
Effects of gap and band anisotropy on spin susceptibility in the oxide superconductors

J. M. Rendell and J. P. Carbotte
Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1

~Received 21 September 1995!

We have studied the momentum space anisotropy present in the imaginary part of the spin susceptibility
when an extendeds-wave component (sx21y2) is added to thed-wave (dx22y2) superconducting gap. It is
found that as the amount of the extendeds-wave component is increased, the two pairs of incommensurate
nesting peaks begin to differ increasingly in height and shape. In addition, band structure anisotropy, which in
contrast to gap anisotropy would be present even in the normal state, is also discussed.

I. INTRODUCTION

Important spin fluctuation effects are present in the super-
conducting state of the copper oxides and some theories1–4

invoke the presence of this magnetism as the mechanism
responsible for superconductivity although, at the moment,
there is no consensus on this point.5–7 The superconducting
and normal state spin susceptibility has been extensively
studied in LaSrCuO and YBaCuO by inelastic neutron
scattering8–23 and many theoretical papers24–44 exist on the
subject.

There are now many experiments indicating that the gap
in some of the high-Tc oxides hasdx22y2 symmetry.

45,46As
an example, the linear temperature dependence~T! of the low
temperature penetration depth observed in high quality
YBa2Cu3O 7 single crystals

47–51as well as its switch over to
a T2 dependence52 on Zn doping of the CuO2 planes, is eas-
ily and naturally interpreted as due to ad-wave gap. Also,
high resolution~;10 meV! angular resolved photo emission
experiments~ARPES! in Bi2Sr2CaCuxO81d have indicated a
near zero gap on the Fermi surface in the two diagonal di-
rections with a maximum in the direction towards the
faces53–61 of the square CuO2 Brillouin zone. This observa-
tion is also consistent withdx22y2 symmetry. On the other
hand, other ARPES data have given instead zeros62 on either
side of the diagonals displaced by approximately 10°. These
results have found a straightforward interpretation in terms
of a gap withsxy symmetry. Nevertheless, on the whole, the
evidence ford-wave symmetry is strong.

Penetration depth and ARPES experiments are not sensi-
tive to the phase of the gap and depend only on its absolute
value so that a unique and definitive assignment ofdx22y2

symmetry is not possible from such data alone. To clarify
this point, several experiments have been designed to ob-
serve directly the phase of the gap63–65 although, again, not
all agree on assignment ofdx22y2 symmetry. Thus the situa-
tion remains controversial and other points of view exist66–68

but here we will assume ad-wave gap.
Another important feature of the copper oxides that needs

to be considered, however, is that some are not tetragonal.
For example, YBa2Cu3O7 has chains along a definite direc-
tion so that this compound is clearly orthorhombic. A direct
consequence of this is that the in-plane resistivity69 and ther-
mal conductivity70 are quite anisotropic. Recently, a very
large anisotropy has also been observed in the penetration

depth which is 1600 Å in thea direction as compared with
1030 Å in the b direction71 in untwinned single crystal
samples.

A possible model for the superconductivity in the oxides
with a gap that hasdx22y2 symmetry is the nearly antiferro-
magnetic Fermi liquid model~NAFFLM!. In this model,
pairing proceeds through coupling to the spin fluctuation
which can be described by a phenomenological susceptibility
as done by Millis, Monien, and Pines~MMP! ~Ref. 1! which
they determined from a consideration of NMR data. This
model, which applies to tetragonal systems with pured-wave
gap, was extended to include an orthorhombic band structure
by O’Donovanet al.72,73and Branchet al.74 In this case, the
BCS gap equation with MMP susceptibility leads quite di-
rectly to a mixed symmetry solution for the superconducting
gap which includes an extendedsx21y2 component as well as
the more usualdx22y2 part. The fast Fourier transform nu-
merical solutions of the BCS equation obtained in this ex-
tended model contain many higher harmonics of these two
irreducible representations of the tetragonal crystal lattice
point group. However, for most purposes, the physics of the
situation is captured by including only the lowest harmonic
of each of the two irreducible representations,sx21y2 and
dx22y2.

In this paper, we calculate the electron spin susceptibility
of a single band two-dimensional CuO2 tight binding plane
in a random phase approximation including Stoner enhance-
ment which is due to correlation effects described by the
Hubbard U. We study, in particular, the effect of adding on
an extendeds-wave component to the gap besides its more
usualdx22y2 part. We also study the direct effect on the spin
susceptibility of an orthorhombic distortion in the band
structure. For this purpose, we stay, for simplicity, within a
single band model but include a different first nearest-
neighbor hopping ina andb directions. This distortion can
be thought of as a simplified way to emulate the existence of
the chains in YBCO so that the one band Fermi surface no
longer has tetragonal symmetry. Of course, this is a very
simplified model. In actuality, the Fermi surface of YBCO
has several sheets; two CuO2-like and one chainlike with
hybridization between them.75–81Still, our simplified model
is capable of including orthorhombicity whatever its source
and will be sufficient for our purpose here. The model has
been successfully applied72,73 to a discussion of the observed
penetration depth anisotropy71,73in YBCO and the size of the
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Josephson critical current65,74 seen between YBCO and Pb
for tunneling along thec axis.

