Hydrogen ordering in superstoichiometric rare-earth hydrides for a system with an energy-constants ratio $p = V_2/V_1 < 1$: LaH $_{2+x}$

I. G. Ratishvili* and P. Vajda

Laboratoire des Solides Irradie´s, CEA-CNRS, Ecole Polytechnique, F-91128 Palaiseau, France

(Received 26 June 1995)

The processes of hydrogen ordering in the β phase of rare-earth hydrides RH_{2+x} depend on the hydrogen concentration in the set of octahedral interstices *x* and are determined by the value of the parameter $p = V_2 / V_1$, the ratio of energy constants characterizing the interactions between the octahedral H atoms. Applying the mean-field approximation of the static-concentration-waves theory we had analyzed the cases of $p=1$ and $p>1$ in our previous publications which corresponded, respectively, to the systems TbH_{2+*x*} and CeH_{2+x} . In the present article, we have investigated the processes of H ordering in the La-H system, representative of the case $p<1$. An important result is the prediction of two transition temperatures corresponding to the separate vanishing of the two order parameters present. The theoretical treatment is applied to recent neutron-diffraction data by Udovic et al. on LaD_{2.25} and compared to other earlier obtained experimental results obtained on LaH_{2+x} compounds.

I. INTRODUCTION

Experimental investigations of rare-earth (*R*)-hydrogen systems (see, e.g., the review, Ref. 1) have shown that in the fcc β -phase hydrides, i.e., in the RH_{2+x} compounds, the subsystem of hydrogen atoms undergoes an order-disorder transition. As was established, this structural transformation concerned only a part of the $N_{\rm H}$ hydrogen atoms $[N_H=N(2+x)$, where *N* is the number of *R* atoms], namely, the set of N_x H atoms located in the octahedral interstitial positions of the metal lattice and called hereafter H*^o* atoms. The remaining H atoms, located in the tetrahedral interstices of the *R* lattice (H_t atoms), as well as the *R* lattice itself, do not change their equilibrium states drastically in the vicinity of the corresponding transition temperature²⁻⁴ and do not seem to affect significantly the structural transformation under consideration. The interaction within the H*^o* system is characterized by two energy constants, V_1 and V_2 , related to the Fourier components of the H-H interaction potential. $5,6$

As it was noted previously, 5.6 the features of the ordering processes are determined by the numerical values of two parameters in the system: the concentration of H*^o* atoms in octahedral interstices x , and the ratio of the energy constants $p = V_2 / V_1$. The systems we had treated already corresponded to the cases $p=1$ [TbH_{2+x}, 0 $\leq x \leq 0.3$ (Ref. 5)] and $p > 1$ [CeH_{2+x}, $0 \le x \le 0.75$ (Ref. 6)]. In the former case, we had succeeded in reproducing the experimental order-disorder transition temperatures as a function of the concentration x ; in the latter we had obtained and interpreted order-order transformations in addition to the ''classical'' order-disorder transitions. In the present work, we are investigating the ordering processes in systems with $p<1$. This condition seems realized for the hydrides LaH_{2+x} , and we are performing our analysis based on the experimental data. $7-12$

The treatment of the thermodynamics of the ordering processes in the interstitial alloys RH_{2+x} presented below closely follows the detailed description given in Refs. 5 and 6. Thus, the subsystem of H_o atoms is considered an independent binary substitutional alloy with a constant concentration of *xN* H_o atoms and $(1-x)N$ H_o-atom vacancies, distributed in a rigid fcc lattice. The thermodynamic properties of this binary alloy are obtained by determining the coordinates of the absolute minimum of the free-energy function $F = E - TS$, accounting for the H-H interactions between the H_0 atoms E , and the entropy S , of the redistribution of particles on the given set of sites.

We consider the development of ordering of N_o H particles on the set of the *N* sites of a fcc lattice, in accordance with the existing experimental results, 2^{-4} where the ordered state is described by the superstructure vectors (*a* is the lattice parameter)

$$
\mathbf{k}_1 = (2\pi/a)(100)
$$
 and $\mathbf{k}_2 = (2\pi/a)(1/2\ 0\ 1)$.

