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We discuss the physics of the vortex state in ad-wave superconductor, using the phenomenological
Ginzburg-Landau theory, where many unusual phenomena arise from the small admixture of thes-wave
component induced by spatial variations in the dominantd wave. Properties of an isolated vortex and of the
Abrikosov vortex lattice are studied by means of analytic and numerical methods. An isolated vortex has a
considerable structure, with four ‘‘extra’’ nodes in thes-wave order parameter symmerically placed around the
core and an amplitude forming a four-lobe profile decaying as 1/r 2 at large distances. The supercurrent and
magnetic-field distributions are also calculated. The Abrikosov lattice is in general oblique with the precise
shape determined by the magnetic field ands-d mixing parameterev . The magnetic-field distribution in the
Abrikosov state has two nonequivalent saddle points resulting in the prediction of a double peak line shape in
mSR and NMR experiments as a test of ad-wave symmetry. Detailed comparison is made with existing
experimental data and experiments are proposed to test for the predicted effects.

I. INTRODUCTION

After several years of debate there is growing agreement
that the symmetry of the order parameter in the high-Tc cu-
prate superconductors is not a conventional isotropics wave,
but has a more complicated structure involving nodes in the
gap. Recent experiments sensitive to the phase of the order
parameter1,2 provide strong evidence for thedx22y2 symme-
try with lines of nodes along theukxu5ukyu directions. Sup-
port for thed-wave symmetry also arises from specific heat
measurements3 and the recent observation of a nonlinear
Meisner effect.4 Photoemission studies,5 Josephson
interference,6 and c-axis Josephson tunneling7 experiments
have been interpreted as being inconsistent with a pure
d-wave order parameter. However, most of these inconsis-
tencies can be reconciled by allowing for states of mixed
symmetry.8 In orthorhombic materials, such as Y-Ba-Cu-O
~YBCO! and Bi-Sr-Ca-Cu-O~BiSCCO!, if the dominant or-
der parameter isd wave, a smalls component will be
present9 even in a strictly uniform system. In tetragonal
d-wave materials, which will be considered in this work, this
s-wave component vanishes identically in the bulk; however
it may be nucleated locally by perturbations which induce
spatial variations of thed-wave order parameter,10,11e.g., by
external magnetic fields, surfaces or impurities. In the
present work we consider the vortex state of ad-wave super-
conductor which results from applying a uniform magnetic
field parallel to thec axis of the superconductor. We study
the properties of isolated vortices and of the Abrikosov vor-
tex lattice, both of which which differ in many aspects from
those found in conventional superconductors, owing to the
induceds-wave component. These effects will play an im-
portant role in transport properties of high-Tc materials,

which in turn are crucial for all practical applications. Un-
derstanding the static properties ofd-wave vortices is a first
important step toward the description of the more complex
dynamical effects in the presence of transport currents, sur-
faces, impurities, etc.

The problem of an isolated vortex line in ad-wave super-
conductor was first studied by Soininen, Kallin, and
Berlinsky11 who considered a simple microscopic lattice
model for electrons with on-site repulsion and nearest neigh-
bor attraction. The resulting Bogoliubov–de Gennes~BdG!
equations were solved numerically on finite clusters to obtain
the order parameter distribution for a single vortex. It was
found that a substantials-wave component is nucleated near
the vortex core with opposite winding of phase relative to the
d component,10 and a distinct four-lobe shape of the ampli-
tude. These results were interpreted with help of the phenom-
enological Ginzburg-Landau~GL! theory,12–14 where the
nonzeros is driven by a mixed gradient coupling to thed
component. Ren, Xu, and Ting15 later attempted a Gorkov-
type derivation of the GL theory from a continuum mean
field model ofd-wave superconductivity and used the result-
ing free energy to discuss the qualitative properties of a
single vortex. They obtained useful asymptotic expressions
for the behavior of the order parameters in various regions of
the vortex. Wang and MacDonald16 investigated numerically
the electronic excitations inside and outside the cores of
s-wave andd-wave vortices using the self-consistent BdG
equations. They found a distinctly different behavior of the
T50 quasiparticle density of states in the core of thed-wave
vortex compared to that in thes-wave core within the same
model. Very recently Ichiokaet al.17 analyzed the structure
of a d-wave vortex within the quasi-classical Eilenberger
formalism. Their results appear to agree in every aspect with
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the results of GL theory presented below and in an earlier
letter.18 While the properties of an isolated vortex are now
relatively well understood, those of the vortex lattice have
remained largely unexplored.19

Much of the work discussed above is based on a particular
~effective! microscopic model of superconductivity. How-
ever there is presently no general agreement on the funda-
mental mechanism of pairing in the high-Tc cuprates. A good
alternative in such a situation is to study the phenomenologi-
cal GL theory, which is based only upon general concepts
related to symmetries of the system. Application of such
theory to conventional (s-wave! superconductors has dem-
onstrated its ability to predict virtually all of their phenom-
enological properties. In Sec. II, we review the GL theory
appropriate for thed-wave superconductor, which involves
both d-wave and an induceds-wave order parameter gener-
ated through the mixed gradient coupling. We discuss some
of the general properties of this free energy and derive the
corresponding GL differential equations as well as an expres-
sion for the supercurrent. In doing this, and throughout the
entire paper, we restrict ourselves to the simple case of te-
tragonal symmetry, described by the point groupD4 . Thus
the results presented below are strictly applicable only to
truly tetragonal cuprates~such as Tl2Ba2CuO61d); however
it is resonable to expect that the more common class of
orthorhombic materials will show at least qualitatively simi-
lar behavior.

Sections III and IV are devoted to the study of a single
vortex and of the Abrikosov vortex lattice. Some of the re-
sults described here have been previously reported in a
letter.18 Here we offer a more comprehensive treatment of
the problem, and we present a number of previously unpub-
lished results. For the single vortex we first review known
analytical results and complement these by several observa-
tions. We then carry out numerical integration of the GL
equations for the single vortex geometry. In the region close
to the vortex core our results confirm previous work within
the BdG framework.11 In particular we find the induced
s-wave order parameter which has the expected four-lobe
structure with minima along6x, 6y axes and maxima
along theuxu5uyu diagonals, and the phase winding in the
opposite sense relative to thed wave. Farther from the core
the GL theory yields results that were inaccessible to the
BdG treatment due to the cluster size limitations. At a dis-
tance of several coherence lengths from the core the winding
number of thes wave changes from21 to 13 resulting in
four ‘‘extra’’ nodes in thes-wave order parameter symmetri-
cally placed along the6x, 6y axes. Analysis of the asymp-
totic solutions shows that these nodes are necessarily present
in the s component, whenever pured-wave solutions are
thermodynamically stable in the bulk. Our numerical work
supports this conclusion. Quite generally the distribution of
the d component, as well as the supercurrent and the mag-
netic field, exhibit a fourfold anisotropy, the magnitude of
which is proportional to the relative magnitude ofs.

As was mentioned above, the problem of the vortex lat-
tice, which forms in magnetic fields close to the upper criti-
cal field Hc2 , has not been previously addressed for a
d-wave superconductor. In view of the fourfold anisotropy of
individual vortices one may expect that the conventional tri-
angular Abrikosov lattice20,21 will be modified, especially

since, even in the absence of anisotropy, the difference in the
free energy between triangular and square lattices is ex-
tremely small ~less than 2%!. Moreover, recent neutron
scattering22 and scanning tunneling microscopy~STM! ~Ref.
23! experiments reveal an oblique vortex lattice in YBCO in
strong magnetic fields. In Sec. IV we solve for the structure
of the vortex lattice in the vicinity ofHc2 . We generalize the
classic Abrikosov20 treatment to thed-wave case by first
minimizing the quadratic part of the free energy using a
Gaussian variational wave function, and then forming a pe-
riodic array of vortices from linear combination of these
functions. We include the effects of the vector potential cou-
pling self-consistently, thus improving upon our original
calculation18 which neglected these effects. The resulting
vortex lattice is found to be oblique, with an angle between
primitive vectors ranging from 60° to 90°, depending on the
strength of the mixed gradient coupling and magnetic field
and to a lesser extent on the other parameters in the GL free
energy.

In Sec. V we summarize our results and discuss in some
detail their relevance to the existing experimental data. We
also propose experiments that might directly test some of our
predictions.

II. GINZBURG-LANDAU THEORY OF A
SUPERCONDUCTOR WITH d-WAVE PAIRING

The Ginzburg-Landau~GL! theory for a superconductor
with dx22y2 symmetry has been described by Joynt.12 The
free energy density is expressed in terms of two components
of the order parameter,s(r ) andd(r ), with appropriate sym-
metries, as follows:

f5asusu21adudu21b1usu41b2udu41b3usu2udu21b4~s*
2d2

1d* 2s2!1gsuPW su21gduPW du21gv@~Pys!* ~Pyd!

2~Pxs!* ~Pxd!1 c.c.#1h2/8p. ~1!

HerePW 52 i¹2e*A/\c, and we assume thatd is a critical
order parameter, i.e., we takeas5a8(T2Ts) and
ad5a8(T2Td) with Ts,Td . The use of the same tempera-
ture derivative,a8, for as and ad is justified below. This
also allows us to seta851 in the subsequent analysis. We
assume thatb1 , b2 , b3 , b4 , gs andgd are all positive as it
is suggested by a simple lattice model11 and a Gorkov-type
calculation within the continuum weak coupling theory.15We
also choosegv to be positive throughout this work.24 The
parametersg are related to the effective masses in the usual
way, withg i5\2/2mi* , for i5s,d,v. We shall be interested
in the case when pured-wave state is stable in the bulk in the
absence of perturbations, i.e., situations whenudu.0, s50.
The condition for such a state to be thermodynamically
stable is11

ad,0, 2b2as1~b322ub4u!uadu.0. ~2!

With a finited component, the second transition temperature
Ts will be renormalized by the fourth order invariants. In
particular the transition to the state with finite bulks-wave
component will occur at
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Ts*5Ts2
~b322ub4u!

2b22~b322ub4u!
~Td2Ts!. ~3!

Thus, even if the bareTs is close toTd , the true transition
temperatureTs* may be much lower. Moreover, when
2b22(b322ub4u)<0, a second transition will never occur
and we may conclude that the precise value ofTs is not very
important for the physics.

