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The one-dimensiondllD) t-J model is investigated by using a Gutzwiller-Jastrow-type variation method
and the exact diagonalization of small systems. Variational expectation values are estimated by the variational
Monte Carlo method with sufficient accuracy. First, we give detailed descriptions of the precedinfgRiagzer
Rev. Lett.67, 3610(1991)], where we discussed the properties of the Fermi-liquid-type Jastrow wave function
as well as the Gutzwiller wave function. Secondly, these wave functions are compared with the Tomonaga-
Luttinger-liquid-type wave function proposed by Hellberg and Mele. It is found that the correlation factors in
short distances control bulk quantities like energy and the magnitude of the correlation functions, while the
long-range part of the correlation factors determines the critical behavior of correlation functions. Finally,
using these functions, charge, spin susceptibilities, and magnetization curve are estimated, which agree with
the exact results. It is shown that the Mott transition in thetdDmodel is quite different from the Brinkman-

Rice transition.

[. INTRODUCTION above analytic methods; the global features were calculated
numerically. In the limit of J/t—O0, identical with the
Thet-J model is an important model to study highly cor- largeU limit of the Hubbard model, the correlation functions
related electron systems for its simplicity and close relationwere obtained by taking advantage of the spin-charge sepa-
ship to high-temperature superconductiviitilany proper- ration in the ground stat€.For the other values af/t, As-
ties in one-dimensiona(1D) systems have been clarified saad and Wiiz!® and Imad&* have carried out quantum
extensively by a number of methods: Bethe-ansatz solutiondfonte Carlo simulations. Pruschke and Shtstudied the
g-ology, Tomonaga-LuttingertTL-) liquid theory, quantum superconducting correlation functions by the exact diagonal-
Monte Carlo simulations, exact diagonalization studies ofization. All these results are consistent with the correlation
small clusters, and conformal field theory. We expect that the&xponents obtained by the analytic methods.
study of 1D systems will shed light on more realistic higher-  Although the ground-state properties in the t-D model
dimensional systems and that comparison of the varioubave been clarified quite well, it is still important to examine
methods with the well-established 1D results will enable usvariational wave functions, for the explicit form of the wave
to judge the validity of such methods and approximations. function will make the complicated physics easy to grasp. So
In contrast to the 1D Hubbard modethe Bethe-ansatz far, various kinds of variational states have been proposed
solution does not exist in the 1BJ model except fod/t=0  for strongly correlated system$:2% The Gutzwiller wave
(spinless-fermion cag@ndJ/t=2 (supersymmetric casé*  functio™ (GWF) was studied numericaf§!’ and
In both soluble cases, a TL liquids realized and the expo- analytically*®*° These studies concluded that the GWF is
nents of long-range behaviors of correlation functions wereexcellent for the one-dimensional Heisenberg model, but is
calculated exactly by combining the Bethe-ansatz equationgnsatisfactory, even qualitatively, in describing the properties
and the conformal field theofy° Also obtained were bulk of the strong-coupling Hubbard model or of the smilHe-
guantities like spin susceptibilitys, charge susceptibility gion of thet-J model. For example, the GWF does not re-
Xc. specific heat coefficient, and effective transport massproduce the R peak in the spin-correlation function; in the
which characterize metal-insulatéMott) transitions'® On  momentum distribution, it has a strange enhancement for
the other hand, for general valuesdf, Ogataet al!* stud-  k>kg. The main reason is that the density correlation is not
ied the low-lying energy spectrum of finite systems to obtainsufficiently introduced in the GWF, although the spin corre-
the correlation exponents. In the phase diagrand/ofand lation is well incorporated. These unsatisfactory features are
the electron densitp [n=N/N,, N (N,) being the number partly remedied by introducing Jastrow-type intersite corre-
of electrongsiteg], the TL-liquid theory holds in the small-  lation factors’®?%23
region belowd./t=2.5-3.5, depending om. A phase sepa- In a preceding papéf,we showed that the behaviors ob-
ration takes place in the largéft; there is a region in which tained by the exact diagonalization fdft=2 are described
the superconducting correlation is dominant, between thextremely well by the GWF and that the wave function is
phase separation and the supersymmetric case. improved for other values af/t by introducing intersite cor-
Meanwhile, as for physical quantities such as the momenrelation factors called Jastrow factors.
tum distribution function or spin- and charge-correlation In this paper we give detailed descriptions of these issues
functions, only the long-range behaviors were clarified in thefirst. Then we compare the above Fermi-liquid-type correla-
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tion factors with a TL-liquid-type one introduced by Hell- model!? As J increases, they lose this behavior, and near the
berg and Melé&2 which has long-range Jastrow factors andsupersymmetric caselft=2), the system behaves similarly
thus has nontrivial correlation exponents. It is found that thdo the noninteracting case. This corresponds to the fact that
long-range behavior of the Jastrow factor is essential for théhe exponenk , becomes 1free-electron valuenearJ/t=2
nontrivial exponent or non-Fermi-liquid behavior. On the (J/t~2.3 for n=0.5).* N(k) and S(k) become almost flat
other hand, the variational energy and the global features ah the regionk>2kg, which is the same behavior as in the
the correlation functions are determined mainly by the shortnoninteracting case. However, note that these global features
range behavior of the Jastrow factor. We also show thabf correlation functions are nontrivial even kf,=1, since
quantities likey.,xs and the magnetization curve obtained this exponent only guarantees that the long-range behavior of
by the above wave functions are not only qualitatively butcorrelation functions is the same as in the noninteracting
quantitatively consistent with the exact results. This aspect isase. Actually, the absolute value in the flat region is quite
in sharp contrast with the so-called Brinkman-Rice transidifferent from the noninteracting value. For the case of 8

tion. electrons in 16 sites, we get
The outline of this paper is as follows: We give detailed
descriptions of and complementary discussions to the pre- N(k>2kg)=0.312-0.319,
ceding lettef? namely, the diagonalization results, the prop-
erties of the GWF for the supersymmetric case, and the S(k>2kg)=0.698, 2.4

Fermi-liquid-type Jastrow wave functions in Secs. -1V, re-yhile in the noninteracting casdl(k>2kg) = S(k> 2kg)

spectively. In Sec. V an essentially long-range correlation-pn=0 5. The sum of these two values is, however,
(TL-liquid-type) factor is examined and compared with the

Fermi-liquid-type correlation factors. In Sec. ., xs and N(k>2kg)+S(k>2kg)=1.001-1.009, (2.5
magnetization curve are investigated. Section VIl is assigned . . . .
to a summary. In Appendixes A and B, an analytical ap_zind this is surprisingly close to the noninteracting value (2
proach to the GWF used in Sec. lll and the behavioy of _1S)i.nce the summation of them is rewritten as

and x, in the Gutzwiller approximation compared in Sec. VI

are summarized, respectively. A part of the results in this

paper has been published also in a review before. N—E {2(njpnie) +2¢n; ny ) —(np)(n)yetkimm)
aj.l
II. GROUND-STATE PROPERTIES OBTAINED 4
IN SMALL CLUSTERS :N_g {(nam) = (e dkek T (2.9
al,