Then, following the static-concentration-waves theory, 13 the distribution of particles can be represented by the superposition of the two concentration waves with the above wave vectors \mathbf{k}_1 and \mathbf{k}_2 . The relevant distribution function is given by the expression^{13,3}

$$
n(x, y, z) = c + \eta_1 \gamma_1 \exp(i2\pi x) + 2\eta_2 \gamma_2 \cos[\pi(x + 2z)].
$$
\n(1)

Here $n(x, y, z)$ is the probability that the lattice site with the coordinates (x, y, z) will be occupied by an H_o atom; η_1 and η_2 are order parameters; γ_1 and γ_2 are normalization constants; and *c* is the precise value of the concentration of H*^o* particles in the octahedral sites, defined as $c = N_o / N$ (in the ideal case, when all tetrahedral sites are occupied by H*^t* atoms, one has $c=x$, but if $N_t=2N-\delta$, then it is assumed that $c=x+\delta$).

On the set of the fcc lattice sites, the function (1) takes three distinct values:

0163-1829/96/53(2)/581(7)/\$06.00 53 581 © 1996 The American Physical Society

$$
n_1 = c + \eta_1 \gamma_1 + 2 \eta_2 \gamma_2,
$$

\n
$$
n_2 = c + \eta_1 \gamma_1 - 2 \eta_2 \gamma_2,
$$

\n
$$
n_3 = c - \eta_1 \gamma_1,
$$
\n(2)

denoting the existence of three different probabilities of O-site occupation by the hydrogen atoms.

In the case of the mean-field approximation 13 and the distribution function (1) , the internal energy and the entropy of the given ordering system will be represented by the $expressions^{5,6}$

$$
E(\eta_1, \eta_2) = (Nk_B/2)[V_0c^2 + V_1(\eta_1\gamma_1)^2 + 2V_2(\eta_2\gamma_2)^2]
$$
\n(3)

and

$$
S(\eta_1, \eta_2) = -(Nk_B) \Sigma_i \nu_i [n_i \ln n_i + (1 - n_i) \ln (1 - n_i)], \quad (4)
$$

where v_1, v_2, v_3 are the fractions of lattice sites, where the function $n(x, y, z)$ is equal, respectively, to n_1 , n_2 , and n_3 . V_0 , V_1 , and V_2 are the energy constants, related to the Fourier components of the H-H interaction potential, $V(k_i)$, for different wave vectors:

$$
V_0 = V(\mathbf{k}_0)/k_B
$$
, $V_1 = V(\mathbf{k}_1)/k_B$, $V_2 = V(\mathbf{k}_2)/k_B$ (5)

with $\mathbf{k}_0 = 0$.

Introducing Eqs. (3) and (4) into the expression for the free-energy function $F = E - TS$, we obtain

$$
F = Nk_B \{0.5[V_0c^2 + V_1[(\eta_1\gamma_1)^2 + p(\eta_2\gamma_2)^2] + T\Sigma_i\nu_i[n_i \ln n_i + (1 - n_i)\ln(1 - n_i)]\},
$$
 (6)

where, in our case,

$$
\nu_1 = \nu_2 = 1/4, \quad \nu_3 = 1/2; \quad \gamma_1 = \gamma_2 \equiv \gamma = 1/4; \quad (6')
$$

and

$$
p \equiv V_2/V_1. \tag{6'}
$$

In the following, we examine the surface of the freeenergy function F in the space of the variables defining the state of a thermodynamical system as a function of the order parameters η_1, η_2 . The coordinates of the absolute minimum of *F*, denoted hereafter as *m*, will represent the values of these variables in equilibrium at a given temperature *T*.

