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A model of hard-core bosons on a three-dimensional~3D! lattice has been studied using both quantum
Monte Carlo and classical Monte Carlo techniques. We have calculated the transition temperature for Bose-
Einstein condensation, the zero-temperature penetration depth and the specific-heat critical amplitude, and have
explored the hyperuniversal scaling relationship between these quantities pertaining to the expected 3DXY
critical point. As a conclusion we draw a phenomenological analogy between the model studied and extreme
type-II superconductors.

I. INTRODUCTION

In recent years, model systems with strong electron cor-
relations have been extensively studied with the aim of deep-
ening our understanding of cuprate superconductors. A par-
ticularly prominent model system is the Hubbard model,
with its conceptual simplicity but rather nontrivial physical
properties. In this paper we concentrate on the three-
dimensional~3D! attractive Hubbard model which exhibits a
crossover from a BCS-type superconductivity to Bose-
Einstein condensation as coupling strength increases. In the
strong coupling regime it can be mapped to a model of in-
teracting local pairs undergoing Bose-Einstein condensation.
In this coupling regime the attractive electron interaction
leads to preformed local pairs moving by dissociation.1 Be-
cause the pairs undergo Bose-Einstein condensation to a su-
perfluid state, it is of interest to investigate the phase transi-
tion, including the critical-point behavior and the
dependence of these properties on pair concentration.

We present and discuss the following results of quantum
Monte Carlo~QMC! simulations: the transition temperature
and zero-temperature superfluid density as a function of pair
density. Using the classical Monte Carlo technique we esti-
mate the critical amplitude of the specific heat. Then, using
the universal scaling relations for the 3DXY critical point,
we assess the consistency of our estimates of the transition
temperature with those of the superfluid density and the criti-
cal amplitude of the specific heat.

Motivated by the experimental observation of critical be-
havior analogous to that of a neutral superfluid in extreme
type-II superconductors, we conclude by discussing certain
similarities between the results presented here and the prop-
erties of the cuprate superconductors.

In the limit of strong attraction, second-order degenerate
perturbation theory maps the attractive Hubbard model to a
model of hard-core bosons
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where the sums are taken over nearest neighbors,ni5bi
†bi is

the number operator,t i j is the hopping matrix, andU is the
nearest-neighbor interaction. The termsb and b† are hard-
core boson operators
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where the anticommutator on equal sites inhibits double oc-
cupancy.

The mapping from the attractive Hubbard model formally
yields t5U, but an obvious extension is to soften this con-
dition, allowingU/t to vary. In this paper we will consider
only U50 andU5t, because these choices prevent the oc-
currence of mixed phases. Indeed, for largerU the model
will exhibit charge density wave phases as well as metal-
insulator transitions, which will complicate matters. Previ-
ously, the phase diagram of the 2D and 3D model has been
studied for various values ofU in terms of a mapping to a
classical spin model.2 QMC simulations have been per-
formed by Onogi and Murayama3 on the 2D model to inves-
tigate the Kosterlitz-Thouless transition in the presence of
disorder. Finally, Schneideret al. 4 investigated the 3D
model using the random-phase approximation~RPA!, BCS,
and exact diagonalization.

II. MONTE CARLO RESULTS

For our QMC simulations we used a worldline algorithm
and checkerboard decomposition with the Suzuki-Trotter for-
mula having periodic boundary conditions and winding num-
ber updates.5 For a detailed description of the path-integral
decomposition we refer to the paper by Blaer and Han.6

In accordance with the Suzuki-Trotter decomposition
we write the partition function as Z5Tre2bH

5Tr(e2DtH1e2DtH2)b/Dt1O (Dt2), where the Hamiltonian
is decomposed into two nonoverlapping partsH5H11H2 .
In the following we have setDt51/4 and performed 50 000
thermalization updates followed by 100 000 measurements.
We have studied lattice sizes of 43434 and 63636;
23232 was found to be too small to yield useful results.

The transition temperature has been estimated as a func-
tion of filling for the two casesU50 andU5t. To find the
transition temperature we computed the specific heat as a
function of temperature. The specific heat has a well-defined
peak at the phase transition, which is broadened for our sys-
tem sizes but still allows reliable estimates ofTc . According
to scaling theory7 the transition temperature in the thermo-
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dynamic limit is related to the peak position,Tp , for a finite
system of linear sizeL by Tp5Tc1a/L1/n. To estimate the
thermodynamic Tc we have used the scaling relation
n52/3. This provides an estimate at best, because our nu-
merics allowed us to obtain reliable data for only two system
sizes.