In Sec. II, we give the necessary formalism. Numerical
results are to be found in Sec. III and a conclusion in Sec. IV.

II. FORMALISM

The bare single spin susceptibility in the superconducting
state for momentum transferq and energyv is given by
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2V(
k
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where f (x) is the Fermi Dirac distribution function at finite
temperature~T! andG is a damping factor needed to control
the singularities in the denominators and taken to beG5
0.01t or 0.05t in the numerical data present in this paper. The
full spin susceptibility in random phase approximation, en-
hanced by the Coulomb interactions, which we denote by
x~q;v!, is given by

x~q;v!5
x0~q;v!

12Ux0~q;v!
, ~2!

whereU is the HubbardU which accounts for correlations.
The antiferromagnetic transition occurs when the denomina-
tor of Eq. ~2! vanishes and so the susceptibility goes to in-
finity. This occurs at a particular value of momentumq de-
noted by qc ~critical! and defines a critical value ofU
denoted byUc which is given byUc51/x0~qcv! for momen-
tum qc and energy transferv. In Eq. ~1!, V is a normalizing
volume, the sum is over momentum in the first Brillouin
zone of the CuO2 plane which is taken to be tetragonal. The
superconducting energy gap isDk and the quasiparticle ener-
gies Ek[Aek

21Dk
2 where ek is the normal state electronic

dispersion.
In this paper, we will be interested in a gap which is a

combination of the two lowest harmonics of thedx22y2 and
sx21y2 irreducible representations of the two-dimensional
CuO2 tetragonal plane. They are

dx22y2[cos~kx!2cos~ky! ~3!

and

sx21y2[cos~kx!1cos~ky!, ~4!

wherekx andky are momentum components inx andy direc-
tion, respectively. The gap then has the form

Dk5Dd@cos~kx!2cos~ky!#1Ds@cos~kx!1cos~ky!#. ~5!

In our previous numerical solutions72–74 of the BCS gap
equations using fast Fourier transforms, a numerical tech-
nique which places no restrictions on the symmetry of the

resulting gap, we have found that, for an orthorhombic sys-
tem in a single band model, many higher harmonics are
present besides those of Eqs.~3! and ~4!. But for most pur-
poses, this is not important and qualitative correct results can
be obtained on the basis of Eq.~5! alone. The BCS gap
equation that is solved to get such mixed representation
solutions72–74is based on the phenomenological spin suscep-
tibility xk2k8

determined in the work of Millis, Monien, and
Pines1 ~MMP! and tight-binding electronic dispersions of the
form

ek522t@cos~kx!1~11d!cos~ky!22B cos~kx!cos~ky!#

2m, ~6!

wheret is the first nearest-neighbor hopping,d is an aniso-
tropy parameter which breaks tetragonal symmetry and
makes thex andy directions distinct,B is a second nearest-
neighbor hopping parameter, andm is the chemical potential
in units of t. It is related to the filling factor̂n& given by

^n&5
1

2V(
k

F12
ek
Ek
tanhS Ek

2kBT
D G , ~7!

where half-filling ~single spin! corresponds tôn&50.5. In
Eq. ~7!, T is temperature, as before, andkB is the Boltzmann
factor.

The single orthorhombic two-dimensional band structure
model of Eq.~6! is, of course a simplification but it does
allow us to treat, in a simple fashion, an orthorhombic situ-
ation with gap of the form~5! which has ansx21y2 as well as
dx22y2 component. For YBCO, Eq.~6! is intended to repre-
sent the combined system of planes and chains. Of course, in
a complete model, the Fermi surface has several sheets rather
than a single one, with one sheet related mainly to the chains
and two to the planes. This complication is beyond the scope
of our study here.

The numerical evaluation of Eq.~1! for a particular ad-
mixture of sx21y2 and dx22y2 @Eq. ~5!# proceeds through a
numerical sampling of the irreducible part of the Brillouin
zone involvingN2 sampling points. For all runs to be pre-
sented here, the filling was fixed at^n&50.4 for illustrative
purposes only. As the parameters in the electronic dispersion
relation ~6! are varied, the chemical potential required to
keep ^n& at 0.4, of course, changes. We will consider cases
with second nearest-neighborB50 and others withB50.45
which are roughly appropriate to the band structure of
LaSrCuO and YBaCuO, respectively. Several values of the
band structure anisotropy parameterd of Eq. ~6! were con-
sidered but onlyd50.25 is given here. In all runs reported,
we have usedG50.01t or 0.05t and a neutron energy transfer
v50.05t unless otherwise stated. The maximum gap value at
T50 was set at 2D050.4t and the critical temperature at
Tc50.1t, corresponding toT;100 K. This is the tempera-
ture at which normal state results are presented.