The extremal values of η_1 and η_2 are determined as the solutions of equations

$$
\partial F/\partial \eta_1 = 0, \quad \partial F/\partial \eta_2 = 0 \tag{7}
$$

and the type of each extremum is determined by the sign of the determinant

$$
\Delta(\eta_1, \eta_2) = (\partial^2 F/\partial \eta_1^2)(\partial^2 F/\partial \eta_2^2) - (\partial^2 F/\partial \eta_1 \partial \eta_2)^2. \tag{8}
$$

The free-energy function (6) , defined in the space of independent variables, η_1 and η_2 , can possess more than one local minimum. In such a case, the absolute minimum of *F*, *F*(*m*), can be determined by comparing the values of the *F* function in the different minima. In the study under consideration, i.e., for $p<1$, one can distinguish three different local minima (see, e.g., Ref. 14) denoted as follows: m_0 is located at the origin ($\eta_1=0, \eta_2=0$) and existing for temperatures $T>T_{\text{min}}(m_0)=T_0$; m_1 is located on the η_1 axis [on the set of points ($\eta_1 \neq 0, \eta_2 = 0$) and existing within the interval $T_{\text{max}}(m_1) = T_0 > T > T_{\text{min}}(m_1) = T_1$; and m_2 is located outside the n_1 axis and existing inside the temperature region $T_{\text{max}}(m_2) = T_2 > T > T_{\text{min}}(m_2) = 0$ K.

As $T_{\text{min}}(m_0) = T_{\text{max}}(m_1)$, we conclude that the minima m_0 and m_1 cannot coexist at any temperature. On the other hand, the limiting temperature T_2 of m_2 is not strictly related to the limiting temperatures T_1 or T_0 , characterizing the m_0 and m_1 minima, and depends on the values of the system parameters *c* and *p*. As we shall see below, for different values of *c* and *p*, we can have $T_2 = T_1$, as well as $T_2 > T_1$, and even $T_2 > T_0$. The first condition implies that the minimum $m₂$ appears at temperatures below the existence range of m_1 , while in the last two cases, the local minimum $m₂$ coexists, in a certain temperature interval, with either the minimum m_1 or m_0 . Hence, to find the location of the absolute minimum $F(m)$, we have to compare the freeenergy values $F(m_2)$ with $F(m_1)$ or $F(m_0)$.

Thus, in the different temperature intervals, the equilibrium values of the order parameters $\eta_1(T)$ and $\eta_2(T)$ can be represented by the coordinates of the minima m_0 , m_1 , or $m₂$. It must be noted that any shift of the absolute minimum from one local minimum to another reveals itself by phenomena characteristic for a phase transition of the first or second order. In the next section, we present the numerical solutions of Eqs. (7) and (8) , as well as the calculated thermodynamical parameters of the system.

II. NUMERICAL RESULTS

An example of the developing ordering process in a system, close to one studied experimentally, 10 is shown in Fig. 1, where we have chosen $c=0.25$, $V_1=-1860$ K and $p=0.6$ to reproduce qualitatively the development of the ordering process and its transition temperature as reported by Udovic *et al.*¹⁰ (It has to be noted here that the value of V_1 determines only the temperature of the ordering process, not its evolution.)

Figure 1(a) gives the sequence of points in the (η_1, η_2) plane, with the equilibrium values of the order parameters η_1 and η_2 at a given temperature [i.e., defining the trajectory of the ordering process on the (η_1, η_2) plane] as coordinates. Figure $1(b)$ yields the temperature dependences of the equilibrium values for the order parameters $\eta_1(m)$ and $\eta_2(m)$, and Fig. $1(c)$ those for the site occupation probabilities (site occupation numbers) n_1 , n_2 , and n_3 , related to the order parameters by the expressions (2) .

First of all, we note [Figs. 1(b) and $1(c)$] that the ordering turns out to be a two-step process: after a disorder-order transition at the temperature T_{tr1} =349 K, when an ordered state characterized by $\eta_1 = 0$, $\eta_2 = 0$ is created, there appears a second transition at $T_{tr2} = 276$ K, where an order-order transformation occurs. This point coincides with the lowtemperature limit of the m_1 minimum T_1 , and that is why, in the vicinity of T_{tr2} , the ordering system undergoes a secondorder-type phase transformation. The first transition is also a continuous one, as its temperature coincides with the lowtemperature limit T_0 of the minimum m_0 . Hence, the discussed example of ordering represents a two-step continuous