Figures 1 and 2 show our estimates for the transition tem-
peratures obtained from finite size scaling as a function of
pair filling. The points for 0.5,n,1 have been obtained
from the data for 0,n,0.5 by using particle-hole symme-
try. For comparison we included the result of the RPA treat-
ment by Schneideret al.4 and Micnaset al.,1 given by

~2n21!215
1
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k
cothS e02ek

2kBTc
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whereek is the boson dispersion. One sees~solid line! that
the RPA appears to overestimate the transition temperature
somewhat.

In the limit n→0 we expect the system to behave like that
of a dilute Bose gas, whereTc}n

2/3. Although this is indeed
compatible with the data, we observe for higher fillings that
we can fit the overall behavior quite well with two phenom-
enological formulas:Tc}@n(12n)#1/3 for U50 and Tc
}@n(12n)#1/2 for U5t ~dashed curves!.

At half-filling, the two casesU50 and U5t can be
mapped to theXY model and the Heisenberg model, respec-
tively. Here analytical estimates forTc exists from high-
temperature series expansion~HTSE!. For U50, the HTSE
result is Tc51.01t60.01,8 and for U5t it is Tc50.84t,9

compared with 0.97t and 0.82t, respectively. This is well
within the error bars of the results of our simulations.

In Eq. ~1! we presume that the pairs are heavily screened,
so long-range Coulomb forces can be neglected. However,
the presence of charge will still lead to electrodynamic ef-
fects. In a magnetic field the hopping term will be changed to
contain the usual Peierls phase factor exp@i(2p/f0)*i

jĀdl̄#. It
has been shown by Schafroth10 that, for a condensed ideal
Bose gas, this leads to the London expression for the pen-
etration depth, which is again related to the superfluid den-
sity.

Here we find the helicity modulus,Y,11 by using a wind-
ing number algorithm. The helicity modulus is related to the
London penetration depth

1

l2 54pS 2e\cD
2

Y. ~4!

Another quantity is the muon-spin relaxation rate which is
related to the zero-temperature London penetration depth by

s~0!5S 2754Bl~0! D 2}Y, ~5!

where B50.813 in sintered materials andB51 in single
crystals.

The temperature dependence of the superfluid density
~proportional toY) was calculated by QMC and the zero-
temperature superfluid density estimated by extrapolating to
zero temperature. In Fig. 3 we have shownns(0) vs filling
for U50. The error bars in the figure result from the extrapo-
lation to zero temperature. We have shown results only for
U50, because results forU5t are identical within the error
bars. The resulting curve is seen to be fitted quite well with
the mean-field resultns(0)5n(12n) ~solid line!. We re-
mark that similar results have been obtained by Onogi and
Murayama3 for the 2D model.

In the critical region aroundTc the heat capacity peak is
thought to be dominated by thermal fluctuations, and quan-
tum effects are considered negligible except for their influ-
ence on the location ofTc . Thus, to study the critical ampli-
tude of the heat capacity peak we made a classical Monte
Carlo simulation to be able to obtain larger systems than with
QMC in order to better resolve the heat capacity peak.

The Bose-Hubbard model can be mapped to a spin model
with the transformation

FIG. 1. The transition temperature after finite size scaling vs
carrier density forU50. The dashed line is the phenomenological
formula Tc}@n(12n)#1/2.

FIG. 2. The transition temperature after finite size scaling vs
carrier density forU5t. The dashed line is the phenomenological
formula Tc}@n(12n)#1/3. The solid line shows the RPA result of
Schneideret al. ~Ref. 4!.
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where the spin variables are spin 1/2.
The Hamiltonian then becomes
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where the sum is taken over nearest neighbors. Here the
external magnetic fieldm has the role of a chemical poten-
tial. Thus, to keep the pair density fixed in a grand canonical
simulation, we must vary the magnetic field such that we
have a fixed magnetization. We emphasize that in the pres-
ence of a field, fluctuations in thez direction are massive,
and the model is in the 3DXY universality class and not in
the Heisenberg universality class~3D XYZ! as one might
naively think.

All simulations were performed with classical spins on a
16316316 lattice having 5000 thermalization sweeps and
10 000 averaging sweeps using the metropolis algorithm and
restricted toU50. The resulting specific heats display a very
well-defined lambda-shaped peak, as expected for a neutral
superfluid.

Following Ghiron et al.12 the resulting curves for̂C&
vs T were fitted with the function

C

T
52Aln~ t r

21t0
2!1BS 12tanh

t r
t0

D1D, ~10!

where the reduced temperature ist r5(T2Tc)/T, t0 models
the fact that the heat capacity peak is not divergent for a
finite system and the tanh term models the mean-field-like
step behavior. In Fig. 4 the resulting estimates for the critical
amplitudes,A, are shown as a function ofTc together with
the experimental data from Ghironet al.12

For a 3DXY critical point, the three quantities, penetra-
tion depth, transition temperature, and specific heat critical
amplitude are not independent of one another, but related by
the hyperuniversal scaling relations13

kBTc5
F0

16p3

j0
f

l0
2 , ~11!