III. NUMERICAL RESULTS

We start with the tetragonal case for the band structure
dispersion relation of Eq.~6!, i.e., d50. The four frames of
Fig. 1 give the imaginary part of the single spin susceptibility
of Eq. ~2! @x~q,v!# as a function of momentum transferq for
a fixed energy transferv50.05t. In this figure,qx/p ranges
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from 0.5 to 1 andqy/p from 1 to 1.5; so~p,p! is the right,
front corner. The temperature is taken to be zero and the state
is superconducting. Frame 1~a! is for a gap with pure
dx22y2 symmetry@Eq. ~3!# and applies to the case when the
Coulomb repulsion in Eq.~2! is set to zero so that it is the
bare susceptibility of Eq.~1!, x0~q;v! that is displayed. Note
that the results are consistent with tetragonal symmetry.
There are four identical symmetrically placed nesting peaks
on the Brillouin zone face connected by prominent narrow
ridges which come from gap node to gap node scattering.
The geometrical origin of these gap node features, which
reflect the Fermi surface shape and the symmetry of the gap,
will shortly be emphasized further when we refer to Fig. 2.
Frame 1~b! uses a finite value of Coulomb repulsionU52.0t
in Eq. ~2! otherwise the parameters are the same as for frame
1~a! ~puredx22y2 symmetry!. The critical value ofU is esti-
mated to beUc52.52t. This value, which is quoted only for
information, corresponds to the antiferromagnetic phase tran-
sition boundary. On comparing frame 1~b! with frame 1~a!,

we note first the large change in scale on the vertical axis. It
ranges up to 0.010 for the noninteracting case@frame 1~a!#
with U50 and up to 0.22 for the exchanged, enhanced finite
U case@frame 1~b!#. This large enhancement of the spin sus-
ceptibility comes from the denominator in Eq.~2! which can
become small as the antiferromagnetic boundary is ap-
proached. Note that when a finiteU is included, the suscep-
tibility x of Eq. ~2! involves both real and imaginary parts of
the noninteractingx0~q;v! of Eq. ~1!. As U is increased fur-
ther towards the antiferromagnetic phase boundary,x will, of
course, become even more enhanced and eventually diverge.
Values ofU nearUc correspond to the NAFFLM which en-
visages large Stoner enhancements of the bare spin suscepti-
bility x0~q;v! of Eq. ~1! and very significant magnetic effects
in the superconducting state. On comparing frame 1~b! with
frame 1~a!, it should also be noted that the four nesting
peaks, which remain symmetric in placement, shape, and
height, have become much more prominent and the gap node
scattering ridges are now not quite as large in relation to the

FIG. 1. The common parameters are critical temperatureTc50.1t, maximum gap 2D054Tc , filling ^n&50.4, second nearest-neighbor
hoppingB50 on a tetragonal lattice, neutron energyv50.05t, and smearing parameterG50.01t. The number of points used in the Brillouin
zone is~330!2. Frames~a! and~b! involve pured-wave gap and give the imaginary part of the spin susceptibility as a function of momentum
qx andqy in the two-dimensional reciprocal space of the copper oxide planar lattice. In frame~a!, the Coulomb parameterU50, while in
frame~b! it is equal to 2.0t with critical value;2.52t. Frames~c! and~d! involve 20%sx21y2 ~extendedswave! and 80%dx22y2 ~d wave!
otherwise they are the same as~a! and ~b! with Uc>2.50t.
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peak values. The figure remains tetragonal, of course, be-
cause we have used a tetragonal lattice and a puredx22y2 gap
function @Eq. ~3!#; a finite value ofU does not change this
symmetry.

In the next two frames~c! and ~d! of Fig. 1, a tetragonal
lattice is retained but the gap admixture in Eq.~5! is taken to
be 20%sx21y2 and 80%dx22y2. The parametersDs andDd

