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The one-dimensional~1D! t-J model is investigated by using a Gutzwiller-Jastrow-type variation method
and the exact diagonalization of small systems. Variational expectation values are estimated by the variational
Monte Carlo method with sufficient accuracy. First, we give detailed descriptions of the preceding paper@Phys.
Rev. Lett.67, 3610~1991!#, where we discussed the properties of the Fermi-liquid-type Jastrow wave function
as well as the Gutzwiller wave function. Secondly, these wave functions are compared with the Tomonaga-
Luttinger-liquid-type wave function proposed by Hellberg and Mele. It is found that the correlation factors in
short distances control bulk quantities like energy and the magnitude of the correlation functions, while the
long-range part of the correlation factors determines the critical behavior of correlation functions. Finally,
using these functions, charge, spin susceptibilities, and magnetization curve are estimated, which agree with
the exact results. It is shown that the Mott transition in the 1Dt-J model is quite different from the Brinkman-
Rice transition.

I. INTRODUCTION

The t-J model is an important model to study highly cor-
related electron systems for its simplicity and close relation-
ship to high-temperature superconductivity.1 Many proper-
ties in one-dimensional~1D! systems have been clarified
extensively by a number of methods: Bethe-ansatz solutions,
g-ology, Tomonaga-Luttinger-~TL-! liquid theory, quantum
Monte Carlo simulations, exact diagonalization studies of
small clusters, and conformal field theory. We expect that the
study of 1D systems will shed light on more realistic higher-
dimensional systems and that comparison of the various
methods with the well-established 1D results will enable us
to judge the validity of such methods and approximations.

In contrast to the 1D Hubbard model,2 the Bethe-ansatz
solution does not exist in the 1Dt-J model except forJ/t50
~spinless-fermion case! andJ/t52 ~supersymmetric case!.3,4

In both soluble cases, a TL liquid5 is realized and the expo-
nents of long-range behaviors of correlation functions were
calculated exactly by combining the Bethe-ansatz equations
and the conformal field theory.6–9 Also obtained were bulk
quantities like spin susceptibilityxs , charge susceptibility
xc , specific heat coefficient, and effective transport mass,
which characterize metal-insulator~Mott! transitions.10 On
the other hand, for general values ofJ/t, Ogataet al.11 stud-
ied the low-lying energy spectrum of finite systems to obtain
the correlation exponents. In the phase diagram ofJ/t and
the electron densityn @n5N/Na , N (Na) being the number
of electrons~sites!#, the TL-liquid theory holds in the small-J
region belowJc /t52.5–3.5, depending onn. A phase sepa-
ration takes place in the largerJ/t; there is a region in which
the superconducting correlation is dominant, between the
phase separation and the supersymmetric case.

Meanwhile, as for physical quantities such as the momen-
tum distribution function or spin- and charge-correlation
functions, only the long-range behaviors were clarified in the

above analytic methods; the global features were calculated
numerically. In the limit of J/t→0, identical with the
large-U limit of the Hubbard model, the correlation functions
were obtained by taking advantage of the spin-charge sepa-
ration in the ground state.12 For the other values ofJ/t, As-
saad and Wu¨rtz13 and Imada14 have carried out quantum
Monte Carlo simulations. Pruschke and Shiba15 studied the
superconducting correlation functions by the exact diagonal-
ization. All these results are consistent with the correlation
exponents obtained by the analytic methods.

Although the ground-state properties in the 1Dt-J model
have been clarified quite well, it is still important to examine
variational wave functions, for the explicit form of the wave
function will make the complicated physics easy to grasp. So
far, various kinds of variational states have been proposed
for strongly correlated systems.16–23 The Gutzwiller wave
function24 ~GWF! was studied numerically16,17 and
analytically.18,19 These studies concluded that the GWF is
excellent for the one-dimensional Heisenberg model, but is
unsatisfactory, even qualitatively, in describing the properties
of the strong-coupling Hubbard model or of the small-J re-
gion of the t-J model. For example, the GWF does not re-
produce the 2kF peak in the spin-correlation function; in the
momentum distribution, it has a strange enhancement for
k.kF . The main reason is that the density correlation is not
sufficiently introduced in the GWF, although the spin corre-
lation is well incorporated. These unsatisfactory features are
partly remedied by introducing Jastrow-type intersite corre-
lation factors.20,22,23

In a preceding paper,22 we showed that the behaviors ob-
tained by the exact diagonalization forJ/t52 are described
extremely well by the GWF and that the wave function is
improved for other values ofJ/t by introducing intersite cor-
relation factors called Jastrow factors.