Rj5A~j0
f!d, ~12!

where Rj50.3, F0 is the flux quantum,l0 is the
penetration-depth-critical amplitude, andA is the heat-
capacity-critical amplitude. If we now assume that the zero-
temperature penetration depth is proportional to the critical
amplitude,l0}l(0), the hyperuniversal relations together
with the QMC results predictA}Tc

6 andA}Tc
3 for U50,t,

respectively. A fit to this law is shown in Fig. 4, and is seen
to be in reasonable agreement with the simulation results and
experimental data. The assumption thatl0 is related to
l(0) is further corroborated by recent experiments on
La22xSrxCuO4.

14

Thus, it is seen that the Bose-Hubbard model, Eq.~1!,
agrees qualitatively rather well with the predictions of the 3D
XY hyperuniversal scaling relation concerning its depen-
dence on filling.

III. RELATION WITH CUPRATE SUPERCONDUCTORS

As there is a growing number of experiments showing the
importance of fluctuations and a 3DXY critical point in
high-Tc superconductors,

13 it is of interest to investigate to
what extent the properties of the hard pair model treated here
agree with the experimental findings on cuprate supercon-
ductors. First we note that theTc vs filling curve we ob-
tained in Figs. 1 and 2 behaves similarly to the bell-shaped
curves found in experiments, assuming a linear relation be-
tween boson filling and electron concentration. Here one
must keep in mind that the relation between the boson filling

FIG. 3. The zero-temperature superfluid density vs boson den-
sity. The solid line shows the mean-field result,ns(0)5n(12n).

FIG. 4. The critical amplitude of the heat capacity scaled as a
function of the critical temperature scaled. Squares denote MC data
(U50), triangles experimental data from YBCO~Ref. 12!. The
solid line isTc

6 , the dashed lineTc
3 .
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fraction and the electron doping is nontrivial.15

Another issue is the relation between the zero-temperature
penetration depth and the critical amplitude of the penetra-
tion depth. Experiments on La22xSrxCuO4 have shown that
the ratio of these quantities is nearly constant.14 This is con-
sistent with the findings in this paper owing to the hyperuni-
versal scaling relation, Eq.~11!. The dependence of the mea-
sured zero-temperature penetration depth on doping14 is also
in agreement with our estimates shown in Fig. 3. Third, the
behavior of the specific-heat critical amplitude depicted in
Fig. 4 is in qualitative agreement with experimental data of
YBCO.12 Finally we findTc}@n(12n)#1/3}s(0)1/3, where
s(0)1/3}1/l(0)2}ns(0)/M andM is the boson mass. Thus,
in the underdoped regime,Tc increases with doping and, in
the overdoped regime,Tc shows reverse evolution. In Fig. 5
this behavior is compared with the experimental data of a
large number of cuprate superconductors. For most materials
the data collapses more or less on a curve in accordance with
the QMC prediction. However, some materials follow more
closely the outline of a fly’s wing, as observed for
Tl2Ba2CuO61d .

16,17 This effect might be attributed to the
breaking of particle-hole symmetry. One way to break
particle-hole symmetry is to imagine bosons of finite exten-
sions, occupying more than one site. This will introduce a
topological difference between particles and holes, thus
breaking particle-hole symmetry, as well as make supercon-
ductivity vanish at a filling smaller than 1, like in cuprates
where superconductivity vanishes at a filling around
n50.27 electrons per unit cell. Phenomenologically we
study this result by exploring the effect of using a nonsym-
metrical interpolation formula forTc vs n, such as

Tc}n
2/3S 12

2

5
nD . ~13!

This kind of formula gives rise to a curve that resembles the
outline of a fly’s wing as shown in Fig. 5.

In conclusion we have studied some scaling properties of
the superconducting phase transition of the 3D Bose-

Hubbard model. Although the theoretical problem of high-
temperature superconductivity in its full complexity is much
beyond this model system, we find intriguing similarities.
This might indicate that the phase transition in cuprates is
closer to Bose-Einstein condensation of preformed or fluctu-
ating pairs than to a BCS-type of Fermi-surface instability.

ACKNOWLEDGMENTS

The authors thank many colleagues for insightful discus-
sions, especially R. Micnas, J. J. Rodrı´guez-Nun˜éz, and J.-P.
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