FIG. 1. Ordering process in a system with the parameters $c=0.25, V_1=-1860$ K, $p=0.6$ (see the text for definitions). (a) Sequence of pairs of equilibrium values of order parameters, forming a trajectory in the (η_1, η_2) space. (b) Temperature dependence of the equilibrium values of order parameters; both transitions (for $\eta_2=0$ and $\eta_1=0$) are continuous transformations. (c) Temperature dependence of the equilibrium values of occupation numbers n_1 , n_2 , n_3 ; the transition temperatures coincide with the corresponding special points T_0 and T_1 , the branching points of the solutions of Eqs. (7) .

process, where first, below T_0 , is created a state with two different site occupation probabilities, $n_0 = (c + \eta_1 \gamma)$, $n_3 = (c - \eta_1 \gamma)$, and then, for $T < T_1$, is formed an ordered state with three different occupation probabilities given by $(2).$

The variations of the limiting points of the minima, T_0 and T_1 , and of the location of the limit on the η_1 axis, $\eta_1(T_1)$, with varying *c* and *p* are depicted in Fig. 2. As seen

FIG. 2. Concentration dependence of the special points T_0 and T_1 and of the reduced order parameter $\sigma_1 \equiv \eta_1(T_1)/\eta_1(T=0)$, for various values of $p = V_2 / V_1$. (a) Stability limit T_0 of the disordered high-temperature state (T_0 is independent of p). (b) Reduced value $\tau_1 = T_1 / T_0$ of the low-temperature limit for the existence of the ordered state ($\eta_1 \neq 0, \eta_2 = 0$). (c) Reduced order parameter σ_1 for the transition at T_1 .

in Fig. 2(a), T_0 is independent of p and changes only with c (and V_1 , of course). In order to reveal the variations of T_1 and $\eta_1(T_1)$ with concentration *c*, we have to compare the reduced values $\tau_1 = (T_1 / T_0)$ and $\sigma_1 = [\eta_1 (T_1) / \eta_1 (T=0)].$ They are shown in Figs. 2(b) and $2(c)$.

The temperature points T_0 and T_1 approximately charac-

FIG. 3. Sequences of pairs of equilibrium values of order parameters with decreasing *T*, in the case $c=0.17$ and for different values of *p*.

terize the ordering process, but, as we shall see below, they coincide with the transition temperatures T_{tr1} and T_{tr2} only in the case of high concentrations *c* and low values of *p*. To visualize the situation, we show in Figs. 3–5 the development of the ordering processes in the system with a fixed concentration $c=0.17$ and a given value of the energy constant $V_1 = -1860$ K but with different values for the parameter *p*: 0.6, 0.7166, and 0.8. In these figures are presented the trajectories of the equilibrium state of the (η_1, η_2) plane (Fig. 3), the temperature dependences of equilibrium values of the order parameters $(Fig. 4)$, and of the site occupation numbers $(Fig. 5)$.

We see, that for $p=0.6$ [Figs. 3, 4(a), and 5(a)], the process is quite similar to that shown in the Figs. $1(a)-1(c)$. There are two transition points $T_{\text{tr}1}$ and $T_{\text{tr}2}$ coinciding, respectively, with the temperature points $T_0 = 262$ K and T_1 =226 K; both transitions are continuous.

For the value $p=0.7166$ [Figs. 4(b) and 5(b)], we have $T_{\text{tr1}} = T_0$, and the order-disorder transition is continuous, but as T_2 =249 K> T_1 =247 K, the minima m_1 and m_2 coexist within an interval of 2 K, and this is sufficient for the second, order-order transformation, which occurs at the temperature $T_{\text{tr}2}$ =248.5 K, to become a discontinuous, first-order-like transition. For $p=0.8$ we obtain $T_2=265$ K $>T_0=262$ K $>T_1$ = 256 K. Here the ordering is described by a single-step process and contains, therefore, only one transition point, associated with the absolute minimum when going from m_0 to m_2 , missing m_1 . It occurs at T_{tr} =263 K. Since the minima m_0 and m_2 coexist within an interval of 3 K, the order-disorder transformation is a first-order like process.