There are various ways of interpretingf , some of which

have been discussed by Joynt12 and by Volovik.10 Here we
provide an interpretation in terms of nearest neighbor bond
fieldsv(r ) andh(r ). These fields describe the superconduct-
ing pairing amplitudes on the vertical (v) and horizontal
(h) bonds of the square lattice representing the crystalline
structure of the cuprate superconductor, and arise naturally in
the simple mean field lattice models of superconductivity
with on site repulsion and nearest neighbor attraction be-
tween electrons.11,25For tetragonal symmetry, the free energy
f b may be written in terms of these bond fields as follows:

f b5a0~ uvu21uhu2!1e~vh*1hv* !1gL~ uPxhu21uPyvu2!1gT~ uPyhu21uPxvu2!

1gC@~Pxh!~Pxv !*1~Pyh!~Pyv !*1c.c.#1b~ uhu41uvu4!1h2/8p. ~4!

In Eq. ~4!, a05a8(T2T0), and e stabilizes the relative
phase ofv andh. If e is positive, then a relative phase of
p is stabilized, and the stable state hasd-wave symmetry. If
e,0, then the quadratic terms inf b are minimized whenv
andh have the same phase, giving a state with~extended! s
symmetry. The first two coefficients of the gradient terms
gL andgT involve derivatives along~e.g.,Pyv) and trans-
verse ~e.g.,Pxv) to the bond directions. In general, these
two coefficients will be different. The fourth order terms,
proportional tob, which are included inf b are the terms
which would arise in the mean field theory ofXY spins. In
general, a mean field theory for fermions will have other
terms. However, it is instructive to consider the conse-
quences of these simple fourth order terms, i.e.,uhu41uvu4.

The orthonormal transformation, s5(h1v)/A2,
d5(v2h)/A2, allows us to express the coefficients of Eq.
~1! in terms of the coefficients inf b . The results are

as5a02e, ad5a01e, ~5!

b15b25b45b, b354b, ~6!

gs5~gL1gT!/21gC ,

gd5~gL1gT!/22gC , gv5~gL2gT!/2. ~7!

The statement that the same value ofa8 occurs inas and
ad is equivalent to the statement that the temperature deriva-
tive of e is negligible in comparison to the temperature de-
rivative ofa0 . If that is not the case, then this approximation
is not valid. In what follows we shall adopt the above ap-
proximation for computational convenience, but we note that
it is in no way essential for the conclusions of this work, and
relaxing it only leads to small quantitative changes. The
fourth order terms,uhu41uvu4, generate all of the terms in
Eq. ~1! with comparable magnitudes; in fact the resulting
relative magnitudes ofb i ’s are very close to the weak cou-
pling values.15 The mixed gradient term,gv , arises from the
differencein the coefficients of the longitudinal and trans-
verse gradient terms in the bond picture. Of course, this dif-
ference could be zero, but that is not expected on the basis of
symmetry.

To study the implications of the above free energy~1! for
the structure of the isolated vortex line and the vortex lattice
the first necessary step is to write down the field equations
for the order parameters. These are obtained in the standard
way by varying the free energy~1! with respect to conjugate
fieldsd* ands* . We have

~gdP
21ad!d1gv~Py

22Px
2!s12b2udu2d1b3usu2d

12b4s
2d*50, ~8a!

~gsP
21as!s1gv~Py

22Px
2!d12b1us2us1b3udu2s

12b4d
2s*50. ~8b!

In a similar manner, one obtains the current density in thexy
plane:

j5
e* \

2md*
@d* ~PW d!1~PW d!* d#1

e* \

2ms*
@s* ~PW s!1~PW s!* s#

2 x̂
e* \

2mv*
@s* ~Pxd!1~Pxs!* d1 c.c.#

1 ŷ
e* \

2mv*
@s* ~Pyd!1~Pys!* d1 c.c.#. ~9!

In carrying through the variational procedure it is necessary
to impose appropriate boundary conditions for the
superconductor-vacuum boundary. For our two component
system these turn out to be

n•@gdPW d1gv~ ŷPys2 x̂Pxs!#50, ~10a!

n•@gsPW s1gv~ ŷPyd2 x̂Pxd!#50, ~10b!

wheren is the unit vector normal to the surface. By combin-
ing the above two equations and comparing with the expres-
sion for the current density~9!, one can easily deduce that

n• j uboundary50,

i.e., the normal component of supercurrent vanishes, as re-
quired on the superconductor-vacuum boundary. We also
note that for the special case of a flat boundary along say the
yz plane, conditions ~10! acquire the simple form
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Pxs5Pxd50, which is analogous to the boundary condition
in the usual one component system.

The above set of equations constitutes a complete
Ginzburg-Landau theory for a superconductor withdx22y2

pairing. This full theory is evidently too complicated for
most practical purposes, and one must resort to approxima-
tions in order to obtain useful results. The rest of this paper is
devoted to two such approximations valid in weak and strong
magnetic fields.

III. NEAR Hc1: ISOLATED VORTEX LINE

When the applied magnetic fieldH is close to the lower
critical field,Hc1 , spacing between individual vortex lines is
large and it is sufficient to consider structure of a single
isolated vortex. As mentioned in the Introduction, a single
vortex line in ad-wave superconductor exhibits rich and
rather fascinating properties that have no analog in conven-
tional superconductors with a single component order param-
eter. In the present section we discuss these properties in
some detail. First we review the analytical results concerning
the distribution of the order parameter, supercurrent and
magnetic field in various regions of the vortex. Second, we
carry out an explicit numerical integration of the GL equa-
tions for the single vortex geometry to confirm and comple-
ment these analytic solutions.

A. Analytic solutions

As is appropriate in the case of high-Tc cuprate supercon-
ductors, we shall consider strongly type-II materials, in
which magnetic fields vary over length scalel that is much
larger than the relevant coherence lengthj over which sig-
nificant variations of the order parameter can occur. In what
follows we focus only on situations where magnetic field is
parallel to thec axis of the superconductor.

For the problem of a single vortex line it will be conve-
nient to work in the cylindrical gauge expressed in the usual
polar coordinates (r ,w),

A5ŵA~r !, ~11!

with

A~r !5
1

r E0
r

r 8h~r 8!dr8. ~12!

By adopting this particular gauge we restrict ourselves to
magnetic fieldsh(r )5 ẑh(r ) that have no angular depen-
dence. While this is clearly not exact for thed-wave vortex,
we shall see that quite generally the part ofh that is not
rotationally invariant is small and can thus be computed as a
perturbative correction to~11!.

Let us first look at the behavior of the order parameter
near the center of the vortex, asr→0. In the relevant region
where r!l the magnetic field can be treated as constant,
h.h(0)[h0 and the vector potential becomes

A~r !5 1
2h0r . ~13!

For the singly quantized vortexh0 can be roughly estimated
by requiring that the area;pl2 contains magnetic flux
equal to a single flux quantumF05hc/e* . This gives

h0.F0 /pl2. The problem is now to find simultaneous so-
lutions to the two GL equations~8! for s andd, to leading
order as r→0. Qualitatively it is clear that at the core
(r50) bothd ands vanish. Moving outward from the core,
the amplitude ofd increases and generates nonzeros via
the mixed gradient coupling. Aroundr5jd[Agd /uadu the
amplitude ofd starts to level off, attaining eventually its
bulk valued0[Auadu/2b2, which causesusu to reach a maxi-
mum and then decrease to 0 asr→`. This qualitative pic-
ture suggests that in order to study the leading order behavior
we may first solve Eq.~8a! for d assumings50, and then
obtain the leading behavior ofs from Eq. ~8b!. With this
assumption Eq.~8a! becomes

~ad1gdP
2!d12b2udu2d50, ~14!

which is identical to the GL equation for the conventional
one component superconductor. The asymptotic solution to
this equation near the core is well known to be26

d~r ,w!.~d1r1d3r
3!eiw, ~15!

where constantd3 is given by

d352
d1
8jd

2 @112pjd
2h0 /F0#, ~16!

andd1 can be obtained by full integration of Eq.~14!. Note
that ordinarily only the leading dependence
d(r ,w).d1re

iw is quoted; however, it turns out that in our
case the termd3r

3eiw is necessary to obtain a consistent
expression fors(r ,w). In Eq. ~16! the factorF0/2pjd

2 divid-
ing h0 is of the order of the zero temperature upper critical
field Hc2(0). Since we are interested in the region close to
Hc1 , we haveh0!Hc2 and in what follows we shall consis-
tently neglect terms;h0 /Hc2 compared to unity. With this
simplification Eq.~16! becomes

d3.2d1/8jd
2 . ~17!

The leading behavior ofs(r ,w) now can be obtained from
the linearized version of Eq.~8b! which reads

~as1gsP
2!s1gv~Py

22Px
2!d50, ~18!

by substituting ford from Eq. ~15!. Evaluating the action of
the (Py

22Px
2) operator in polar coordinates gives

~Py
22Px

2!d~r ,w!52S e* h0\c Dd1re2 iw1d3r ~3e
2 iw2e3iw!,

~19!

which suggests that thes component is of the form

s~r ,w!5s1re
2 iw1s3r

3e3iw. ~20!

Comparing the coefficients in front of different phase factors
and again neglecting terms;h0 /Hc2(0), weobtain

s15
3

8 S gv

asjd
2Dd1 , ~21!

and, to the same order,s350.
In summary, the leading order behavior of the order pa-

rameter near the core is
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d~r ,w!5d1re
iw, ~22a!

s~r ,w!5
3

8 S gv

asjd
2Dd1re2 iw. ~22b!

The most interesting feature of this result is the opposite
winding of the s-wave component relative tod. This was
pointed out by Volovik10 based on a general symmetry argu-
ment. The solution of the form~22! was also derived by Ren
et al.,15 however, the explicit form of the prefactor in thes
component is a result of this work. Knowledge of this pref-
actor will allow us to give a simple but accurate estimate of
the maximums-wave amplitude,smax[max(usu), induced in
the vicinity of the vortex core. In view of the fact that far
outside the cores decays algebraically withr ~see below!,
such an estimate is quite important for the assessment of the
relative strength of the induceds-wave component and the
various phenomena that its presence may lead to. The esti-
mate is based on the assumption that near the cored ands
rise over approximately the same length scale;jd . In par-
ticular if we assume that atr5jd the amplitude ofd is
approximately half of its bulk value26 d0 , from Eq.~22a! we
havejdd1.d0/2. Assuming further thatusu attains its maxi-
mum also aroundr5jd we arrive at the following estimate:

smax
d0

.
3

16

gv

asjd
2 . ~23!