include these factors, respectively, as well as the temperature
dependent gap functionD0(T). An important result is that
the nesting peaks, which are still quite prominent in both
frames 1~c! and 1~d!, have become asymmetric. They now
come in pairs with each pair having a different height
~though the position remains symmetric!. The gap ridges be-
tween these incommensurate nesting peaks also show asym-
metry. As in the case of the previous two frames, inclusion of
a finite Coulomb repulsion in frame 1~d! as compared with
frame 1~c!, which is forU50, reduces the relative size of the
gap ridges as compared to the size of the incommensurate
nesting points and increases very slightly the anisotropy of
the height of the nesting peaks in the figure. In frame 1~d!,
U52t and the critical value ofU is Uc52.50t The admix-
ture of a 20%sx21y2 component to the gap in Eq.~5! has
slightly shifted the value of the critical value ofU, i.e.,Uc
which corresponds to the antiferromagnetic phase boundary.
It is clear from this figure that it should be possible, in prin-
ciple at least, to fix the amount ofsx21y2 admixture from the
difference in peak height seen in the superconducting state of
the two pairs of incommensurate nesting peaks. This aniso-
tropy will show up only in the superconducting state and will
not be present in the normal state. When the gap is zero, the
system has tetragonal symmetry and nesting peaks are sym-
metric as in frames~a! and ~b! of Fig. 1. This anisotropy
appears to be present in the superconducting state data of
Masonet al.20 in LaSrCuO.

Figure 2 consists of five frames labeled from~a! to ~e! and
involves a tetragonal lattice@d50 in Eq. ~6!# with next-
nearest-neighborB50. This is a reasonable model for the
band structure of LaSrCuO. As in Fig. 1, the filling is set at
^n&50.4 and the widthG50.01t, the frequencyv50.05t, and
the number of sampling points in the Brillouin zone isN2

with N51002. Frame 2~a! shows the closed Fermi surface
contour~solid line!. It is squarelike with flat regions perpen-
dicular to the main diagonals of the first Brillouin zone. The
dotted lines show the nesting ridges which reflect the geom-
etry of the Fermi surface. They are conveniently shown in an
extended Brillouin zone, centered aroundq5~p,p!. Lavagna
et al.33,35 refers to these nesting ridges as dynamic Kohn
anomalies. Their geometrical construction is as follows: take
all vectors connecting the Fermi surface to itself going
through the origin~G point! and displace the resulting vector
parallel to itself up to the origin of the first Brillouin zone.
The set of all momenta transfers that map the Fermi surface
on to itself through theG point ~0,0! are shown as dotted
lines ~nesting ridges! in the extended Brillouin zone. The
nesting peaks correspond to the intersection of two nesting
ridges which enhance these particular Fermi surface to Fermi
surface transitions and lead to peaks in the spin susceptibil-
ity. These nesting ridges and peaks can be seen in the imagi-
nary part of the spin susceptibility atT50, when there is no
Coulomb potentialU. Then the peaks have exactly twice the
height of the ridges. As the potential is turned on, the nesting

peaks are enhanced more than the ridges. Also shown on the
same figures is the position of the center of the gap node to
gap node scattering structures. These exist only in the super-
conducting case, must be positioned on the nesting ridges,
and consist of the same nesting transition just described but
involve only those that also go from gap node to gap node.
For the puredx22y2 case, the point~open circle! falls directly
between the two nesting peaks and on the nesting ridge. This
peak moves off along the nesting ridge~to the right! as an
admixture ofsx21y2 is introduced and to the right of the open
circle. The asterisk is for a 20% admixture ofsx21y2 compo-
nent in Eq.~5!, the second open circle, which falls right on
the nesting peak~p,qy!, is for 50%sx21y2, and finally, the
last point ~a second asterisk! is for 80% sx21y2 and 20%
dx22y2. We stress again that these gap peaks exist only in the
superconducting state and result from scattering between gap
nodes on the Fermi surface. In frame 2~a!, the gap node to
gap node peaks are only shown in one direction. In reality,
there are three more sets symmetrically positioned. The rela-
tive height of the gap node peak is strongly affected by tem-
perature,T, the smearing,G, and the Coulomb potential,U.

In frame ~b! of Fig. 2, we show a plot of the imaginary
part of the spin susceptibilityx0~q,v! for v50.05t and q
along a line going through two of the nesting peaks. The
horizonal axis isqx/p alongqy5p with first nesting peak at
0.85; the second then falls at 1.0 by arrangement. The posi-
tion of these peaks is, of course, completely dependent on
the Fermi surface geometry and will change with filling and
any change in the dispersion relation~6!. The lower curve of
frame 2~b! applies to the superconducting state at zero tem-
perature and the upper curve to the normal state atTc , taken
to be 100 K. The two incommensurate nesting peaks are
sharper but much narrower in the superconducting case, and
the gap node peak, which falls exactly halfway between the
two nesting peaks, is clearly seen in the lower curve. This
frame applies to the pured-wave case and exhibits tetragonal
symmetry. This is in contrast to the results shown in frame
2~c!, which are based on a 20% admixture ofsx21y2 in the
gap function with 80%dx22y2. The position of the nesting
peaks has not changed but now they no longer have the same
height and shape. Also, the gap node peak is asymmetric and
its maximum has moved away from the smaller peak and
closer to the higher nesting peak as shown in frame~a!.
IncreasingU will give bigger peaks, but not increase by
much the difference in height. The next frame 2~d! shows the
nesting peaks with a 50%dx22y2 and 50%sx21y2 gap. Now
the gap scattering peak is at the same position as the right
hand nesting peak, but the two contributions are clearly dis-
tinguished. IncreasingU will produce larger peaks ad make
the right hand peak bigger with respect to the left hand peak.
This is due to the presence of the gap node scattering peak.
The last frame 2~e! shows the case of 20%dx22y2 and 80%
sx21y2. The gap scattering peak is now seen to the right of
the right hand nesting peak. The gap scattering peak is broad
along the nesting ridge and falls away rapidly in the perpen-
dicular direction. If the chosen line in momentum space does
not pass directly through the position of the gap scattering
peak, the shape seen will not be fully representative. This is
the case in frame 2~d!. The nesting ridges curve away from
the line joining the two nesting peaks. Adding a Coulomb en-
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hancement to these examples reduces the relative height of
the gap scattering peak.

