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A Monte Carlo world-line algorithm for a Cu©plane based on a breakup of the plane into five-site cells,
CuO, has been suggested. The algorithm has fast convergency and gives the possibility of investigating the
superconducting state symmetry. The calculation of pairing correlation functions was made with an advent of
additional imaginary-time slices to the Monte Carlo scheme. The characteristics of a two-dimensional Cu-O
cluster with number of sitedl,=768 (16<16 CuO, cells) were calculated. It has been shown within the
chosen interval of parameters of the Emery Hamiltonidh6t, e=1-3t, U,=V=0), temperatures
(T=0.1258), and carrier concentrations (&%=<1.5) that(i) the long-range off-diagonal order associated
with the superconducting state was not observed in the thermodynamic limit in any pairing chann@lsaand
tendency to divergence &f channels and,z_2 channels, which is noted as the temperature decreases, is due
to the antiferromagnetic ordering rather than the superconducting pairing. If the carrier concertianeoual
to 1.0 (undoped dielectric statethe pairing correlations have maximum amplitude and demonstrate clear
antiferromagnetic ordering in the copper sublattice, and the characteristic correlation length is close to the
earlier-reported antiferromagnetic length.

[. INTRODUCTION diately describes the basic structural element of high-
temperature superconductors — the Gplane. The analyti-
Recently the discussion of the high-temperature supercoreal study is a stubborn problem in the context of these
ductivity is concentrated basically around a problem of themodels?'?? which is why the exact diagonalizatitt?* and
superconducting order parameter’s symméfifhe solution  Monte Carl3>2” (MC) methods are of paramount impor-
of this question would give additional information on the tance, because they enable us, in principle, to calculate the
nature of pairing interaction and considerably reduce thenodel characteristics without the approximation and simpli-
number of discussed theoretical mod&ls. fications of the model Hamiltonian as well as without re-
In experimental works an unambiguous answer to the typeourse to the ground-state type.
of symmetry of the superconducting order parameter is not The exact diagonalization method was used for the
yet given. Indeed, the measurements of the gap’s anisotropgu,Og cluster of the Emery model to study the binding en-
in Josephson contacts and superconducting quantum interfegrgies and the correlation functions of excess carfferS.it
ence device8; ! as well as the experiments on the nuclearwas asserted that there is a tendency to carrier pairing in a
magnetic resonancé, Raman scatterinf and tunnel wide range of model parameters.
microscopy-* are interpreted as proof af,2_,2 symmetry, As to the question of the symmetry of pairing, the calcu-
while the other datdfor example, angular photoemisstdn lation of pairing correlations in the G@g cluster by exact
and Josephson-junction measurem&htspecify s symme- diagonalization fors, s*, andd,2_,2 channels was inter-
try. preted as being indicative of the prevalence sf
It must be emphasized, that in the majority of c8s&sa  symmetry*® The exact diagonalization data in the framework
strong anisotropy of the order parameter’s modulus is obef thet-J modef’ suggesd symmetry.
served; however, the occurrence of the zeroth superconduct- Unfortunately, the major restriction of the exact diagonal-
ing order parameter does not prodesymmetry, since the ization method, the small size of the system, does not allow
order parameter can also be equal to zero at the strong auos to reveal unequivocally the existence of superconductivity
isotropics pairing?>To check the existence dfpairing itis  in some pairing channel, since to attain these ends one needs

necessary to measure the order parameter’s ghimsaddi-  to prove the divergence of the pairing correlators in the mo-
tion, the same results have been interpreted as nskeahd  mentum space in the thermodynamic lirhftTherefore, to
d,2_,2 pairing®"*® trace the scaling of the system characteristics with respect to