A similar estimate was given previously by us,18 based on a
simple argument involving the competition between the
mixed gradient term and other second order invariants in the
free energy. This argument gave the correct functional de-
pendence on the GL parameters, however it missed the nu-
merical prefactor 3/1650.1875, which is important when in-
vestigating the quantitative properties of the above solution.
Comparison to the numerical results~see the following sub-
section! shows that the above estimate~23! is correct to
within about 20%, as long assmax,d0/4. Whensmax be-
comes larger, the asymptotic solution~22! is no longer justi-
fied since the conditionusu!udu is violated and our perturba-
tive approach starts to break down.

A noteworthy consequence of Eq.~23! is the temperature
dependence ofsmax nearTd . If we recall that close toTd we
haved0;A12T/Td andjd;1/A12T/Td, it follows that

smax;~12T/Td!
3/2. ~24!

Faster decay of thes component nearTd compared tod is a
direct consequence of the fact that as a noncritical order pa-
rameter the former is driven by the spatial variations of the
latter.27 Thus, sufficiently close toTd , thes component will
always be negligible compared tod, and in many aspects a
d-wave superconductor will behave very much like a con-
ventional single component superconductor. Equation~24!
also self-consistently justifies the above perturbative solution
of the GL equations near the core which assumesusu to be
small compared toudu; sincesmax/d0;(12T/Td), the con-
dition usu!udu will be always fulfilled sufficiently close to
Td .

The supercurrent and the local magnetic field near the
vortex core can be calculated from Eq.~9! using the order
parameters given by Eq.~22!. We obtain, to leading order in
r ,

j s5d1
2 2gde*

\ F12S 38 gv

asjd
2D 2G ŵr , ~25!

h5 ẑH h02d1
2 4pgde*

c\ F12S 38 gv

asjd
2D 2G r 2J . ~26!

Expression~25! for the supercurrent shows explicitly that the
s component with opposite winding of the phase relative tod
in fact diminishesthe total supercurrent, resulting in weaker
shielding of the external magnetic field compared to the con-
ventional superconductor.

We next consider the region outside the core,jd!r!l.
We shall assume that in this regiond has already reached its
limiting form

d~r ,w!5d0e
iw. ~27!

Because of the conditionr!l, the magnetic field can still be
treated to a reasonable approximation as constant, and the
vector potential is thus given by Eq.~13!. It is, however, easy
to show that coupling to the latter can be ignored in this
region. In particular, rewriting all the relevant operators in
polar cylindrical coordinates, one can easily show that for
d(r ,w) given by ~27! it holds that P2d(r ,w)
5d0r

22(211r 2/l2)2. Clearly, the second term in the
brackets~which originates from the vector potentialA) can
be safely ignored with respect to unity, since, by assumption,
r /l!1. With some effort, one can demonstrate that the vec-
tor potential is also negligible in the terms
(Py

22Px
2)d(r ,w).

The problem of finding the asymptotic solution outside
the core region reduces to solving Eq.~8b! for s(r ,w) with d
given by~27! andA50, and the additional assumptions that
usu!udu and u¹su!u¹du. These allow one to consider only
the linearized equation in which the relevant terms are

gv~]x
22]y

2!d1ass1b3udu2s12b4d
2s*50. ~28!

In polar coordinates,

~]x
22]y

2!d0e
iw5

1

2r 2
~3e3iw2e2 iw!d0 , ~29!

suggesting that the solution to Eq.~28! is of the form

s~r ,w!5
1

r 2
~ f 1e

2 iw1 f 3e
3iw!. ~30!

Substitution in Eq.~28! then gives

f 15
1

2
gvd0

~as1b3d0
2!16b4d0

2

~as1b3d0
2!224~b4d0

2!2
, ~31!

f 352
1

2
gvd0

3~as1b3d0
2!12b4d0

2

~as1b3d0
2!224~b4d0

2!2
. ~32!

Asymptotic solution of this form was obtained by Ren
et al.15 From the knowledge of the order parameters
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d(r ,w) ands(r ,w) one can compute the corresponding dis-
tributions of the supercurrent and the magnetic field. In order
to do this consistently, one has to include corrections
;1/r 2 to the d component@such as were neglected in Eq.
~27!#, as these are needed to insure that the continuity equa-
tion ¹• j50 is satisfied. The resulting formulas can be found
in Ref. 15.

There are two important physical consequences of Eq.
~30!. First, the slow algebraic decay of thes component out-
side the core region means that asymptotically in the pres-
ence of a vortex, the superconductor is not in a pured-wave
state, rather there is a smalls-wave admixture with angle
dependent relative phase. As a result, fermionic excitations
will be gapped in this region. As demonstrated below, only at
the length scale set by the penetration depth is thes compo-
nent cut off exponentially and a pured-wave state is estab-
lished.

A second interesting property of thes-wave component
can be obtained by comparing the two solutions inside and
outside the core. Inside the core Eq.~22b! implies that the
winding number28 of the s component is21. The situation
outside the core is slightly more complex, but nearTd it
holds that f 3.23 f 1 @cf. Eqs. ~31! and ~32! in the limit
d0→0#. Thus the phase factore3iw in Eq. ~30! will dominate
the behavior ofs(r ,w) and the winding number far outside
the core will be13. For an analytic function the winding
number is a conserved topological quantity which can be
changed only by the presence of a node. This forces us to
conclude that four additional positive vortices must exist out-
side the core in thes component.18 These ‘‘extra’’ vortices
~or nodes! are a consequence of the topological constraints
imposed on the relative phases ofs andd by the structure of
the GL equations~8!. Behavior of the phasesus and ud is
schematically depicted in Fig. 1, for the two asymptotic re-
gions as given by Eqs.~22!, ~27!, and~30!. By inspection of

the figure one may conclude that the four extra vortices are
symmetrically placed on6x and6y axes, since thes com-
ponent apparently changes sign along these directions. Fi-
nally we note that there are no extra nodes in thed compo-
nent and that the total magnetic flux associated with one
vortex line ~consisting of 1d-wave node and 5s-wave
nodes! is equal to one flux quantum; there is no additional
flux associated with the extras-wave nodes.

We have argued above that the unusual nodal structure of
thed-wave vortex exists at temperatures close toTd . It can
be shown, however, that our argument has much wider va-
lidity. It is a simple matter to demonstrate that a complex
function of the formg(w)5ae2 iw2be3iw with a, b.0, will
have winding number13 for b.a ~and21 for b,a!. Ap-
plying this criterion tos(r ,w) given by Eq.~30! and with
help of relations~31! and ~32!, one obtains the following
inequality:

3~as1b3d0
2!12b4d0

2.~as1b3d0
2!16b4d0

2 , ~33!

as a requirement for the winding number13 outside the
core. Upon expressingd0

2 as uadu/2b2 and rearranging, one
finds that this inequality coincides with the stability condi-
tion ~2!. It therefore follows thatfor all combinations of GL
parameters consistent with stabled-wave state, the asymp-
totic winding number ofs outside the core is13 and the
non-trivial nodal structure described above exists. We may
conclude that the structure of the vortex core in ad-wave
superconductor isinherentlymuch more complicated than
that of a conventional vortex. This statement is valid over the
entire range of temperatures in which the GL theory is ap-
plicable, in magnetic fields weak enough so that the vortex
line can be considered isolated. Very recently, the existence
of the extra nodes has been confirmed by Ichiokaet al.,17

who investigated the distribution of order parameters near
the vortex using the quasi-classical Eilenberger equations.
On the other hand, however, recent numerical computations
within the GL theory by Xuet al.29 failed to find evidence
for this effect. One possible reason for this apparent discrep-
ancy might be that Xuet al. present their results for a
Ginzburg-Landau ratiok52 ~i.e., weak type-II superconduc-
tor!. The topological arguments in favor of extra vortices
presented above only apply to the case of strong type-II su-
perconductors (k@1) which is relevant to the high-Tc cu-
prates. It would be most interesting to see if evidence for the
nontrivial vortex structure can be established in an experi-
ment.

Finally we shall consider the region outside the core for
r@l. In this region we may still assume the asymptotic form
~27! for d(r ,w), but we can no longer treat the magnetic
field as constant. Taking into account the fact thatusu!udu in
this region, we obtain the usual London equation for the
vector potential, which in the cylindrical gauge~11! reads

¹2A52
1

l2 SA2
F0

2pr
ŵ D . ~34!

The asymptotic solution to this equation forr@l is

A5
F0

2pl Flr 2S p

2

l

r D
1/2

e2r /lG ŵ, ~35!

FIG. 1. Schematic diagram of phasesud and us of the two
components of the order parameter in the two asymptotic regions
close to and far from the vortex core, as determined from Eqs.~22b!
and ~30!. Note that this diagram is more complete than the similar
one published in Ref. 11 in that it includes the region outside the
core. The present diagram also differs from that in Ref. 15 which
shows~we believe incorrectly! thes component with opposite over-
all sign outside the core.
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which gives the usual exponentially decaying magnetic field
far from the vortex.26 Using the vector potential given by
~35! one can solve fors(r ,w) from Eq. ~8b!. The result, to
the leading order in (r /l), is

s~r ,w!5S p

2

l

r D
1/2

e2r /l~s1e
2 iw1s3e

3iw!, ~36!

with

s152s35
1

2l2

gvd0
as1~b322b4!d0

2 . ~37!

Thus, as expected, thes-wave component will be exponen-
tially small beyond distances from the core in excess ofl,
and on these large length scales thed-wave superconductor
will behave as a conventional single component type-II ma-
terial. Equations~36! and ~37! also show that to leading or-
der, the total winding number ofs(r ,w) remains undeter-
mined~see the discussion of winding above!. However, upon
computing higher order terms in (r /l) one finds that the
winding number in this region remains13, so that no addi-
tional nodes are required by topology outside the core re-
gion. If additional nodes do exist, their total winding must
add to zero.

B. Numerical results

The analytic results presented in the preceding subsection
establish rich and complex structure of the vortex line in a
d-wave superconductor; however, owing to the rather com-
plex structure of the underlying GL equations~8! the analytic
treatment is restricted to limiting cases where certain small
parameters can be identified. Consequently, the information
such a treatment provides is mainly of qualitative nature. In
order to study the problem in more detail, we have integrated
the GL equations numerically. Besides confirming the above
analytic predictions, the numerical approach is capable of
addressing the behavior of the order parameter at length
scales comparable tojd , where the analytic approach is dif-
ficult. In particular we will be most interested in the detailed
behavior of thes component near the core, focusing on its
exotic nodal structure that was predicted by topological ar-
guments.

