa548, 108, 192, 300, 432, 588, and 768.
This set of clusters makes possible the correct analysis of

pairing in various channels. We show that in our temperature
range (T;0.1t, t>1 eV! the pairing correlators tend to the
constant value rather than diverging asNa→`, i.e., super-
conducting correlations vanish in the thermodynamic limit.
These results are in agreement with the data27 for s pairing.
However, the problem is not solved completely: we see an
essential temperature dependence of pairing correlators pre-
dominantly, because of the antiferromagnetic ordering, and,
thus, we cannot rule out the possibility of a phase transition
at lower temperatures.

II. PAIRING-CORRELATION FUNCTIONS
IN THE EMERY MODEL

Let us consider a 2D multiband Emery model for the
CuO2 plane,

20 taking into account hybridization of the cop-
per dx22y2 and oxygenpx ,py orbitals, the distinction of at-
oms levels on copper and oxygen sites, and the Coulomb
interaction on copper sites, oxygen atoms, and between
them.

The Emery Hamiltonian in the hole representation is
given by

H52t (
^ ik&,s

~dis
† pks1H.c.!1«(

ks
nks1Ud(

i
ni↑ni↓

1Up(
k
nk↑nk↓1V (

^ ik&,s,s8
nksnks8. ~1!

Heredks
† and pks

† are the creation operators for the hole at
dx22y2 andpx ,py states, respectively;̂ik& denotes summa-
tion over the nearest neighbors; indexi (k) refers to the
copper~oxygen! sites,nis5dis

† dis , nks5pks
† pks ; t is the

matrix element for the copper-oxygen hopping;« is the dif-
ference between energies of the hole at the oxygen and cop-
per sites,Ud , Up , andV are the energies of Coulomb repul-
sion of holes at the sites of copper, oxygen, and between
them, respectively. The vacuum for the Hamiltonian~1! is
the electron configuration Cu 3d10O 2p6 ~valence state
Cu1O22!. The dielectric~undoped! state corresponds to the
configuration Cu21O22, where the hole number̂N& is
equal to the number of copper sitesNCu. An increase~de-
crease! of ^N& corresponds to the hole~electron! doping of
the CuO2 plane in high-Tc superconductors.

It is known that the relative~per one elementary CuO2
cell! carrier concentrationx, which corresponds to the maxi-
mum Tc , is x51.1–1.25 for hole HTSC,1,46 and
x50.83–0.88 for electron HTSC.1,47 Below, we deal with
this range of concentrations.

We define equal-time pairing correlations explicitly as
functions of distance,39,42

Pa~r !5(
l

^Da~r !Da
†~r1 l !&, ~2!

where the pair field operators are

Da
†~r !5

1

ANCu
(

n
ga~r !Cr↑

† Cr1n↓
† . ~3!

The summation in~2! is over all elementary cells of the
CuO2 plane. It means that the operatorsCrs

† act on equiva-
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lent sites, i.e., either on the copper atoms with the coordi-
nates RCu or on the oxygen sites with the coordinates
RCu1(1/2)ai, RCu1(1/2)a j (a is the lattice period!. We
choose such sites to be the copper ones, in conformity with
the nuclear magnetic resonance data,48 where the pairing
wave function on the copper sites is higher than on the oxy-
gen sites. In principle, the operatorsCrs

† may be linear com-
binations of the creation operators at different sites in the
unit cell44 ~such as the singlets of Zhang and Rice49!.

The functionga(n) depends on the pairing channel type.
For s pairing ga(n)5dn,0 . In case ofs* pairing ga(n)51
whenn56ai, 6a j andga(n)50 otherwise. In the case of
dx22y2 pairing ga(n)51 whenn56ai, ga(n)521 when
n56a j , andga(n)50 otherwise.

If there is a long-range off-diagonal order, the Fourier
component

Pa~k!5(
r
Pa~r !exp~ ikr ! ~4!

at k5(0,0) diverges in the thermodynamic limit.42 It imme-
diately follows, thatPa(r ) as a function ofr should become
progressively slower with the distance tending to the con-
stance and demonstrating the space ordering as the sizeNa
increases.

It is worthwhile introducing the quantity:39,42

P̄a~k!5(
r
P̄a~r !exp~ ikr !, ~5!

where

P̄a~r !5
1

NCu
(
1

(
nn8

ga~n!ga~n8!G↓~ l1r1n,l1n8!

