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We discuss the physics of the vortex state ird-@vave superconductor, using the phenomenological
Ginzburg-Landau theory, where many unusual phenomena arise from the small admixturesefvdke
component induced by spatial variations in the domirthmiave. Properties of an isolated vortex and of the
Abrikosov vortex lattice are studied by means of analytic and numerical methods. An isolated vortex has a
considerable structure, with four “extra” nodes in teavave order parameter symmerically placed around the
core and an amplitude forming a four-lobe profile decaying a$ af large distances. The supercurrent and
magnetic-field distributions are also calculated. The Abrikosov lattice is in general oblique with the precise
shape determined by the magnetic field @nd mixing parametek, . The magnetic-field distribution in the
Abrikosov state has two nonequivalent saddle points resulting in the prediction of a double peak line shape in
u#SR and NMR experiments as a test oflavave symmetry. Detailed comparison is made with existing
experimental data and experiments are proposed to test for the predicted effects.

I. INTRODUCTION which in turn are crucial for all practical applications. Un-
derstanding the static propertiesafvave vortices is a first
After several years of debate there is growing agreemerimportant step toward the description of the more complex
that the symmetry of the order parameter in the higheu-  dynamical effects in the presence of transport currents, sur-
prate superconductors is not a conventional isotrepi@ve, faces, impurities, etc.
but has a more complicated structure involving nodes in the The problem of an isolated vortex line irdawave super-
gap. Recent experiments sensitive to the phase of the ordeonductor was first studied by Soininen, Kallin, and
parameter? provide strong evidence for th2_ 2 symme- Berlinsky'! who considered a simple microscopic lattice
try with lines of nodes along th,|=k,| directions. Sup- model for electrons with on-site repulsion and nearest neigh-
port for thed-wave symmetry also arises from specific heatbor attraction. The resulting Bogoliubov—de GenfBgG)
measurementsand the recent observation of a nonlinearequations were solved numerically on finite clusters to obtain
Meisner effect Photoemission studi€s, Josephson the order parameter distribution for a single vortex. It was
interferencé and c-axis Josephson tunnelihg@xperiments  found that a substantiatwave component is nucleated near
have been interpreted as being inconsistent with a purthe vortex core with opposite winding of phase relative to the
d-wave order parameter. However, most of these inconsisd component? and a distinct four-lobe shape of the ampli-
tencies can be reconciled by allowing for states of mixedude. These results were interpreted with help of the phenom-
symmetn? In orthorhombic materials, such as Y-Ba-Cu-O enological Ginzburg-LandadGL) theory?>~'* where the
(YBCO) and Bi-Sr-Ca-Cu-gBiSCCO, if the dominant or- nonzeros is driven by a mixed gradient coupling to tlie
der parameter il wave, a smalls component will be component. Ren, Xu, and Tifylater attempted a Gorkov-
present even in a strictly uniform system. In tetragonal type derivation of the GL theory from a continuum mean
d-wave materials, which will be considered in this work, this field model ofd-wave superconductivity and used the result-
s-wave component vanishes identically in the bulk; howeveiling free energy to discuss the qualitative properties of a
it may be nucleated locally by perturbations which inducesingle vortex. They obtained useful asymptotic expressions
spatial variations of theé-wave order parametéf;**e.g., by  for the behavior of the order parameters in various regions of
external magnetic fields, surfaces or impurities. In thethe vortex. Wang and MacDonafdnvestigated numerically
present work we consider the vortex state afaave super- the electronic excitations inside and outside the cores of
conductor which results from applying a uniform magnetics-wave andd-wave vortices using the self-consistent BdG
field parallel to thec axis of the superconductor. We study equations. They found a distinctly different behavior of the
the properties of isolated vortices and of the Abrikosov vor-T=0 quasiparticle density of states in the core ofdheave
tex lattice, both of which which differ in many aspects from vortex compared to that in thewave core within the same
those found in conventional superconductors, owing to thenodel. Very recently Ichiokat all” analyzed the structure
induceds-wave component. These effects will play an im- of a d-wave vortex within the quasi-classical Eilenberger
portant role in transport properties of high- materials, formalism. Their results appear to agree in every aspect with
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the results of GL theory presented below and in an earliesince, even in the absence of anisotropy, the difference in the
letter®® While the properties of an isolated vortex are nowfree energy between triangular and square lattices is ex-
relatively well understood, those of the vortex lattice havetremely small (less than 2% Moreover, recent neutron
remained largely unexploréed. scattering® and scanning tunneling microscof§TM) (Ref.
Much of the work discussed above is based on a particula#3) experiments reveal an oblique vortex lattice in YBCO in
(eﬁective microscopic model of Superconductivity‘ How- Strong magnetic fields. In Sec. IV we solve for the structure
ever there is presently no general agreement on the fund&f the vortex lattice in the vicinity of.,. We generalize the
mental mechanism of pairing in the high-cuprates. A good ~classic _Abrlkoso@ treatment to thed-wave case by first
alternative in such a situation is to study the phenomenologiinimizing the quadratic part of the free energy using a
cal GL theory, which is based only upon general concept?_au_ss'a” varlatlonal wave fun(_:tlon, and then _formlng a pe-
related to symmetries of the system. Application of SlJchrlodlc_ array 01_‘ vortices from linear combination of_these
theory to conventionalstwave superconductors has dem- fu.nctlons. We |r_1clude the effepts of the vector potent@l cou-
onstrated its ability to predict virtually all of their phenom- Pling sglf—%on&;tently, thus improving upon our original
enological properties. In Sec. Il, we review the GL theorycaICUIat'O’?' which neglected these effects. The resulting
appropriate for thed-wave superconductor, which involves Vortex lattice is found to be oblique, with an angle between
both d-wave and an induces-wave order parameter gener- Primitive vectors ranging from 60° to 90°, depending on the
ated through the mixed gradient coupling. We discuss soméirength of the mixed gradient coupling and magnetic field
of the general properties of this free energy and derive th@nd to a lesser extent on the other parameters in the GL free
corresponding GL differential equations as well as an expresNergy. _ _ _
sion for the supercurrent. In doing this, and throughout the [N Sec. V we summarize our results and discuss in some

entire paper, we restrict ourselves to the simple case of télétail their relevance to the existing experimental data. We
tragonal symmetry, described by the point grddp. Thus also propose experiments that might directly test some of our

the results presented below are strictly applicable only tdredictions.
truly tetragonal cupratesuch as T}Ba,CuOQg, 4); however

it is resonable to expect that the more common class of II. GINZBURG-LANDAU THEORY OF A
orthorhombic materials will show at least qualitatively simi- SUPERCONDUCTOR WITH d-WAVE PAIRING
lar behavior.

Sections 11l and IV are devoted to the study of a single The Ginzburg-LandayGL) theory for a superconductor
vortex and of the Abrikosov vortex lattice. Some of the re-With dxz—,> symmetry has been described by JofnThe
sults described here have been previously reported in #e€ energy density is expressed in terms of two components
letter'® Here we offer a more comprehensive treatment ofof the order parametes(r) andd(r), with appropriate sym-
the problem, and we present a number of previously unpubmetries, as follows:
lished results. For the single vortex we first review known
analytical results and complement these by several observéi= a4|s|?+ aq|d|?+ B1|s|*+ B,|d|*+ Bs|s|?|d|?+ Ba(s* °d?
tions. We then carry out numerical integration of the GL R -
equations for the single vortex geometry. In the region close  +d*?s%) + y|T1s|?+ y4|[1d|*+ y,[ (I1,s)* (IT,d)
to the vortex core our results confirm previous work within % >
the BdG frameworKk! In particular we find the induced ~ ()" (ILd) + c.c]+h*/Bar. @)
s-wave order parameter which has the expected four-lobe = " . o
structure with minima along=x, *y axes and maxima Herell=—iV—e*A/#c, and we assume t,hdt|s a critical
along the|x|=|y| diagonals, and the phase winding in the °rder  parameter, - 1.e., we takers=a'(T—Ts) and
opposite sense relative to thewave. Farther from the core ®a=a (T—Ta) W,'th Ts<Ty. The use of the same tempera-
the GL theory yields results that were inaccessible to thdure derivative,a’, for, as and aq is justified below. This
BdG treatment due to the cluster size limitations. At a dis-2/SC allows us to se#’=1 in the subsequent analysis. We
tance of several coherence lengths from the core the windingSSUMe thaBi, B2, Bs, B4, vs andyy are all positive as it
number of thes wave changes from-1 to +3 resulting in 1S Suggested by a simple lattice moteind a Gorkov-type
four "extra” nodes in thes-wave order parameter symmetri- calculation within the continuum weak coupling thebtyve
cally placed along thet x, +y axes. Analysis of the asymp- also choosey, to be positive throug.hout this Wqﬁi.The
totic solutions shows that these nodes are necessarily presdififametersy are related to the effective masses in the usual
in the s component, whenever puwave solutions are Way, with y;=1 /2mj , fori=s,d,v. We shall be interested
thermodynamically stable in the bulk. Our numerical workin the case when pu-wave state is stable in the bulk in the
supports this conclusion. Quite generally the distribution ofabsence of perturbations, i.e., situations wheir0, s=0.
the d Component, as well as the Supercurrent and the mag-[he condition for such a state to be thermodynamica”y
netic field, exhibit a fourfold anisotropy, the magnitude of Stable ist
which is proportional to the relative magnitude of

As was mentioned above, the problem of the vortex lat- aq<0, 2Byas+(B3—2|Bal)|ayg/>0. 2
tice, which forms in magnetic fields close to the upper criti-
cal field H,,, has not been previously addressed for aWith a finited component, the second transition temperature
d-wave superconductor. In view of the fourfold anisotropy of T will be renormalized by the fourth order invariants. In
individual vortices one may expect that the conventional tri-particular the transition to the state with finite bidkwave
angular Abrikosov lattic®?! will be modified, especially component will occur at
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(Bs—2|Ba)) have been discussed by Joynand by Volovik:® Here we
2B, (Ba—2|3a) (Tg—Ty). (3)  provide an interpretation in terms of nearest neighbor bond
2 P73 4 fieldsv (r) andh(r). These fields describe the superconduct-
. ) . ing pairing amplitudes on the verticab) and horizontal
Thus, even if jhe bard is close 10Ty, the true transition  (hy ponds of the square lattice representing the crystalline
temperatureTg may be much lower. Moreover, when strycture of the cuprate superconductor, and arise naturally in
28,—(Bs—2|B4])<0, a second transition will never occur the simple mean field lattice models of superconductivity
and we may conclude that the precise valud@ ois not very  with on site repulsion and nearest neighbor attraction be-
important for the physics. tween electron$!?®For tetragonal symmetry, the free energy
There are various ways of interpretifig some of which  f, may be written in terms of these bond fields as follows:

TE=Te—

fo=ao(|v]|?+]h|?)+ e(vh* +hv*) + y (T h]2+[ITy %) + y7(| I h 2+ [ ]?)
+ e[ (TLh) (ILw)* + (I, h) (ITv)* +c.c]+ B(|h|*+[v]*) +h?/8a. (4)

In Eq. (4), ap=a'(T—Ty), and e stabilizes the relative To study the implications of the above free eneftjyfor
phase ofv andh. If € is positive, then a relative phase of the structure of the isolated vortex line and the vortex lattice
7 is stabilized, and the stable state liawave symmetry. If the first necessary step is to write down the field equations
€< 0, then the quadratic terms i, are minimized when for the order parameters. These are obtained in the standard
andh have the same phase, giving a state Witktendedls  way by varying the free energjl) with respect to conjugate
symmetry. The first two coefficients of the gradient termsfields d* ands*. We have

yL and yr involve derivatives alonde.g.,I1,v) and trans- ) 5 o ) )
verse(e.g., I1,v) to the bond directions. In general, these (7all +C“d)d+7’v(Hy_Hx)s+2f82|d| d+ Bsls|“d

two coefficients will be different. The fourth order terms, +28,52d* =0 (83)
proportional toB, which are included inf, are the terms ’

which would arise in the mean field theory X¥fY spins. In (ysl1%+ ag)s+ v, (11— T13)d+ 2 84| s?| s+ B3| d|?s
general, a mean field theory for fermions will have other ey

terms. However, it is instructive to consider the conse- +2B,d%s* =0. (8b)

quences of these simple fourth order terms, @4+ |v]*.

. In a similar manner, one obtains the current density i e
The orthonormal transformation, s=(h+v)/\/§, ty ind)

o plane:
d=(v —h)/\/§, allows us to express the coefficients of Eq.
(1) in terms of the coefficients ifi,. The results are . €e*h - - e* - -
j= == [d*(I1d)+ (IId)*d]+ ——[s* (IIs) + (IIs)* 5]
2my 2mg
as=ag—€, ag=ayte, (5)
*
—X * + *d+ c.c.
Bi=Bo=Bu=B, Bs=4B, (6) Xomp 5 (ILA +(ILe7d+ c.c]
— . e*
Ys=(ntynl2+ye, +95 [ (I,d)+(I1,8)*d+ c.cl. 9
va=(ntrl2=ye, v=(n—ro2. (7) " In carrying through the variational procedure it is necessary

to impose appropriate boundary conditions for the

The statement that the same valueadf occurs ina and superconductor-vacuum boundary. For our two component
a4 is equivalent to the statement that the temperature deriva- P Y- P

tive of e is negligible in comparison to the temperature de_system these tu out to be

rivative of a. If that is not the case, then this approximation Tyalid+ v (VIT.s—XIT -0 10
is not valid. In what follows we shall adopt the above ap- n-[7d Y (Yils=XILS)]=0, (109
proximation for computational convenience, but we note that n. [75ﬁ5+ yv(yl'[yd—il'[xd)]=0, (100

it is in no way essential for the conclusions of this work, and

relaxing it only leads to small quantitative changes. Thewheren is the unit vector normal to the surface. By combin-
fourth order terms|h|*+|v|%, generate all of the terms in ing the above two equations and comparing with the expres-
Eqg. (1) with comparable magnitudes; in fact the resultingsion for the current densit{9), one can easily deduce that
relative magnitudes oB;’s are very close to the weak cou- _

pling values'® The mixed gradient termy, , arises from the N Jlboundary= O,

differencein the coefficients of the longitudinal and trans- i.e., the normal component of supercurrent vanishes, as re-
verse gradient terms in the bond picture. Of course, this difquired on the superconductor-vacuum boundary. We also
ference could be zero, but that is not expected on the basis abte that for the special case of a flat boundary along say the
symmetry. yz plane, conditions (10) acquire the simple form
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I1,s=1I1,d=0, which is analogous to the boundary condition hy=®,/7\?. The problem is now to find simultaneous so-
in the usual one component system. lutions to the two GL equation8) for s andd, to leading
The above set of equations constitutes a completerder asr—0. Qualitatively it is clear that at the core
Ginzburg-Landau theory for a superconductor with >  (r=0) bothd ands vanish. Moving outward from the core,
pairing. This full theory is evidently too complicated for the amplitude ofd increases and generates nonzergia
most practical purposes, and one must resort to approximahe mixed gradient coupling. Around= &=\ v4/| 4| the
tions in order to obtain useful results. The rest of this paper ismplitude ofd starts to level off, attaining eventually its
devoted to two such approximations valid in weak and strongyy|k valuedy= \/|a4|/28,, which causess| to reach a maxi-

magnetic fields. mum and then decrease to Oras . This qualitative pic-
ture suggests that in order to study the leading order behavior
[ll. NEAR H;: ISOLATED VORTEX LINE we may first solve Eq(8a) for d assumings=0, and then

obtain the leading behavior of from Eq. (8b). With this

When the applied magnetic field is close to the lower assumption Eq(8a becomes

critical field, H.,, spacing between individual vortex lines is
!arge and it is sufficient_to consider structure of a s?ngle (ag+ y4lT?)d+28,|d|2d=0, (14)
isolated vortex. As mentioned in the Introduction, a single = = | ) ) )
vortex line in ad-wave superconductor exhibits rich and which is identical to the GL equation for the conventional
rather fascinating properties that have no analog in conver€ component superconductor. The asyrr;zp(igotlc solution to
tional superconductors with a single component order paranilis €quation near the core is well known to"be

eter. In the present section we discuss these properties in . 3\ aie

some detail. First we review the analytical results concerning d(r,@)=(dyr +dgr)e’, (15
the distribution of the order parameter, supercurrent andvhere constantl; is given by
magnetic field in various regions of the vortex. Second, we
carry out an explicit numerical integration of the GL equa-
tions for the single vortex geometry to confirm and comple-
ment these analytic solutions.

s - (14 2mE2ho /o], (16)
884

andd; can be obtained by full integration of E(L4). Note
that  ordinarily only the leading dependence
d(r,p)=d,re'? is quoted; however, it turns out that in our

As is appropriate in the case of high-cuprate supercon- case the terndsr3e'? is necessary to obtain a consistent
ductors, we shall consider strongly type-ll materials, inexpression fos(r,¢). In Eq.(16) the factord)o/27r§§ divid-
which magnetic fields vary over length scalethat is much ing hy is of the order of the zero temperature upper critical
larger than the relevant coherence lengtbver which sig-  field H.,(0). Since we are interested in the region close to
nificant variations of the order parameter can occur. In what{ ,, we haveh,<H,, and in what follows we shall consis-
follows we focus only on situations where magnetic field istently neglect terms-hq/H., compared to unity. With this

A. Analytic solutions

parallel to thec axis of the superconductor. simplification Eq.(16) becomes
For the problem of a single vortex line it will be conve-
nient to work in the cylindrical gauge expressed in the usual dy=—d,/8¢3. a7

polar coordinatesr(,¢), ) _ )
The leading behavior of(r, ¢) now can be obtained from

A=0A(r), (11  the linearized version of Eq8b) which reads
with (as+ ysl1?)s+,(I17-113)d=0, (18)
(e, by substituting ford from Eq. (15). Evaluating the action of
A(r)= Ffor h(r')dr’. 12 the (I12—11%) operator in polar coordinates gives

*

magnetic fieldsh(r)=2zh(r) that have no angular depen- fic
dence. While this is clearly not exact for tdewave vortex, (19
we shall see that quite generally the partiothat is not
rotationally invariant is small and can thus be computed as
perturbative correction t6l1). _ S(r,@)=sre ¢+ s,r3ed, (20)

Let us first look at the behavior of the order parameter
near the center of the vortex, Bs-0. In the relevant region Comparing the coefficients in front of different phase factors
wherer<\ the magnetic field can be treated as constantand again neglecting termshy/H¢»(0), we obtain
h=h(0)=h, and the vector potential becomes

' i i i e*h . . .
By adopting this particular gauge we restrict ourselves to(l‘[f,—l'[f)d(r,(p):— O)dlre"‘P+d3r(3e"‘P—e3"P),

\élvhich suggests that thecomponent is of the form

3[ %
A(r)=2hor. (13) Sl_§<fg§)dl’ @D
For the singly quantized vortex, can be roughly estimated and, to the same ordes;=0.
by requiring that the area-w\? contains magnetic flux In summary, the leading order behavior of the order pa-

equal to a single flux quantun®y,=hc/e*. This gives rameter near the core is
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d(r,<p)=dlre‘¢’, (229 The supercurrent and the local magnetic field near the
vortex core can be calculated from E) using the order
parameters given by E¢22). We obtain, to leading order in

3 v )
s(re)=g — dire e, (220 "
d
) . ,2yge 3 7\,
. . . . : jo=d? 1-| = or (25)
The most interesting feature of this result is the opposite s g 8 asgg '

winding of the s-wave component relative td. This was
pointed out by Volovik® based on a general symmetry argu- 3 v, \?
ment. The solution of the forr22) was also derived by Ren h:Z[ hO_dlc—h 1- (g a_z)
et al,*® however, the explicit form of the prefactor in tise sod
component is a result of this work. Knowledge of this pref- Expression25) for the supercurrent shows explicitly that the
actor will allow us to give a simple but accurate estimate ofs component with opposite winding of the phase relativd to
the maximums-wave amplitudes ,,=max(s]), induced in in fact diminishesthe total supercurrent, resulting in weaker
the vicinity of the vortex core. In view of the fact that far shielding of the external magnetic field compared to the con-
outside the cores decays algebraically witlh (see beloy,  ventional superconductor.