We study the one-dimensionélD) t-J model defined as
the sum ofN(k) andS(k) represents the density correlation
T=Tb+ Ty, (2.)  between the same species of spin. The coincidence of this
quantity to the noninteracting value shows that each spin
behaves freely. This is because the Gutzwiller wave function

oy T
For= _t% (CjoCj+10+H.C), (2.18 (GWF) is an extremely good variational state fbit=2 as
shown previously? The Gutzwiller projection only affects
1 the correlation between the different species of spins, such as
T5=32 1SS 1 2NN+ (210 (nj;n;}), so that the density correlation between the same
! species of spins resembles the free case.

in the subspace with no double occupancy wijtd=0. Spin Next we estimate the ground-state energy. The ground
operators vanish when they are applied to empty sitesstate is always singlet and nondegenerate, if we choose pe-

Henceforth we take as the unit of energy. riodic (antiperiodig boundary conditions forN/2= odd

We use the Lanczos method and the conjugate gradierieven, respectively>™ Under these boundary conditions,
method® to obtain the ground-state wave function in smallthe energy converges smoothly to the thermodynamic limit.
clusters. We calculate the momentum distribution function For n=0.5 we calculate the ground-state energies in 4-, 8-,

12-, and 16-site clusters and fit the results to the formula
n(k)=(C,Cro) (2.2

— 2 4 6
and spin- and charge-correlation functions B/Na= €+ Co/Ng+ColNat Co/Na. @9
The fitted values ok, are shown in Table I. In the region
1 22\ iK(Fi— J/It=3.4, the energies cannot be fitted to this formula be-
S(k)= N_aJZ’ 4(sishHe T, cause the system phase separates in this region and the size
dependence is different from E.7). To check the conver-
1 _ gence forJ/t<3.4, we calculate another series of singlet
N(k)= N—Z {(njn,>—<nj><n,>}e'k(’i*"), (2.3 energies by using different boundary conditions, i.e., antipe-
all riodic ones forN/2=odd and vice vers#. Fitting of the data
obtained exactly for various values af The data of these to the same formula, Eq2.7), gives another estimate of the
quantities were shown in the previous pa&pdor n=0.5. ground-state energyel), which are also shown in Table I.
The global features of the correlation functions for smallThe difference betweene.. and e, is very small
values of J resemble the results in the large-Hubbard (Ae.< 10 %t),2® which ensures the reliability of the esti-
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TABLE |. Ground-state energies of the 1] model for the TABLE Il. Ground-state energies of the 1BJ model for

quarter-filled casen(=1/2). They are extrapolated to the thermo- n=3/4 similarly obtained as in the quarter-filled case in Table I.

dynamic limit using the formul&2.7). €., ande,, are obtained from

the two sets of boundary conditiofisee the tejt The unit of the  J/t € €
energy ist.

0.0 —0.4501050 —0.4502187
It .. ¢ 0.2 —0.5216656 —0.5219004

0.4 —0.5943201 —0.5944475
0.0 —0.6366197 —0.6366198 0.6 —0.6678961 —0.6680324
0.2 —0.6578750 —0.6575043 0.8 —0.7422736 —0.7424195
0.4 —0.6804029 —0.6806269 1.0 —0.8173650 —0.8175213
0.6 —0.7041767 —0.7041768 1.2 —0.8931052 —0.8932726
0.8 —0.7291701 —0.7291701 1.4 —0.9694457 —0.9696252
1.0 —0.7553587 —0.7553586 1.6 —1.0463508 —1.0465437
12 —0.7827211 —0.7827209 1.8 —1.1237962 —1.1240038
1.4 —0.8112399 —0.8112396 2.0 —~1.2017671 —1.2019909
16 —0.8409031 —0.8409028 2.2 —1.2802580 —1.2805002
18 —0.8717049 —0.8717046 2.4 —1.3592732 —1.3595368
2.0 —0.9036477 —0.9036477 2.6 —1.4388286 —1.4391186
2.2 —0.9367449 —0.9367452 2.8 —1.5189551 —1.5192801
2.4 —0.9710250 —0.9710259 3.0 —1.5997064 —1.6000835
2.6 —1.0065398 —1.0065415 3.2 —1.6811763 —1.6816414
2.8 —1.0433801 —1.0433827 3.4 —1.7635421 —1.7641837
3.0 —1.0817130 —1.0817179
3.2 —1.1219079 —1.1219533

where® is a simple Fermi sea. In the 1D case, the analytic
mate. Fom=3/4, we estimate similarly the ground-state en-€XPression for the physical quantities were develdfed.

ergy by using 8- and 16-site clusters with 6 and 12 electrons, First et us compare the variational energy. The expecta-
respectively. The obtaineel, is shown in Table II. Because ton value of the kinetic energy is calculated as

in this case we fit the data with two parametegsandC,,

the error is larger than that in the quarter-filled case. We will

usee.. later to compare with the variational energies. ()

2t ™
= T
E; N, > Eg f_wdkcosk(ckgck(,), (3.2

IIl. COMPARISON WITH THE GWF

NEAR THE SUPERSYMMETRIC CASE
where(- - -} indicates the expectation value in the GWF. The

In this_ section we compare the grqund—state properties foénalytic expression fofc]_c,,) has been given by an infi-
?]/tzz. with the Gutzwiller wave functiofGWF). The GWF nite summatiort® The detailed calculation is summarized in
is defined as Appendix A. Here we show that the exchange energy can be

obtained in a compact forfY.From the expression (k)
Pa@e=11 (1—njin;) @k, (3.) andN(k) (Appendix A), we get
i

1
(4SS, )=~ —{Si(m)~Si(1-m)m)},

sinnr

+(1—n)cona |{Si(7)—Si((1—n)m)}, (3.3

1
(nini;1)=n%+ s—2(cosnm—1)+ —

with n=N/N, being the electron density. Using the fact that the GWF is a siAgleg obtain, analytically,

(Hy) J sinnr . . 1
= H3+ +(1—n)cosmr]{S|(7r)—S|((1—n)7r)}+7rn2+ Z(cosmw—l) . (3.9
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It was showR? that the total energies of the GWF and that of 2 r
the Bethe ansat@BA) atJ/t=2 are indistinguishable for any - arctanz (RIWB, (4.2a
value ofn. In the low-density limit, the total energy of the
GWF atJ/t=2 is n(r)= 1 (GWPR), (4.2b
o
2 1+75  (AIWP), (4.29

aw
E(GWF)/t=—2n+ En3+0(n4), (3.5
wherer #0 and{, «, andB are positive variational param-
which coincides with the BA results up to the orderrof ~ eters. The typical forms of(r) are shown in Fig. 1. In these
functions, n()=1 holds and the value of(1)/7n(x) is

The detailed calculation for E¢3.5) is also given in Appen-  Tur € value ( _
dix A. This is consistent with the fact that the critical expo- finite for every parameter set. This point is essentially differ-

nentK, approaches 1 fon—0. This Fermi-liquid state is ent from the function with a long-range Jastrow factor dis-

nothing but the GWF. cussed in the next section.
We evaluate the expectation values by the variational

The GWF and small cluster calculation give almost the A / _ _
Monte Carlo(VMC) method!®!” This method gives virtu-

same results fon(k) except for the singularity dtr. The g f : \
slight difference between the GWF and exact ground state i8lly exactexpectation values for given trial functions. In the
the behavior arounl: , which originates from the TL-liquid VMC calculations in this work, we use systems with electron

nature. It is remarkable that the ground state oftttienodel ~ NumberN=41+2 (I is an integey with the periodic bound-
has an enhancement pfk) in the vicinity of -, which was &y condition. Sample numbers X3.0*~2x 10°) and sam-

considered before as a pathological behavior of the GWF. pling intervals(50 Monte Carlo steps at the maximurre