In Fig. 3, we show our results for the imaginary part of
the susceptibility Imx~Q;v! for U52.0t,^n&50.4,
v50.05t, G50.05t, d50, B50, N25(330)2, along theqy
axis withqx5p ~upper curve in each pair! and alongqx with
qy5p ~lower curve!, so as to emphasize the anisotropy not
only in the height of the incommensurate nesting peak but

also in its shape. For the convenience of the reader, each set
of two profiles is displaced upward in the figure by a con-
stant amount along the vertical axis. The lowest curve is for
the normal state at temperatureT50.1t and is included for
comparison. It is symmetric, i.e., identical inx andy direc-
tion because the system is tetragonal@d50 in Eq. ~6!#. The
second lowest set of two curves also shows tetragonal sym-
metry. They apply to the superconducting state at zero tem-

FIG. 2. The common parameters are critical temperatureTc50.1t, maximum gap 2D054Tc , filling ^n&50.4, second nearest-neighbor
hoppingB50, neutron energy transferv50.05t, and smearing parameterG50.01t; p5501 points. Frame~a! gives the Fermi surface at a
filling of ^n&50.4 ~solid, closed curve! and the nesting ridges~dotted curves!. The intersection of two nesting ridges give the position of the
nesting peaks. Also shown are the gap node peak positions ass’s for pured-wave and 50% extendeds-wave admixture and3’s for 20%
and 80% extendeds-wave admixture. All other frames give the imaginary part of the spin susceptibility as a function of momentum along
the line~0.59p, 0.74p! to ~1.26p, 1.41p! for frames~b!, ~c!, ~d!, and~e!, which correspond to pured wave, a 20% extendedswave, 50%
sx22y2, and 80%sx21y2, respectively, with zero value for the Coulomb potentialU. Two temperatures,T5Tc ~usually upper line! andT50,
are plotted in each frame. Note in frame~d! that the gap peak and the nesting peak coincide, but the shapes are clearly distinguishable.
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peratureT50 and a puredx22y2 gap which preserves the
tetragonal symmetry. Once some admixture ofsx21y2 ~20%,
50%, and 80%, respectively, for the last three sets of curves!
is included, this symmetry is lost and the profiles become
distorted. The curves for the spin susceptibility then differ
betweenx and y direction. This anisotropy has its origin
solely in the gap admixture, i.e., the mixing ofsx21y2 and
dx22y2 symmetries and not in the band structure anisotropy.
In the corresponding normal state, the profiles are symmetric
and the anisotropy referred to appears only in the supercon-
ducting state. This is the clear signature of the admixing of
sx21y2 symmetry into an otherwisedx22y2 gap function.

In Fig. 4, we examine the effect of including a next-
nearest-neighbor hopping in the electronic dispersion~6! but
still retain tetragonal symmetry, i.e., the band structure an-
isotropy parameterd50 in Eq. ~6!. Four frames are pre-
sented. In frame 4~c!, we show the Fermi surface~solid
curve! at filling ^n&50.4. As shown, the Fermi contours are
open, but they can be reassembled aboutq5(p,p) to form a
closed figure which then looks much like that of frame~a! in
Fig. 2 but rotated by 45% compared with theB50 case
~LaSrCuO!. HereB50.45 which is more representative of
the Fermi surface of YBaCuO. The dashed dotted lines