such an estimate is quite important for the assessment of the We next consider the region outside the caigsr <.
relative strength of the inducesiwave component and the We shall assume that in this regidrhas already reached its
various phenomena that its presence may lead to. The estimiting form

mate is based on the assumption that near the ¢@eds :

rise over approximately the same length scalé,. In par- d(r,p)=dee'?. (27)

ticular if we assume that at=¢&y the amplitude ofd is  ggcayse of the condition<), the magnetic field can still be
approximately half of its bulk valdé do, from Eq.(228 we  yreated to a reasonable approximation as constant, and the
haveqd,=do/2. Assuming further thafs| attains its maxi-  yector potential is thus given by E€L3). It is, however, easy
mum also around = ¢4 we arrive at the following estimate: 1 show that coupling to the latter can be ignored in this
region. In particular, rewriting all the relevant operators in
Smax__ 3 v 23 polar cylindrical coordinates, one can easily show that for
o 16 ad’ (23 d(r,¢) given by (270 it holds that TI2d(r,e)
=dor 2(—1+r2/\??2. Clearly, the second term in the

A similar estimate was given previously by tbased on a  Prackets(which originates from the vector potentia) can
simple argument involving the competition between thebe safely ignored with respect to unity, since, by assumption,

mixed gradient term and other second order invariants in the/ A <1. With some effort, one can demonstrate that the vec-

free energy. This argument gave the correct functional delo’ ~Potential is also negligible in the terms

2 2

pendence on the GL parameters, however it missed the nglly —15)d(r, ¢). o ] . ]
merical prefactor 3/16 0.1875, which is important when in-  The problem of finding the asymptotic solution outside
vestigating the quantitative properties of the above solutionthe core region reduces to solving E8b) for s(r, ¢) with d
Comparison to the numerical resuftee the following sub-  9iven by(27) andA=0, and the additional assumptions that
section shows that the above estimat3) is correct to  |S|<<|d| and|Vs|<|Vd|. These allow one to consider only
within about 20%, as long as,,<dy/4. When s, be- the linearized equation in which the relevant terms are
comes larger, the asymptotic soluti(@®) is no longer justi- 2 2 2w
fied since the conditiofs|<|d| is violated and our perturba- Yol = dy)d+ ass+ Bg|d|*s+2B,d°s* =0.  (28)
tive approach starts to break down. In polar coordinates,

A noteworthy consequence of E@3) is the temperature

*

rz] . (26

dependence of,,,, nearT,. If we recall that close td@y we s o 1 Sie ie
havedy~ V1—T/T4 and &g~ 1/N1—T/T, it follows that (9% dy)doe'* =7 (3e”“—e""¥)dy, (29
suggesting that the solution to E@8) is of the form
S~ (1= T/ Tg) 32 (24 SH998sHNd B8

1 : )
Faster decay of the component neaf 4 compared tal is a s(r,p)=(f,e7"¢+ f3e¥¢). (30
direct consequence of the fact that as a noncritical order pa-
rameter the former is driven by the spatial variations of theSubstitution in Eq(28) then gives
latter?” Thus, sufficiently close tdy, thes component will 5 5
always be negligible compared th and in many aspects a 1 (ast Bady) +6B4dy

d-wave superconductor will behave very much like a con- l=3% O (st B3d3)2—4(B,d3)%" 3D
ventional single component superconductor. Equat$

also self-consistently justifies the above perturbative solution 1 3(agt ,33d§) + 2,84d§

of the GL equations near the core which assunhskso be f3=— 2% O (ot B202)2—4(B,d2)% (32)

small compared tdd|; sinces,,/do~(1—T/Ty), the con-
dition |s|<|d| will be always fulfilled sufficiently close to Asymptotic solution of this form was obtained by Ren
Ty. etal® From the knowledge of the order parameters
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the figure one may conclude that the four extra vortices are
symmetrically placed o x and £y axes, since the com-
~ ponent apparently changes sign along these directions. Fi-
\ nally we note that there are no extra nodes indheompo-
—t \‘ nent and that the total magnetic flux associated with one
N\ vortex line (consisting of 1d-wave node and Ss-wave
nodes is equal to one flux quantum; there is no additional
*x— flux associated with the extrewave nodes.
We have argued above that the unusual nodal structure of
,/ the d-wave vortex exists at temperatures closd fo It can
N be shown, however, that our argument has much wider va-
lidity. It is a simple matter to demonstrate that a complex
function of the formg(¢)=ae '*—be** with a, b>0, will
have winding numbe#-3 for b>a (and —1 for b<<a). Ap-

— d-wave phase plying this criterion tos(r,¢) given by Eq.(30) and with
——~ s-wave phase help of relations(31) and (32), one obtains the following
x  s-wave node inequality:

FIG. 1. Schematic diagram of phaség and 65 of the two 3(as+t Badd) +2B84d5> (as+ B3d3) +68,d2, (33

components of the order parameter in the two asymptotic regions

close to and far from the vortex core, as determined from 225 as a requirement for the winding numbei3 outside the
and(30). Note that this diagram is more complete than the similarcore, Upon expressind? as|agq|/28, and rearranging, one
one published in Ref. 11 in that it includes the region outside thejnds that this inequality coincides with the stability condi-
core. The present diagram also differs from that in Ref. 15 WhiChtion (2). It therefore follows thafor all combinations of GL
shows(we b(_alieve incorrectlythe s component with opposite over- parameters consistent with staltievave state, the asymp-
all sign outside the core. totic winding number ofs outside the core is+t3 and the

d(r,¢) ands(r,) one can compute the corresponding dis-non-trivial nodal structure described above exists. We may

tributions of the supercurrent and the magnetic field. In ordeFonclude that the structure of the vortex core iul-wave
to do this consistently, one has to include correctionssuPerconductor isnherently much more complicated than
~1/r2 to thed componentsuch as were neglected in Eq. that of a conventional vortex. This statement is valid over the

(27)], as these are needed to insure that the continuity equ&Ntiré range of temperatures in which the GL theory is ap-
tion V-j=0 is satisfied. The resulting formulas can be foundPlicable, in magnetic fields weak enough so that the vortex
in Ref. 15. line can be considered isolated. Very recently, the existence

- . 17
There are two important physical consequences of EQf the extra nodes has been confirmed by Ichiekal,
(30). First, the slow algebraic decay of tseomponent out- who investigated the distribution of order parameters near

side the core region means that asymptotically in the prest_he vortex using the quasi-classical Eilenk_)erger equati(_)ns.
ence of a vortex, the superconductor is not in a [Ismeave On the other hand, however, recent numerical computations

state, rather there is a smafiwave admixture with angle Within the GL theory by Xuet al*® failed to find evidence

dependent relative phase. As a result, fermionic excitationr this effect. One possible reason for this apparent discrep-

will be gapped in this region. As demonstrated below, only a@NCy might be that Xuet al. present their results for a

the length scale set by the penetration depth issthempo- ~ Ginzburg-Landau ratia=2 (i.e., weak type-Il superconduc-

nent cut off exponentially and a putkwave state is estab- tor). The topological arguments in favor of extra vortices

lished. presented above only apply to the case of strong type-Il su-
A second interesting property of thewave component perconductors £>1) which is relevant to the high; cu-

can be obtained by comparing the two solutions inside an@"ates. It would be most interesting to see if evidence for the
outside the core. Inside the core Eg2b) implies that the nontrivial vortex structure can be established in an experi-

winding numbef® of the s component is- 1. The situation ~Ment. _ _ _

outside the core is slightly more complex, but nday it Finally we shall consider the region outside the core for
holds thatfs=—3f, [cf. Egs.(31) and (32) in the limit r>\. In this region we may still assume the asymptotic for_m
do— 0]. Thus the phase facte®' ¢ in Eq. (30) will dominate ~ (27) for d(r,¢), but we can no longer treat the magnetic
the behavior ofs(r,¢) and the winding number far outside field as constant. Taking into account the fact fisat|d| in

the core will be+3. For an analytic function the winding thiS region, we obtain the usual London equation for the

number is a conserved topological quantity which can be/€ctor potential, which in the cylindrical gaugel) reads
changed only by the presence of a node. This forces us to

conclude that four additional positive vortices must exist out- V2A= — 1 A— Po .

. . 8 “ " - 2 ¢ (34
side the core in ths component® These “extra” vortices A 27y
(or node$ are a consequence of the topological constraints ] ] ) ] ]
imposed on the relative phasessoiindd by the structure of ~ 1he asymptotic solution to this equation for\ is
the GL equationg8). Behavior of the phaseg and 6 is "
schematically depicted in Fig. 1, for the two asymptotic re- A= Do ﬁ_ ™ E NP (35)
gions as given by Eq$22), (27), and(30). By inspection of 27N T 2r @
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which gives the usual exponentially decaying magnetic fielcunits of 28,, s andd in units of the bulkd-wave gapd,,
far from the vortex® Using the vector potential given by anq all the lengths in units afy. This allows one to write
(35) one can solve fos(r,¢) from Eq. (80). The result, to  the GL equationg8) in the following simple dimensionless

the leading order inr(\), is form:
T N\ v2 YN —j 3j V2 d 2 2 d 2d 2d Zd* _
s(r.e)=|5 | e (s ¥+se™?),  (36) —(V2+1)d+ €,(dx— dy)s+[d|*d+ B3| s|“d+28,5°d* =0,
' (383
with

— (V2= ag)s+ €,(05— 32)d+ 231 |?| s+ B3| d|*s+ 2 8,d%s*

1
Yoo (37 ~o, (38D)

T2\ gt (Bs—2B4)d3’

51: _53

where €,=v,/yq and we have sety;=y4. On physical
grounds(cf. Eq. (7)] we do not expectys and y4 to differ
dramatically; and we have verified that allowityg# y4 does
not have a significant effect on the solutions.