The small correlation length scale, weak isotope effectthe cluster size, one should use quantum Monte Carlo
and a number of other abnormal properties of high-methods’®>~2 which enable us to calculate the thermody-
temperature superconductivifiiTSC) provided a basis for namic averages of physical quantities of large clusters with
research of the high-temperature superconductivity naturl,=100-200. The shortcoming of these methods is the in-
within the framework of nonphonon models. In this connec-accessibility of the low-temperature region, where statistical
tion the most adequate models of HTSC are those ofluctuations make the evaluation of quantities impossible.
Hubbard® and Emery?° In our opinion, the Emery modéhs  Nevertheless, it is believed that MC data over an achieved
an extended Hubbard modlé$ the best one, since it imme- temperature range may be sufficient for the study of the
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long-size correlation effects determining the superconductingairing in various channels. We show that in our temperature

state?’ In particular, it has been shown that a divergence offange IT~0.1t, t=1 eV) the pairing correlators tend to the

the pairing in thes channel is observed at any electron filling constant value rather than diverging lg— o, i.e., super-

for a single-band two-dimensioné2D) attractive Hubbard conducting correlations vanish in the thermodynamic limit.

model®® On the other hand, in the case of the repulsion inThese results are in agreement with the Hafiar s pairing.

the 2D Hubbard modef s pairing was not observetthe ~ However, the problem is not solved completely: we see an

correlations do not diverge &,— ). The same result was essential temperature dependence of pairing correlators pre-

reported in Ref. 40. dominantly, because of the antiferromagnetic ordering, and,
In the case of the Emery model, the absence of the longthus, we cannot rule out the possibility of a phase transition

range off-diagonal order in thiechannel of the pairing in the at lower temperatures.

thermodynamic limit has been demonstrated by the pairing

correlation scaling’ Alternatively, there is a great body of Il. PAIRING-CORRELATION FUNCTIONS

Monte Carlo simulation dat&“® in which a systematic IN THE EMERY MODEL

analysis of the finite-size effects in pairing correlators and ) )

susceptibilities is not pursued, however, the authors come tg L&t US cz%nsud_er a 2D multiband Emery model for the

a conclusion about the feasibility st andd,z_,2 channels CuG, plane;™ taking into account hybridization of the cop-

of pairing for the single-band 2D Hubbard model with P& dx2—y2 and oxygenp,,p, orbitals, the distinction of at-

repulsion’! the t-J model*” and the Emery modéf—° oms levels on copper and oxygen sites, and the Coulomb

Thus, there is a need to perform the pairing correlatiorM€raction on copper sites, oxygen atoms, and between
scaling for revealing the pairing in th&# andd,>_,2 chan- ~ them- o o
nels in the thermodynamic limit for the Emery model. It _ 1he Emery Hamiltonian in the hole representation is
must be underscored that the maximum cluster in the Cu09iVen by
plane calculated by the currently available Monte Carlo
methods is &8 CuO, cells (N,=192). Moreover, the scal- ~ H=—t >, (d{ p,+H.c)+s> N, +Ug> niny,

ko i

ing data are presented only for two clustersx4 and (ik),o

8x 8 cells?’ The main data about the symmetry of the pair-

ing have been derived from the calculation of the systems +UDE NNy +V > NoNkor- 1)
k

with 4X4 and 6X6 CuO, cells (N,=48 and 108, (ik),0.0"
respectively.*? Notice that the real correlation length scale is Hered] andp]  are the creation operators for the hole at

close to the linear size of these clustéfS. dye_,2 andpy,p, states, respectivelyjk) denotes summa-
For the standard determinant and variational MC algosjon ‘over the nearest neighbors; indexk) refers to the
rithms, the time taken for convergence grows with the SYStopper(oxygen sites,nj,=d’.di,, N=pi,Pes; t is the
. . . T o o-lo g olFKo
tem size ad\3 . This restricts the potentialities of these meth- 1 atrix element for the coppler-oxygen hoppirgis the dif-

ods for clusters with numbers of sitég>200. _ ference between energies of the hole at the oxygen and cop-
Recently the new world-line Monte C_arlo algorlthm for per sitesUg, Uy, andV are the energies of Coulomb repul-
the 2D Cu-O clusters was develop&dThis algorithm has  gjon of holes at the sites of copper, oxygen, and between
fast convergencéhe Monte Carlo simulation time is propor- them, respectively. The vacuum for the Hamiltonid is
tional to N). However, the known limitation of the world- {he electron configuration Cui3%0 2p® (valence state
line MC — the impossibility of calculating the thermody- Cu"0?). The dielectric(undoped state corresponds to the
namic averages that do not conserve the fermion numbetfonfiguration C4*02", where the hole numbefN) is
locally (within the CuG, cells) — does not allow to use this equal to the number of copper sithls,,. An increase(de-

algorithm for studying nonlocal pairing correlations. Be- creasg of (N) corresponds to the holelectron doping of
sides, the scheme of Ref. 26 is anisotropic in space. It dogg, Cu0, plane in highT, superconductors
c .