shown in the first Brillouin zone are the lines of zero gap for
the case 20%sx21y2 and 80%dx22y2. This is to be contrasted
to the puredx22y2 case for which the gap nodes are on the
main diagonals of the Brillouin zone. The dotted curves
shown in an extended Brillouin zone with center at~p,p! are
the nesting ridges which cross to give the four nesting peaks
positioned on the Brillouin zone boundaries. The center of
the gap node to gap node scattering peaks are indicated by an
~3! for the puredx22y2 case and by an open circle~s! for
the 20%sx21y2 case. Note that this peak is symmetrically
placed between the nesting peaks in the pured-wave case
while it moves to an asymmetric position as a contribution of
sx21y2 is mixed into the gap function. Frames 4~a!, 4~b!, and
4~d!, give the imaginary part of the spin susceptibility as a
function of momentum~qx ,qy! and are for energyv50.05t,
maximum gap of 2D050.4t, G50.05t, Tc50.1t, andU52.5t.
The mesh has~288!2 points in the first Brillouin zone. Frame
4~a! gives normal state results atT50 with Uc52.52t. The
incommensurate nesting peaks are clearly seen and remain
symmetric because the inclusion of a finite value for B in Eq.
~6! does not lift the tetragonal symmetry of the system. The
third peak~background! in frame 4~a! appears only in the
normal state with nonzeroB. Frame 4~b! shows similar re-

FIG. 3. The parameters are critical temperatureTc50.1t, maximum gap 2D054Tc , filling ^n&50.4, second nearest-neighbor hopping
B50, neutron energy transferv50.05t, and smearing parametersG50.05t ~tetragonal case!. The number of points used in the Brillouin zone
was ~288!2 in all cases except the normal state which has~256!2 points. The lowest curve is the normal state atT5Tc . The others are at
T50. From bottom to top, each pair of curves is displaced by 0.1 units on the vertical axis. The imaginary part of the spin susceptibility is
plotted as a function of momentumqx with qy5p ~upper line in pair! andqy with qx5p ~lower line in pair!. From bottom to top, normal
state,d wave, 20%sx21y2180% dx22y2, 50% sx21y2150% dx22y2, 80% sx21y2120% dx22y2.
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sults for the superconducting state at zero temperature~T50!
in the pured-wave case. The figure is symmetric inqx and
qy , and the gap node to gap node peak is as large as are the
two nesting peaks. The critical value of Coulomb potential is
Uc52.71t. Finally, frame 4~d! shows results for a gap with
20%sx21y2 and 80%dx22y2; Uc has shifted slightly to 2.64t.
The nesting peaks are now quite asymmetric as is the gap
node to gap node ridge. We emphasize again that this aniso-
tropy comes completely from gap anisotropy and does not
reflect any direct effect of band structure anisotropy. Reduc-
ing the damping parameter,G, greatly increases the relative
height of the gap scattering peak with respect to the nesting
peaks. To see a smooth surface, it is necessary to use a much
denser mesh.

We turn now to the effect of direct band structure anisot-
ropy on the anisotropy in the susceptibility, i.e., the effect of
orthorhombicity on the band structure as opposed to gap an-
isotropy and to the question of differentiating clearly be-
tween these two sources of anisotropy. Figure 5 consists of
three frames. The anisotropy parameterd is 0.25 andB50.0

in the dispersion relation~6!. Frame 5~a! shows the corre-
sponding Fermi surface~for a filling of ^n&50.4! which is
elongated along the horizontal axis. The nesting ridges,
shown as the dotted curves, also reflect the elongation of the
Fermi surface and the tetragonal symmetry seen in frame~a!
of Fig. 2 is lost. Frame 5~b! gives the imaginary part of the
susceptibility in the superconducting state atT50 for
2D050.4t, v50.05t, G50.05t, U50.0, with Uc52.85t. The
gap node to gap node ridges are just visible in this figure and
the nesting peaks are not symmetric in height or position.
The one alongqy ~right! is higher than the one alongqx ~left!.
Including a finite value ofU52.7t reduces the gap node
ridges and emphasizes the anisotropy of the nesting peaks as
seen in frame 5~c!. The anisotropy of all these figures is due
to band structure effect; the gap has pured-wave symmetry
in the superconducting state@frames 5~b! and 5~c!#.

In Fig. 6, we show results for the same case as in Fig. 5,
i.e., B50 and d50.25 in the electronic dispersion~6!. We
show five pairs of curves. In each set, the upper curve is for
momentum along theqy axis withqx5p and the lower line is

FIG. 4. The parameters are critical temperatureTc50.1t, maximum gap 2D054Tc , filling ^n&50.4, second nearest-neighbor hopping
B50.45, neutron energy transferv50.05t, and smearing parameterG50.05t. The number of points used in the Brillouin zone is~288!2.
Frames~a!, ~b!, and~d! give the imaginary part of the spin susceptibility as a function of momentum (qx ,qy! in the Brillouin zone atT50,
with Coulomb parameterU52.5t. Frame~c! gives the Fermi surface~solid curves!, the gap node line for 20%sx21y2180% dx22y2 ~dashed
dotted curve!, the nesting ridges~dotted! and the gap node peaks with a cross and open circle for pured wave and 20%sx21y2