We have integrated Eq&8) numerically on a rectangular
NXN domain for the boundary conditions appropriate for a
single vortex:

Thus, as expected, tteewave component will be exponen-
tially small beyond distances from the core in excesa of
and on these large length scales thevave superconductor
will behave as a conventional single component type-ll ma:
terial. Equationg36) and (37) also show that to leading or-
der, the total winding number d&(r,¢) remains undeter-
mined(see the discussion of winding abgvelowever, upon
computing higher order terms irr/\) one finds that the .
winding number in this region remains3, so that no addi- dlboundary= do€'®,  Slboundary=O- (39)

tional nodes are required by topology outside the core re- . . , . . .
gion. If additional nodes do exist, their total winding must We used an iterative Newton’s algorithm as described in Ref.

add to zero. 30. At each step of iteration the conjugate gradient method
was used to solve the resulting system of linear equations.
i Results of our numerical analysis indeed confirm all of
B. Numerical results the qualitative features found by the analytic considerations
The analytic results presented in the preceding subsectiodf the preceding subsection. Figure 2 shows the behavior of
establish rich and complex structure of the vortex line in athe d- ands-wave amplitudes near the center of the vortex,
d-wave superconductor; however, owing to the rather comwith parameters described in the figure caption. The resulting
plex structure of the underlying GL equatiof® the analytic amplitude of thes component for this particular parameter
treatment is restricted to limiting cases where certain smalonfiguration wassy,,~=0.024l,, in reasonable agreement
parameters can be identified. Consequently, the informatiowith the estimate(23) which gives 0.0187&,. A domain
such a treatment provides is mainly of qualitative nature. Irsize of N=201 was used in the numerical integration, en-
order to study the problem in more detail, we have integratedompassing a physical region of the slze20£4. In Fig. 2
the GL equations numerically. Besides confirming the abovenly the central (12%121) region is displayed, where the
analytic predictions, the numerical approach is capable oboundary effects are expected to be strongly suppressed
addressing the behavior of the order parameter at lengthumerical solution was in fact well behaved all the way to
scales comparable &, where the analytic approach is dif- the boundary of the systemAs expected for this relatively
ficult. In particular we will be most interested in the detailed weak admixture of the component, the amplitude df has
behavior of thes component near the core, focusing on itsalmost perfect circular symmetry. The amplitude %fis
exotic nodal structure that was predicted by topological arnearly circular in the inner core of the vortex and it shows
guments. marked fourfold anisotropy outside the core, in accordance
In order to arrive at a truly selfconsistent numerical solu-with the asymptotic solution@2h) and(30). Four symmetri-
tion, one should in principle complement the GL equationscally placed maxima along diagonals and four nodes along
(8) by the Maxwell equatiorVxhs=(4x/c)j and include *xand=*y are visible in the contour plot. To see these more
the induced magnetic fieltlg in the total vector potential clearly we show in Fig. 3 the amplitudes of thavave com-
A. However, as we are mostly interested in the region neaponent alongx-axis and ax=y diagonal. A node close to
the core (<)), it is permissible to neglect these screeningx= 3¢, is clearly visible, which is nothing else than one of
effects and indeed the coupling to the vector potential altothe four extra vortices. The figure also confirms the linear
gether, provided that we impose correct boundary conditionbehavior of|s| and|d| near the origin and the fact that both
for a single vortex geometrisee below. Neglecting the vec- rise on approximately same length scgle One can also
tor potential leads to a significant simplification of the prob-see the I decay of|s| outside the core region, whejd] is
lem. Physically this corresponds to the extreme type-Il limit,constant.
N Eé—, For a realistic system wherg/¢ is finite (but Figure 4 shows the superconducting phaggsind 65 of
large), ignoring the vector potential coupling is equivalent to the two components of the order parameter. While the distri-
neglecting terms- (r/\)? compared to unitysee discussion bution of 84 looks very much like that of conventional singly
following Eq. (27)]. quantized vortex, the distribution &k is clearly more com-
With the vector potential absent from the GL equations itplicated. In particular the opposite winding of the phase near
is convenient to introduce a set of dimensionless quantitiethe core and four positive vortices along thex, *y axes
such thateg is measured in units dfay|, 8 parameters in are clearly distinguishable. Comparison to Fig. 1 shows that
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FIG. 2. Contour plot of the amplitudes of tha d-wave andb) FIG. 4. The angle of arrow with respect to the horizomtalxis
s-wave components of the order parameter as determined by Nyapresents the phase of tf@ d-wave and(b) s-wave components
merical integration of the GL equation88). The GL parameters of the order parameter. Solid dots represent positive vortices, *

used for the plot areys=yq=7,, as=10aq|, B1=B3=0, and  sympol represents negative vortex. The parameters used are the
B4=0.58,. The lightest regions of the diagram correspond to thesgme as in Fig. 2.

largest amplitudes. The scale is in units of thevave coherence

length £y our numerical results are again in complete agreement with

the analytical predictions summarized in the preceding sub-
section.

The important quantity that determines the nature of ex-
citations in the vicinity of the vortex line is the relative phase
A0=65s—604. We plotA 6 in Fig. 5. Over much of the region
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FIG. 3. Amplitude of thed-wave and thes-wave component

along thex axis (solid line) and along the diagonal=y (dotted Relative phase

line) normalized to the bulk valud, (thes component is scaled by

a factor 20 for clarity. The parameters used are the same as in Fig. FIG. 5. The angle of arrow with respect to the horizontalxis
2. Thed component is almost completely isotropic for this case sorepresents the relative phad@= 6;— 64 of the two components of
that the two cuts are indistinguishable. the order parameter, for the same parameters as in Fig. 2.
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FIG. 6. Contour plot ofa) supercurrent amplitudgb) supercur- FIG. 7. Contour plot of the amplitudes ¢& d-wave and(b)
rent streamlineséwhich coincide with the lines of constant magnetic s-wave components of the order parameter for a different set of GL
field), for the same parameters as in Fig. 2. parametersy,= yy=1v, , as=1.4aqy|, B1=B,=B83=B4.

the relative phase iA = = 7/2, resulting in ad*is state

) oS X numerically studied a large number of other parameter com-
that has minimum gap equal ts|. This is a direct conse-

. binations. All show similar behavior. The feature that
quence of the fact thaB,>0 in the free energyl). HOW-  changes hetween different configurations is the relative mag-
ever, the phase difference cannot be equat t/2 over the  hiy e of thes component, which is, as we have explicitly
entire area since this would be incompatible with the topOyerified, well described by Eq23). The larger the ratio
logical constraints that require opposite Windir_wg of the twog +/do, the more anisotropic thé-wave component be-
components near the core. Thus narrow domain walls appegbmes and along with it the distribution of supercurrent and
along thexx, *y axes, whereA ¢ changes rapidly. This inquced magnetic field. As an example of such a case we
result is in agreement with the microscopic treatment ofgpow amplitudes of and d in Fig. 7, for the particular
Soininenet al! within the Bogoliubov—de Gennes theory. parameter combination that yie|®nax,:0 15d,. The rel-

However since the complexity of this formalism did not al- o\ ant supercurrent distributions is plotted in Fig. 8.
low one to extend the calculations to sufficient distances

from the core, the extra vortices were originally not found.
The present GL theory, being inherently simpler allows us to!V: NEAR H¢;: STRUCTURE OF THE VORTEX LATTICE
study larger clusters. As one moves further out from the core,

domain walls abruptly end at the cores of the feuvave In what follows we present our treatment of the vortex
vortices andA 4 starts to vary more slowly while being still lattice problem. In general we follow the path outlined by
locked to+ 7/2 over large areas. Abrikosov?® with necessary modifications that arise from the

Supercurrent produced by the above order parameterPresence of two order parameters in the free energy.
distribution, computed numerically from E(®), is shown in

Fig. 6. Panela) shows the distribution of the magnitudi¢ A. Linearized GL equations and their variational solution
while panel(b) displays streamlines of the vector figjd In the vicinity of th itical field - th i
Note that because of the Anegs law V X hy= (47/c)j, the n he vicinity ot the upper critical Tieltiq; the ampli-

tudes of the order parameters are small, and the essential

latter is equivalent to the lines of constant magnetic fieIdphysics is contained in the linearized field equations that are
iven h rcurrent, and thus Figb)6al ives th . . i
given by the supercurrent, and thus FigbjGalso gives the obtained from(8) by neglecting the nonlinear terms:

distribution of the spatially varying component of the screen
ing field.
In addition to the particular case described above we have (7all1?+ ag)d+ y,(I1; - 115)s=0, (409
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Thus, exactly as in the one component case first studied by
Abrikosov?® we are left with a one dimensional problem
which can be stated as follows:

2

1 2 2 d i 1 2
agt ﬂ+§mwc(x—xk) +e, —ﬁ+§mwc(x
_Xk)2 S= 0, (443)
p2 1 2 2 p2 1 2
€, — >m + Eme(X—Xk) d+{ agt+ >m + Emwc(x
(a) supercurrent amplitude —x)2|s=0. (44b)
X/&d k
6 -4 2 0 2 4 6

Here we have denotedp=—i%alox, x.=kl?>, and
w:=(e*H/mc). The magnetic length =Ac/e*H will
play the role of a characteristic length for the vortex lattice.
We also assume henceforth thatfj =mZ=m, i.e., that
Ya=7vs, and we usee,=1vy,/ys=m;/m} . Equations(44)
resemble those for the quantum mechanical harmonic oscil-
lator problem with the potential centeredat x,.. In view
of the fact thatx, is arbitrary, it is clear that Eq$44) will
have infinitely many degenerate solutions which can be la-
beled by a continuous inddk This degeneracy will play a
crucial role later when we construct the periodic space-filling
(b) supercurrent streamlines solution. However, for the moment, we shall ignore this issue
and investigate Eq$44) with x fixed. The essential differ-
FIG. 8. Contour plot ofa) supercurrent amplitudéo) supercur-  €MC€ from th_e one component case is that these equations
rent streamlinegwhich coincide with the lines of constant magnetic @ve€ No obvious exact solutions. In what follows we shall
field), for the same parameters as in Fig. 7. seek suitable variational solutions to E¢44). In order to
stress the analogy with the harmonic oscillator, we may write
(44) in the following way:

(ysl12+ ag)s+ v, (I1;—11Z)d=0. (40b)
Formally this corresponds to the expansion to leading order (Zo+ag)d+Vs=Ed, (453
in the small paramete —H)/H.,. The gauge invariant
! P ez~ H)/Hcz. The gauge invarl Vd+ (Ho+ as)s=Es, (45h)

gradientﬁ can be separated into two pieces,
where 7,=fio (a'a+1/2) andV=¢,(hw/2)(a’a’+aa)
ﬁ:ﬁo+ ﬁSE(—iV—e*Ao/ch)—e*AS/cﬁ, (42 are expressed in terms of the usual raising and lowering op-
erators, which can be written asa=[(x—xy)/
whereH=V X A, corresponds to the uniform applied field, | +1(4/dx)]/ 2. By including the right hand side of Egs.
andhs=V XA is the screening field induced by the super-(45) we are considering a slightly more general problem:
currentjs in the sample, given by the Maxwell equation ~ E=0 corresponds to the physical solution fdr=H,(T),
4o and solutions foE<<0 will be useful later when we consider
VXhg=—/|s. (42) the stability of various vortex lattice structures.
¢ In order to motivate our variational solution to the linear-

. o - ized problem, let us define
Let us for a moment ignore complications arising from the

scr_ee_ning eff_ecf[s and_ considgr 01_1Iy the vector potenial HE=To*V, et=dts. (46)
This is permissible, since as it will become clear later, cor-

rections to Eqs(40) from the screening field are of the same In terms of these variables, the set of equati@s becomes
higher order in the small parameted {,—H)/H., as the

nonlinear terms which have been neglected in these equa- [ .7 +T-T* —AT/2 o o

tions. In the same spirit as the original Abrikogbyreat- )( ):E( )
ment, these higher order terms will be included variationally —AT/2 THT=T*) \ ¢~ o

in a later stage of the calculation. (47)

It is easily seen that in the Landau gauljg=yHx the
linearized field equationgt0) are satisfied by taking

d(r)=e"d(x), s(r)=es(x). (43 T*=(Tg+ T2, AT=T4—Ts, (48)

where we have defined
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for convenience in later calculations. A nice feature of the 25
representatioid?) is that for the degenerate cas& =0 the AN g,
equations forp* and ¢~ decouple, each becoming a simple 5ol N —0.0
harmonic oscillator problem. Motivated by this fact we shall ’ “ A\ '_""_'":8‘3
seek the variational solution for the general case in the form RN
of normalized ground state wave-functions of the harmonic L5 \
oscillator, = o\
1.0} N
gDt(x): 0= e-O’i(X—Xk)Z/mZ (49) ..."\-._\
k | \/; ' 0.5} ‘-\.__\
The variational parametets, ando_ will be determined by 0.0 L . .
minimization of the eigenval{é 00 02 04 06 08 10

T/T4
— _T* 1 + gt ot 1 i/ e
(E)=(T-T")+ (e 7 7))+ 2(¢" 7 ¢7) FIG. 9. Dependence of upper critical fiettl.,(T) on tempera-
_ ture for various values of paramete¢, and T¢=0.5T4,
- %AT<(P+<P ) (50) T=0.75T4. )

where angular brackets stand for spatial averages. All the , )
integrals are easily evaluated and if one deﬁne‘g‘/v_herecn are complex constants. In order to impose period-

o, =0cosd, o_=osind, the resulting expression fofE) icity iny dir.ection we have constrained the valueskofo
can be explicitly minimized with respect to?. The mini-  Nt€ger multiples
mum occurs foro?=tand + 1/tand, and is

ko.=ngq, n=0,x1,*2,... (59
@: T-T + E @ (1+e,)tand+(1—e,) 1 of th_e parameteq_ vyhich will be determined later f_rqm the
AT AT 4\ AT tand requirement of minimum free energy. The space filling solu-
tions of GL equations can be written as, cf. E46),
1 /[ 2tand 51
2 V1+tartd (51 d(rn)=[V_.(r)+¥_(r)]/2,
The last equation must be minimized numerically with re- _ _
spect to taw. It is also clear from this equation that two siN=[¥+(N=¥-(nJ2 59
parameterse, and These solutions will also be periodic inprovided that the
constants,, satisfy the conditiorc,,, y=c,, for some integer
A=hw /AT, (52)  N. As was first noted by Abrikosc?, the analysis of the

determine the nature of the variational solution. In the two °M€X lattice for generaN is extremely difficult. It was

limiting cases the exact minimum can be easily found. In théwwever conjectured that th? absplute minimum of th_e free

low field limit. A<1. we haveo.~o ~1. while in the €nergy takes place fal=<2, in which case the analysis is

high field limit. A> 1. we haveo ;[(1;6 ’)/(116 n"a simplified. In what follows we shall restrict ourselves to the
’ ’ * —*v v .

It follows that at least intermediate values fare required case ofN=2 for the two component system. Taking=2

for appreciable effects frors-d mixing to occur. Otherwise V€ havecz,=Co andczn1=C;. This, along with Eqs(54)

o ~@~ and according to Eq46) the s component effec- and_ (55), implies periodicity ofs andd in x andy with

tively vanishes. periods
Solutions to Eq(51) with (E)=0 give the dependence of

the upper critical fieldH., on the temperature. Whenever a

finite admixture of thes component is present, we find a Each rectanguldr,x L, unit cell then contains an amount of

characteristic upward curvature k.,(T) near the critical flux

temperature. Such curvature has been observed experimen-

tally in both La-Sr-Cu-QLSCO) and YBCO compound$>* HL,L,=2(hc/e*)=2d,, (57)

and has been interpreted as a consequensalahixing.124

For given parameter$y and T, and several values of, where®d stands for the flux quantum. Thus, by construction,

such dependence is shown in Fig. 9, as obtained by numer@ach rectangular unit cell contains exactly two singly quan-

cal minimization of Eq(51). tized vortices, independent of the value of paramgtefhe

resulting vortex lattice may be thought of as centered rectan-

gular with two quanta per unit cell or, equivalently, as an

o ) ) _ oblique cell with lattice vectors of equal length and one flux

To construct a periodic vortex lattice, consider a linearquantum. While the restriction to centered rectangular lat-

Ly=21%q, Ly=27/q. (56)

B. Vortex lattice solution

superposition of the basis functiof49) of the form tices is made primarily for computational convenience, it is
also compatible with recent experiments on YBCO which
. ; 23 ; ; ;
W (r)= c €W (x), 53 show ew_denc@ for o_bllq_ue v_ortex lattices with nearly
(1) 2 " en () 63 equal lattice constants in high fields.
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The parameteq controls the shape of the unit cell. Itis  The manipulations performed above are useful since in

customary to define the ratio fixed applied magnetic field the proper thermodynamic po-
) ) tential to minimize is the mean Gibbs free energy density
R=Ly/Ly=(I"/m)q", (58)  related tof by (g)=(f)—B-H/4a. For this quantity we fi-

. nally arrive at an expression
and it follows thatR=1 corresponds to the squaRs= J3 Y b

corresponds to the triangular, and intermediate values (9)=E(|s|2+|d|2) +(f ) —(hD)/8r—H%8m. (63
1<R< /3 imply the oblique vortex lattice. T . .
The solution that we have constructed for the GL equaBefore we proceed with minimization of the Gibbs potential

tions (8) has three free parameters,, c;, andR. These let us notice that the simple thermodynamic relation
parameters determine the structure of the vortex lattice neak9)/dH= —B/4a can be used to extract the average screen-
H.,. Within the linearized approximation to the GL free en- ing field in the superconductor
ergy these solutions are degenerate in energy. It is the fourth JE
order terms that lift this degeneracy and determine the equi- (hg=B—H=— <_
librium lattice structure. In order to find this minimum one dH

must take into account the fourth order terms in the freéy gimilar relation between the average induced field and the
energy(1) as well as the effects of screening which were SOyrder parameter for the conventional s-wave

(Isl>+d]?). (64)

far ignored. , superconductdf is known as the “first Abrikosov identity,”
tenTgse complete average free energy dengifycan be writ- ¢ the corresponding determination of the spatial distribu-

tion of hy(r) is more complicatedsee below It is easy to
_ 2 verify that in the limite,—0 (i.e., in the limit of pured
() =(f2)+(fa)+{h%)/Bm, (59 wave Eq. (64) assumes the precise form of this identity,
where f, and f, stand for quadratic and quartic invariants including all the relevant prefactors that follow upon ex-
respectively, anthi=H + hg is the local magnetic field. Letus Pressing’E/dH from Eq.(51). In the vicinity ofH; it holds
now consider the effect of screening by looking at the gradithatE=(JE/dH)(H—H,) and it follows that to the leading

ent terms in(f,) with the completdl as given by Eq(41). ~ order we can write(f§) = (hg)(Hc— H)/4m. This allows

A typical term will be of the form us to express the Gibbs free energy in the form where the
leading dependence on the magnetic fieldis manifestly
(|T1d|2)= (| od+ 1 d|2)={|TTod|2) + (s [d* [T od displayed:
+c.cl), (60)

1 1
(@)~ (9n=7-(Hez=H)(he) +(Fg) = g—(h3), (69)
where in the last equality terms of the orderlﬁfsdl2 have
been neglected. This is consistent with the general idea oFith (9),=—H?%87 being the normal state contribution to
GL theory of keeping only terms up to fourth order in the the Gibbs free energy.
order parameters. Being proportional to the supercurrent, Consider now a simple scaling transformation
i, already contains terms quadratic in the order parameter§S:d)—(As,Ad) wherex is a real number.2 It is clear that
If we expand all the remaining gradient terms in the similarunder 4SUCh a tzransfgrmzanon(hS)—ﬂ\ (hs), ~ while
way, systematically neglecting terms containing order pa$f4)—A*(fs) and (hg)—\"(h5). Consequently, the Gibbs

rameters to powers higher than 4, we can write the result a§8€ energy(65) will have a well defined minimum for the
particular value of\. We use this property to determine the

0 o normalization of the order parametersandd. Carrying out
(f2)=(t)+ e_*<Hs'Js>- (61 the minimization we obtain

Heref® is the ini 1, pi 1 (Heo—H)%hy)?
5 part off , containing only thd I, piece of the (@) —(Q)p=— o o
gauge invariant gradient, i.e., the quadratic part in the ab- 8w 8m(fs)—(hg)
sence of_screé:em[]g, and S|m|la[_Ly|s assumed to be given by an expression which is clearly independent of the particular
Eq. (9) with IT=1I,. If we take into account the property of normalization ofs andd. If we further define the Abrikosov
the variational solution(f$)=E(|s|?+|d|?) that follows ratio 8, and the Ginzburg-Landau parameteby
from Eqs.(45) and use the definition dﬁS we can write )

(hs) (fa)

(F)=E(|s|+d[?) = (LIe)(Aq-j) +(fa) +((H+hg)?)/Bm, Ba=hyzr  K=AT (67)
2 (hs) (h3)

(66)

we can write the resulting Gibbs free energy for the Abriko-

The second term on the right-hand sidRHS) can be sim- sov vortex lattice in the familiar forf

plified by expressingg through the Maxwell equatiof42).