In order to arrive at a truly selfconsistent numerical solu-
tion, one should in principle complement the GL equations
~8! by the Maxwell equation¹3hs5(4p/c) j and include
the induced magnetic fieldhs in the total vector potential
A. However, as we are mostly interested in the region near
the core (r!l), it is permissible to neglect these screening
effects and indeed the coupling to the vector potential alto-
gether, provided that we impose correct boundary conditions
for a single vortex geometry~see below!. Neglecting the vec-
tor potential leads to a significant simplification of the prob-
lem. Physically this corresponds to the extreme type-II limit,
l/j→`. For a realistic system wherel/j is finite ~but
large!, ignoring the vector potential coupling is equivalent to
neglecting terms;(r /l)2 compared to unity@see discussion
following Eq. ~27!#.

With the vector potential absent from the GL equations it
is convenient to introduce a set of dimensionless quantities
such thatas is measured in units ofuadu, b parameters in

units of 2b2 , s andd in units of the bulkd-wave gapd0 ,
and all the lengths in units ofjd . This allows one to write
the GL equations~8! in the following simple dimensionless
form:

2~¹211!d1ev~]x
22]y

2!s1udu2d1b3usu2d12b4s
2d*50,

~38a!

2~¹22as!s1ev~]x
22]y

2!d12b1us2us1b3udu2s12b4d
2s*

50, ~38b!

where ev5gv /gd and we have setgs5gd . On physical
grounds@cf. Eq. ~7!# we do not expectgs andgd to differ
dramatically; and we have verified that allowinggsÞgd does
not have a significant effect on the solutions.

We have integrated Eqs.~38! numerically on a rectangular
N3N domain for the boundary conditions appropriate for a
single vortex:

duboundary5d0e
iw, suboundary50. ~39!

We used an iterative Newton’s algorithm as described in Ref.
30. At each step of iteration the conjugate gradient method31

was used to solve the resulting system of linear equations.
Results of our numerical analysis indeed confirm all of

the qualitative features found by the analytic considerations
of the preceding subsection. Figure 2 shows the behavior of
the d- ands-wave amplitudes near the center of the vortex,
with parameters described in the figure caption. The resulting
amplitude of thes component for this particular parameter
configuration wassmax.0.024d0 , in reasonable agreement
with the estimate~23! which gives 0.01875d0 . A domain
size ofN5201 was used in the numerical integration, en-
compassing a physical region of the sizeL.20jd . In Fig. 2
only the central (1213121) region is displayed, where the
boundary effects are expected to be strongly suppressed~the
numerical solution was in fact well behaved all the way to
the boundary of the system!. As expected for this relatively
weak admixture of thes component, the amplitude ofd has
almost perfect circular symmetry. The amplitude ofs is
nearly circular in the inner core of the vortex and it shows
marked fourfold anisotropy outside the core, in accordance
with the asymptotic solutions~22b! and~30!. Four symmetri-
cally placed maxima along diagonals and four nodes along
6x and6y are visible in the contour plot. To see these more
clearly we show in Fig. 3 the amplitudes of thes-wave com-
ponent alongx-axis and ax5y diagonal. A node close to
x53jd is clearly visible, which is nothing else than one of
the four extra vortices. The figure also confirms the linear
behavior ofusu and udu near the origin and the fact that both
rise on approximately same length scalejd . One can also
see the 1/r 2 decay ofusu outside the core region, whereudu is
constant.

Figure 4 shows the superconducting phasesud andus of
the two components of the order parameter. While the distri-
bution ofud looks very much like that of conventional singly
quantized vortex, the distribution ofus is clearly more com-
plicated. In particular the opposite winding of the phase near
the core and four positive vortices along the6x, 6y axes
are clearly distinguishable. Comparison to Fig. 1 shows that
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our numerical results are again in complete agreement with
the analytical predictions summarized in the preceding sub-
section.

The important quantity that determines the nature of ex-
citations in the vicinity of the vortex line is the relative phase
Du[us2ud . We plotDu in Fig. 5. Over much of the region

FIG. 2. Contour plot of the amplitudes of the~a! d-wave and~b!
s-wave components of the order parameter as determined by nu-
merical integration of the GL equations~38!. The GL parameters
used for the plot aregs5gd5gv , as510uadu, b15b350, and
b450.5b2 . The lightest regions of the diagram correspond to the
largest amplitudes. The scale is in units of thed-wave coherence
lengthjd .

FIG. 3. Amplitude of thed-wave and thes-wave component
along thex axis ~solid line! and along the diagonalx5y ~dotted
line! normalized to the bulk valued0 ~thes component is scaled by
a factor 20 for clarity!. The parameters used are the same as in Fig.
2. Thed component is almost completely isotropic for this case so
that the two cuts are indistinguishable.

FIG. 4. The angle of arrow with respect to the horizontalx axis
represents the phase of the~a! d-wave and~b! s-wave components
of the order parameter. Solid dots represent positive vortices, ‘‘1’’
symbol represents negative vortex. The parameters used are the
same as in Fig. 2.

FIG. 5. The angle of arrow with respect to the horizontalx axis
represents the relative phaseDu5us2ud of the two components of
the order parameter, for the same parameters as in Fig. 2.
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the relative phase isDu56p/2, resulting in ad6 is state
that has minimum gap equal tousu. This is a direct conse-
quence of the fact thatb4.0 in the free energy~1!. How-
ever, the phase difference cannot be equal to6p/2 over the
entire area since this would be incompatible with the topo-
logical constraints that require opposite winding of the two
components near the core. Thus narrow domain walls appear
along the6x, 6y axes, whereDu changes rapidly. This
result is in agreement with the microscopic treatment of
Soininenet al.11 within the Bogoliubov–de Gennes theory.
However since the complexity of this formalism did not al-
low one to extend the calculations to sufficient distances
from the core, the extra vortices were originally not found.
The present GL theory, being inherently simpler allows us to
study larger clusters. As one moves further out from the core,
domain walls abruptly end at the cores of the fours-wave
vortices andDu starts to vary more slowly while being still
locked to6p/2 over large areas.

Supercurrentj produced by the above order parameter
distribution, computed numerically from Eq.~9!, is shown in
Fig. 6. Panel~a! shows the distribution of the magnitudeu j u
while panel ~b! displays streamlines of the vector fieldj .
Note that because of the Ampe`re’s law¹3hs5(4p/c) j , the
latter is equivalent to the lines of constant magnetic field
given by the supercurrent, and thus Fig. 6~b! also gives the
distribution of the spatially varying component of the screen-
ing field.

In addition to the particular case described above we have

numerically studied a large number of other parameter com-
binations. All show similar behavior. The feature that
changes between different configurations is the relative mag-
nitude of thes component, which is, as we have explicitly
verified, well described by Eq.~23!. The larger the ratio
smax/d0 , the more anisotropic thed-wave component be-
comes and along with it the distribution of supercurrent and
induced magnetic field. As an example of such a case we
show amplitudes ofs and d in Fig. 7, for the particular
parameter combination that yieldssmax.0.15d0 . The rel-
evant supercurrent distributions is plotted in Fig. 8.

IV. NEAR Hc2: STRUCTURE OF THE VORTEX LATTICE

In what follows we present our treatment of the vortex
lattice problem. In general we follow the path outlined by
Abrikosov,20 with necessary modifications that arise from the
presence of two order parameters in the free energy.

A. Linearized GL equations and their variational solution

In the vicinity of the upper critical fieldHc2 the ampli-
tudes of the order parameters are small, and the essential
physics is contained in the linearized field equations that are
obtained from~8! by neglecting the nonlinear terms:

~gdP
21ad!d1gv~Py

22Px
2!s50, ~40a!

FIG. 6. Contour plot of~a! supercurrent amplitude~b! supercur-
rent streamlines~which coincide with the lines of constant magnetic
field!, for the same parameters as in Fig. 2.

FIG. 7. Contour plot of the amplitudes of~a! d-wave and~b!
s-wave components of the order parameter for a different set of GL
parameters:gs5gd5gv , as51.4uadu, b15b25b35b4 .
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~gsP
21as!s1gv~Py

22Px
2!d50. ~40b!

Formally this corresponds to the expansion to leading order
in the small parameter (Hc22H)/Hc2 . The gauge invariant
gradientPW can be separated into two pieces,

PW 5PW 01PW s[~2 i¹2e*A0 /c\!2e*As /c\, ~41!

whereH5¹3A0 corresponds to the uniform applied field,
andhs5¹3As is the screening field induced by the super-
currentj s in the sample, given by the Maxwell equation

¹3hs5
4p

c
j s . ~42!

Let us for a moment ignore complications arising from the
screening effects and consider only the vector potentialA0 .
This is permissible, since as it will become clear later, cor-
rections to Eqs.~40! from the screening field are of the same
higher order in the small parameter (Hc22H)/Hc2 as the
nonlinear terms which have been neglected in these equa-
tions. In the same spirit as the original Abrikosov20 treat-
ment, these higher order terms will be included variationally
in a later stage of the calculation.

It is easily seen that in the Landau gaugeA05 ŷHx the
linearized field equations~40! are satisfied by taking

d~r !5eikyd~x!, s~r !5eikys~x!. ~43!

Thus, exactly as in the one component case first studied by
Abrikosov,20 we are left with a one dimensional problem
which can be stated as follows:

H ad1F p22m1
1

2
mvc

2~x2xk!
2G J d1evF2

p2

2m
1
1

2
mvc

2~x

2xk!
2Gs50, ~44a!

evF2
p2

2m
1
1

2
mvc

2~x2xk!
2Gd1H as1F p22m1

1

2
mvc

2~x

2xk!
2G J s50. ~44b!