not rule out the calculation of the local characteristics but It is known that the relativéper one elementary CuO

makes Fhe study of symmetry properties rather difficult. cell) carrier concentratio®, which corresponds to the maxi-
In this work the new world-line quantum Monte Carlo .\ T is x=1.1-1.25 for hole HTSG* and
c» . . 1

algorithm based on a breakup of the Culane into the ,_ 4 g3 ' gg for electron HTSEY Below, we deal with
five-site cells CuQ is offered. The scheme of the method is this range of concentrations. '

spatially isotropiq. .To study the non!ocql pairing corrglations, We define equal-time pairing correlations explicitly as

we enter an additional temporal slice into the configurationy . tions of distancé®42

space resulting in a breakup of the fermion trajectories. All '

information is retrieved from this slice. This circumstance

reduces the convergence rate a little, which, however, is still Pa(f)ZZ (A (AT (r+1)), 2

proportional toN,. It is also important that the world-line

MC is realized in the canonical ensemble, and the calculatiomhere the pair field operators are

is carried out at fixed filling and projection of the full spin on

the z axis, which essentially reduces the configuration space. T 1
With this method we perform the calculations of pairing Aur)= N

correlations in thes, s*, andd,2_,2 channels for a series of cu

2D clusters withN,=48, 108, 192, 300, 432, 588, and 768. The summation in(2) is over all elementary cells of the

This set of clusters makes possible the correct analysis dtuO, plane. It means that the operat®@$, act on equiva-

2 ga(NClCl . &)
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lent sites, i.e., either on the copper atoms with the coordi-

nates R, or on the oxygen sites with the coordinates a

Reyt (1/2)ai, R +(1/2)aj (a is the lattice period We O e} @ O

choose such sites to be the copper ones, in conformity with t_o__‘__o ---‘--O - A
the nuclear magnetic resonance d#tayhere the pairing Ty P D
wave function on the copper sites is higher than on the oxy- 7 © T ©

gen sites. In principle, the operatoitég may be linear com- ¢-O D--4--O » -- --
binations of the creation operators at different sites in the & A

b
] @] @]
o445
Lot to
unit cel* (such as the singlets of Zhang and Rite { i Ci_@ i_o i_o
The functiong,(v) depends on the pairing channel type. t'o"’"o *’O v - ¢V 1
: @] @) @]
$o-go-go0
@) @]
| W S

For s pairingg,(v)=46,0. In case ofs* pairingg,(v)=1 . ;
whenv= *ai, *aj andg,(v)=0 otherwise. In the case of -0 - - -
dy2_y2 pairing g,(v)=1 whenv=*ai, g,(v)=—1 when O C')
v=*aj, andg,(v) =0 otherwise. i !

If there is a long-range off-diagonal order, the Fourier —-&-O —8--O - .
component

_ ; FIG. 1. Breakup of the Cu@plane into two types of binding
Palk) Z Pa(r)exp(ikr) @ [the binding of type 1(2) is represented by solitHashed lines].

The labelO stands for the oxygen atoms, the lal@®Imarks the

atk=(0,0) diverges in the thermodynamic linfftit imme- copper atoms(a) is our breakup scheme ar) is the breakup
diately follows, thatP (r) as a function of should become scheme of Ref. 26.