Integrating by parts and neglecting the surface term one ob- (Hep—H)?
tains (1£)(As-js)=(h3)/4. <9>_<9>n:—§(2—K2T)BA- (68)

Similarly the last term on the RHS can be rewritten re-
calling the definitionB=H+({h,) of the magnetic induction Several remarks are in order. The Abrikosov ra@ipdefined
as(h2)/87—H?/8m+B-H/4. by Eq.(67) is independent of the coefficieng in the quar-
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tic part of the free energy and depends only on the shape 6 to exploit the periodicity of the vortex lattice solution and
the unit cell in the vortex lattice. To the extent thatis  work in Fourier space. If we write
independent of the specific lattice shape, the minimum Gibbs
free energy corresponds to the minimumgyf, which gen-
eralizes the familiar Abrikosov result, apart from writing it in i(N=2 e*Ti(k), Adr)=>, ekKTA(k), (70)
terms of magnetic field instead of the absolute squared order k K
parameter. As will be shown below by numerical calculation, ; ; ;
it is indeed true that the parameterdefined by Eq.(67) whetre trll(e_ s;(umkmaztlog Eo/eLs Zovke ' /Lthe rec(;procalk lattice
depends only very weakly on the vortex lattice shape, and < = (koky)=(@2mki /Ly 2mho/Ly) - and - ky.ko)

; i =0,+1,=2,..., Eq.(69) implies that
thus the factor (2°—1) in the denominator of Eq(68)
serves simply as the criterion for type-ll behavior, which _
occurs only forx>1/4/2. It is in this sense that one can think AK) = 4 js(k) K20 71
of k as a generalization of the conventional Ginzburg- (K= Tz k#O0.
Landau parameter; we note thatlefined by Eq(67) cannot
be simply related to the usual ratio of penetration depto ' "'4>
coherence lengtly. This difficulty is related to the fact that N9 field,
in the presence of two order parameterandd we have,
strictly speaking, two distinct coherence lengtbsand &, . 4 kX jg(k)
Most observable phenomena will only reveal a single “effec- h(k)=——z— k#O. (72
tive” coherence length given by a certain combination of
&s and &4, but this will presumably depend on the type of In order to evaluate this expression it is helpful to write the
probe used in the experiment. By contrast, there will be onlysupercurrent9) using wavefunction® .. instead ofs andd:
single penetration deptk, as this quantity is related to the
decay of the magnetic field inside the superconductor. Alter-

Thus, one obtains for the Fourier components of the screen-

*
natively, . may be viewed as a measure of the bulk super- js(r)zge f > [X(1-ae,)PILY,
fluid density, which is in the present case associated with the am ==
d-wave component only, since ttewave vanishes in the .
bulk. Thus it may be suggested that\/£,, whereé, is +y(1+ae) VIV, +c.cl. (73)

the effective coherence length relevant to the Abrikosov lat+

. i o . In order to model the layered structure of cuprate supercon-
tice, determined by the usual criterion of overlapping vortexd h . duced th | ical f
cores atH=H,,. uctors we have introduced the usual geometrical factor

6= (layer thickness/layer spacingThe cases=1 corre-
sponds to the cubic lattice, whilg— 0 represents the limit of
C. Magnetic field distribution a single isolated layer. In this notation, the Fourier compo-

The ultimate goal of this section is to determine the actual'ents of the supercurrent are
structure of the vortex lattice by minimizing the Gibbs free

energy given by Eq(68). To obtain the parameteyd, and e*f R

« that enter this expression it will be necessary to evaluate is(k)=6,— 2+ [X(1— e, )(WLILW )¢

the spatial averagegf,) and (h?)[note that the quantity o

(he) has been already calculated in E64) by a thermody- +Y(1+ ae, (PLILW )+ (c.c)]. (74
namic argument The former of the two averages can be

computed in a fairly straightforward manner sinfceis di-  Here we have introduced a shorthand notation

rectly related to the vortex lattice solution.. (r), which

are simple linear superpositions of the Gaussian wave func- 1 (L L

tions ¢, given by Eq.(49). The situation with the other (o= j def dy. . e ik, (75)
average(h?), is more complicated as one has to first invert LxbyJo 0

the Maxwell equation(42) in order to express the local \ nicn will prove very convenient in the subsequent calcula-

screening fieldiy(r) in terms of the supercurrefd. Both of yionq \with some effort, the following useful relations can be
these quantities are themselves of interest, as they can t&%rived'

measured in principle by various experimental probese
Sec. V for the discussion

With this in mind let us calculate the spatial distribution
of the screening field. If we exprebs in terms of the vector
potentialA, the Maxwell equatior{42) can be written as

* (Ta kX . 2
<\paHx\pa>k:7 O___Ikya-a <|\Pa| >k7

4m (I =i—(5—ik (V2. (76
TjS' (69) a Y alk 20—& Oqy yUa ol Tk

VZAs=—
In real space¥ ,(r) is a linear combination of Gaussians,
where we have taken advantage of the fact that the Landaand thus the Fourier componerisV,|?), are easily evalu-

gauge satisfie¥ - A;=0. The easiest way to invert E(69)  ated. One obtains
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|2
<|‘Pa|2>k=f—iexp[—Z[(kx/oa>2+<kyaa>2], (77 140 e

where

= ei7klkz[cocf<‘2ﬂL (= 1)k1010§2+ 1] (78)

are real constants, independent of the particular lattice shape.
Substituting relation§76) in the expression for the supercur-
rent (74) one obtains

. . €e*h . )
s =107 2 [X(1-ae,)(—kyol)
Y1+ ae) (o) Wal. (79 Lo 1S 202530

This expression is particularly useful for numerical evalua-
tion of the real space supercurrent distribution, since in view FIG. 10. Abrikosov ratiog, as a function of the lattice geom-

i 2
.Of. the Gaussian dependence{b‘['a| >k.0n K [.Cf' Eq. (77] etry factorR=L, /L, for different values of, . Note that the mini-
it is clear that the corresponding Fourier series will converge, . of B, is moving fromR=13 to R=1 ase, increases. This
very rapidly. implies a continuous deformation of the initially triangular vortex

. Finally, V\,’e "_"re in the position to giYe th? local Screeninglattice into an oblique and finally square lattice. The parameters
field. Substitution of the above equati¢r9) into the Max-  ;sed are T.=0.5Ty, T=0.75Tq, B1=Po=Ps=ps=1, and

well equation(72) yields all the Fourier components of the B=0.8H,,. The inset shows th&® dependence of the squared
field with k# 0. Thek=0 component is just the real space Ginzburg-Landau ratia? on approximately the same scale.
average of the screening fie{tis) given by Eq.(64). Com- o

bining these results we obtain, after some algebra, the red@s a result of mixing between tiseandd components of the

space field distribution of the form order parameter. The nonlocality of this term isa dirgct con-
et h sequence of the symmetry of the problem: since by itself the
hy(r)=—2zm4 20> el (W, |2+ | ¥ _|?), term (sdf‘ +§* d) i_s not invariant undeb,, it can enter only
mc k in combination with other terms of proper symmetry.
2 L2
+z, >, €61 (|, 2= ¥ _ D], D. Structure of the vortex lattice
KZ0 k;+ ky
As mentioned above, in order to determine the shape of
(80) .
] ) the vortex lattice, one needs to evaluate the averages of the
where we have defined the numerical factors fourth order termgf,) and(h2). Now that the distribution
zo=[(c% +02)+¢€,(0® —2)]I2, of the magnetic _fieldq(r) .has been deriveq, e\{aluation of
these averages is a straightforward, albeit quite a lengthy,
z,=[(c% —02)+e,(c® +a2)]I2. (81)  procedure. The technical details of this calculation are

worked out in the Appendix, and here we only summarize
the results and discuss some of the physical implications.
We notice that the first Fourier sum in the brackets of Eq. Equations(94) and(99) of the Appendix give the expres-
(80) is equal to| W (r)[*+|¥_(r)[>=2(Is(r)|>+|d(1)*).  sions for the fourth order averaggs,) and(h2) in terms of
Thus in the limit of a pured-wave state where,—0 and  rapidly converging sums that are suitable for numerical
o.—1 the correspondence with the Abrikosov result for agyajuation. Making use of these, the Abrikosov ratio and
conventional superconductor becomes transparent. In thiginzpurg-Landau parameter can be expressed in the follow-
limit we havezy—1,z,—0 and|s(r)|—0, and the spatially jng simple way:
varying form of the Abrikosov first identity is recovered,
with d(r) playing the role of the conventional order param- |_§ )
eter ¥(r). The second sum clearly has a nonlocal depen-ﬁ;ﬁEzE [(Zo+Z1m) Q4+ (K) +(Zo— 1) Q- (K) ],
dence on the order parameters and can be written as ok

Fd?rig(r—r")[s(r')d* (') +s* (r')d(r’)]. Such a term (82)
has no counterpart in the conventional theory, and arises onignd
|
o ASE L1102, () + 120 00 ()Q 5 (K) + 13040 (K) Dz (K) + 1202 (K)] -

72 (e* AIMO)?E([(zo+ 21 ) Qs 1 (K) + (20— 23 m) 2 - - (K) ] '
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cides to a good accuracy with the minimum@f. For ex-
ample in the particular case displayed in Fig. 10, the mini-
mum of B, differs by less than 2% from the minimum the
full free energy.