3G↑~ l1r ,l ! ~6!

and

Gs~ l ,l 8!5^ClsCl 8s
† &,

which is obtained from~2! by the decomposition under
Wick’s theorem without the anomalous averages^C↑

†C↓
†& and

^C↓C↑&. In the thermodynamic limit expression~5! tends to
the constance related to the correlation lengthj. Therefore,
contribution to the pairing correlations can be neglected in
the presence of the long-size off-diagonal order. We notice,
however, that its effect may be essential in a finite cluster, so
the valueP̄a is usually subtracted from~2! to improve the
analysis.39

The criterion of the pairing correlations existence in the
a channel in a finite cluster can be formulated as follows:39

If Pa. P̄a , there are pairing correlations in thea channel;
otherwise there is no pairing in the channel.

It is pertinent to note, that a calculation with the fixed
filling and projection of spinSz keeps the contribution in
pairing correlators of the anomalous averages only@except
for the terms in Eq.~5!#, so the antiferromagnetic correla-
tions of the typê C↑C↓

†& and^C↓C↑
†& are equal to zero. The

latter contribution is presented necessarily in standard varia-
tional and determinant algorithms40–45 because of the large
canonical ensemble situation.

For the numerical analysis we choose the clusters having
the CuO2-plane symmetry. Thus, from all possible clusters
with the square symmetry26 we have chosen those whose
basis vectors are parallel to the basis vectors of the infinite
plane. An additional condition is the even number of copper
sites~to provide the zeroth projection of spinSz in the un-
doped state and maximum reduction of the finite-size ef-
fects!. The sequence of clusters that meets our conditions is
232 CuO2 cells (Na512), 434 CuO2 cells (Na548),
636 ~108!, 838 ~192!, 10310 ~300!, 12312 ~432!,
14314 ~588!, and 16316 ~768!. The first cluster~Cu4O8!
was studied earlier by exact diagonalization.36 It has higher
symmetry than the infinite CuO2 plane and, hence, drops out
from the specified set of clusters because of the strong finite-
size effects.

Taking into account the correlation length data,1,26 let us
estimate the critical cluster size, which is sufficient to attain
the thermodynamic limit. Because of the periodic boundary
conditions, the maximum nonequivalent lengthLmax is equal
to ;(1/2)L in a square cluster of the linear lengthL. It is
reasonable to speak about the thermodynamic limit only if
Lmax.j. Thus, the critical clusters in our sequence are those
with Na5108 and 192, i.e., the maximum clusters investi-
gated by Monte Carlo methods27,42 ~the correlation lengthj
is 3–4 lattice periods1,26!.

III. NONLOCAL WORLD-LINE MONTE CARLO
ALGORITHM FOR THE CuO 2 PLANE

A. Space-time breakup

We break down the Hamiltonian into two terms with dif-
ferent types of binds:26

H5H11H2 , H15 (
^ i j &1

Hi j , H25 (
^ i j &2

Hi j . ~7!

Unlike Ref. 26, we now choose the spatial breakup shown in
Fig. 1~a!. This breakup cuts the infinite plane into five-site

FIG. 1. Breakup of the CuO2 plane into two types of binding
@the binding of type 1~2! is represented by solid~dashed! lines#.
The labels stands for the oxygen atoms, the labeld marks the
copper atoms:~a! is our breakup scheme and~b! is the breakup
scheme of Ref. 26.
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cells of CuO4 with intercell hopping realized through the
oxygen atoms. In Ref. 26@see Fig. 1~b!# the axesA-C and
B-D are nonequivalent, since the scheme forbids the carrier
jumps in the diagonal directionB-D at finite temperature
~diagonal hopping O-O is possible by the virtual image26!. In
our breakup scheme, these hoppings are interchangeable, so
scheme~a! is spatially isotropic.

Using Trotter decomposition50 and inserting the complete
set of intermediate states for each temporal slice,25,26the par-
tition function can be represented as a discrete path-integral:

Z5 (
i1••• i2L

^ i 1uexp~2DtH1!u i 2&^ i 2uexp~2DtH2!u i 3&•••

•••^ i 2L21uexp~2DtH1!u i 2L&^ i 2Luexp~2DtH2!u i 1&,

~8!

where

u i m&5Un1m↑n2m↑•••nNam↑n1m↓n2m↓•••nNam↓
L , ~9!

nims is the hole filling number of thei th lattice site with the
spin s in the mth imaginary time slice from the interval
@0,b#: Dt5b/L. As the error of decomposition~8! has the
order ofDt2tA@A5max(«, Ud , Up , V) ~Refs. 25 and 26!#,
we typically fix DtAtA<0.1 for the required accuracy.