progressively slower with the distance tending to the con-
stance and demonstrating the space ordering as theNgize  For the numerical analysis we choose the clusters having
increases. the CuO,-plane symmetry. Thus, from all possible clusters
It is worthwhile introducing the quantity?:*? with the square symmetf§ we have chosen those whose
basis vectors are parallel to the basis vectors of the infinite
I;a(k):E Iga(r)exp(ikr), (5) p_Iane. An additional condition i; th_e even num_ber of copper
T sites(to provide the zeroth projection of sp®, in the un-
doped state and maximum reduction of the finite-size ef-
fects. The sequence of clusters that meets our conditions is
2X2 CuO, cells (N;=12), 4X4 CuO, cells (N,=48),
> 9oV Gu(¥)G (I +T+ 1,1 +0") 6Xx6 (108, 8x8 (192, 10X10 (300, 12x12 (432,
1oy 14X 14 (588), and 16x16 (768. The first clusteCu,Og)
© Was studied earlier by exact diagonalizatirit has higher
symmetry than the infinite CuOplane and, hence, drops out
and from the specified set of clusters because of the strong finite-
size effects.
G,(1,1")=(C\,C/, ), Taking into account the correlation length dafdlet us
S ) - estimate the critical cluster size, which is sufficient to attain
which is obtained from(2) by the decomposmor; under the thermodynamic limit. Because of the periodic boundary
Wick's theorem without the anomalous averagesC|) and  conditions, the maximum nonequivalent length,, is equal
(C,Cy). In the thermodynamic limit expressi@h) tends to  to ~(1/2)L in a square cluster of the linear length It is
the constance related to the correlation Iengtﬁ'herefore, reasonable to Speak about the thermodynamic limit on|y if
contribution to the pairing correlations can be neglected in.__ ~¢ Thus, the critical clusters in our sequence are those
the presence of the long-size off-diagonal order. We noticeyjth N,=108 and 192, i.e., the maximum clusters investi-
however, that its effect may be essential in a finite cluster, S@ated by Monte Carlo methods”? (the correlation lengttE
the valueP,, is usually subtracted fronf2) to improve the s 3—4 lattice periods®®.

— 1
Puln)= N
u

XG(I+r,1)

analysis®®
The criterion of the pairing correlations existence in the 1. NONLOCAL WORLD-LINE MONTE CARLO
a channel in a finite cluster can be formulated as folldWs: ALGORITHM FOR THE CuO , PLANE
If P,>P,, there are pairing correlations in the channel;
otherwise there is no pairing in the channel. A. Space-time breakup

It is pertinent to note, that a calculation with the fixed  \We break down the Hamiltonian into two terms with dif-
filling and projection of spinS, keeps the contribution in  ferent types of bind4®

pairing correlators of the anomalous averages ¢akcept

for the terms in Eq(5)], so the antiferromagnetic correla-

tions of the type(C,Cl) and(C,C!) are equal to zero. The H=H;+H,, Hli% Hij , H2:<§ Hij. (@
latter contribution is presented necessarily in standard varia- ! 172

tional and determinant algorithit?%s*° because of the large Unlike Ref. 26, we now choose the spatial breakup shown in
canonical ensemble situation. Fig. 1(a). This breakup cuts the infinite plane into five-site
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FIG. 2. (2+1)-dimensional space imaginary-time grid for the
world-line MC algorithm. The fermion world lines may be switched
only within the boundaries of the vertical shaded sides.

cells of CuQ, with intercell hopping realized through the
oxygen atoms. In Ref. 2fsee Fig. 1b)] the axesA-C and
B-D are nonequivalent, since the scheme forbids the carri
jumps in the diagonal directioB-D at finite temperature
(diagonal hopping O-O is possible by the virtual im&yein

our breakup scheme, these hoppings are interchangeable,

scheme(a) is spatially isotropic.
Using Trotter decompositicAand inserting the complete
set of intermediate states for each temporal $fic8the par-

tition function can be represented as a discrete path-integral:

zZ= 2 (isJexp(—ArHy)|i )(izlexp(—AH,)|ig)

(i —q]exp(—ATH)|ip )(io|exp(—A7TH,)iq),
8

where

©)

Nim. IS the hole filling number of théth lattice site with the
spin o in the mth imaginary time slice from the interval
[0,8]: A7=pB/L. As the error of decompositiof8) has the
order of A7*tA[A=max(, Uq, U,, V) (Refs. 25 and 2§,
we typically fix A7tA<0.1 for the required accuracy.
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The total number of states in the CyQell is equal to
1024, and the evolution operatofl0) is a matrix
1024x1024. To calculate the evolution operator one actually
needs to perform the numerical summation:

0

1 . .
Unn+1:k§=:O H(_AT)k<|n|Hl,2||n+1>k,

(11

cutting off the sum(11) when the required accuracy is
achieved(typically, atk~20).