It can be shown that this enhancement originates from th&aken so as to reduce statistical fluctuations enough. In this
section we use typically 60- and 72-site systems.

correlated electron motion
A. Repulsive case

) ) The form Eq.(4.238, which we call the repulsive Jastrow
where (- - -)o represents the expectation value in the freewave function(RIWA in this paper, includes repulsive cor-
Fermi sea®r without the Gutzwiller projection. After a relation. It prefers configurations with electrons mutually

straightforward calculation, Eq3.6) becomes apart. In the limitz—0, it is reduced to the GWF, E(4.2b).
This wave function was previously introduced to study the

repulsive Hubbard model in strong correlatidnin that
work it was found that the RJWF lowers the variational en-
ergy in the Hubbard model and it reproduces qualitatively

(¢l,€jo(1=Ni_ ) (1—N;_ )0, (3.6

Pijo(1=n_,+n® +&;n_,—Pii_,P;_,) (3.7

and its Fourier transform is
the enhancement atk of S(k). Therefore we expect that
ng(k)—Zn,Ung(k)Jrfz(k). (3.9 tmhngZiJWF is suitable also for the smallregion of thet-J

HereP, is the Fourierransform ofy(0= (ke k) and 2 o8 L B S0 T T trons keep apar
f, is given in Appendix A as one of the lowest-order terms infrom each gother an'd .'[hlE.g tends to aecrease ariel pin-p
the analytic calculation. The enhancemenngk) in the re- ’ t J

gion of k>kg is roughly reproduced from this simple lowest

order, Eq.(3.6). [ i

20
IV. FERMI-LIQUID-TYPE JASTROW FUNCTIONS I
- AJWF(a =1, 8 =1)
In this section we study the Fermi-liquid-type wave func- 150 ]
tions to describe thé-J model away fromJ/t=2, keeping | ]
the application to higher dimensions in mind. In many-body §

problems Jastrow-type wave functions with two-body corre- I GWF (g=0)
lation factors are often used. First, notice that the trial state LEU S i S S SRR At deetet G GRS GRS
becomes nonsinglet if the Jastrow correlation is spin [ |
dependent® Therefore we study here only the spin- |
independent charge density correlafibn 051 RIWF( ¢ =1) ]

0 2 4 6 8 10

v=11 L a-1=nringene i@, @

wherer;=|r;—r||. For »(r) simple forms are desirable,
satisfying the condition of the-J model: (0)=0. This con- FIG. 1. Correlation factom(r) for three types of Fermi-liquid-
dition is to project out the double occupancies. In this sectionype wave functions. Typical values of the parameters are chosen

we consider two cases in addition to the GWF: for each case.
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1 1 T T T T T T T T T T T -0.048
1-0.125 ~0.47
-0.05
-0.052
H{-0.150 -0.48
-0.054
07 b g 0175 FIG. 4. Expectation values of two energy componerit (solid
0.1 1 10 100 circle) and.7; (open circle per site for the RJW and smajl+e-
¢ gion. In this VMC calculation, 10samples are collected for a 72-

FIG. 2. Expectation values of two energy componérit(solid ~ Sit€ System.

circle) and.77; (open circle per site for the RJWF fon=0.5. The
value of the GWF {=0) is shown by arrows on the vertical axis.
We use 3 10* samples for a 60-site system.

figure we readE({)/t=—-0.471-0.041% and E;({)/J
=-—0.0540+0.0217. Since the total variational energy is
given by
creases. We show the total enelggl) for J/t=1.0, as an _
example, in Fig. 3 using the values in Fig. 2. The minimum E(D=E({)+E¥D), (4.3

is situated at{~0.7; the energy is considerably improved the slope ofE({) near{=0 is —0.0413+0.0217. This
upon the GWF {=0). Similarly we find that the minimum means that fod/t<0.0413/0.021% 1.9 the slope is negative
appears at~1.6 (for J/t=0), 1.2(0.5), 0.7(1.0), 0.4(1.5), and the RJWF improves the variational energy upon the
and 0 (2.0, respectively. The repulsive interaction repre- GWF. In a similar way, we obtain the value &f/t also for

sented by the magnitude gfbecomes weaker with increas- n=0.5, 0.75, and 0.83... . Asn increases, the statistical
ing J. fluctuation becomes severe and it is not easy to estimate

Next, let us consider the critical valug below which the  accurate values. However, we fild/t=2.0+0.2 for the
RJWF has a lower variational energy than the GWF. In ordeaibove densities. Actually, the value df/t ought to be
to estimatel., we only have to see the dependence of the slightly shifted to a larger value af/t in the high-density
variational energy neaf=0: If the slope of the energy at region, as will be seen in the next section. This is consistent
{=0 is positive, the optimal state {&=0, which is the GWF.  with the diagonalization study.

On the other hand, if the slope &t 0 is negative, the varia- We make a comparison of correlation functions. Figure
tional energy has a minimum at a certain valueZaf0 and  5(a) showsn(k), S(k), and N(k) for the optimized wave
the RJWF is more stable than the GW§F=0). function atJ/t=0 andn=0.5, together with the result of

In Fig. 4 variational expectation valués/t andE;/J in exact diagonalization. The reproducibility of the global fea-
the RIJWF are shown fon=0.3 and small/. From this tures is not perfectly good. Figuregtd shows similar com-

B | I ’ | N
-0.73
A
~
53]
GWF FIG. 3. Energy expectation values for the
-0.74 RJIWF atd/t=1.0. The arrow on the vertical axis
is the value of the GWF and that of the exact
diagonalization (extrapolated values  for
N,— ).
-0.75
ExactC . . 1+ . o0 0
10 107! 10° 10! 10?
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! ! ! ! I ! ! ! ! 1 ¥ 1 1 1 1 1 T T
1B E(RIWF)t = -0.6131  _| l
(@ Jt = 0.0 E(TLL)t = -0.6037 - ]
- E(Exact)/t = —0.6366 - o.
| <>"O ........... GWF (~/1=2.0) i
T
05 |- -
[ o rRIWF (1=00) 1
- o RIWF (J/i=1.0) 1
| © AIWF (J/t=2.5)
0 1 1 1 1 I L L L] L 4
0 0.5 1
n
1 T T J ' ] T T T T FIG. 6. Discontinuity of momentum distributian(k) atkg as a
L (b) Jit = 1.0 ERIWE)t = -0.7495 | function of n. The optimized Fermi-liquid-type wave function is
() It = 1. ALY = ~0.74% d f h value of andJ/t. The size of th bol
| E(Exact)t = -0.7554 | use or.eac va qe an t. . e size of the symbols represent
. the relative magnitude of possible error. For the cases0 and
E J/t—0 and for the AJWF, it is not easy to determine the value
n(k) o . o . 7
i St o T . accurately owing to the difficulty in optimizing the parameters.
05} . _
J/t decreases becomes small; the correlation affects the
i 2 : whole electron density in this case. Although the result for
- e N(k) . J/t=2.5 includes a relatively large statistical error, it is ob-
i | vious thatq tends to decrease, with increasidét from
00 J/t=2.0. Thus we conclude that the supersymmetric case is
i 4 the most weakly interacting; a¥t goes away from it, the
0 L L : L 0'5 L L L L . correlation effect becomes severer.
. k|l 7
FIG. 5. Comparison of momentum distribution functingk), B. Attractive case
spin- and charge-correlation functiogk) and N(k) among the An attractive Jastrow wave functigdJWF) with the cor-