Here we have denotedp52 i\]/]x, xk5kl2, and
vc5(e*H/mc). The magnetic lengthl5A\c/e*H will
play the role of a characteristic length for the vortex lattice.
We also assume henceforth thatmd*5ms*[m, i.e., that
gd5gs , and we useev5gv /gs5ms* /mv* . Equations~44!
resemble those for the quantum mechanical harmonic oscil-
lator problem with the potential centered atx5xk . In view
of the fact thatxk is arbitrary, it is clear that Eqs.~44! will
have infinitely many degenerate solutions which can be la-
beled by a continuous indexk. This degeneracy will play a
crucial role later when we construct the periodic space-filling
solution. However, for the moment, we shall ignore this issue
and investigate Eqs.~44! with xk fixed. The essential differ-
ence from the one component case is that these equations
have no obvious exact solutions. In what follows we shall
seek suitable variational solutions to Eqs.~44!. In order to
stress the analogy with the harmonic oscillator, we may write
~44! in the following way:

~H01ad!d1Vs5Ed, ~45a!

Vd1~H01as!s5Es, ~45b!

whereH05\vc(a
†a11/2) andV5ev(\vc/2)(a

†a†1aa)
are expressed in terms of the usual raising and lowering op-
erators, which can be written asa5@(x2xk)/
l1 l (]/]x)]/A2. By including the right hand side of Eqs.
~45! we are considering a slightly more general problem:
E50 corresponds to the physical solution forH5Hc2(T),
and solutions forE,0 will be useful later when we consider
the stability of various vortex lattice structures.

In order to motivate our variational solution to the linear-
ized problem, let us define

H65H06V, w65d6s. ~46!

In terms of these variables, the set of equations~45! becomes

SH11T2T* 2DT/2

2DT/2 H21T2T*
D S w1

w2
D 5ES w1

w2
D ,

~47!

where we have defined

T*5~Td1Ts!/2, DT5Td2Ts , ~48!

FIG. 8. Contour plot of~a! supercurrent amplitude~b! supercur-
rent streamlines~which coincide with the lines of constant magnetic
field!, for the same parameters as in Fig. 7.
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for convenience in later calculations. A nice feature of the
representation~47! is that for the degenerate caseDT50 the
equations forw1 andw2 decouple, each becoming a simple
harmonic oscillator problem. Motivated by this fact we shall
seek the variational solution for the general case in the form
of normalized ground state wave-functions of the harmonic
oscillator,

wk
6~x!5A s6

lAp
e2s6

2
~x2xk!2/2l2. ~49!

The variational parameterss1 ands2 will be determined by
minimization of the eigenvalue32

^E&5~T2T* !1 1
2 ^w1H1w1&1 1

2 ^w2H2w2&

2 1
2 DT^w1w2&, ~50!

where angular brackets stand for spatial averages. All the
integrals are easily evaluated and if one defines
s15scosq, s25ssinq, the resulting expression for̂E&
can be explicitly minimized with respect tos2. The mini-
mum occurs fors25tanq11/tanq, and is

^E&
DT

5
T2T*

DT
1
1

4 S \vc

DT D F ~11ev!tanq1~12ev!
1

tanq G
2
1

2
A 2tanq

11tan2q
. ~51!

The last equation must be minimized numerically with re-
spect to tanq. It is also clear from this equation that two
parameters,ev and

L5\vc /DT, ~52!

determine the nature of the variational solution. In the two
limiting cases the exact minimum can be easily found. In the
low field limit, L!1, we haves1's2'1, while in the
high field limit, L@1, we haves6'@(16ev)/(17ev)#

1/4.
It follows that at least intermediate values ofL are required
for appreciable effects froms-d mixing to occur. Otherwise
w1.w2 and according to Eq.~46! the s component effec-
tively vanishes.

Solutions to Eq.~51! with ^E&50 give the dependence of
the upper critical fieldHc2 on the temperature. Whenever a
finite admixture of thes component is present, we find a
characteristic upward curvature inHc2(T) near the critical
temperature. Such curvature has been observed experimen-
tally in both La-Sr-Cu-O~LSCO! and YBCO compounds33,34

and has been interpreted as a consequence ofs-d mixing.12,14

For given parametersTd and Ts and several values ofev
such dependence is shown in Fig. 9, as obtained by numeri-
cal minimization of Eq.~51!.

B. Vortex lattice solution

To construct a periodic vortex lattice, consider a linear
superposition of the basis functions~49! of the form

C6~r !5(
n

cne
inqywn

6~x!, ~53!

wherecn are complex constants. In order to impose period-
icity in y direction we have constrained the values ofk to
integer multiples

kn5nq, n50,61,62, . . . ~54!

of the parameterq which will be determined later from the
requirement of minimum free energy. The space filling solu-
tions of GL equations can be written as, cf. Eq.~46!,

d~r !5@C1~r !1C2~r !#/2,

s~r !5@C1~r !2C2~r !#/2. ~55!

These solutions will also be periodic inx provided that the
constantscn satisfy the conditioncn1N5cn for some integer
N. As was first noted by Abrikosov,20 the analysis of the
vortex lattice for generalN is extremely difficult. It was
however conjectured that the absolute minimum of the free
energy takes place forN<2, in which case the analysis is
simplified. In what follows we shall restrict ourselves to the
case ofN52 for the two component system. TakingN52
we havec2n5c0 andc2n115c1 . This, along with Eqs.~54!
and ~55!, implies periodicity ofs and d in x and y with
periods

Lx52l 2q, Ly52p/q. ~56!

Each rectangularLx3Ly unit cell then contains an amount of
flux

HLxLy52~hc/e* ![2F0 , ~57!

whereF0 stands for the flux quantum. Thus, by construction,
each rectangular unit cell contains exactly two singly quan-
tized vortices, independent of the value of parameterq. The
resulting vortex lattice may be thought of as centered rectan-
gular with two quanta per unit cell or, equivalently, as an
oblique cell with lattice vectors of equal length and one flux
quantum. While the restriction to centered rectangular lat-
tices is made primarily for computational convenience, it is
also compatible with recent experiments on YBCO which
show evidence22,23 for oblique vortex lattices with nearly
equal lattice constants in high fields.

FIG. 9. Dependence of upper critical fieldHc2(T) on tempera-
ture for various values of parameterev and Ts50.5Td ,
T50.75Td .
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The parameterq controls the shape of the unit cell. It is
customary to define the ratio

R5Lx /Ly5~ l 2/p!q2, ~58!

and it follows thatR51 corresponds to the square,R5A3
corresponds to the triangular, and intermediate values
1,R,A3 imply the oblique vortex lattice.

The solution that we have constructed for the GL equa-
tions ~8! has three free parameters,c0 , c1 , andR. These
parameters determine the structure of the vortex lattice near
Hc2 . Within the linearized approximation to the GL free en-
ergy these solutions are degenerate in energy. It is the fourth
order terms that lift this degeneracy and determine the equi-
librium lattice structure. In order to find this minimum one
must take into account the fourth order terms in the free
energy~1! as well as the effects of screening which were so
far ignored.

The complete average free energy density~1! can be writ-
ten as

^ f &5^ f 2&1^ f 4&1^h2&/8p, ~59!

where f 2 and f 4 stand for quadratic and quartic invariants
respectively, andh5H1hs is the local magnetic field. Let us
now consider the effect of screening by looking at the gradi-
ent terms in̂ f 2& with the completePW as given by Eq.~41!.
A typical term will be of the form

^uPW du2&5^uPW 0d1PW sdu2&.^uPW 0du2&1^PW s•@d*PW 0d

1c.c.#&, ~60!

where in the last equality terms of the order ofuPW sdu2 have
been neglected. This is consistent with the general idea of
GL theory of keeping only terms up to fourth order in the
order parameters. Being proportional to the supercurrent,
PW s already contains terms quadratic in the order parameters.
If we expand all the remaining gradient terms in the similar
way, systematically neglecting terms containing order pa-
rameters to powers higher than 4, we can write the result as

^ f 2&5^ f 2
~0!&1

\

e* ^PW s• j s&. ~61!

Here f 2
(0) is the part off 2 containing only thePW 0 piece of the

gauge invariant gradient, i.e., the quadratic part in the ab-
sence of screening, and similarlyj s is assumed to be given by
Eq. ~9! with PW 5PW 0 . If we take into account the property of
the variational solution̂ f 2

(0)&5E^usu21udu2& that follows

from Eqs.~45! and use the definition ofPW s we can write

^ f &5E^usu21udu2&2~1/c!^As• j s&1^ f 4&1^~H1hs!
2&/8p,

~62!

The second term on the right-hand side~RHS! can be sim-
plified by expressingj s through the Maxwell equation~42!.
Integrating by parts and neglecting the surface term one ob-
tains (1/c)^As• j s&5^hs

2&/4p.
Similarly the last term on the RHS can be rewritten re-

calling the definitionB5H1^hs& of the magnetic induction
as ^hs

2&/8p2H2/8p1B•H/4p.

The manipulations performed above are useful since in
fixed applied magnetic field the proper thermodynamic po-
tential to minimize is the mean Gibbs free energy density
related tof by ^g&5^ f &2B•H/4p. For this quantity we fi-
nally arrive at an expression

^g&5E^usu21udu2&1^ f 4&2^hs
2&/8p2H2/8p. ~63!

Before we proceed with minimization of the Gibbs potential
let us notice that the simple thermodynamic relation
]^g&/]H52B/4p can be used to extract the average screen-
ing field in the superconductor

^hs&[B2H52S ]E

]H D ^usu21udu2&. ~64!

A similar relation between the average induced field and the
order parameter for the conventional s-wave
superconductor20 is known as the ‘‘first Abrikosov identity,’’
but the corresponding determination of the spatial distribu-
tion of hs(r ) is more complicated~see below!. It is easy to
verify that in the limit ev→0 ~i.e., in the limit of pured
wave! Eq. ~64! assumes the precise form of this identity,
including all the relevant prefactors that follow upon ex-
pressing]E/]H from Eq.~51!. In the vicinity ofHc2 it holds
thatE.(]E/]H)(H2Hc2) and it follows that to the leading
order we can writê f 2

(0)&5^hs&(Hc22H)/4p. This allows
us to express the Gibbs free energy in the form where the
leading dependence on the magnetic fieldH is manifestly
displayed:

^g&2^g&n5
1

4p
~Hc22H !^hs&1^ f 4&2

1

8p
^hs

2&, ~65!

with ^g&n52H2/8p being the normal state contribution to
the Gibbs free energy.