III. COMPARISON WITH EXPERIMENTAL DATA

Neutron diffraction studies of the ordering process in the subsystem of octahedral hydrogen atoms in the hydride LaH_{2+x} ($x=0.25$) have been performed recently by Udovic *et al.*¹⁰ Very careful measurement were carried out in a wide temperature range, between 400 and 15 K. From their results, we shall utilize the temperature dependences of the *o*-site occupation probabilities by hydrogen atoms, i.e., in our notations, the values of the occupation numbers $n_1(T)$,

FIG. 4. Temperature dependence of the equilibrium values of order parameters, in the case $c=0.17$ and for different values of *p*.

 $n_2(T)$, and $n_3(T)$ (in the authors' notation, the values of $n(01)$, $n(02)$, and $n(03)$, respectively). On Fig. $6(a)$ are given the calculated and the measured dependences of occupation numbers $n_i(T)$. The calculated curves $n_i(T)$ were obtained by taking $c=0.25$ and normalizing it to the corresponding experimental values at 340 K, which in Ref. 10 is the reported order-disorder transition temperature. These normalization conditions result in the selection of the following values for the energy parameters: $V_1 = -2010$ K, $p=0.7166$.

 $\mathbf{1}$

 0.8

 $c = 0.25$

 $V, = 2010 K$

 $\sum_{\substack{\Delta\Delta\lambda\lambda}}$

 (a)

p=0.7166 0.6 r_2 0.4 0.2 $\mathbf 0$ 0.6 0.2 0.4 0.8 1.2 $\mathbf 0$ 1 η_1 1.2 \overline{x} X (b) \times \times $\mathbf{1}$ $\overline{\times}_{\times}$ $\eta_{_1},\eta_{_2}$ 0.8 0.6 $\mathfrak{n}_{\scriptscriptstyle 2}$ η_1 0.4 0.2 0 250 100 200 300 350 400 150 T (K) 1.2 (c) $\mathbf{1}$ 0.8 Ξ. 0.6 $\frac{n}{\sqrt{2}}$ 0.4 n 0.2 $\overline{\mathsf{n}}_{3}$ $\mathbf 0$ 300 100 150 200 250 350 400 $T(K)$

FIG. 5. Temperature dependence of the equilibrium values of the site occupation numbers, in the case $c=0.17$ and for different values of *p*.

In Figs. $6(b)$ and $6(c)$ are given the values of the order parameters η_1 and η_2 in equilibrium, at different temperatures, which are obtained from the measured and calculated values of $n_i(T)$, utilizing the expressions (2) . There can be seen the differences between the theory and experiment at low and moderate temperatures, but from Fig. $6(a)$ it is obvious that the principal distinction between the two sets of data is observed within the interval just above the transformation temperature. Following our calculations, only the or-

FIG. 6. Same as Fig. 1, for $c=0.25$ but with $p=0.7166$ and $V_1 = -2010$ K. The solid lines are the computed results, the signs correspond to the experimental data from Ref. 10.

der parameter η_2 disappears above $T=340$ K, while η_1 remains nonzero, diminishes gradually, and disappears only at temperatures above $T=377$ K [just as in the cases shown in Figs. 1(c), $5(a)$, and $5(b)$.

This means that, at 340 K, only the set of superstructure reflections associated with the wave vector $\mathbf{k}_2 = (2\pi/a)(1/2\ 0\ 1)$ disappears, while the superstructure lines related to the wave vector $\mathbf{k}_1 = (2\pi/a)(100)$ must exist

1

until $T=377$ K. On the other hand, according to the experimental results given by Udovic et al.¹⁰ [Fig. 4(d) and the Table III of Ref. 10], there is no difference between the occupation numbers n_1 , n_2 , and n_3 at temperatures $T > 340$ K, which means that both sets of superstructure reflections are absent. This is a real contradiction between the theoretical and experimental results. One might wonder about the possible lack of measuring sensitivity in the experiment of Udovic et al.;¹⁰ on the other hand, the presence of some unidentified lines in their spectra (e.g., at $2\Theta = 34^{\circ}$ in their Fig. 2) observed at 340 K and remaining visible at 350 K could be an indication of the superstructure with wave vector \mathbf{k}_1 .