TL-liquid wave function (bold solid ling, the Fermi-liquid-type re|ation factor Eq.(4.20 favors local configurations with
wave fL_m(I:non(ddot), andt_the ﬁxiﬁt. dlaglpdn?I|za:|¢nlfenfd3inlogd, electrons close to each other. The parametaadjusts the
?oﬂe?a)c'giti g n( ixg (;g '?gra t%e ITnL-SliO Li dlrg:at:g:)lo(s for_th]e amplitude of such attractiveness; asincreases, more em-
v T B 9 " phasis is laid upon attractive electron configurations. On the
RJWH and(b) J/t=1 (v=0.37, {=0.7). For the variational cal- h .
gther hand, the other paramej@rcontrols the decaying be-

culations, 18 samples are averaged for 220-site systems. The tmahavior of 7(r). With increasingg, the effective aftractive

energy for each case is also given in diditse last digit for each .
include the ambiguity due to the statistical fluctuatiori®or exact @ngeé becomes narrower. It is reduced to the GWF when

diagonalization, 52-site system is used @ and up to 16-site sys- a—0 or ﬂ—’o-_ ) _
tems in(b). For J/t>2, it is natural to expect that the attractive cor-

relation between electrons is dominant. In Figs) and 1b)

parisons between the variational states and exact diagonalee show the variational expectation values.@f and. 7
ization atJ/t=1. As J increases, the coincidence becomesfor the AJWF (1=0.75), respectivelyE; becomes lower
better, because the value &ft is nearer to 2. andE; becomes higher as increases, because the amplitude

The discontinuityg of the momentum distribution(k) at  of configurations with electrons located next to one another
ke is plotted in Fig. 6 as a function af in the optimized increases. Note th&t, abruptly approaches to zero akglto
variational states. This quantityis one of the characteristic the energy of the spin system in the regia»>10 for
properties of a Fermi-liquid-type wave function, which is 3=0.625~1. This is nothing but a sign of the phase transi-
equal to the wave function renormalization factor and relatedion.
to the inverse of the effective mass /m in the Fermi-liquid Actually, the snapshots of electron configurations taken
theory. along a Monte CarldMC) sweep(Fig. 8) show a formation

For the supersymmetric case the result of the GWF, of an electron cluster fod/t=3.4, a= 15, and8=0.75. Al-
g=+1-—n, is also shown in Fig. 6. In this casebecomes 1 though a small density fluctuation can be seen near the
in the limit of n— 0, which is the value of the noninteracting boundary, this edge effect will be irrelevantldg—«. Sec-
system. In the other limit— 1, q vanishes. This implies that ond, the minimized energy is quite close to the energy of the
the Fermi surface vanishes—namely, the effective maskleisenberg chain corrected by electron density. The charge-
diverges—corresponding to the metal-insulator transition. Aslensity correlation function in real space,
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J/t=34 AWF «a =15, 8 =075

MC steps (1=20) ———>

Site number

FIG. 8. Snapshots of the electron configurations in the VMC
sweep folN,=60,n=0.5 atJ/t= 3.4 (separated phaseEach hori-
zontal line represents the one-dimensional system. A golin
circle means an uptdown9 spin electron and a null spackori-
zontal line an empty site. In the Monte Carlo sweep, the configu-
ration of the system evolves vertically. Before taking these snap-
shots, 3000 MC steps are discarded for obtaining the statistical
equilibrium. The sampling interval is determineld<20 MC step$
so as to make the acceptance ratio per electron larger than the unit.

is, one arounda=1-2 (minimum H) and one around
a=15 (minimum S). The latter corresponds to the phase-
separated state, as discussed above. In Faj.tBe lowest

| i Heis. energy is given by the minimud and the minimuns has
B S VST a higher value. In Fig. @) the two minima have comparable
@ values. On the other hand, fdft=3.5 [Fig. 9c)] the situ-

ation is opposite of Fig.(@). Thus we find a switching from
FIG. 7. Variational expectation values @ .7; and(b) .77, per  the state of the minimurhl to one of the minimun$ around
site for the AJWF. The arrow on the left vertical axis shows theJ/t=3.4, which represents the phase boundary to the phase
value of the GWF &¢=0). The arrow on the right axis ifb) shows  separation.

the value of the Heisenberg chaiBethe ansajzmultiplied by n. Similarly we obtain J/t=3.2 (n=0.25) andJ/t=3.3
The sample number is>310" for each point andN,=72. (n=0.5). These values are in good agreement with the
exact-diagonalization resti.
1 2
Nf_N_aEi [{mini.r) =0T, 44 V. TOMONAGA-LUTTINGER-LIQUID-TYPE JASTROW
FUNCTION

for a>10, shows that the state is expected as a complete . . .
« P P In this section we study the trial state proposed by Hell-

phféseea-fcehlfi)r?éa;e?nisrﬁ;i-m of the variational energy in the b_erg and Melé.3 For the va_lriational state_s treated in the pre-
3 plane, we obtain the optimized energy ft>2. The case vious sec_tu.)n,.the cgrrelano_n gxponent is always the same as
of n=0.5 has already been shown in Ref. 22. Here we shov'\[)1e Fermi I!qwd K,=1). This is becaus_e the Jastrow factor
in Fig. 9 the total energies far=0.75 and)/t=3.3, 3.4, and 7(r) usedin Eq(4.2 approaches 1 rqpldly, namely, is short
3.5 as a function of variational parameters. The energy iéanged._ If the correlation factor;(r)_ IS Iong_ ranged, the
improved on that of the GWF in every case. The value Ofcc_)rrzelﬂtlo_rllle)lgpo%er;)t lr)]ecc_)me; nltl)bntrlwal, (‘jm:\'/l(g%'s r::onsgtent
a giving the energy minimum becomes large with increasétﬁ';t at1 veariat}cl)?]lgll sta?e avior. Hetiberg an showe
of J/t; this means the enhancement of the attractive correla-
tion. v

One can read that the aspects of the minima are quite IF(ri )" ®e ©.0
different among three figures of Figga®-9(c). For simplic-  gives nontrivial exponents, whefg(r;; ,r; )| is a Slater de-
ity, let us consider the case @f=1 (open circlg. In each terminant of all the electron positions. Actually the correla-
figure the energy curve g8=1 has two local minima, that tion exponent is related to the variational parametes’
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-1.71
GWF -1.80
-1.72
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84 [43
-1.74
FIG. 9. Total energy of the AJWF for a couple of valuesJof
= around the phase transition. The same symbol with Fig. 7 is used
= for each value of8. (a) corresponds to the homogeneous regime,
(b) is the case near the phase transition, &)dis in the phase-
-1.75 separated regime. The arrow on the left vertical axis shows the
GWT; value of the GWF. The Heisenberg value corrected by the electron
density is given by—n(J/t)In2: —1.81% ... for n=0.75 and
J/t=3.5.
-1.76
0.1 1 10 100
[434
1 exact diagonalization of small clustéfswe find that the
Kp=m, (5.2 variational wave function is very good in the vicinity of

J/t=2 including the correlation exponents, but not so good
which was derived using the asymptotic Bethe ansatz and theearJ/t~0. For example, the optimized variational param-
scaling relations of the TL-liquid theory. eter v for J/t=0 is v=1 (v=0.75, v=0.5) nearn=0