Consider now a simple scaling transformation
(s,d)→(ls,ld) wherel is a real number. It is clear that
under such a transformation^hs&→l2^hs&, while
^ f 4&→l4^ f 4& and ^hs

2&→l4^hs
2&. Consequently, the Gibbs

free energy~65! will have a well defined minimum for the
particular value ofl. We use this property to determine the
normalization of the order parameterss andd. Carrying out
the minimization we obtain

^g&2^g&n52
1

8p

~Hc22H !2^hs&
2

8p^ f 4&2^hs
2&

, ~66!

an expression which is clearly independent of the particular
normalization ofs andd. If we further define the Abrikosov
ratio bA and the Ginzburg-Landau parameterk by

bA5
^hs

2&

^hs&
2 , k254p

^ f 4&

^hs
2&
, ~67!

we can write the resulting Gibbs free energy for the Abriko-
sov vortex lattice in the familiar form20

^g&2^g&n52
1

8p

~Hc22H !2

~2k221!bA
. ~68!

Several remarks are in order. The Abrikosov ratiobA defined
by Eq. ~67! is independent of the coefficientsb i in the quar-
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tic part of the free energy and depends only on the shape of
the unit cell in the vortex lattice. To the extent thatk is
independent of the specific lattice shape, the minimum Gibbs
free energy corresponds to the minimum ofbA , which gen-
eralizes the familiar Abrikosov result, apart from writing it in
terms of magnetic field instead of the absolute squared order
parameter. As will be shown below by numerical calculation,
it is indeed true that the parameterk defined by Eq.~67!
depends only very weakly on the vortex lattice shape, and
thus the factor (2k221) in the denominator of Eq.~68!
serves simply as the criterion for type-II behavior, which
occurs only fork.1/A2. It is in this sense that one can think
of k as a generalization of the conventional Ginzburg-
Landau parameter; we note thatk defined by Eq.~67! cannot
be simply related to the usual ratio of penetration depthl to
coherence lengthj. This difficulty is related to the fact that
in the presence of two order parameterss and d we have,
strictly speaking, two distinct coherence lengths,js andjd .
Most observable phenomena will only reveal a single ‘‘effec-
tive’’ coherence length given by a certain combination of
js and jd , but this will presumably depend on the type of
probe used in the experiment. By contrast, there will be only
single penetration depthl, as this quantity is related to the
decay of the magnetic field inside the superconductor. Alter-
natively, l may be viewed as a measure of the bulk super-
fluid density, which is in the present case associated with the
d-wave component only, since thes wave vanishes in the
bulk. Thus it may be suggested thatk5l/jA , wherejA is
the effective coherence length relevant to the Abrikosov lat-
tice, determined by the usual criterion of overlapping vortex
cores atH5Hc2 .

C. Magnetic field distribution

The ultimate goal of this section is to determine the actual
structure of the vortex lattice by minimizing the Gibbs free
energy given by Eq.~68!. To obtain the parametersbA and
k that enter this expression it will be necessary to evaluate
the spatial averageŝf 4& and ^hs

2&@note that the quantity
^hs& has been already calculated in Eq.~64! by a thermody-
namic argument#. The former of the two averages can be
computed in a fairly straightforward manner sincef 4 is di-
rectly related to the vortex lattice solutionsC6(r ), which
are simple linear superpositions of the Gaussian wave func-
tions wk

6 given by Eq. ~49!. The situation with the other
average,̂ hs

2&, is more complicated as one has to first invert
the Maxwell equation~42! in order to express the local
screening fieldhs(r ) in terms of the supercurrentj s . Both of
these quantities are themselves of interest, as they can be
measured in principle by various experimental probes~see
Sec. V for the discussion!.

With this in mind let us calculate the spatial distribution
of the screening field. If we expresshs in terms of the vector
potentialAs , the Maxwell equation~42! can be written as

¹2As52
4p

c
j s , ~69!

where we have taken advantage of the fact that the Landau
gauge satisfies¹•As50. The easiest way to invert Eq.~69!

is to exploit the periodicity of the vortex lattice solution and
work in Fourier space. If we write

j s~r !5(
k
eik•r j s~k!, As~r !5(

k
eik•rAs~k!, ~70!

where the summation goes over the reciprocal lattice
vectors k5(kx ,ky)[(2pk1 /Lx,2pk2 /Ly) and (k1 ,k2)
50,61,62, . . . , Eq.~69! implies that

As~k!5
4p

c

j s~k!

k2
,kÞ0. ~71!

Thus, one obtains for the Fourier components of the screen-
ing field,

hs~k!5
4p i

c

k3 j s~k!

k2
, kÞ0. ~72!

In order to evaluate this expression it is helpful to write the
supercurrent~9! using wavefunctionsC6 instead ofs andd:

j s~r !5d
e* \

4m (
a56

@ x̂~12aev!Ca*PxCa

1 ŷ~11aev!Ca*PyCa1c.c.#. ~73!

In order to model the layered structure of cuprate supercon-
ductors we have introduced the usual geometrical factor
d5~layer thickness/layer spacing!. The cased51 corre-
sponds to the cubic lattice, whiled→0 represents the limit of
a single isolated layer. In this notation, the Fourier compo-
nents of the supercurrent are

j s~k!5d
e* \

4m (
a56

@ x̂~12aev!^Ca*PxCa&k

1 ŷ~11aev!^Ca*PyCa&k1^c.c.&2k#. ~74!

Here we have introduced a shorthand notation

^ . . . &k[
1

LxLy
E
0

Lx
dxE

0

Ly
dy . . .e2 ik•r, ~75!

which will prove very convenient in the subsequent calcula-
tions. With some effort, the following useful relations can be
derived:

^Ca*PxCa&k5
sa

2 S kxsa
2 ikysaD ^uCau2&k ,

^Ca*PyCa&k5
i

2sa
S kxsa

2 ikysaD ^uCau2&k . ~76!

In real space,Ca(r ) is a linear combination of Gaussians,
and thus the Fourier components^uCau2&k are easily evalu-
ated. One obtains
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^uCau2&k5
ak
Lx
expH 2

l 2

4
@~kx /sa!21~kysa!2#J , ~77!

where

ak5ei
p
2 k1k2@c0ck2

* 1~21!k1c1ck211* # ~78!

are real constants, independent of the particular lattice shape.
Substituting relations~76! in the expression for the supercur-
rent ~74! one obtains

j s~k!5 id
e* \

4m (
a56

@ x̂~12aev!~2kysa
2 !

1 ŷ~11aev!~kx /sa
2 !#^uCau2&k . ~79!

This expression is particularly useful for numerical evalua-
tion of the real space supercurrent distribution, since in view
of the Gaussian dependence of^uCau2&k on k @cf. Eq. ~77!#
it is clear that the corresponding Fourier series will converge
very rapidly.

Finally, we are in the position to give the local screening
field. Substitution of the above equation~79! into the Max-
well equation~72! yields all the Fourier components of the
field with kÞ0. Thek50 component is just the real space
average of the screening field^hs& given by Eq.~64!. Com-
bining these results we obtain, after some algebra, the real
space field distribution of the form

hs~r !52 ẑpd
e* \

mc Fz0(
k
eik•r^uC1u21uC2u2&k

1z1(
kÞ0

eik•rS kx22ky
2

kx
21ky

2D ^uC1u22uC2u2&kG ,
~80!

where we have defined the numerical factors

z05@~s2
2 1s1

2 !1ev~s2
2 2s1

2 !#/2,

z15@~s2
2 2s1

2 !1ev~s2
2 1s1

2 !#/2. ~81!

We notice that the first Fourier sum in the brackets of Eq.
~80! is equal touC1(r )u21uC2(r )u2[2(us(r )u21ud(r )u2).
Thus in the limit of a pured-wave state whereev→0 and
s6→1 the correspondence with the Abrikosov result for a
conventional superconductor becomes transparent. In this
limit we havez0→1, z1→0 andus(r )u→0, and the spatially
varying form of the Abrikosov first identity is recovered,
with d(r ) playing the role of the conventional order param-
eterC(r ). The second sum clearly has a nonlocal depen-
dence on the order parameters and can be written as
*d2r 8g(r2r 8)@s(r 8)d* (r 8)1s* (r 8)d(r 8)#. Such a term
has no counterpart in the conventional theory, and arises only

as a result of mixing between thes andd components of the
order parameter. The nonlocality of this term is a direct con-
sequence of the symmetry of the problem: since by itself the
term (sd*1s* d) is not invariant underD4 , it can enter only
in combination with other terms of proper symmetry.

D. Structure of the vortex lattice

As mentioned above, in order to determine the shape of
the vortex lattice, one needs to evaluate the averages of the
fourth order termŝ f 4& and ^hs

2&. Now that the distribution
of the magnetic fieldh(r ) has been derived, evaluation of
these averages is a straightforward, albeit quite a lengthy,
procedure. The technical details of this calculation are
worked out in the Appendix, and here we only summarize
the results and discuss some of the physical implications.

Equations~94! and~99! of the Appendix give the expres-
sions for the fourth order averages^ f 4& and^hs

2& in terms of
rapidly converging sums that are suitable for numerical
evaluation. Making use of these, the Abrikosov ratio and
Ginzburg-Landau parameter can be expressed in the follow-
ing simple way:

bA5
Lx
2

4z0
2(

k

8@~z01z1hk!V11~k!1~z02z1hk!V22~k!#2,

~82!

and

k25
4(k8(a@m1Vaa

2 ~k!1m2Vaa~k!Vāā~k!1m3Vaa~k!Vaā~k!1m4Vaā
2 ~k!#

pd2~e* \/mc!2(k8@~z01z1hk!V11~k!1~z02z1hk!V22~k!#2
, ~83!

FIG. 10. Abrikosov ratiobA as a function of the lattice geom-
etry factorR5Lx /Ly for different values ofev . Note that the mini-
mum of bA is moving fromR5A3 to R51 asev increases. This
implies a continuous deformation of the initially triangular vortex
lattice into an oblique and finally square lattice. The parameters
used are Ts50.5Td , T50.75Td , b15b25b35b451, and
B50.8Hc2 . The inset shows theR dependence of the squared
Ginzburg-Landau ratiok2 on approximately the same scale.
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where the prime on the sums means that only terms with
k1 andk2 both even or odd are included,Vab(k) are Gauss-
ian functions given explicitly by Eq.~93!, hk is a simple
function defined by Eq.~97!, and ā52a. Note that the
above expression forbA is independent of parametersb i that
enter the quartic part of the free energyf 4 , and other qua-
dratic parameters enter only via the variational parameters
s6 .