In this connection we note the following two circum-
stances(1) There are nonzero probabilities of the trajectory
switch along the diagonal “O-O,” such as virtual hopping
O-0 through the copper site as well as combined hoppings of
the typesC,C,,C{ C,,, CL,C1,CJ,Cyy, etc., already in
the second order oA 7. Hence, one should include these
hole movements into Monte Carlo simulatid@) It is nec-
essary to know not only the absolute value of matrix element
U,n+1 but also its sign in a given Monte Carlo configuration.
The straightforward multiplication of matrices in E¢L1)
expanded in the five-site basis does not contain information

®bout this sign, since the site numbering of an isolated cell

does not coincide with the numbering of Cp®ells in the
whole system. We proceed as follows.

SOFirst, we have calculated exactly an operator
exp(—A7H), i.e., obtained the surfll) in an analytical op-
erator form This problem is a stubborn one because the
number of irreducible term@rdered with respect to the site
iumbering within a ceJlfor the Emery Hamiltoniaril) and

the five-site cell CuQ of the type

t t t t t
Ci,1Ci,1Ci,1C1CL1Cip1CiL iy By Ciny

T t T
Ci GG CiCm Cny s

etc., where

(and where i;>i,>iz- -+, j1>>j2.>j3---, and ki>k,
>ks- - - with all indicesi,j,k, ... differen} increases up to
the maximum value of 63 504 because of the large number
of multiplications (~10). Nevertheless, this problem may be
solved using a computer.

Second, we have acted using the obtained operator on the

Expression8) leads to a graphical representation. We setwave function and got teb,,, 1, including the information
2L as identical two-dimensional Cu-O clusters with a num-about its sign. The algorithm of summation over the trajec-
ber of atomsN, located one over another along the tories is a standard orfé2® a switch of configurations by

imaginary-time axigFig. 2). The summation in8) is over

Metropolis algorithm® with determination of the relation of

all possible closed noncrossing trajectories. The trajectorynatrix element products before and after switching.

switching takes place only within the vertical shaded sides.

There is some peculiarity of the trajectory switching as-

Each site of thé2+1)-dimensional lattice is characterized by sociated with the expansion of Monte Carlo cell: After

two filling numbersn,,; andny, , equal either to O or 1, so

switching a trajectory from an oxygen atom to the neighbor-

that there occur two different types of the trajectoriesing copper atom, the fermion world line can be thrown into

(“world lines”) corresponding to different spin projections.

the unshaded area of the configuration space. In this case we

The switch from one temporal slice to the next one is definedllow the world line to bend to escape the unshaded area.

by matrix elements of the evolution operator

Unn+1:<in|eXK_ATH1,2)|in+l>- (10

The possibility of the matrix elements signs changing, lo-
cated far from the switch area but linked by the initial site
numbering, should be also taken into account.
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We notice, that for computing the temporal average of, for

“B i example, the Green'’s function
i> G,(i,j,7)=(Ci (1) C],(0)), (15
i it is necessary to insert two additional slices into the Monte