If we rewrite this wave function in the form Ed4.1) (n=1/2, n=1), respectively, while the exact exponent is
using the Vandermonde’s determinant identity, the correK ,=1/2, which corresponds to=1/2, regardless afi. One
sponding Jastrow correlation can be written as

1.0 T T T T T T T
14
7(r)= %sin<1r) . (5.3 Ko

T Na c [ 0.7 1.5 1
When v>0, this correlation is repulsive and is attractive for N 06 08 f1o 20
r<0. As we can see from E@5.3), the factorn(r) behaves 08 |
as N. at the longest distance,=N,/2. It depends on the Phase
system sizeN,, and thus it is a very long-ranged Jastrow i 24 Separation
factor which is different from the conventional Jastrow fac-
tor, Eq. (4.2). This long-range behavior stands for the effect o ' ; Y S—
of phase shift of two-particle collisions and eventually J/t
changes the correlation exponent from the noninteracting
value. FIG. 10. Phase diagram of the 1) model calculated in the

The phase diagram obtained with this trial state is given inTL-liquid wave function, Eq(5.1). The curves show the contours
Fig. 102° Comparing that phase diagram with the one by theof constant correlation exponei, . The used system has 100 sites.



5766 HISATOSHI YOKOYAMA AND MASAO OGATA 53

can see this derivation directly by examining the correlation TABLE Ill. Comparison of expectation values for four kinds of
functions, which are included in Fig. 5. Since the densitycorrelation factors hybridizeda) between the RIWF, Eq4.2)
correlation functionN(k) is exactly the same as that of the ({=6.9847) and Eq(5.1) (v=0.5), for the repulsive case, afio)
free spinless fermions aft=0, there must not be a peak at Petween the AJWF, Eq4.2) (a=0.6804, $=0.5481) and Eq.

2ke . However,N(k) calculated withy of Eq. (5.1) has a (5._1) (v=—0.15), for the attractive case. Digits include some sta-
small peak at R owing to the deviation of the exponent fistical errors.

[Fig. 5@]. _
To understand the reason of this deviation, we rewrite the B/t Es/3 n(k=0) n(k)<ke n(k)>ke
variational state, Eq5.1), as® @
Case(1) —0.60865 —0.13972 0.73826 —0.02925 —0.02948
F(rip il @e=TI1 12—z |"T] |z,- 2|11 |21,- 7| Case(2) —0.60959 —0.12047 0.70705—0.02665 —0.02811
<] <] i<j Case(3) —0.60880 —0.13955 0.73804 —0.01958 —0.01989

Case(4) —0.60983 —0.12037 0.70816 —0.02242 —0.02178

— 1+v
-zt /T -2l o
(5.9 Case(1) —0.55403 —0.17331 0.74876 —0.00589 —0.01103

apart from the sign. Herz*,(,=exp(2m'rj(,/Na) and{zj} rep- Case(2) —0.54695 —0.17619 0.74777 —0.00309 —0.00559
resents all the electrons irrespective of their spins. On th&ase(d) —0.55392 —0.17334 0.74871-0.00096 —0.00553
other hand, the exact density-correlation functiod/at0 is Case(4) —0.54701 —0.17615 0.74745-0.00090 —0.00279
reproduced by the free spinless fermidh,-j|z—z]. We
can see that it is difficult to reproduce the exact density cor- ] )
relation using the form Eq5.4). For the repulsive case we choage=5, v=0.5 (the opti-

In this connection, for the region dit~0, a better trial Mal value forJ/t~0.7) and{=6.9847. In Table Ii{a) we
function will be obtained as the for = y®sr on the anal- show expectation values of several physical quantities for the
ogy of the exact eigenfunction in the smalk limit, > where ~ four casessn(k) in the last two columns indicates the dif-
®gr is the wave function of spinless fermion apdis that ~ ferences on(k) between the two possiblepoints adjacent
for spin degree of freedort. to ke from inside and outside, respectively. For the bulk

Figure 5 also shows that the optimized RIWF- and TL-quantities likeE,/t, E;/J, andn(k=0), cased1) and (3)
type wave functions give almost identical results. Actually,give Similar values, which are different from cas@s and
we find that the two optimized forms of(r) of two varia-  (4)- This implies that the short-range part of the correlation
tional states are similar in short distance. This suggests th&ctor is responsible for the bulk properties like energy and
the global features of the correlation functions are determagnitude of correlation functions. On the other hand, for
mined mainly by the short-range behavior of the Jastrowdn(k) cases(1) and(2) have similar values compared with
factor. caseg3) and(4). This indicates that the long-range part con-

Before closing this section we confirm that the long-rangelrols the critical behavior of correlation functions.
part of the correlation factor controls the critical behavior of N Table lli(b), the result of the same quantities in the
correlation functions, while the short-range part determinedttractive regime is summarized. Here we setget10 and
the global features of correlation functions as well as energy?= —0.15 (the optimal value fod/t~2.5) and the two pa-
Let us consider the wave functions with four different typesrameters are determined by requesting (1)= 7a(1)
of correlation factors, two of which connect the correlationand 77 (rc) = 7a)(rc) as a=0.6804 andg=0.5481. The

factors of two kinds of variational states, namely, tendency agrees with the repulsive case. These facts explain
the similarity ofn(k) and the slight energy difference shown
case(1l): =n(r)=ny(r) forall r; in Fig. 5.

ne(r)  for r<rg,
case (2): 7q(r)= V1. STATIC PROPERTIES OF CHARGE AND SPIN
pr(r)  for r=rg;

In this section we focus on the behavior of charge suscep-
nr(r) for r<rg, tibility x. and spin susceptibilitys. Since the trial states in
case (3):  n( I( the half filling are always Mott insulating for theJ model,
we can see the critical behavior variationally and discuss the
difference between the present case and the Brinkman-Rice
transition(Appendix B.
where ny . denotesy(r) of Eq. (5.3, ng_ either that of the We calculatey. and ys from the VMC data for systems
RJWF or AJWF, Eq.(4.2), andr, is a certain value of  with finite sizes from the formulas
which divides#(r) into a short-range part and a long-range

ne(r)  for r=rg;

case(4): qn(r)=ng(r) forall r,

part. We choose the variational parameters ignsb that the PE N2
two parts may be smoothly connected. By using these corrgzglz_z = _a{E(Njino) +E(N-2,0-2E(N,0)} (6.1)
lation factors, we perform VMC calculations for the energy, an 4

n(k), S(k), andN(k). We fix the system size td,= 100 for
n=0.5 and take % 10* samples for each case. and
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T T T T T T T T T TABLE IV. Coefficient of 1/ and 16 of charge susceptibility in

the limit of n—0 and 6—0, respectively. For comparison we also
show the values of the free-electron system and the supersymmetric
t-J model with long-range exchange and transfer, denoted by
“Free” and “L.-r. t-J” respectively in the first column.