Expression~8! leads to a graphical representation. We set
2L as identical two-dimensional Cu-O clusters with a num-
ber of atomsNa located one over another along the
imaginary-time axis~Fig. 2!. The summation in~8! is over
all possible closed noncrossing trajectories. The trajectory
switching takes place only within the vertical shaded sides.
Each site of the~211!-dimensional lattice is characterized by
two filling numbersnm↑ andnm↓ , equal either to 0 or 1, so
that there occur two different types of the trajectories
~‘‘world lines’’ ! corresponding to different spin projections.
The switch from one temporal slice to the next one is defined
by matrix elements of the evolution operator

Unn115^ i nuexp~2DtH1,2!u i n11&. ~10!

The total number of states in the CuO4 cell is equal to
1024, and the evolution operator~10! is a matrix
102431024. To calculate the evolution operator one actually
needs to perform the numerical summation:

Unn115 (
k50

`
1

k!
~2Dt!k^ i nuH1,2u i n11&

k, ~11!

cutting off the sum~11! when the required accuracy is
achieved~typically, atk;20).

In this connection we note the following two circum-
stances:~1! There are nonzero probabilities of the trajectory
switch along the diagonal ‘‘O-O,’’ such as virtual hopping
O-O through the copper site as well as combined hoppings of
the typesC5↑

† C1↑C5↓
† C2↓ , C5↑

† C1↑C4↑
† C2↑ , etc., already in

the second order onDt. Hence, one should include these
hole movements into Monte Carlo simulation.~2! It is nec-
essary to know not only the absolute value of matrix element
Unn11 but also its sign in a given Monte Carlo configuration.
The straightforward multiplication of matrices in Eq.~11!
expanded in the five-site basis does not contain information
about this sign, since the site numbering of an isolated cell
does not coincide with the numbering of CuO2 cells in the
whole system. We proceed as follows.

First, we have calculated exactly an operator
exp(2DtH), i.e., obtained the sum~11! in an analytical op-
erator form. This problem is a stubborn one because the
number of irreducible terms~ordered with respect to the site
numbering within a cell! for the Emery Hamiltonian~1! and
the five-site cell CuO4 of the type

Ci2↑
† Ci2↑Cj 1↑

† Ck1↑Cj 2↑
† Ck2↑Cl1↓

† Cl1↓Cm1↓
† Cn1↓ ,

Ci1↑
† Ci1↑Cl1↓

† Cl1↓Cm1↓
† Cn1↓ ,

etc., where

i , j ,k, . . .5125

~and where i 1. i 2. i 3•••, j 1. j 2. j 3•••, and k1.k2
.k3••• with all indicesi , j ,k, . . . different! increases up to
the maximum value of 63 504 because of the large number
of multiplications (;10). Nevertheless, this problem may be
solved using a computer.

Second, we have acted using the obtained operator on the
wave function and got tenUnn11 , including the information
about its sign. The algorithm of summation over the trajec-
tories is a standard one:25,26 a switch of configurations by
Metropolis algorithm51 with determination of the relation of
matrix element products before and after switching.

There is some peculiarity of the trajectory switching as-
sociated with the expansion of Monte Carlo cell: After
switching a trajectory from an oxygen atom to the neighbor-
ing copper atom, the fermion world line can be thrown into
the unshaded area of the configuration space. In this case we
allow the world line to bend to escape the unshaded area.
The possibility of the matrix elements signs changing, lo-
cated far from the switch area but linked by the initial site
numbering, should be also taken into account.

FIG. 2. ~211!-dimensional space imaginary-time grid for the
world-line MC algorithm. The fermion world lines may be switched
only within the boundaries of the vertical shaded sides.
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B. Calculation of the thermodynamic averages
of nonlocal physical quantities

The computation of the operators’ averages that conserve
fermion number locally~inside the CuO4 cell! is done essen-
tially in the same manner as the Monte Carlo simulation by
the standard world-line algorithm.25 So we need not dwell on
the detailed description of this calculation~see, e.g., Refs. 25
and 26!.