Carlo scheme, one at the imaginary time 0, and one at the
time 7. This average is also available within our scheme.
li> To attain the relevant accuracy we carry out about 10
, Monte Carlo steps for thermalization and abowt B> MC
! steps for calculating of averages. The statistical errors were
[i> evaluated through the correct procedfi@nd did not usually
exceed a few percent in relative units.
The problem of the sigminus sign problemin a given
> algorithm does not essentially affect the convergence, since
X the sign of the statistical weight tends to the constant value
asT— 0.26 Testing the algorithm with the results of the exact
FIG. 3. The projection of the spatiotemporal grid on the verticaldiagonalization of the 12-site cluster @8,36 as well as
plane, parallel to thec axis (45° up to thea axis of the CuQ  with those ones obtained by the determinant and variation
plang. The temporal slice for the calculation of nonlocal pairing pC method%mzwe arrive to the following conclusions.
correlqtors is §hown. The world lines experience a breakup between (1) The cluster CyOyg is extremely small for a MC algo-
statesfi) and[i’). rithm, which needs a sufficiently large number of degrees of
freedom. Its calculation requires as much computer time as
does a cluster wittN,=300. Nevertheless, our results are in
a reasonable agreement with the exact ones. Indeed, at the
The computation of the operators’ averages that conservieole doping (N)=5) andUy4=6, e=1, andT=0.125, we
fermion number locallyinside the CuQ cell) is done essen- havePy— P4=0.02, Po« — Po =0.03, while the data of the
tially in the same manner as the Monte Carlo simulation bYexact diagonalization aff=0 (Ref. 24 give Py— Py
the standard world-line algorithA1.So we need not dwell on =0.05,Ps — P =0.1, i.e., as expected, the temperature re-

the detailed description of this calculati(see, e.g., Refs. 25 duces the pairing correlations, and the amplitude ratio of

and 2f6- v, th o lation functi s* andd channels does not vary dramatically.
Unfortunately, the pairing correlation functions are essen-  ;y 1hg regylts practically coincide within the limits of the

tially nonlocal characteristics, whose operators break off th%rror with the data of standard MC algorithth& for clus-
fermion world lines and do not conserve a fermion numbet, o \vith N,=48,108,192 using some recalculation. The

!ocally inside the' .CUQ cell. In this. case, foII.owinﬁ? we point is that the pairing correlators of the typa'A) are
introduce an additional temporal sli¢eig. 3) with the pos- frequently calculated as opposed to E2). Nevertheless, it
sibility of the trajectories breakup. Note that the projection Ofcan be shown that this does not change the val,ue of

a 3D classical lattice on the-r plane (Fig. 3 forms the B ; Y o
standard checkerboard picture used in the 1D Monte CarIcIJD“ P, and in the presence of the long-size off-diagonal

Id-li lgorithn2® Then for the th d : order the quantity?,,— P, is defined basically by the value
\cl)\;otrhe LnoenE)gglnoprgratc@e\?veo;avz ermodynamic average ot b so that the values qfATA) and(AAT) coincide with