The shape of the vortex lattice unit cell is determined by
the ratioR5Lx /Ly . The value ofR that corresponds to the
thermodynamically stable configuration,Rmin , is obtained by
requiring that the Gibbs free energy is minimum. Equation
~68! shows that, at given external magnetic fieldH, the
Gibbs free energŷg& is entirely determined by the two pa-
rameters given above,bA and k. Numerical evaluation of
these parameters confirms thatk is only very weakly depen-
dent on the particular lattice shape, as it is illustrated by Fig.
10. The dependence of the Gibbs free energy~68! on R is
almost entirely contained in the Abrikosov ratiobA and thus,
in most of the parameter space, the minimum of^g& coin-

cides to a good accuracy with the minimum ofbA . For ex-
ample in the particular case displayed in Fig. 10, the mini-
mum of bA differs by less than 2% from the minimum the
full free energy.

Figure 10 also shows a typical dependence ofbA onR for
different values of the mixed gradient couplingev , as ob-
tained by numerical evaluation of Eq.~82!. Whenev50 the
superconductor is in a pured-wave state with nos-wave
component present. Within the phenomenological GL theory,
this situation is identical to the case of a conventional super-
conductor studied by Abrikosov. Thus, the state with mini-
mum free energy hasRmin5A3 which corresponds to the
usual triangular vortex lattice. In this limit we obtain the
correct value ofbA51.1596 as quoted by Kleineret al.21

However, as soon as a nonzero couplingev is introduced, the
situation changes and the minimum ofbA shifts to the values
Rmin,A3, signalling that an oblique vortex lattice is fa-
vored. The minimumRmin varies continuously withev and at
certain value ofev , which depends on the other parameters
in the GL free energy,Rmin reaches the value of 1, corre-
sponding to the square lattice. Further increase ofev then has
no effect on the shape of the lattice, which remains square.

One may conclude that in ad-wave superconductor, in the
regime close to the upper critical fieldHc2 , a general oblique
vortex lattice is thermodynamically stable, unless the mate-
rial is in one of the limiting regimes in which the mixed
gradient couplingev is very small or very large. Numerical

11

and analytical15 calculations based on the simple mean field
model with proper symmetries, find evidence for a mixed
gradient term of about the same order of magnitude as the
conventional gradient terms. This would seem to argue
against the two limiting cases mentioned above.

An example of the oblique vortex lattice is displayed in
Fig. 11, where we show thed ands components of the order
parameter as obtained by numerical evaluation of Eqs.~55!,
for a given set of GL parameters. An interesting conclusion
can be drawn by comparing the two components of the order
parameter: it is evident that the nontrivial nodal structure of
thes-wave component, such as was described in Sec. III for
an isolated vortex, persists in this high field regime. Indeed,
zeros ofs are present in the regions whereudu.0. This quite
remarkable result appears to suggest that the ‘‘extra’’ vortices
in thes component are present over the entire portion of the
phase diagram representing the mixed state of ad-wave su-
perconductor.

Many experimental probes are sensitive to the spatial
variations of the magnetic field rather than to the order pa-
rameter itself. The spatially varying component of the mag-
netic field,hs(r ), as evaluated from Eq.~80! is shown in Fig.
12. Notice that as a consequence of the Maxwell equation
¹3hs5(4p/c) j s , it follows that the contours of constant
magnetic field coincide with the supercurrent streamlines.
Comparison to the order parameter plot in Fig. 11 confirms
that the magnetic field and supercurrent distributions have
the same symmetry as the vortex lattice. A nontrivial nodal
structure of thes wave has an effect on the field distribution,
which develops two nonequivalent saddle points, markedS1
andS2 in Fig. 12. In principle, it might be possible to deter-
mine such structure bymSR or NMR experiments. Figure 13

FIG. 11. Contour plot of the amplitudes of~a! d component and
~b! s component of the order parameter in the vortex lattice. The
same parameters are used as in Fig. 10 withev50.45 resulting in an
oblique vortex lattice withRmin51.29 and the angle between primi-
tive vectorsf576°. The oblique unit cell containing one flux
quantum is marked by a solid line.
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displays themSR line shapes that result from the magnetic
field distribution as discussed above. The quantity shown is

P~h!5
1

LxLy
E d @h2h~r !#d2r , ~84!

for the case of triangular, oblique, and square flux lattices. In
the triangular and square lattices, symmetry requires only
one type of saddle point, resulting in the conventional single
peak structure. In the oblique lattice, which is characteristic
of a d-wave superconductor, the two nonequivalent saddle
points give rise to two distinct Van Hove type singularities.
Appearance of two distinct peaks inmSR or NMR spectra
would provide evidence ford-wave behavior, since the ex-
planations of oblique vortex lattice that invoke anisotropy
within a single component model35 do not lead to this effect.

E. Orientation of the vortex lattice

The last subject that we want to address here concerns the
spatial orientation of the vortex lattice with respect to the
crystalline axes of the superconductor. From Fig. 11, it can
be seen that the principal axes of the vortex lattice are not
aligned with any of the high symmetry directions of the un-
derlying crystal. Instead, it is the~110! direction of the vor-
tex lattice that coincides with the~100! or ~010! directions of
the crystal. It turns out that the construction of the vortex
lattice as presented above forces this particular orientation
and does not allow for identical configurations that are ro-
tated by some anglea. In the traditional one component
case, this is not a concern since the free energy has full
rotational invariance. In the present case, however, we must
take a closer look at these rotated configurations as we have
terms in the free energy that break rotational invariance. It is
conceivable that such rotated configurations might in fact be
lower in free energy than the ones we have considered so far.
In what follows we show by an explicit calculation that this

is not the case, and that we have in fact found the solution
that corresponds to the absolute minimum off as given by
Eq. ~1!.

Consider a simple rotation of the coordinate system in the
xy plane by an anglea

x5x8cosa2y8sina,

y5x8sina1y8cosa. ~85!

Under such transformation all the second order terms are
invariant except for the mixed gradient term which trans-
forms as follows:

]s

]y

]d*

]y
2

]s

]x

]d*

]x
1 c.c.

5~cos2a2sin2a!S ]s

]y8

]d*

]y8
2

]s

]x8

]d*

]x8 D
12sinacosaS ]s

]x8

]d*

]y8
1

]s

]y8

]d*

]x8 D1c.c. ~86!

One can now derive and analyze the linearized field equa-
tions using the rotated coordinates (x8,y8) in exactly the
same way as before, and the anglea becomes just another
variational parameter with respect to which the free energy is
minimized. It turns out that it is possible to write down the
linearized equations fors andd that are identical to Eqs.~45!
with V changed toV5ev(\vc/2)(e

2iaa†a†1e22iaaa). In
such a case, one expects there will be a constant phase dif-
ference 2a between thes andd components, and the appro-
priate variational solution is of the form

d~x!5e2 ia@w1~x!1w2~x!#,

s~x!5eia@w1~x!2w2~x!#, ~87!

wherew1 andw2 are the normalized lowest eigenfunctions
of a harmonic oscillator as defined by Eq.~49!. The energy
eigenvalue is easily evaluated, and we obtain a generaliza-
tion of Eq. ~51!

FIG. 12. Distribution of the magnetic fieldhs in the vortex
lattice. LettersM , m, S1, andS2 denote the maximum, minimum,
and two saddle points, respectively. GL parameters used for the plot
are same as in Fig. 11.

FIG. 13. TypicalmSR line shapes as obtained from the magnetic
field distribution in the vortex lattice. The curves shown are for
triangular (ev50.0), oblique (ev50.4), and square (ev50.6) flux
lattices. Magnetic field on the horizontal axis is in the units of
h05u^hs&u[4pd(z0 /Lx)(e* \/mc) and the curves are offset verti-
caly for clarity.
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^E&
DT

5
T2T*

DT
1
1

4 S \vc

DT D F ~11evcos
22a!tanq1~12evcos

22a!
1

tanqG2
1

2
A 2tanq

11tan2qF11evsin
22aS \vc

DT D 12tan2q

11tan2qG .
~88!

It is a simple matter to minimizêE& with respect toa, and
one finds that minima can occur only fora50,6p/2,6p.
Thus we are led to the conclusion that within our variational
solution the most stable vortex lattice is the one aligned with
the underlying crystal as described above~cf. Fig. 11!.
Among the fourth order terms in the free energy only
b4(s*

2d21s2d* 2) depends ona. This dependence is par-
ticularly simple; upon rotation the constantb4 changes to
b4cos4a. Clearly, this term only has minima for trivial val-
ues ofa50,6p/2, . . . , so theabove conclusion should hold
even when the fourth order terms are included. In order to
verify that this conclusion is not altered by some complicated
interplay between angular dependencies off 2 and f 4 , we
have carried out the numerical minimization of the free en-
ergy of the rotated vortex lattice, along the lines indicated for
the casea50. We find that, for all the regions of parameter
space that were investigated, the absolute minimum of the
free energy occurs fora50. As a consistency check we have
also verified that identical minima are found for
a56p/2,6p, which corresponds to the discrete rotations
under theD4 group.

The above conclusion concerning the orientation of the
vortex lattice may be understood by analyzing the mixed
gradient term in the free energy density~1!. Its structure
forces the vortex lattice to align in such a way that the great-
est gradient of order parameters is along one axis, while the
smallest possible gradient is along the other axis. An ar-
rangement of vortices such as the one shown in Fig. 11 defi-
nitely satisfies this requirement.

V. SUMMARY AND DISCUSSION

The main goal of this work was to present a detailed study
of the vortex state in ad-wave superconductor, focusing on
the properties arising froms-d mixing that have no analog in
conventional superconductors. Analysis of the vortex state is
done in two regimes: in the vicinity ofHc1 where the prop-
erties of isolated vortex lines can be studied, and nearHc2
where the collective properties of vortices forming a dense
lattice are important.