We wish also to note, in this context, that there exists a relation^{5,6} between the values of the occupation numbers (2) :

$$
\sum_{i} \nu_i n_i = c. \tag{9}
$$

If we take the experimental values of n_i from Ref. 10 and the values of v_i from Eq. (6'), then, for the great majority of temperatures, we obtain a value $c > 0.25$: in particular, for $T = 340$ and 15 K we have $c = 0.265$.

If we suppose that this is the real concentration of octahedral hydrogen atoms in the sample used in Ref. 10 and normalize the calculated $n_i(T)$ dependences to the experimental values of n_i at the same temperature 340 K (setting $c=0.265$), then, instead of Figs. $6(a) - 6(c)$, we obtain the dependences shown in Figs. $7(a) - 7(c)$. The new normalization requires the following set of energy parameters:

$$
V_1 = -1860 \text{ K} \quad \text{and} \quad p = 0.7743. \tag{10}
$$

Comparing the Figs. 6 and 7, we conclude that the agreement between the measured and calculated data is somewhat better in the case of the suggested concentration $c=0.265$, with the corresponding energy parameters (10) . It is, thus, reasonable to suppose that the $LaD_{2,25}$ sample in question was in fact composed at $LaD_{1.985+0.265}$ (cf. also the discussion in the Introduction), which could explain at least some of the difficulties.

If we assume that the values for the energy parameters are characteristic for the LaH_{2+x} system through the whole β -phase range and do not change significantly with temperature, then one can calculate a set of transition temperatures for various concentrations. The results of these calculations are presented in the form of a phase diagram in Fig. 8. In the same plot are also shown the experimental values obtained for various hydrides in different measurements.^{7–12}

IV. CONCLUDING REMARKS

We have analyzed the ordering processes that take place in a system described by the distribution function (1) and the free-energy function (6) for the case $p = V_2 / V_1 < 1$, corresponding to the fcc β -phase compound LaH_{2+x}. We have found three different possible minima, m_0, m_1, m_2 , on the F surface in the space of the order-parameter variables (η_1, η_2) , located, respectively, at the origin, on the η_1 axis, and outside the η_1 axis. The equilibrium ordered state for a fixed concentration *c* is determined by the location of the absolute minimum at a given temperature *T*. The type of ordering transition depends in an intricate way on the relative

FIG. 7. Same as Figs. 1 and 6, but for $c=0.265$ (our suggested choice for *x* in Ref. 10) and with $p=0.7743$ and $V_1 = -1860$ K.

extensions [upper and lower limits, $T_{\text{max}}(m_i)$ and $T_{\text{min}}(m_i)$] of the existence regions for each minimum. For

$$
T_{\min}(m_0) = T_{\max}(m_1) > T_{\min}(m_1) = T_{\max}(m_2),\qquad(11)
$$

the absolute minimum is located subsequently in m_0 , m_1 , m_2 , yielding a two-step character for the ordering process: a disorder-order transition when going from m_0 to

FIG. 8. Calculated, for the two wave vectors \mathbf{k}_1 and \mathbf{k}_2 (solid lines), and experimental $[\Box$ (Ref. 7), \triangle (Ref. 8), \blacklozenge (Ref. 9), \blacklozenge (Ref. 10), \blacksquare (Ref. 11), and \triangle (Ref. 12)] transformation temperatures as a function of *c*, in the system LaH_{2+x} .

 m_1 , and an order-order transformation for m_1 to m_2 . Both transitions are continuous. When

$$
T_{\min}(m_0) = T_{\max}(m_1) > T_{\max}(m_2) > T_{\min}(m_1), \qquad (12)
$$

the order-order transformation m_1 to m_2 changes its type and becomes discontinuous. For the case

$$
T_{\text{max}}(m_2) > T_{\text{min}}(m_0) = T_{\text{max}}(m_1) > T_{\text{min}}(m_1), \quad (13)
$$

the system performs the same sequence of steps as in case (12) if there exists a temperature interval where $F(m_1) \leq F(m_2)$; however, the ordering becomes a singlestep discontinuous process if, for all *T*, $F(m_1) > F(m_2)$. [In the particular case $T_{\text{max}}(m_2) = T_{\text{min}}(m_0)$, the transition remains continuous.#