In this paper we give detailed descriptions of these issues
first. Then we compare the above Fermi-liquid-type correla-

PHYSICAL REVIEW B 1 MARCH 1996-IVOLUME 53, NUMBER 9

530163-1829/96/53~9!/5758~17!/$10.00 5758 © 1996 The American Physical Society



tion factors with a TL-liquid-type one introduced by Hell-
berg and Mele,23 which has long-range Jastrow factors and
thus has nontrivial correlation exponents. It is found that the
long-range behavior of the Jastrow factor is essential for the
nontrivial exponent or non-Fermi-liquid behavior. On the
other hand, the variational energy and the global features of
the correlation functions are determined mainly by the short-
range behavior of the Jastrow factor. We also show that
quantities likexc ,xs and the magnetization curve obtained
by the above wave functions are not only qualitatively but
quantitatively consistent with the exact results. This aspect is
in sharp contrast with the so-called Brinkman-Rice transi-
tion.

The outline of this paper is as follows: We give detailed
descriptions of and complementary discussions to the pre-
ceding letter,22 namely, the diagonalization results, the prop-
erties of the GWF for the supersymmetric case, and the
Fermi-liquid-type Jastrow wave functions in Secs. II–IV, re-
spectively. In Sec. V an essentially long-range correlation
~TL-liquid-type! factor is examined and compared with the
Fermi-liquid-type correlation factors. In Sec. VI,xc ,xs and
magnetization curve are investigated. Section VII is assigned
to a summary. In Appendixes A and B, an analytical ap-
proach to the GWF used in Sec. III and the behavior ofxc
andxs in the Gutzwiller approximation compared in Sec. VI
are summarized, respectively. A part of the results in this
paper has been published also in a review before.25

II. GROUND-STATE PROPERTIES OBTAINED
IN SMALL CLUSTERS

We study the one-dimensional~1D! t-J model defined as

H5H t1HJ , ~2.1!

H t52t(
js

~cjs
† cj11s1H.c.!, ~2.1a!

HJ5J(
j

SSj•Sj112
1

4
njnj11D , ~2.1b!

in the subspace with no double occupancy witht, J>0. Spin
operators vanish when they are applied to empty sites.
Henceforth we taket as the unit of energy.

We use the Lanczos method and the conjugate gradient
method26 to obtain the ground-state wave function in small
clusters. We calculate the momentum distribution function

n~k!5^cks
† cks& ~2.2!

and spin- and charge-correlation functions

S~k!5
1

Na
(
j ,l

4^Sj
zSl

z&eik~r j2r l !,

N~k!5
1

Na
(
j ,l

$^njnl&2^nj&^nl&%e
ik~r j2r l !, ~2.3!

obtained exactly for various values ofJ. The data of these
quantities were shown in the previous paper22 for n50.5.

The global features of the correlation functions for small
values of J resemble the results in the large-U Hubbard

model.12As J increases, they lose this behavior, and near the
supersymmetric case (J/t52), the system behaves similarly
to the noninteracting case. This corresponds to the fact that
the exponentKr becomes 1~free-electron value! nearJ/t52
(J/t;2.3 for n50.5).11 N(k) andS(k) become almost flat
in the regionk.2kF , which is the same behavior as in the
noninteracting case. However, note that these global features
of correlation functions are nontrivial even ifKr51, since
this exponent only guarantees that the long-range behavior of
correlation functions is the same as in the noninteracting
case. Actually, the absolute value in the flat region is quite
different from the noninteracting value. For the case of 8
electrons in 16 sites, we get

N~k.2kF!50.312–0.319,

S~k.2kF!50.698, ~2.4!

while in the noninteracting caseN(k.2kF)5S(k.2kF)
5n50.5. The sum of these two values is, however,

N~k.2kF!1S~k.2kF!51.001–1.009, ~2.5!

and this is surprisingly close to the noninteracting value (2n
51).

Since the summation of them is rewritten as

1

Na
(
j ,l

$2^nj↑nl↑&12^nj↓nl↓&2^nj&^nl&%e
ik~r j2r l !