180% dx22y2, respectively. The nesting peaks correspond to the intersection of two nesting ridges. Frame~a! is the normal state with
Uc52.52t. Frame~b! is the superconducting state for pured wave withUc52.71t and frame~d! is the same but now the gap has 20%
sx21y2 plus 80%dx22y2.
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alongqx with qy5p. Each set of curves is displaced upward
along the vertical axis for viewing convenience. The lowest
set of curves is for the normal state at temperatureT50.1t
and now shows a different profile betweenx andy direction
because of band structure anisotropy. This is to be contrasted
with the tetragonal case shown in Fig. 3 where no such an-
isotropy is seen. The next four pairs of curves are all for the
superconducting state at zero temperature withsx21y250,
20%, 50%, and 80%, respectively. The anisotropy between
the peaks inqx and qy direction is further increased as the
amount of extendeds-wave admixture in the gap function is
increased. This anisotropy is added to the anisotropy seen in
the normal state which has its origin solely in the band an-
isotropy ofek in Eq. ~6!. This is the characteristic that should
be looked for in identifyingsx21y2 admixtures to a pure
dx22y2 gap in an orthorhombic system.

Figure 7 deals with a similar case to that of Fig. 5 but now
the second nearest-neighbor hopping is finite, namely
B50.45 ~often used to model YBCO!. In contrast to the re-
sults shown in Fig. 4 for the equivalent tetragonal case, we
have now included some band structure anisotropy in the
dispersion relation~6! and d50.25. This distorts the Fermi
surface which is now open in the horizontal direction of
frame ~a! of Fig. 7 while remaining closed in the vertical
direction~solid curve! in the first Brillouin zone. The nesting
ridges, shown as the dotted curves in an extended Brillouin
zone centered aboutq5~p,p!, are correspondingly changed
as compared with frame~c! of Fig. 4. Also, the maximum of

the gap node to gap node Fermi surface scattering peak is
shifted to follow the new nesting ridges. The remaining four
frames show the imaginary part of the spin susceptibility as a
function of momentum~qx ,qy! for filling ^n&50.4, tempera-
ture T50, v50.05t, G50.01t, and number of sampling
points equal toN2 with N5330. The maximum gap was set
at 2D050.4t. Frame 7~b! is for the case of a pured-wave gap
with Coulomb potentialU50.0t. Here the critical value ofU
is Uc52.70t. Frame 7~c! is Coulomb enhanced with
U52.65t. It is clear that the band structure anisotropy
d50.25 has given rise to anisotropy in the nesting peaks
which is greatly enhanced whenU is finite over its value
whenU50, i.e., bare susceptibilityx0 of Eq. ~1!. Less an-
isotropy is clearly seen in frames 7~d! and 7~e! which contain
a 20% admixture ofsx21y2 to the gap. In frame 7~d!, U50t
andUc52.77t while for frame 7~e! U52.65t. Even for the
Coulomb enhanced case, the gap node to gap node scattering
ridge is seen to remain large and comparable in size to the
highest of the two nesting peaks. As compared with the pure
d-wave case, there is less difference between the peak
heights of the nesting structures—this is due to the gap an-
isotropy. Note that even in the puredx22y2 case@frames 7~b!
and 7~c!# the highest nesting peak~left! is the opposite to that
seen in Figs. 2~c!, 2~d!, 2~e!, 4~d!, and 5~b! ~right!. The
movement of the gap scattering peak towards the right hand
peak serves to reduce the relative anisotropy in the nesting
peak heights~i.e., mixing of thesx21y2 irreducible represen-
tation of the tetragonal crystal point group with thedx22y2

FIG. 5. The parameters are critical temperatureTc50.1t, maximum gap 2D054Tc , filling ^n&50.4, second nearest-neighbor hopping
B50.0, neutron energy transferv50.05t, and smearing parameterG50.05t. The number of points used in the Brillouin zone is~288! 2 and
d50.25 in the electronic dispersion Eq.~6! ~orthorhombic case! and Coulomb parameterUc52.85t. Frame~a! shows the Fermi surface
~solid curve!, the nesting ridges~dotted curve!, and the gap node peak for pured wave~* !, 20% extendeds-wave admixture~3!, 50% ~s!
and 80% extendeds-wave~1! admixture. Frame~b! is for puredwave in the superconducting case with Coulomb parameterU50.0. Frame
~c! is also for pured-wave but nowU52.70t.

5896 53J. M. RENDELL AND J. P. CARBOTTE



representation!. IncreasingU, for 0% and 20%sx21y2 admix-
ture greatly increases the anisotropy in the height of the
peaks. For the equal admixture, however, there is a reduction
in the relative heights. This is due to the commensurate gap
node peak and~right! nesting peak.