In the case $p>1$,⁶ the trajectory of the equilibrium ordered states lay always outside the η_1 axis and the type of the order-disorder transition depended on whether the transition point on the trajectory was located inside or outside the origin. As to the second, order-order transformation, it exhibited a discontinuous, first-order-type character, which, for

FIG. 9. Temperature dependence of the order parameters for LaH_{2+x}, with $x=0.265$, showing anomalous behavior of η_2 below 140 K. The experimental values from Ref. 10, taken at $T=80, 150$, and 200 K, would correspond to $\eta_1 = 1.04(3)$ and to $\eta_2 = 0.93(1)$.

some concentrations, gave rise to a two-step transition. Thus, the features of the ordering process (such as the existence of two transformations and their type change) are qualitatively similar in both cases, $p>1$ and $p<1$, but the intrinsic reasons for this are quite different.

The comparison with the neutron-diffraction data of Udovic *et al.*¹⁰ is qualitatively satisfying, but the agreement is better if we assume that their $LaD_{2.25}$ specimen corresponded in reality to the composition $LaD_{1.985+0.265}$ rather than to $LaD_{2.00+0.25}$. This small difference is qualitatively important as, for $c > 0.25$, an anomalous behavior can develop at low temperatures, where one of the order parameters may decrease with decreasing T (for details, cf. Ref. 6). As can be seen in Fig. 9, this type of anomaly is observed in the present case for the order parameter η_2 , while η_1 varies normally.

ACKNOWLEDGMENTS

We wish to thank Dr. T. J. Udovic and his co-workers for communicating their results prior to publication. I.G.R.'s sojourn was supported by the French Ministry for Higher Education and Research.

- * Permanent address: Institute of Physics of the Georgian Academy of Sciences, Tbilissi, Georgia.
- 1P. Vajda, in *Handbook on the Physics and Chemistry of Rare Earths*, edited by K. A. Gschneidner and L. R. Eyring (North-Holland, Amsterdam, 1995), Vol. 20, p. 209.
- 2 A. K. Cheetham and B. E. F. Fender, J. Phys. C 5, L35 (1972) ; C. G. Titcomb, A. K. Cheetham, and B. E. F. Fender, *ibid.* **7**, 2409 $(1974).$
- ³ V. K. Fedotov, V. G. Fedotov, M. E. Kost, and E. G. Ponyatovskii, Sov. Phys. Solid State 24, 1252 (1982) [Fiz. Tverd. Tela 24, 2201 (1982)].
- ⁴G. André, O. Blaschko, W. Schwarz, J. N. Daou, and P. Vajda, Phys. Rev. B 46, 8644 (1992).
- 5 I. G. Ratishvili and P. Vajda, Phys. Rev. B 47, 14 062 (1993).
- ⁶ I. G. Ratishvili, P. Vajda, A. Boukraa, and N. Z. Namoradze, Phys. Rev. B 49, 15 461 (1994).
- ${}^{7}E$. Boroch, K. Conder, C. Ru-Xiu, and E. Kaldis, J. Less-Common Met. 156, 259 (1989).
- 8K. Conder, L. Wang, E. Boroch, E. Kaldis, and J. Schefer, Eur. J. Solid State Inorg. Chem. **28**, 487 (1991).
- ⁹P. Klavins, R. N. Shelton, R. G. Barnes, and B. J. Beaudry, Phys. Rev. B 29, 5349 (1984).
- 10T. J. Udovic, Q. Huang, J. J. Rush, J. Schefer, and I. S. Anderson, Phys. Rev. B 51, 12 116 (1995).
- 11 Z. Bieganski and M. Drulis, Phys. Status Solidi A 44, 91 (1977).
- 12M. R. Chowdhury, G. A. Styles, E. F. W. Seymore, S. F. J. Cox, C. A. Scott, and G. H. Eaton, J. Phys. Condens. Matter **1**, 4659 $(1989).$
- 13A. G. Khachaturyan, *Theory of Structural Transformations in Solids* (Wiley, New York, 1983).
- ¹⁴ I. G. Ratishvili, Phys. Status Solidi B **87**, 461 (1978).