each other in the limit oN,— oo,

li >

B. Calculation of the thermodynamic averages
of nonlocal physical quantities

Q= (W)’ (12) IV. CALCULATION OF PAIRING CORRELATION
FUNCTIONS

(Qu=trli1|Qli1) U1 2k)Uz4k) - - Uz a(K)], (13 We perform the computation of pairing correlations in
— e i i o Cu-O clusters in the Emery model for the following param-
(W) =t (ia]ia )V k) U2 k) U sl (14) eters of the Hamiltonian(1): ¢=1-3, Uy4=6, and
For computation of12) it is necessary to realize indepen- U,=V=0 (in units of t). This choice is motivated by the
dent Monte Carlo procedures for both the numerator andiacts that first, these parameters are suggested by
denominator in order to calculate the individual thermody-experiments>°® and second, only in this parameter range
namic average$l3) and (14). We combine these processes Were the basic results on the binding energy of carriers and
by adding the contribution to the numerator or/and to thePairing correlations by exact diagonalization in the cluster
denominator during Monte Carlo simulation according toCu4Og (Refs. 28—3Bas well as on the symmetry of pairing
what matrix element(§|Qli") or (i|i'}) is not equal to zero. in clusters withN,=48, 108, and 192Refs. 42-4p by
For reduction of the statistic we also exclude all MC realiza-Monte Carlo method reported.
tion where both matrix elements are equal to zero. Then all At first, we study the dependence & ,=P (k) at
useful information is retrieved from only one time slice k=(0,0) on the cluster size far=s, s*, andd,2_2. In Fig.
(i]i"). This reduces the convergence rate by a factorlgf 2 4 we present the world-line MC data for the value of
however, the rate remains proportional to the cluster size tg,= VP,/N¢, as a function of 1N, at the hole doping
the first power. x=1.125 and 1.25 for clusters witi,=48, ...,768. Itis
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seen thaP, does not diverge with the increasing Nf, and 0.25
tends to a constant value for all pairing channels. This result X | (a) +
coincides with the data fos pairing for the clusters with
N,=<1922" and testifies to the absence of the long-size off- 020 |-
diagonal order in the thermodynamic lindét finite tempera-
ture).
This conclusion is also supported by some of the other
data of our calculation. N th
In Fig. 5 we present the dependenceRyf(r) at a=s,
s*, andd,2_,2 on the distance in units of the coordination M L
sphere radius on the copper sublattice, which indicates that - &
the large-size ordering is absent in the Cu-O clusters at least 005 .
in this range of the Emery parameters at given temperatures.
Actually, the value ofP,(r) will decay to zero at distances i
larger than the second through the third coordination sphere 0.00 . 1 . 1 .
radius(of order of two lattice perioddor all sizes of clusters 00 ol 02 03
considered here. A similar spatial dependenced’gfis ob- 1/«/NC.,
served for the two-dimensional Hubbard mdfdbr a=s.
Note that the cluster withl,= 300 suffices to attain the ther- (b)
modynamic limit, as we assumed previously from the esti- Xt
mation of the correlation length, so that the characteristics of
larger clusterqwith N,=432, 588, and 768practically do
not differ within the limits of errors from those ones for i
noted cluster. 03—
Because of the rather high temperature of the calculation, +
the question of existenger absenckeof pairing correlations
at T—0 still remains unsolved. In this connection it is rea- oz m
sonable to consider the temperature dependence of
P,—P,, whose increase with decreasing temperature in a &
finite cluster would demonstrate the strengthening of the cor- 01— i
relations as the point of the phase transition is approached, if
any exists(here, we subtradP, to eliminate the finite-size
effects and antiferromagnetic ordering for a finite cluster ) 01 02 03
We see only this type of behavior in Fig. 6, where the tem- 1/ /NCu
perature dependence oP,—P, for the cluster with
N,=300 is plotted at the doping=1.125. Moreover, the
dy2_,2 channel of pairings is most sensitive to temperature. X | (e +
As a check on the tendency to form large-size off-
diagonal order, in Fig. 7 the dependencéq{r)—P(r) on
r ata=s* andd,2_y2 is plotted at various temperatures. As r
temperature decreases, pronounced antiferromagnetic corre- 03 |-
lations appear with practically temperature-independent cor- ®
relation length. Increasing antiferromagnetiaF) correla-
tions in pairing interactions is clearly seen in the temperature 02 M
dependence oP,=P (k) at k=(m,7) (Fig. 8), since the
AF contribution is the maximum in the correlatokA™) for ®
the momentum 4, 7). The strong growth of correlato(for 01— i
the s* channel the increase is5 times in the interval of
temperatures frornm =0.25 to 0.12%indicates that the main
. . .. . . | | | | | |
contribution to the pairing correlations is because of the an- 00 v > 0
tiferromagnetic ordering* Besides, it is interesting to note 1/\/'Nf
that the characteristic length of the correlations is about six i Cu
coordination sphere radii.e., three periods of the lattice
This value is consistent with the characteristic correlation
length of the antiferromagne;tic ordering obtained eaffier. FIG. 4. y, =P, /No, as a function of 1fNg, for clusters with
Thus, the temperature divergence in tfeandd,> > N,=48,108,...,768 at the doping=1.125 (+) and x=1.25
channels of pairing is determined by antiferromagnetic corq). ¢=1, U,=6, 8=8: (@ a=s, (b) a=s*, and (c)
relations, and the tendency to superconducting correlation§:dxzfy2_ For Hamiltonian parametees=3 andU4=6 and dop-
in the system is not at hand yet. Actually, we are just close tong x=1.25 the results practically coincide with the case1,
the antiferromagnetic phase transitioh~1000 K ~0.1t), Uy=6, andx=1.125(+) for all channels of pairing.