Unfortunately, the pairing correlation functions are essen-
tially nonlocal characteristics, whose operators break off the
fermion world lines and do not conserve a fermion number
locally inside the CuO4 cell. In this case, following,25 we
introduce an additional temporal slice~Fig. 3! with the pos-
sibility of the trajectories breakup. Note that the projection of
a 3D classical lattice on thex-t plane ~Fig. 3! forms the
standard checkerboard picture used in the 1D Monte Carlo
world-line algorithm.25 Then for the thermodynamic average
of the nonlocal operatorQ we have

^Q&5
^Q1&

^W1&
, ~12!

^Q1&5tr@^ i 1uQu i 18&U18,2~k!U2,3~k!•••U2L,1~k!#, ~13!

^W1&5tr@^ i 1u i 18&U18,2~k!U2,3~k!•••U2L,1~k!#. ~14!

For computation of~12! it is necessary to realize indepen-
dent Monte Carlo procedures for both the numerator and
denominator in order to calculate the individual thermody-
namic averages~13! and ~14!. We combine these processes
by adding the contribution to the numerator or/and to the
denominator during Monte Carlo simulation according to
what matrix element (̂i uQu i 8& or ^ i u i 8&) is not equal to zero.
For reduction of the statistic we also exclude all MC realiza-
tion where both matrix elements are equal to zero. Then all
useful information is retrieved from only one time slice
^ i u i 8&. This reduces the convergence rate by a factor of 2L,
however, the rate remains proportional to the cluster size to
the first power.

We notice, that for computing the temporal average of, for
example, the Green’s function

Gs~ i , j ,t!5^Ci ,s~t!Cjs
† ~0!&, ~15!

it is necessary to insert two additional slices into the Monte
Carlo scheme, one at the imaginary time 0, and one at the
time t. This average is also available within our scheme.

To attain the relevant accuracy we carry out about 103

Monte Carlo steps for thermalization and about 53103 MC
steps for calculating of averages. The statistical errors were
evaluated through the correct procedure26 and did not usually
exceed a few percent in relative units.

The problem of the sign~minus sign problem! in a given
algorithm does not essentially affect the convergence, since
the sign of the statistical weight tends to the constant value
asT→0.26 Testing the algorithm with the results of the exact
diagonalization of the 12-site cluster Cu4O8,

36 as well as
with those ones obtained by the determinant and variation
MC method,27,42we arrive to the following conclusions.

~1! The cluster Cu4O8 is extremely small for a MC algo-
rithm, which needs a sufficiently large number of degrees of
freedom. Its calculation requires as much computer time as
does a cluster withNa5300. Nevertheless, our results are in
a reasonable agreement with the exact ones. Indeed, at the
hole doping (̂N&55) andUd56, «51, andT50.125, we
havePd2 P̄d50.02, Ps*2 P̄s*50.03, while the data of the
exact diagonalization atT50 ~Ref. 24! give Pd2 P̄d

50.05,Ps*2 P̄s*50.1, i.e., as expected, the temperature re-
duces the pairing correlations, and the amplitude ratio of
s* andd channels does not vary dramatically.

~2! The results practically coincide within the limits of the
error with the data of standard MC algorithms27,42 for clus-
ters with Na548,108,192 using some recalculation. The
point is that the pairing correlators of the type^D†D& are
frequently calculated as opposed to Eq.~2!. Nevertheless, it
can be shown that this does not change the value of
Pa2 P̄a , and in the presence of the long-size off-diagonal
order the quantityPa2 P̄a is defined basically by the value
of Pa , so that the values of^D

†D& and^DD†& coincide with
each other in the limit ofNa→`.

IV. CALCULATION OF PAIRING CORRELATION
FUNCTIONS

We perform the computation of pairing correlations in
Cu-O clusters in the Emery model for the following param-
eters of the Hamiltonian~1!: «5123, Ud56, and
Up5V50 ~in units of t!. This choice is motivated by the
facts that first, these parameters are suggested by
experiments,52,53 and second, only in this parameter range
were the basic results on the binding energy of carriers and
pairing correlations by exact diagonalization in the cluster
Cu4O8 ~Refs. 28–36! as well as on the symmetry of pairing
in clusters withNa548, 108, and 192~Refs. 42–45! by
Monte Carlo method reported.