For the single vortex line the topological structure of the
induceds-wave order parameter is highly nontrivial, consist-
ing of one counter-rotating unit vortex, centered at the core,
surrounded by four additional positive vortices located sym-
metrically at a distance of several coherence lengths from the
core. A result of this work is the realization that the above
structure will occur for all parameter configurations that give
rise to stabled wave in the bulk~provided one is well into
the type-II regime!, and not only in the vicinity ofTc as was
originally suggested.18 This conclusion is confirmed by an
explicit integration of the GL equations over the wide range
of parameters, and also by the calculations of Ichioka
et al.,17 who find analogous behavior using the quasiclassical
Eilenberger equations. The question arises as to whether this

nontrivial topological structure of a single vortex could be
probed experimentally. There are clearly many complicating
factors which are likely to render this task very difficult. The
main challenge arises from the fact that one expects the in-
duceds component to be small, on the order of few percent
of d. Such a small admixture ofs might be hard to detect
directly, and the corresponding distortion of thed-wave am-
plitude, supercurrent, and magnetic field distributions will
also be small. It might in principle be possible to probe thes
component by scanning Josephson tunneling from ans-wave
tip, which by symmetry would not couple to the dominantd
wave. With sufficient resolution such an experiment could
detect strong anisotropy in thes component and possibly
also the extra nodes. The internal structure of a vortex will
also have an effect on the transport properties; e.g., it is
conceivable that it may lead to changes in the Magnus force
acting on a vortex in a current field. These issues clearly
require further investigation.

Finally we note that although a finite induced
s-component will restore the gap along theukxu5ukyu direc-
tions in the vicinity of the core, this will not invalidate the
prediction of Volovik10 regarding the;AH contribution to
the density of states~DOS! on the Fermi surface, which was
recently confirmed by specific heat measurement by Moler
et al.3 Volovik’s prediction is based on the observation
~originally used by Yip and Sauls36 to predict the nonlinear
Meissner effect! that the quasiparticle excitation spectrum is
shifted by the superfluid velocity field around the vortex
core, with the dominant contribution coming from quasipar-
ticles far from the core in position space and close to the
nodes in momentum space. Since the amplitude of thes
component far from the core vanishes as 1/r 2 the reduction
of the DOS will be always negligible beyond a certain dis-
tance from the core compared to the energy shift due to
superfluid velocity which decays only as 1/r . Thus at rela-
tively small fields compared toHc2 , such as were used in the
specific heat measurements,3 there will be no correction to
the Volovik’s result from the induceds wave. At stronger
fields, when the vortices are closely spaced, corrections may
appear; however, in such a case one expects Volovik’s deri-
vation to break down since the concept of an isolated vortex
with a well defined asymptotic flow field loses its meaning in
the dense Abrikosov lattice.

The vortex lattice nearHc2 is in general oblique for a
d-wave superconductor. The precise shape determined by an
anglef between primitive vectors depends in a complicated
way on the parameters in the GL free energy, most strongly
on the mixed gradient couplingev and on magnetic field via
the parameterL5\vc /DT, which also determine the rela-
tive magnitude ofs. Quite generally, whenev50, the
s-component vanishes and the lattice is triangular. By in-
creasingev andL the lattice is continuously deformed, be-
coming oblique and eventually square. Observation of an
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oblique flux lattice withf.73° was reported by Keimer
et al.22 using small angle neutron scattering from YBCO in
magnetic fields 0.5 T<H< 5 T. This would be in agreement
with our result, although as was pointed out by Walker and
Timusk,35 the observed distortion may also be accounted for
by the intrinsica-b plane anisotropy of the orthorhombic
YBCO crystal. More recently an oblique vortex lattice with
f.77° was found in YBCO using STM by Maggio-Aprile
et al.23 This technique also revealed elongated vortex cores
with the ratio of principal axes about 1.5. If, as noted by
authors, this elongation was due to thea-b anisotropy in
coherence lengths, within a simple London model ofs-wave
superconductivity this would lead to the flux lattice with an
angle inconsistent with the actual observed value of 77°.
Thus it would appear that thea-b anisotropy alone cannot
explain the observed distortion in the vortex lattice and ad-
ditional effects, such as the internal symmetry of the order
parameter, must be invoked in order to account for the ex-
perimental data. In this respect it would be most interesting
to see if an oblique lattice can also be established experimen-
tally in truly tetragonal superconductors. Alternatively it
would be desirable to study the analogous GL theory for the
D2 orthorhombic symmetry; unfortunately such a theory is
complicated and contains even more phenomenological pa-
rameters so that a quantitative comparison with experiment
would be difficult.37 An alternative way of distinguishing
between the effects ofa-b anisotropy andd-wave symmetry
is to study the magnetic field distributions in the vortex lat-
tice. The present theory predicts a double-peak structure in
mSR or NMR line shapes whenever the flux lattice is ob-
lique, while interpretations based on simple scaling
arguments35 lead to conventional single-peak line shapes.
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APPENDIX: EVALUATION OF QUARTIC AVERAGES Šf 4‹
AND Šhs

2
‹

We first evaluate the contribution of^ f 4&. For the pur-
poses of calculation it is convenient to express^ f 4& in terms
of the functionsC6 ,

^ f 4&5m1^uC1u4&1m2^uC1u2uC2u2&1m3^uC1u2C1C2* &

1m4^C1
2 C2*

2&1@C1↔C2#, ~A1!

where the constantsm are given as follows

m15
1
16 ~b11b21b312b4!,

m25
2
16 ~b11b222b4!,

m35
4
16 ~2b11b2!,

m45
1
16 ~b11b22b312b4!. ~A2!

The easiest way to evaluate the spatial averages is to express
them as Fourier series. For example, one can write the typi-
cal member as follows:

^C1*
2C2

2 &5(
k

^C1* C2&k^C1* C2&2k , ~A3!

where we have used only the basic properties of the Fourier
series. The utility of this formulation lies in the fact that
components of the form̂Ca*Cb&k can be expressed in terms
of simple Gaussians, and consequently the summations indi-
cated in Eq.~A3! converge very rapidly. In particular it is
useful to define

^Ca*Cb&k5akVab~k!, ~A4!

where the coefficientsak are given by Eq.~78!. The factors
Vab(k) contain all the dependence on the lattice structure
and can be evaluated by explicit integration; we have

Vaa~k!5
1

Lx
expH 2

l 2

4
@~kx /sa!21~kysa!2#J ,

Vab~k!5
1

Lx
A 2

s1
2 1s2

2 expH 2
l 2

4

2

s1
2 1s2

2 @kx
21ky

2

1 i ~sa
22sb

2 !kxky#J , aÞb. ~A5!

In terms of these functions,^ f 4& can be written in a compact
form,

^ f 4&5(
k
aka2k (

a56
@m1Vaa

2 ~k!1m2Vaa~k!Vāā~k!

1m3Vaa~k!Vaā~k!1m4Vaā
2 ~k!#, ~A6!

which is suitable for numerical evaluation. In deriving Eq.
~A6! we have used the symmetryVab(k)5Vab(2k) which
is apparent from Eqs.~A5!, and we use the notation
ā52a.

Let us now turn to calculation of^hs
2&. A similar approach

as above will work here if we write

^hs
2&5(

k
hs~k!hs~2k!. ~A7!

The Fourier componentshs(k) can be deduced from Eq.
~80!,

hs~k!52pd
e* \

mc
@z0^uC1u21uC2u2&k

1z1hk^uC1u22uC2u2&k#, ~A8!

where we have introduced the quantity
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hk5H kx22ky
2

kx
21ky

2 , if kÞ0

0, if k50

~A9!

which allows all of the Fourier components ofhs(k) to be
expressed by a single equation~A8!. A compact expression
for the average squared field can be written in terms of the
functionsVab(k) and has the following form:

^hs
2&5p2d2S e* \

mc D 2(
k
aka2k@~z01z1hk!V11~k!

1~z02z1hk!V22~k!#2. ~A10!

Let us finally write, for the purpose of completeness, the
expression for the average field:

^hs&[hs~k50!52pdz0a0S e* \

mc D @V11~0!1V22~0!#

522pd
z0
Lx

S e* \

mc D ~ uc0u21uc1u2!. ~A11!

We have now expressed all the averages that are needed
to minimize the Gibbs free energy~68!. In principle, both

bA andk can now be evaluated numerically using the rap-
idly converging sums~A6! and ~A10!. However, following
the work of Kleiner, Roth, and Autler,21 it is practical to
carry out the minimization with respect to the constantsc0
and c1 analytically. This reduces the relevant parameter
space to a single parameter, the geometric ratioR5Lx /Ly .
To this end we have purposely singled out the dependence on
these parameters in the expressions for^ f 4& and ^hs

2&. In
particular, the entire dependence onc0 andc1 is contained in
the constantsak , and botĥ f 4& and ^hs

2& are of the form

(
k
aka2k f ~k1 ,k2!

5 (
k1k2

$ei
p
2 k1k2@c0ck2

* 1~21!k1c1ck211* #%2f ~k1 ,k2!,

~A12!

where f (k1 ,k2) is independent onc0 andc1 . Our goal here
is to factor out the entire dependence of this expression on
the constantsc0 and c1 . This is done by considering sepa-
rately the cases whenk1 , k2 are even and odd, and recalling
that by assumptionc2k5c0 and c2k115c1 . We obtain an
expression of the following form:

~ uc0u41uc1u4!(
k1k2

@ f ~2k1,2k2!1 f ~2k111,2k2!#1~c0
2c1*

21c0*
2c1

2!(
k1k2

@ f ~2k1,2k211!2 f ~2k111,2k211!#

12uc0u2uc1u2(
k1k2

@ f ~2k1,2k2!2 f ~2k111,2k2!1 f ~2k1,2k211!1 f ~2k111,2k211#. ~A13!

Clearly, the entire denominator 8p^ f 4&2^hs
2& of the free energy~66! can be written in the above form, where the dependence

on constantsc0 andc1 is explicitly shown. Combining this with the expression~A11! for the average induced field̂hs& it is
easy to see that the total free energy~66! can be written schematically as

2
~ uc0u21uc1u2!2

~ uc0u41uc1u4!G0~R!12uc0u2uc1u2G1~R!12Re~c0
2c1*

2!G2~R!
, ~A14!

whereGi(R) are complicated functions ofR and other GL parameters, but are independent ofc0 andc1 . The above expression
can be easily minimized with respect toc0 andc1; one obtains that a condition for the minimum isc156 ic0 . Clearly, the
value of the expression~A14! only depends on the ratioc1 /c0 , so we can arbitrarily choose

c051, c15 i . ~A15!

With this choice, we have an identity

aka2k5@~21!k11~21!k2#2, ~A16!

which will simplify evaluation of the sums in̂ f 4& and ^hs
2&. Also, the expression for the average induced field~A11!

simplifies:

^hs&524pd
z0
Lx

S e* \

mc D . ~A17!
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