Figure 10 also shows a typical dependencg@obnR for
different values of the mixed gradient couplirg, as ob-
tained by numerical evaluation of E(B2). Whene,=0 the
superconductor is in a puré-wave state with ncs-wave
component present. Within the phenomenological GL theory,
this situation is identical to the case of a conventional super-
conductor studied by Abrikosov. Thus, the state with mini-
mum free energy haRmin:\/§ which corresponds to the
usual triangular vortex lattice. In this limit we obtain the
correct value of8,=1.1596 as quoted by Kleinest al?
However, as soon as a nonzero couplnds introduced, the
situation changes and the minimumg@f shifts to the values
R min< V3, signalling that an oblique vortex lattice is fa-
vored. The minimunR,,;, varies continuously witte, and at
certain value ofe,, which depends on the other parameters
in the GL free energyR,,, reaches the value of 1, corre-
sponding to the square lattice. Further increase,dhen has
no effect on the shape of the lattice, which remains square.

One may conclude that indrwave superconductor, in the
regime close to the upper critical fiettl.,, a general oblique
vortex lattice is thermodynamically stable, unless the mate-
rial is in one of the limiting regimes in which the mixed
gradient coupling, is very small or very large. Numerical
and analyticaf calculations based on the simple mean field
model with proper symmetries, find evidence for a mixed
gradient term of about the same order of magnitude as the
conventional gradient terms. This would seem to argue
against the two limiting cases mentioned above.

FIG. 11. Contour plot of the amplitudes @) d component and An example of the oblique vortex lattice is displayed in
(b) s component of the order parameter in the vortex lattice. TheFig_ 11, where we show the ands components of the order
same parameters are used as in Fig. 10 jth0.45 resulting inan  parameter as obtained by numerical evaluation of Esf),
Oblique vortex lattice Witl‘Rmm 1.29 and the angle between primi- for a g|ven set of GL parameters An |nterest|ng conclusion
tive vectors =76°. The oblique unit cell containing one flux cgn be drawn by comparing the two components of the order
quantum is marked by a solid line. parameter: it is evident that the nontrivial nodal structure of

the s-wave component, such as was described in Sec. Il for
where the prime on the sums means that only terms withn isolated vortex, persists in this high field regime. Indeed,
k; andk; both even or odd are includef},, ;(k) are Gauss-  zeros ofs are present in the regions whetd>0. This quite
ian functions given explicitly by Eq(93), 7, is a simple remarkable result appears to suggest that the “extra” vortices
function defined by Eq(97), and @=—a. Note that the in thes component are present over the entire portion of the
above expression fg8, is independent of parametgBsthat  phase diagram representing the mixed state dfveave su-
enter the quartic part of the free enerfyy, and other qua- perconductor.
dratic parameters enter only via the variational parameters Many experimental probes are sensitive to the spatial
o . variations of the magnetic field rather than to the order pa-

The shape of the vortex lattice unit cell is determined byrameter itself. The spatially varying component of the mag-
the ratioR=L,/L,. The value ofR that corresponds to the netic field,hy(r), as evaluated from E¢80) is shown in Fig.
thermodynamically stable configuratidR,,,, is obtained by 12. Notice that as a consequence of the Maxwell equation
requiring that the Gibbs free energy is minimum. EquationV X h,=(4#/c)j,, it follows that the contours of constant
(68) shows that, at given external magnetic fidltd the  magnetic field coincide with the supercurrent streamlines.
Gibbs free energyg) is entirely determined by the two pa- Comparison to the order parameter plot in Fig. 11 confirms
rameters given above3, and x. Numerical evaluation of that the magnetic field and supercurrent distributions have
these parameters confirms thats only very weakly depen- the same symmetry as the vortex lattice. A nontrivial nodal
dent on the particular lattice shape, as it is illustrated by Figstructure of thes wave has an effect on the field distribution,
10. The dependence of the Gibbs free engi@f) on R is  which develops two nonequivalent saddle points, ma&ed
almost entirely contained in the Abrikosov rafia and thus, andS2 in Fig. 12. In principle, it might be possible to deter-
in most of the parameter space, the minimum(@f coin-  mine such structure by SR or NMR experiments. Figure 13
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FIG. 13. TypicaluSR line shapes as obtained from the magnetic
field distribution in the vortex lattice. The curves shown are for
triangular (€,=0.0), oblique €,=0.4), and squaree(,=0.6) flux
lattices. Magnetic field on the horizontal axis is in the units of

_FIG. 12. Distribution of the magnetic fields_ in the yqrtex ho=|(ho)|=4m8(zy/L,)(e* i/mc) and the curves are offset verti-
lattice. LettersM, m, S1, andS2 denote the maximum, minimum, caly for clarity.

and two saddle points, respectively. GL parameters used for the plot

are same as in Fig. 11. is not the case, and that we have in fact found the solution

that corresponds to the absolute minimumfads given by
displays theuSR line shapes that result from the magneticgq. (1).

field distribution as discussed above. The quantity shown is Consider a simple rotation of the coordinate system in the
xy plane by an angle

1 x=x'cosx—y'sing,
P(hy=——| & [h—h(r)]d?r, (84)

LyLy y=x'sina+y’cos. (85

for the case of triangular, oblique, and square flux lattices. IlJnder such transformation all the second order terms are
the triangular and square lattices, symmetry requires onljnvariant except for the mixed gradient term which trans-

one type of saddle point, resulting in the conventional singldorms as follows:
peak structure. In the oblique lattice, which is characteristic

of a d-wave superconductor, the two nonequivalent saddigs d* s dd*
points give rise to two distinct Van Hove type singularities. gy gy  dx dx
Appearance of two distinct peaks @SR or NMR spectra

would provide evidence fod-wave behavior, since the ex- Js aod*  9s od*
planations of oblique vortex lattice that invoke anisotropy =(0052a—3in2a)(?7— X X
within a single component mod&ldo not lead to this effect. yo oy X ox

s ad* N ds ad*
ax' ay' gy’ ox’

+ 2sinacosy +c.c. (86

E. Orientation of the vortex lattice

The last subject that we want to address here concerns ti@ne can now derive and analyze the linearized field equa-
spatial orientation of the vortex lattice with respect to thetions using the rotated coordinates’ {y’) in exactly the
crystalline axes of the superconductor. From Fig. 11, it casame way as before, and the anglébecomes just another
be seen that the principal axes of the vortex lattice are nofariational parameter with respect to which the free energy is
aligned with any of the high symmetry directions of the un-minimized. It turns out that it is possible to write down the
derlying crystal. Instead, it is th€10) direction of the vor-  |inearized equations fa andd that are identical to Eq$45)
tex lattice that coincides with th@.00) or (010) directions of  with V changed toV= ¢, (hw/2)(e?“a’a’+e ?“aa). In
the crystal. It turns out that the construction of the vortexsuch a case, one expects there will be a constant phase dif-

lattice as presented above forces this particular orientatioference 2v between thes andd components, and the appro-
and does not allow for identical configurations that are ropriate variational solution is of the form

tated by some angler. In the traditional one component Car 4+ _

case, this is not a concern since the free energy has full dx)=e "o  (X)+ e~ (X)],

rotational invariance. In the present case, however, we must s(X)=€"Te* (X)— e~ (X)], (87)

take a closer look at these rotated configurations as we have

terms in the free energy that break rotational invariance. It isvheree ™ and ¢~ are the normalized lowest eigenfunctions
conceivable that such rotated configurations might in fact bef a harmonic oscillator as defined by Eg49). The energy
lower in free energy than the ones we have considered so fagigenvalue is easily evaluated, and we obtain a generaliza-
In what follows we show by an explicit calculation that this tion of Eq. (51)
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(E)_T—T*+l hw Lt e co22etand L (1 2 1] 1 [ 2tand Lt e sir22 hwc) 1—tartd
AT AT g\ aT)| (AT ecos2ajtand+(1-e,cos2a) e = 5\ Tl 1T &S K Tiarte |-
(88)

It is a simple matter to minimiz€E) with respect taw, and  nontrivial topological structure of a single vortex could be
one finds that minima can occur only far=0,* 7/2,* 7. probed experimentally. There are clearly many complicating
Thus we are led to the conclusion that within our variationalfactors which are likely to render this task very difficult. The
solution the most stable vortex lattice is the one aligned withmain challenge arises from the fact that one expects the in-
the underlying crystal as described abof&. Fig. 1.  duceds component to be small, on the order of few percent
Among the fourth order terms in the free energy onlyof d. Such a small admixture af might be hard to detect
Ba(s*?d*+s?d*?) depends orw. This dependence is par- girectly, and the corresponding distortion of tthavave am-
ticularly simple; upon rotation the constast, changes to pitude, supercurrent, and magnetic field distributions will
B4cos4x. Clearly, this term only has minima for trivial val- 3150 pe small. It might in principle be possible to probe ghe
ues ofa=0,x7/2, ..., so theabove conqlusmn should hold component by scanning Josephson tunneling frors-amve
even when the fourth order terms are included. In order tCEip, which by symmetry would not couple to the dominahnt

verify that this conclusion is not altered by some complicateq, 5,6 - \with sufficient resolution such an experiment could