At first, we study the dependence ofPa[Pa(k) at
k5(0,0) on the cluster size fora5s, s* , anddx22y2. In Fig.
4 we present the world-line MC data for the value of
xa5APa /NCu as a function of 1/ANCu at the hole doping
x51.125 and 1.25 for clusters withNa548, . . . ,768. It is

FIG. 3. The projection of the spatiotemporal grid on the vertical
plane, parallel to thex axis (45° up to thea axis of the CuO2
plane!. The temporal slice for the calculation of nonlocal pairing
correlators is shown. The world lines experience a breakup between
statesu i & and u i 8&.
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seen thatPa does not diverge with the increasing ofNa and
tends to a constant value for all pairing channels. This result
coincides with the data fors pairing for the clusters with
Na<192,27 and testifies to the absence of the long-size off-
diagonal order in the thermodynamic limit~at finite tempera-
ture!.

This conclusion is also supported by some of the other
data of our calculation.

In Fig. 5 we present the dependence ofPa(r ) at a5s,
s* , anddx22y2 on the distance in units of the coordination
sphere radius on the copper sublattice, which indicates that
the large-size ordering is absent in the Cu-O clusters at least
in this range of the Emery parameters at given temperatures.
Actually, the value ofPa(r ) will decay to zero at distances
larger than the second through the third coordination sphere
radius~of order of two lattice periods! for all sizes of clusters
considered here. A similar spatial dependence ofPa is ob-
served for the two-dimensional Hubbard model38 for a5s.
Note that the cluster withNa5300 suffices to attain the ther-
modynamic limit, as we assumed previously from the esti-
mation of the correlation length, so that the characteristics of
larger clusters~with Na5432, 588, and 768! practically do
not differ within the limits of errors from those ones for
noted cluster.

Because of the rather high temperature of the calculation,
the question of existence~or absence! of pairing correlations
at T→0 still remains unsolved. In this connection it is rea-
sonable to consider the temperature dependence of
Pa2 P̄a , whose increase with decreasing temperature in a
finite cluster would demonstrate the strengthening of the cor-
relations as the point of the phase transition is approached, if
any exists~here, we subtractP̄a to eliminate the finite-size
effects and antiferromagnetic ordering for a finite cluster!.
We see only this type of behavior in Fig. 6, where the tem-
perature dependence ofPa2 P̄a for the cluster with
Na5300 is plotted at the dopingx51.125. Moreover, the
dx22y2 channel of pairings is most sensitive to temperature.

As a check on the tendency to form large-size off-
diagonal order, in Fig. 7 the dependence ofPa(r )2 P̄a(r ) on
r at a5s* anddx22y2 is plotted at various temperatures. As
temperature decreases, pronounced antiferromagnetic corre-
lations appear with practically temperature-independent cor-
relation length. Increasing antiferromagnetic~AF! correla-
tions in pairing interactions is clearly seen in the temperature
dependence ofPa[Pa(k) at k5(p,p) ~Fig. 8!, since the
AF contribution is the maximum in the correlator^DD†& for
the momentum (p,p). The strong growth of correlators~for
the s* channel the increase is;5 times in the interval of
temperatures fromT50.25 to 0.125! indicates that the main
contribution to the pairing correlations is because of the an-
tiferromagnetic ordering.54 Besides, it is interesting to note
that the characteristic length of the correlations is about six
coordination sphere radii~i.e., three periods of the lattice!.
This value is consistent with the characteristic correlation
length of the antiferromagnetic ordering obtained earlier.26

Thus, the temperature divergence in thes* and dx22y2

channels of pairing is determined by antiferromagnetic cor-
relations, and the tendency to superconducting correlations
in the system is not at hand yet. Actually, we are just close to
the antiferromagnetic phase transition (T;1000 K;0.1t),

FIG. 4. xa5APa /NCu as a function of 1/ANCu for clusters with
Na548,108,. . . ,768 at the dopingx51.125 ~1! and x51.25
(h). «51, Ud56, b58: ~a! a5s, ~b! a5s* , and ~c!
a5dx22y2. For Hamiltonian parameters«53 andUd56 and dop-
ing x51.25 the results practically coincide with the case«51,
Ud56, andx51.125~1! for all channels of pairing.
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so that it is natural to observe the antiferromagnetic fluctua-
tions.