£t M A R T s e e e

Q
= n—0 6—0
2 Jit Variational Exact Variational Exact
Z =25 ] 0 0046 1 0.054 1
B =« ] 2—77220.05066 2—772:0.05066
1 - 1 0.053 - 0.062 -
i ] 2 0.204 2 —0.20264 0.070 16(|n2)2_O 21508
s w2 3723
[ i Free 2 - Finite
%% 05 1 —5=0.20264 Xe
n L.-r.t-J  Exact Finitex. Exact 2
o —=0.20264
FIG. 11. Charge susceptibility va for some values ofl/t. ()

Symbols are the results of the optimized TL-liquid state. The solid

line for J/t=0 and 2(Ref. 9 represents the exact analytic value. J/t is divergent asi— 1. This divergence is due to the strong
The dashed line is the result for the noninteracting system. Thgorrelation effect, which suppresses charge fluctuation; this
dotted line ford/t=1.0 and 2.5 is a guide to the eyes. The sizes ofiS in contrast with the noninteracting case, where
the symbols represent the relative magnitude of possible error. 50x¢ -= wsin(n7/2) and remains a finite value #/asn ap-

210-site systems are used. proaches 1. Fod/t=0 and 2, the exact values are known;
the spinless fermion resuj@c’l:2wsin(n77) for the former
PE N2 case and the Bethe-ansatz solution for the 14ftdn both
Xs_lza_mz = 1—6{E(N,8)+ E(N,0—2E(N,4)}, (6.2  cases the exagt, diverges ag.><1/6 (6=1—n) in the limit

of n— 1. The variational result is quantitatively similar to the
whereE(N,M) is total energy per site dfi-electron systems €xact one. To see this d|verggnce more closely, we plot
with M=N,—N, . Henceforth we take f/as the unit ofy, ~ chemical ;)<()tent|ah=¢9]£/an vs 6 for J/t=0 and 2 in Fig.
and xs. We confirm that the size dependence is mostly negl2: FOrJ/t<2 we can fitu asu=po—as” in the vicinity of
ligible for the systems we us&l,=100—200. In contrast to the half f|II|ng, although the I|ne§1r!ty |s.not so clear for
the Hubbard model in the strong-coupling regime, a rela/t>2- Sincéx.=dn/du, the coefficien@ is related to the
tively accurate estimate of is possible for the 1D-J model ~ divergence ofy. as xo=2a/5(6—0). From Fig. 12, we
because of the less statistical fluctuations. In this section, wi€termine this coefficient& for a couple of values od/t,
mainly use the wave function, E6.3), and GWF. Typically, Which aré shown in Table IV. L _
5x10°—2x 10° independent VMC samples are used for S ¢an be seen in Table IV, the estimation by the varia-
each value of the parameter To search the optimized value tonal state is in good agreement with the exact value at

of E(N,M) for eachN andM, we pick out 61—121 values of J/t=0. However, atl/t=2, the deviation is quite large. This
» between—1 and 2. is probably because the range of linear behaviqe ok 52 is

rapidly reduced ad/t increasé.

The divergence ofy. near the Mott transition has been
understood from the Bethe ansatz. Using the correlation ex-
In Fig. 11, x is shown for several values dft. Here we  ponentK, and the charge velocity., x. can be written

observe that with increasingft, y. becomes large. This is as™®

because the enhanced attractive interaction between electrons

enlarges the charge compressibility (= x./n?). In the — P
high-electron-density regiomnt-1), x. for every value of ™ U

A. Charge susceptibility

2llll|llll —0~6||||||l||[||||

-0.65

FIG. 12. Chemical potential as a function of
82 for J/t=0 and 2. Symbols indicate different
system sizes, namelyy,= 200 (solid diamond,
150 (open circle, 100 (solid circle, 70 (solid

~0.75 square, and 50(open diamongd
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Since v, vanishes linearly a$—0, v.=bé, x. diverges
a_§5,10,14

Ky
b

SN
N

SinceK ,— 1/2 asé—0,* the coefficient 2 is solely related
to the coefficiento, which is 2r=b=37{(3)/16(In2Y for
0=<J/t<2°However, forJ/t>2, we cannot expang as
w=uo—ad?, but fit u asu=uy—asd® instead. The leading
power p is estimated as €p<2, namely, p=1.8 (for
J/It=2.0), 1.5(2.5, and 1.3(3.0). Although x. diverges as

6—0 for J/t=2, we have not understood the origin of this

power. This may be due to the poorness of the trial wave
function of Eq.(5.1) or due to an anomalous dependence of

v. asv,~aséP L. At any rate, we can consider that this

HISATOSHI YOKOYAMA AND MASAO OGATA

o GWF E
¢ TL liquid

0

FIG. 13. Spin susceptibility va for some values ofl/t. The
open circle is the result of the GWF fdit=2 and the open dia-

divergence is attributed to the divergence of density of statenonds is the result of the optimized TL-liquid state. The solid line

at the band edge of the spinless fermion.

In low-electron-density areant-0), x. again diverges
except for the case dffit=2.5, in which the variational state
becomes unstable against phase separationyarmcomes
negative. One can find that the divergenceygfis propor-
tional to 1h by plotting » as a function oh?. The coeffi-
cients of 1h are shown also in Table IV. Since faft=2 the
trial wave function(GWF) is exact in the limitn—0, the

exact value is within the range of error. Furthermore, the
GWEF result and the exact one are extremely close to the

for J/t=2 represents the exact analytical val(Refs. 4,9. The
dashed line is the value for the noninteracting system. The dotted
line for J/t=1.0 and 2.5 is a guide to the eyes. The arrow on the
right vertical axis shows the exact value for the Heisenberg antifer-
romagnet 242 for J/t=2 (Ref. 3. The sizes of the symbols rep-
resent the relative magnitude of possible error. 50—210-site systems
are used.

21
Xs= v

noninteracting gas, which means a “free-electron” state is
realized in the supersymmetric case. Actually, using thevherev, is the spin velocity. Basically is proportional to

variational energy Eq3.12), we obtain
2 0
Xe= 2. +0(%),

which is the same as in the noninteracting case.nAis-

the exchange coupling and thusys decreases ad/t in-
creases, which means that the enhanced exchange coupling
hinders the response of spins to the magnetic field. For a
low-density arearf~0), yx, diverges since;xn, which is

due to the divergence of density of states. On the other hand,
asn—1, x approaches that of Heisenberg chain,

creases, however, the suppression of charge fluctuation in the

t-J model prevents the wave function from the free-electron

behavior.
For J/t=0 the variational value is a little different from

2 1
Xs_)WUsw'

the exact one. This difference corresponds to the deviation afith s, being the spin-wave velocity of Heisenberg chain:

K,

divergence ofy. is not due to the correlation effect, but

in this area, as described in the previous section. Theg,=J=/2.

For the supersymmetric case, we observe that the varia-

simply to the divergence of the density of state at the bandional results agree quite well with that of the noninteracting

edge.

B. Magnetic properties

system(Pauli paramagnetisimy 1= zrsin(ha/2), especially
in the low-density region. Here the idea of the GWF as a
“free-electron” state is again useful. Likg., however, the
two results become a little apart as~1. ForJ/t=2.5 and

First, we discuss the spin susceptibility under zero fieldn < 1, the decrease of is due to the phase separation.

Figure 13 showsgy, for a couple of values od/t. In sharp
contrast toy., xs does not diverge as— 1 for every value

Now let us turn to the case under a finite magnetic field
gugH, and here we puy=2 andug=1. Applying an ex-

of J/t, but remains a finite value close to that of the Heisenyerng| field alongz axis, a Zeeman term

berg chair’® The divergence of. hardly affectsys; this is
due to the separation between spin and charge degrees
freedom in the low-energy excitations.