IV. DISCUSSION AND CONCLUSIONS

Using a tight-binding single band model, we have calcu-
lated the spin susceptibility enhanced by constant HubbardU
for normal and superconducting states of ad-wave supercon-
ductor. Particular attention was paid to the nesting peaks and
gap node to gap node scattering peaks in the superconducting
state, with and without Stoner enhancement. First, we stud-
ied the case of a tetragonal lattice with the aim of under-
standing how an admixture of a component ofsx21y2 sym-
metry to a gap ofdx22y2 symmetry changes the principle
features of the imaginary part of the susceptibility in momen-
tum space. It was found that as thesx21y2 component is
introduced, the four incommensurate nesting peaks, which
are all identical in the pured-wave case, form pairs. The
height of one pair is lowered while that of the other pair

increases in a specific way. Observation of this height differ-
ence, which exists only for the superconducting state, should,
in principle, allow the amount ofsx21y2 admixture to the
d-wave gap to be measured. Such anisotropy in the nesting
peaks, which is not present in the normal state, may have
been measured in the experiments of Masonet al.20 The gap
node to gap node scattering ridges also get distorted by ad-
mixing ansx21y2 component to ad-wave gap and the tetrag-
onal symmetry is lost. The effects described above, which
are present forU50, i.e., no Coulomb enhancement of the
susceptibility, are even more pronounced when the Stoner
enhancement is taken into account. The relative difference in
height of the two pairs of nesting peaks gets further en-
hanced. This effect is largest at 50%sx21y2 admixture, ex-
cept whenBÞ0Þd—then increasingU reduces the relative
height difference. This effect is in addition to the general
increase in the spin susceptibility that is expected as the an-
tiferromagnetic boundary is approached from the metallic
side.

As a first approximation, a simple one band model is also
used to describe an orthorhombic lattice. In our simplified
model, thex andy directions are made different by assuming
that the nearest-neighbor hopping parameter are different in

FIG. 6. The parameters are critical temperatureTc50.1t, maximum gap 2D054Tc , filling ^n&50.4, second nearest-neighbor hopping
B50, but withd50.25 in Eq.~6!, i.e., an orthorhombic case. The neutron energy transferv50.05t and the smearingG50.05t. The number
of points used in the Brillouin zone was~288!2. Each set of two curves is displaced upward for clarity by the same amount~0.75!. The graph
gives the imaginary part of the susceptibility as a function of momentumq/p. The upper line is alongqy with qx5p and the lower curve
alongqx with qy5p. The lowest set of curves apply to the normal state atT5Tc . All others are for the superconducting state atT50.
Second from bottom is pured wave, next is 20%sx21y2180% dx22y2, next is 50% of each and the top set, 80%sx21y2120% dx22y2.
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each of these two directions. This band structure anisotropy
distorts the Fermi surface itself which then ceases to have
tetragonal symmetry. This leads to a difference in the height
of the nesting peak in thekx andky direction. It is important
to note, however, that this band anisotropy as opposed to gap

anisotropy persists in the normal state, and that in the super-
conducting state, the band structure anisotropy is further en-
hanced by including an extendeds-wave component to the
otherwised-wave gap. It should therefore be possible to dif-
ferentiate between these two sources of anisotropy in the

FIG. 7. The parameters are critical temperatureTc50.1t, maximum gap 2D054Tc , filling ^n&50.4 second nearest-neighbor hopping
B50 on an orthorhombic lattice~d5.25!, neutron energy transferv50.05t, and smearing parameterG50.01t. The number of point samples
in the Brillouin zone is~330!2. Frame~a! gives the Fermi surface~solid curve! and the nesting ridges~dotted curves!. The nesting peaks are
centered around the crossing point of two nesting ridges. The points indicated trace the gap node peak position;* , pured wave;3, 20%
sx21y2180% dx22y2;s, 50% sx21y2150% dx22y2; and1, 80% sx21y2120% dx22y2 and second* puresx21y2. The four frames~b! to
~e! give plots of the imaginary part of the spin susceptibility as a function of momentum in the first Brillouin zone. Frame~b! is for Coulomb
potentialU50 while in frame~c! its value is set atU52.65t and both frames apply for puredwave withUcrit52.70t. The other two frames,
~d! and ~e!, are similar but the gap is 20%sx21y2180% dx22y2 with U50 in ~d! andU52.65t in ~e!; Ucrit52.77t.
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momentum space structure of the spin susceptibility. Such
experiments can, in principle, help determine the symmetry
of the gap.

Inclusion of next-nearest-neighbor hopping on an ortho-
rhombic lattice reverses the anisotropy in height of the two
pairs of nesting peaks. Increasing the admixture of extended
s-wave gap withd-wave gap tends to reduce this relative
anisotropy. Thus, if the nesting peaks are less anisotropic

in the superconducting state than in the normal state, there is
next nearest-neighbor hopping on an orthorhombic lattice.
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