K\terplay _betweenhangular .depenld(_anqes.fpfand fq, we detect strong anisotropy in th& component and possibly
ave carried out the numengal minimization of .the. free €N also the extra nodes. The internal structure of a vortex will
ergy of the rotated vortex lattice, along the lines indicated for e -
the casex=0. We find that, for all the regions of parameter also h_ave an eﬁect on the transport p_ropernes, g, itis
space that were investigated, the absolute minimum of thgoncelvable that it may lead to chgnges n the_Magnus force
free energy occurs far=0. As a consistency check we have actln.g on a vo.rtex in a'current field. These issues clearly
also verified that identical minima are found for r€quire further investigation. o
a=+/2,= 7, which corresponds to the discrete rotations Finally we note that although a finite induced
under theD,, group. s-component .vv.|II_ restore the gap glong the| §|ky|.d|rec—

The above conclusion concerning the orientation of thdions in the vicinity of the core, this will not invalidate the
vortex lattice may be understood by analyzing the mixedPrediction of Volovik® regarding the~ VH contribution to
gradient term in the free energy density). Its structure the density of statefDOS) on the Fermi surface, which was
forces the vortex lattice to align in such a way that the greatrecegtly confirmed by specific heat measurement by Moler
est gradient of order parameters is along one axis, while thgt @l Volovik's prediction is based on the observation
smallest possible gradient is along the other axis. An arloriginally used by Yip and Sauf$to predict the nonlinear

rangement of vortices such as the one shown in Fig. 11 defiMeissner effegtthat the quasiparticle excitation spectrum is

core, with the dominant contribution coming from quasipar-
ticles far from the core in position space and close to the
nodes in momentum space. Since the amplitude ofsthe
The main goal of this work was to present a detailed studyzomponent far from the core vanishes as” the reduction
of the vortex state in @-wave superconductor, focusing on of the DOS will be always negligible beyond a certain dis-
the properties arising from-d mixing that have no analog in tance from the core compared to the energy shift due to
conventional superconductors. Analysis of the vortex state isuperfluid velocity which decays only asr 1/Thus at rela-
done in two regimes: in the vicinity dfl,; where the prop- tively small fields compared td.,, such as were used in the
erties of isolated vortex lines can be studied, and h&gr  specific heat measuremenritghere will be no correction to
where the collective properties of vortices forming a densghe Volovik’s result from the induced wave. At stronger
lattice are important. fields, when the vortices are closely spaced, corrections may
For the single vortex line the topological structure of theappear; however, in such a case one expects Volovik's deri-
induceds-wave order parameter is highly nontrivial, consist- vation to break down since the concept of an isolated vortex
ing of one counter-rotating unit vortex, centered at the corewith a well defined asymptotic flow field loses its meaning in
surrounded by four additional positive vortices located symthe dense Abrikosov lattice.
metrically at a distance of several coherence lengths from the The vortex lattice neaH, is in general oblique for a
core. A result of this work is the realization that the aboved-wave superconductor. The precise shape determined by an
structure will occur for all parameter configurations that giveangle ¢ between primitive vectors depends in a complicated
rise to stabled wave in the bulk(provided one is well into way on the parameters in the GL free energy, most strongly
the type-Il regimg and not only in the vicinity off, as was  on the mixed gradient coupling, and on magnetic field via
originally suggested® This conclusion is confirmed by an the parameteA =% w /AT, which also determine the rela-
explicit integration of the GL equations over the wide rangetive magnitude ofs. Quite generally, whene,=0, the
of parameters, and also by the calculations of Ichiokas-component vanishes and the lattice is triangular. By in-
et al,*” who find analogous behavior using the quasiclassicatreasinge, and A the lattice is continuously deformed, be-
Eilenberger equations. The question arises as to whether thioming obligue and eventually square. Observation of an

V. SUMMARY AND DISCUSSION
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oblique flux lattice with¢=73° was reported by Keimer w1=15 (B1+ Bat Bs+2B4),

et al?? using small angle neutron scattering from YBCO in

magnetic fields 0.5 FH= 5 T. This would be in agreement =1 (B1+ Br—2B4),

with our result, although as was pointed out by Walker and

Timusk® the observed distortion may also be accounted for H3=15 (= B1+B2),

by the intrinsica-b plane anisotropy of the orthorhombic

YBCO crystal. More recently an oblique vortex lattice with ws= 15 (B1+ Ba— B3+20). (A2)

¢=77° was found in YBCO using STM by Maggio-Aprile
et al?® This technique also revealed elongated vortex core
with the ratio of principal axes about 1.5. If, as noted by
authors, this elongation was due to theéb anisotropy in
coherence lengths, within a simple London modet-afave
superconductivity this would lead to the flux lattice with an (P*2P2)=> (V* ¥ (P ¥ _)_,, (A3)
angle inconsistent with the actual observed value of 77°. k

Thus it would appear that tha-b anisotropy alone cannot where we have used only the basic properties of the Fourier
explain the observed distortion in the vortex lattice and adseries. The utility of this formulation lies in the fact that
ditional effects, such as the internal Symmetry of the Ordetomponents of the form\llzqfﬁ>k can be expressed in terms
parameter, must be invoked in order to account for the exof simple Gaussians, and consequently the summations indi-

perime'ntal datg. In thi§ respect it would be most intere;ting;ated in Eq.(A3) converge very rapidly. In particular it is
to see if an oblique lattice can also be established experimeqmeful to define

tally in truly tetragonal superconductors. Alternatively it

would be desirable to study the analogous GL theory for the (VoW g =axQ,5(k), (A4)
D, orthorhombic symmetry; unfortunately such a theory is . )

complicated and contains even more phenomenological pdYnere the coefficienta, are given by Eq(78). The factors
rameters so that a quantitative comparison with experiment«s(k) contain all the dependence on the lattice structure
would be difficult}” An alternative way of distinguishing and can be evaluated by explicit integration; we have
between the effects @&-b anisotropy andl-wave symmetry 1 |2

is to study the magnetic field distributions in the vortex lat- Q. (k)= —exp‘ — _[(kx/ga)2+(ky%)2]],

tice. The present theory predicts a double-peak structure in Lx 4

1SR or NMR line shapes whenever the flux lattice is ob- 5

lique, while interpretations based on simple scaling O, (k)= i [ 2 exol — |_ 2 [K2+ K2
argument® lead to conventional single-peak line shapes. ap Ly Vo +o 4 oi+02_ oy

+ —

The easiest way to evaluate the spatial averages is to express
them as Fourier series. For example, one can write the typi-
cal member as follows:
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part of the work was done. (A6) we have used the symmetty, ;(k) =Q,5(—K) which
is apparent from EQgs(A5), and we use the notation
APPENDIX: EVALUATION OF QUARTIC AVERAGES (f,) a=—a.
AND (h?) Let us now turn to calculation c(hi). A similar approach
as above will work here if we write

We first evaluate the contribution dff,). For the pur- )
poses of calculation it is convenient to exprégg in terms (hs)= ; hs(k)hs(—k). (A7)
of the functions¥ .. ,
The Fourier componentl (k) can be deduced from Eq.

(80),
(Fay= (| W o | M)+ o[V L AW D)+ gV [P WH) e* 4 , ,
hg(k)=—méd mC[Zo<|‘I’+| +|WP %)
SRTITG A e S R R Al
Rl ] (AD VL S (A8)

where the constan{g are given as follows where we have introduced the quantity
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k2— § _ Ba and x can now be evaluated numerically using the rap-
e if k#0 idly converging sumgA6) and (A10). However, following
k=) ™y (A9 the work of Kleiner, Roth, and Autlét, it is practical to
0, if k=0 carry out the minimization with respect to the constarys

and c; analytically. This reduces the relevant parameter
space to a single parameter, the geometric iatioL, /L .

él'o this end we have purposely singled out the dependence on
these parameters in the expressions (ffy) and (h2). In
particular, the entire dependenceayandc, is contained in

the constants,, and both(f,) and(h?) are of the form

which allows all of the Fourier components bf(k) to be
expressed by a single equati¢h8). A compact expression
for the average squared field can be written in terms of th
functions( ,4(k) and has the following form:

*

2
<h§>:77252(e ) ; ad [ (Zo+ 21724 1+ (K)

mc
aia_ i f(kqy,k
(20— m) Q- (K] (A10) > aad )
Let us finally write, for the purpose of completeness, the
expression for the average field: :kzk {ei-z-klkz[cocr(cz_'_(_ 1)k1010’|:2+1]}2f(k1,k2),

« 1k2

(A12)

(h)=hy(k=0)=— 76243, )[n++(0>+n_<o>]

me wheref(kq,k,) is independent ok, andc,. Our goal here
Zy[e*h ) 5 is to factor out the entire dependence of this expression on
= 2w | o] (ol “+ el (A11)  the constants, andc;. This is done by considering sepa-
X rately the cases whdq , k, are even and odd, and recalling
We have now expressed all the averages that are need#tht by assumptiort,,=c, and c,,;=c;. We obtain an

to minimize the Gibbs free energ8). In principle, both  expression of the following form:

(Icol*+lcal®) X [F(2kq,2kg) + f(2ky+1,2kp) 1+ (ches 2+ ch2cd) D [F(2ky, 2o+ 1) — f(2ky+1,2p+1)]
K1k kika

+2[coldca]?D) [F(2kq,2K,) —f(2Ky+1,2Ky) + F(2Ky,2ko+ 1)+ f (2K, + 1,2, +1]. (A13)
kikp

Clearly, the entire denominatom&f4>—<h§) of the free energy66) can be written in the above form, where the dependence
on constantg, andc, is explicitly shown. Combining this with the expressiohll) for the average induced fielth,) it is
easy to see that the total free enef§g) can be written schematically as

B (ol +[caf?)?
(Icol*+1c1]*)Go(R) +2|co|?|c1]°G1(R) + 2Recget ) Go(R)

(A14)

whereG;(R) are complicated functions & and other GL parameters, but are independeng@idc,. The above expression
can be easily minimized with respect¢g andc,; one obtains that a condition for the minimumdg= £icy. Clearly, the
value of the expressio(A14) only depends on the ratio, /cy, so we can arbitrarily choose

Cozl, Cj_:i. (A15)
With this choice, we have an identity

aa_x=[(—1)*+(-1)k]? (A16)

which will simplify evaluation of the sums ifff,) and (h2). Also, the expression for the average induced figdd1)
simplifies:

Zo[€*h
(hs)=—4775L—X( mc). (A17)
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