For J/t=0, all the spin configurations are degenerate;

hence,y, is infinite. This aspect is special in 1D. By intro-
ducing J/t, this degeneracy is lifted and the value pf
becomes finite except for the low-density limit, which is

shown in Fig. 13. In the TL-liquid theory can be repre-
sented as®>’

of

H = —ZHZ Sf=—N.Hm (6.3
]

is added to the original Hamiltonian, E¢2.1). The total
energy per site is written as

E=E(m,n)—Hm, (6.4)
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0 T T T T T T T T T T T T T T T T T T T T T
N e IF ar1/t=10 *
B - K ® J/t=20(GWF { A
/ ( ) n=10 /

B A | OI/t=25 oy

Em) /¢t

i Total Energy (H=0) 7

-15 ! ) ] ] | I ] ] 1
0 0.5 1 FIG. 15. Comparison of magnetization curves for0.5 and

m 1.0. Symbols represent the result of the variational functions. The
optimized TL-liquid wave functions are used except for the super-
FIG. 14. Total energy under zero field as a functiomotalcu- symmetric case, in which the GWF is substituted. The solid line is
lated with the TL-liquid wave function. For the half filling, where the Bethe-ansatz result fft=2 (Refs. 36,38 The dotted line is
the TL-liquid state is reduced to the GWF, the value in the Superlhe result for the noninteracting system. The result for the super-
symmetric case is shown for an example. Rer1.0 (0.5), a 102-  Symmetric long-rangé-J model is shown by the dashed liRefs.
(1007 site system is used.>510* samples are averaged. 43,49.

Meanwhile, Otsuk¥ and Furukawa and Imatfainvesti-
gated the critical behavior of. and yx for the Hubbard
model on 2D square lattices by using quantum Monte Carlo
methods. According to their results, essentially the same
yproperties with the 1D models are observed. Thus one can
consider that a universal profile of a kind of Mott transition
appears in these results gf and 5.

Keeping these in mind, next let us compare with the
Brinkman-Rice transition in the Hubbard model. As summa-
rized in Appendix B,y calculated with the Gutzwiller ap-
proximation diverges whenU—U. (n=1) or n—1
(U=U_). On the other handy. remains finite for a finite
value ofU, even ifU>U,, although effective mass*/m
diverges similarly ass. This indicates that the Brinkman-
Rice transition describes a quite different type of metal-
jnsulator transition from those in the 1D and 2D Hubbard
odels and the 1@-J model.

Last, we mention the results in the long-range
odel?? In this model, susceptibilities are written as

whereE(m,n) is the total energy per site with electron den-
sity n and magnetizatioom under zero field. In Fig. 14,
E(m,n) is shown forn=0.5 and 1.0 as a function ah
(0O=m=n). For each case the energy is a monotonicall
increasing function oin. By minimizing the total energy,
Eq. (6.4), we obtain the magnetization curves, which are
shown in Fig. 15. The critical fielti ¢ at which spin saturates
is determined from the slope d&(m,n) nearm=n. The
value ofHg is 0.34 (/t=1.0), 0.99(2.0), and 1.32(2.5) for
the quarter filling and 2.00@.0) for the half filling.

For the half filling, the data of the GWF are very close to
the exact valu¥ (Heisenberg antiferromagnefor all the
range ofH.*” In the weak-field limit,m/H is nothing but
Xs: the similarity of the two results is obvious from Fig. 13.

For the quarter filling,m saturates at smalldd as J/t
decreases. This is naturally understood since the energy
excite the system to a higher spin state becomes ledétas
decreases. In the supersymmetric case, the GWF is in goqﬂ
agreement with the BA result also for the quarter filliig.
Furthermore, the noninteracting result agrees well for all the 2 2

-1 -1 7
values ofH/t. Xc :7(1—n), Xs 27(1—m). (6.5

Notice thatys does not depend amand x. does not depend
on m, since the contributions to the energy mfandm are
First, we compare the above result with the Hubbardmutually independent, and that there is no system size de-
model. Exact result&4°show that in the limitn—1, . pendence, because the size-dependent terms in the energy are
diverges asy.= a/d, where « is a numeral factor which exhausted in the linear order. The value xof is constant
depends orlJ/t.*® The value ofa changes from zero for (2/7%) under zero field irrespective of, which is the same
U/t=0 to 1/27? for U/t=o0, which is the same with theJ  for the nearest-neighbor Heisenberg model and is close to the
model withJ/t=0. On the other handys converges upon a variational valulGWF). The divergent behavior gf. near
finite value asn approaches % In the strongd limit, the  the half filling is also similar to the-J model(see Table IV.
expansion coefficient in?/U of xg is the same as theJ On the other hand, a quite different feature appears in the
model. These features qualitatively agree with the variationalow-electron-density region, where there is no divergence.
results of the present study as well as the exact one for th€his difference originates in the band structure of the model;
t-J model. the noninteracting long-range model has linear energy dis-

C. Comparisons and discussion
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persion and there is no divergence in the density of state dtigh-energy processes which determine the bulk properties

the band edge. From this we can see that electron correlatidike energy and magnitude of the correlation functions. On

affects severely the high-electron-density regime, while inthe other hand, a long-range part is mainly concerned in

the low-density regime the density of states of the originalow-energy processes near the Fermi surface, which cause

noninteracting system determines the charge susceptibility.the critical properties characteristic of the Tomonaga-

In Fig. 15 we also plot the magnetization curve of theLuttinger liquid.

long-ranget-J model*>** (6) The Jastrow wave functions reproduces the charge and
spin susceptibilities and magnetization curve correctly, in

E_ iz (6.6)  contrast with the Gutzwiller approximation.

4 7t Keeping these results in mind, we mention some remain-

This formula does not depend on The critical fieldH for ing issues.

the long-range model is somewhat large{4 for n=1 and In the region of low electron density an111£5>2, there
372/16 forn=0.5) than the value of the ordinatyd model. ~ €XiSts a spin gap statgvithout a charge gap™*° We have

And the difference is larger fon=0.5. This is probably ot found an indication of a spin gap in the trial functions
because the long-range exchange terms tend to disturb tiged. On the other hand, Chen and ‘estroduced a trial
ferromagnetic spin alignment. Especially in the low-densityState for a gas of singlet pairs and showed that there is a
region, where the particle distance is large, the long-rangéegion where this function is stabler than the TL-liquid wave

terms play important roles. function, Eq.(5.1).
An interesting extension of the present method is to 2D

systems. In 2D we do not know even the ground state—the
VII. SUMMARY AND DISCUSSION Fermi liquid or the TL liquid for the metallic regime. Fur-
] thermore, magnetically ordered phases can be stabilized,
We havg pursued thg ground—state properties of th@ear the half filling*” Actually the TL-liquid wave function
one-dimensional-J model in the light of wave functions, as 55 peen extended to a 2D system by Valenti and ¢%ros.
an _extensll?\;lw of tré:e ||3reced||ng p_aﬁ%rrl?y coTpﬁrmg thed_ According to their results, the energy lowering by their func-
variational Monte Carlo results with those of the exact "tion is very small(1%) compared with the simple Gutzwiller

agonalization, the Bethe ansatz and the Gutzwiller approxiy, . function. Also, the critical exponent kg in the mo-

mation, we have obtained some remarkable aspects as fol- T X L .
lows. mentum distribution is small, assuming that it exists. Since