Finally, we notice, that we have also carried out the com-
putation of pairing at carrier fillings 0.7<x<1.5, i.e., also
covering an electron doping range. Practically, the results do
not differ from those above, i.e., the superconductivity is
absent for all channels of pairing, as the valuePa tends to
the constance with the growth of the cluster size, and the
decay of spatial distributionPa(r ) occurs at 2–3 lattice pe-
riods @see, e.g., the data for the maximum cluster with
Na5768 ~Fig. 9!#. The concentration dependence of
Pa2 P̄a has a maximum at fillingx51.0, and the range of
positive values corresponds tox50.8–1.0 for the electron
doping andx51.0–1.5 for the case of the hole doping. These
data are close to the results of the pairing susceptibilities’
calculation;42 however, in Ref. 42 a minimum was observed
at filling x51.0. Notice, that at the close concentration the
antiferromagnetic ordering will be realized,1 and the most
strong antiferromagnetism should be observed only at the
undoped (x51.0) conditions. This fact confirms our conclu-
sions about the antiferromagnetic ordering of hole carriers on
the copper sublattice as the basic contribution to pairing cor-
relations and about the absence of the large-size off-diagonal
order.

V. CONCLUSION

A nonlocal world-line two-dimensional algorithm of the
quantum Monte Carlo based on the breakup of the plane
CuO4 into the five-site cells CuO4 is presented. Unlike the
scheme reported in Ref. 26, our algorithm is spatially isotro-
pic and thus is especially convenient for the study of the
symmetry of superconducting pairing, if any kind exists. The

FIG. 5. CorrelatorPa(r ) as a function of the distance in units of
the coordination sphere radius in the copper sublattice. Here
x51.125 andNa548 ~1!, 108~* !, 192 (h), 300~3!: ~a! a5s, ~b!
a5s* , and ~c! a5dx22y2. «51 andUd56, b58. For clusters
with Na5432, 588, and 768 the spatial distributions practically co-
incide ~within the error limits! with the data forNa5300.

FIG. 6. The temperature dependence ofPa2 P̄a for the doping
x51.125 and the cluster withNa5300 ins, s* , anddx22y2 pairing
channels:«51, Ud56.
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calculation of pairing correlation functions was carried out
by inserting an additional temporal slice into Monte Carlo
scheme.

The convergence rate of the algorithm is proportional to
Na ~in contrast to theNa

3 of usual methods!. This gives the
possibility of calculating the characteristics of Cu-O clusters
up toNa5768 (16316 CuO2 cells!.

Calculation of the pairing correlation functions in thes,
s* , and dx22y2 channels of pairing leads to the following
conclusions: namely, in the chosen interval of the Emery
Hamiltonian parameters (Ud56t, «5123t, Up5V50),
the temperature interval (T>0.125t), and the concentration
of carriers (0.7<x<1.5), ~a! the large-size off-diagonal or-
der is not observed in any channel of pairing in the thermo-
dynamic limit and~b! a tendency to divergence ins* and

dx22y2 channels is observed as the temperature decreases,
but the analysis shows the antiferromagnetic ordering as the
main cause of this effect. In particular, the characteristic cor-
relation length is close to the characteristic antiferromagnetic
length.

FIG. 7. The spatial distributionPa(r )2 P̄a(r ) for Na5300: ~a!
a5s* and ~b! a5dx22y2, T50.125 ~1!, 0.25 ~* !, and 0.5 (h);
and«51, Ud56, andx51.125.

FIG. 8. The dependence ofPa(k)2 P̄a(k) at k5(p,p) on the
temperature in the cluster withNa5300 in thes, s* , anddx22y2

channels of pairing:«51, Ud56, andx51.125.

FIG. 9. The spatial distributionPa(r )2 P̄a(r ) for Na5768:
a5s ~1!, a5s* ~* !, and a5dx22y2 (h); «51, Ud56, and
x51.25.
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We emphasize, that the final answer on the pairing and the
symmetry is not arrived at completely: We see an essential
temperature dependence of the pairing correlator because of
the antiferromagnetic ordering and, thus, cannot rule out the
possibility of phase transition at lower temperatures.

Basically, another criterion of the superconducting state’s
identification, independent from the wave-function symme-
try, is possible. For example, the gauge phase can be inserted
into the system,55 and the superfluid density can be defined
by the behavior of the ground-state energy as a function of
the gauge phase. In particular, in the Emery model a super-
fluid component is not found even at the lowest~for the
heat-bath Monte Carlo algorithm! temperature
T5(1/16)t.55
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