0.15 —
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(a)

04 —

FIG. 5. CorrelatoiP ,(r) as a function of the distance in units of

0.08 —

0.04 —

0.00 —

0.04 1 | L l |
0.0 0.4 0.8 12

FIG. 6. The temperature dependencePgf- Ea for the doping
x=1.125 and the cluster witN,=300 ins, s*, andd,2_y2 pairing
channelse=1, Uy=6.

so that it is natural to observe the antiferromagnetic fluctua-
tions.

Finally, we notice, that we have also carried out the com-
putation of pairing at carrier fillings 0¥x<1.5, i.e., also
covering an electron doping range. Practically, the results do
not differ from those above, i.e., the superconductivity is
absent for all channels of pairing, as the vaRig tends to
the constance with the growth of the cluster size, and the
decay of spatial distributio® ,(r) occurs at 2—3 lattice pe-
riods [see, e.g., the data for the maximum cluster with
N,=768 (Fig. 9]. The concentration dependence of
P.,— P, has a maximum at fillingc=1.0, and the range of
positive values corresponds ic=0.8—1.0 for the electron
doping andk=1.0—1.5 for the case of the hole doping. These
data are close to the results of the pairing susceptibilities’
calculation?? however, in Ref. 42 a minimum was observed
at filling x=1.0. Notice, that at the close concentration the
antiferromagnetic ordering will be realizédand the most
strong antiferromagnetism should be observed only at the
undoped x=1.0) conditions. This fact confirms our conclu-
sions about the antiferromagnetic ordering of hole carriers on
the copper sublattice as the basic contribution to pairing cor-
relations and about the absence of the large-size off-diagonal
order.

V. CONCLUSION

A nonlocal world-line two-dimensional algorithm of the

the coordination sphere radius in the copper sublattice. Herguantum Monte Carlo based on the breakup of the plane

x=1.125 andN,=48(+), 108(*), 192 @), 300(X): (a) a=s, (b)
a=s*, and (c) a=d,2_y2. e=1 andUy=6, 8=8. For clusters

CuQ, into the five-site cells Cu@is presented. Unlike the
scheme reported in Ref. 26, our algorithm is spatially isotro-

with N,=432, 588, and 768 the spatial distributions practically co-pic and thus is especially convenient for the study of the

incide (within the error limit3 with the data folN,=300.

symmetry of superconducting pairing, if any kind exists. The
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0.15

0.08 —

FIG. 7. The spatial distributio® ,(r) — Ea(r) for N,=300: (a)
a=s* and(b) a=dy2_,2, T=0.125(+), 0.25(*), and 0.5 {);

ande=1, Uy=6, andx=1.125.

calculation of pairing correlation functions was carried out
by inserting an additional temporal slice into Monte Carlo

scheme.

The convergence rate of the algorithm is proportional to
N, (in contrast to thd\lg of usual methods This gives the
possibility of calculating the characteristics of Cu-O clusters ﬂ

up toN,=768 (16<x 16 CuG, cells).

Calculation of the pairing correlation functions in the
s*, andd,2_,2 channels of pairing leads to the following -0 ' ' ' ' L | '
conclusions: namely, in the chosen interval of the Emery
Hamiltonian parametersU;=6t, e=1-3t, U,=V=0),
the temperature intervall&0.12%), and the concentration
of carriers (0.&#x=<1.5), (a) the large-size off-diagonal or-

P(K)-P (k) k= (mm)

0.3

0.2 —

0.1 —

0.0 —

0.0 0.2 04 0.6

FIG. 8. The dependence &f,(k)— Ea(k) atk=(m,m) on the
temperature in the cluster witN,=300 in thes, s*, andd,2_,2
channels of pairinge=1, U4=6, andx=1.125.

ds2_,2 channels is observed as the temperature decreases,
but the analysis shows the antiferromagnetic ordering as the
main cause of this effect. In particular, the characteristic cor-
relation length is close to the characteristic antiferromagnetic
length.

0.2

P-P Na= 768

-0.2 —

0 2 4 6 8

FIG. 9. The spatial distributiorPa(r)—lsa(r) for N,=768:

der is not observed in any channel of pairing in the thermow=s (+), a=s* (x), and e=d,e_,2 (O); e=1, U4=6, and

dynamic limit and(b) a tendency to divergence s and

x=1.25.
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