(1) From diagonalization, exact energy, momentum dis_critical properties are in a low-energy scale, it may not be

tribution, and spin and charge correlation functions aref@Sy 0 judge the realization of a TL-liquid state in 2D only

obtained, which show the unusual behaviors Hs in-  PY the stability in energy. B .
creases. Recently, the behaviors of the specific-heat coefficient,

(2) In the supersymmetric casg/(=2) the Gutzwill-  effective massy., xs, etc., have been investigated experi-
er wave function is an extremely good state for bulkmentally for the hight. superconductors and related Mott
quantities. In the low-density limit, the GWF becomes insulators?® in connection with the metal-insulator transition.
exact. The results of these experiments together with the theoretical

(3) The whole parameter space spanned by electropalculation$''°have suggested a reconsideration of the ap-
density n and coupling strengthl/t is well described propriate Hamiltonian, namely, whether the simplemodel
by the repulsive or the attractive Jastrow-type waveis pertinent to describe various aspects of the Higheu-
functions. The parameter space can be roughly dividegrates.
into In these contexts, 2D systems have to be further studied

with the variation theory.
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APPENDIX A: ANALYTICAL APPROACH TO THE GUTZWILLER WAVE FUNCTION

In this appendix, we summarize the analytic expressions for various expectation values in the GWF. They were developed
by Metzner and Vollhardf and by Gebhard and Vollhardtfor the Hubbard model. In order to apply to the 19 model, we
carry out the calculation ofnin;) and(S’S;).

The momentum distribution for spia is obtained by an infinite summatith

1 o]
n,(k)=n2(k)—(1—g)2n_,n%(k)+ mzm; (%= 1)™1—(1—g*)N(K)} me(K), (A1)

whereg is identical to7(0) in our notatior Eq. (4.1)], and thusg=0 for thet-J model.n%(k) is the momentum distribution
of the noninteracting system given (k)= 6(k:—|k|), andn,=n/2. In the 1D casef,(k) is given by a polynomial of
order<m. According to the notation in Ref. 18, we can summarize as follows:

N"R (k) (inregionl: Osks<kg),
N"Qn(k)+Cr_1 (inregionll: kesk=min(3kg,27— 3kg)),

(k)= o (A2)
Cm_1 (inregionlll: 3kgesksw when X <m),

NMTQWK) +Qn(27m—Kk)]+C—1  (inregionIV: 27—3kesksw when 27—3kg<mw),

where
nm
Cm—l_(_l)mﬁy
OTRY k1)
k=% 53
m (i) j
Qm'[ k 3}/
Qon(k= 2, 51 _27rn_Z) : (A3)

The coefficients of these Taylor series are determined via a recursion relation
2(m=j+1HRY,  =—(2m-2j+1)RY - QU D,
Qhif'=2(m-2))QR 1 +2mRY - 4j(m—j+ (R} +R ),

(1) 0, m+1=odd,
R J—

= A4
m1 | —2Q™* Y m+1=even, e
with initial values

(i) 1
Rl :_551’0,

0) _ 1) _
Q% ,=Q%),=0.

Apparently, the series in E§AL) gives an expansion with respectrian the low-density region. Fam=2, we get

[ [ K 5
n m+16> i,
n’/ k 3\2 n?2
‘?(ﬁ‘z Tl
f0={ (A5)
— inlll,
n’( k 3\2 n?(2#—k 3\ n?
(7(%‘2) ‘7(%‘2) T Inlv.
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Then the kinetic energy in the dilute limit is

n2 2 nd
- _ N3 4
E; 2t(n 5 24n 3 +0(n%). (AB)
Compact analytic expressions f8tk) andN(k) are
K|
—In{1-—], O=sk<2kg,
S(k)= ™ (A7)
—In(1—n), 2ke<k=smw
(2kg=nm), and
4 L
1-n+—
L "L [osk<min(2kp2m— 4k
T 2 n (1—71) [ == mln( Fs&T F)]v

K || (”’"l':l)
Pyl T

when 2kp<2m—4kp or n<2/3],

||

+ln( l+n— ?) [2kp<k<min(4kz,27—4kF)

N(k)=< | (n-1+l:—l>

J— +____.. ettt e—
2—-2n 2’n_ln( |k|)
l-n+—

T

2n+1In(1—n) [4kp<k<m when 4kz<m or n<l1/2],

|k|
|k| n—1+—7_;-
2-2n+ —1In

77 —( |k|)
1+n——
v

[27—4kp<k<2ky when 27 —4ky<2kp or 2/3<n<l1],

&]

+1n(1+n—?) [max(2kp,27m—4kp)<k<a when w<4kp or 1/2<n<1].

(A8)
Their Fourier transforms give the spin- and charge-correlation functions in real space. Through a straightforward calcula-
tion, we get

(=1'

r

4SS )= {Si(arr) = Si((1—-n)r)} (A9)

and
(=17 [ sinnar
ar ar

+(1—n)conar {Si(7r)—Si(1—n)=r)}, (A10)

(ninj 4 )=n?+ (cos&ker—1)—

2°r?
wherer is an integerr =1. Whenr =1, Egs.(A9) and(A10) give the exchange energy given in Eg.3). In the low-density
limit, we obtain

2 3

zoZ n 4
<SS|+1>:_§_1_2+O(H )

and
n> nd
<nini+l>=?+§+0(n4). (A11)
The total energy is
E=-2 J27723213304 Al12
= tn+t§n+ﬁtn+§t§n+(n). (A12)

At J/t=2, we get Eq(3.5).
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FIG. 16. (a) Charge andb) spin susceptibilities calculated with
Gutzwiller approximation for the Hubbard model as a function of
electron density for some values BfU.. The inset in(a) repre-
sentsy. vs U/U, for the half filling. The 1D cosine band is as-
sumed.

ONE-DIMENSIONAL t-J MODEL FROM A VARIATIONAL VIEWPOINT

5773

APPENDIX B: x5 AND x. AROUND THE BRINKMAN-
RICE TRANSITION

Brinkman and Rice discussed the metal-insulator transi-
tion for the Hubbard model based on the Gutzwiller approxi-
mation (GA).%° Although it was confirmed by solving the
variation problem accurately that this transition does not ex-
ist in the realistic(one, two, and threedimensions,”*€ the
conception of the Brinkman-Rice transition is still widely
used. In this appendix we briefly review the behaviorygf
andy. in the GA, especially around the Brinkman-Rice tran-
sition for the comparison in Sec. Vt.

According to the GA, the states of# 1 in the Hubbard
model is always metallic and has a Fermi surface with a
finite discontinuityq of n(k) atk=Kkg. On the other hand, in
the half filling the GA gives a metallic state fob<<U. and
an insulating one fod >U_, whereU.=8|e| ande is the
energy of the noninteracting system; the Brinkman-Rice
transition occurs al=U_;. WhenU increases from under
U, fixing n=1, xs as well as effective mags* /m(oq~1)
diverges as 14— (U/U.)?]. xs and m*/m remain infinite
for U=U.. Meanwhile,y. decreases with increasitdgjand
vanishes atl=U_ and then increases f&f>U,. In Fig. 16
we actually plot the numerical GA values of; and y..
According to the Fermi-liquid theory, the charge susceptibil-
ity is related tom*/m as

m*/m
XC_l-f-FSXC’

(B1)

whereF; is the usual Landau parameter apdis the value
for the noninteracting case. Therefdf§ is more divergent
thanm*/m atU=U..
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