5
4

Na
(
j ,l

$^nj↑nl↑&2^nj↑&^nl↑&%e
ik~r j2r l !, ~2.6!

the sum ofN(k) andS(k) represents the density correlation
between the same species of spin. The coincidence of this
quantity to the noninteracting value shows that each spin
behaves freely. This is because the Gutzwiller wave function
~GWF! is an extremely good variational state forJ/t52 as
shown previously.22 The Gutzwiller projection only affects
the correlation between the different species of spins, such as
^nj↑nl↓&, so that the density correlation between the same
species of spins resembles the free case.

Next we estimate the ground-state energy. The ground
state is always singlet and nondegenerate, if we choose pe-
riodic ~antiperiodic! boundary conditions forN/25 odd
~even!, respectively.12,11 Under these boundary conditions,
the energy converges smoothly to the thermodynamic limit.
For n50.5 we calculate the ground-state energies in 4-, 8-,
12-, and 16-site clusters and fit the results to the formula

E/Na5e`1C1 /Na
21C2 /Na

41C3 /Na
6 . ~2.7!

The fitted values ofe` are shown in Table I. In the region
J/t>3.4, the energies cannot be fitted to this formula be-
cause the system phase separates in this region and the size
dependence is different from Eq.~2.7!. To check the conver-
gence forJ/t,3.4, we calculate another series of singlet
energies by using different boundary conditions, i.e., antipe-
riodic ones forN/25odd and vice versa.27 Fitting of the data
to the same formula, Eq.~2.7!, gives another estimate of the
ground-state energy (e 8̀ ), which are also shown in Table I.
The difference betweene` and e 8̀ is very small
(De`,1026t),28 which ensures the reliability of the esti-
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mate. Forn53/4, we estimate similarly the ground-state en-
ergy by using 8- and 16-site clusters with 6 and 12 electrons,
respectively. The obtainede` is shown in Table II. Because
in this case we fit the data with two parameterse` andC1 ,
the error is larger than that in the quarter-filled case. We will
usee` later to compare with the variational energies.

III. COMPARISON WITH THE GWF
NEAR THE SUPERSYMMETRIC CASE

In this section we compare the ground-state properties for
J/t52 with the Gutzwiller wave function~GWF!. The GWF
is defined as

PdFF5)
j

~12nj↑nj↓!FF , ~3.1!

whereFF is a simple Fermi sea. In the 1D case, the analytic
expression for the physical quantities were developed.18,19

First let us compare the variational energy. The expecta-
tion value of the kinetic energy is calculated as

Et5
^H t&
Na

52
2t

2p(
s

E
2p

p

dkcosk^cks
† cks&, ~3.2!

where^•••& indicates the expectation value in the GWF. The
analytic expression for̂cks

† cks& has been given by an infi-
nite summation.18 The detailed calculation is summarized in
Appendix A. Here we show that the exchange energy can be
obtained in a compact form.19 From the expression ofS(k)
andN(k) ~Appendix A!, we get

^4Si
zSi11

z &52
1

p
$Si~p!2Si„~12n!p…%,

^nini11&5n21
1

2p2 ~cos2np21!1
1

p S sinnp

p
1~12n!cosnp D $Si~p!2Si„~12n!p…%, ~3.3!

with n5N/Na being the electron density. Using the fact that the GWF is a singlet,29 we obtain, analytically,

EJ5
^HJ&
Na

52
J

4p H H 31
sinnp

p
1~12n!cosnpJ $Si~p!2Si„~12n!p…%1pn21

1

2p
~cos2np21!J . ~3.4!

TABLE I. Ground-state energies of the 1Dt-J model for the
quarter-filled case (n51/2). They are extrapolated to the thermo-
dynamic limit using the formula~2.7!. e` ande 8̀ are obtained from
the two sets of boundary conditions~see the text!. The unit of the
energy ist.

J/t e` e 8̀

0.0 20.6366197 20.6366198
0.2 20.6578750 20.6575043
0.4 20.6804029 20.6806269
0.6 20.7041767 20.7041768
0.8 20.7291701 20.7291701
1.0 20.7553587 20.7553586
1.2 20.7827211 20.7827209
1.4 20.8112399 20.8112396
1.6 20.8409031 20.8409028
1.8 20.8717049 20.8717046
2.0 20.9036477 20.9036477
2.2 20.9367449 20.9367452
2.4 20.9710250 20.9710259
2.6 21.0065398 21.0065415
2.8 21.0433801 21.0433827
3.0 21.0817130 21.0817179
3.2 21.1219079 21.1219533

TABLE II. Ground-state energies of the 1Dt-J model for
n53/4 similarly obtained as in the quarter-filled case in Table I.

J/t e` e 8̀

0.0 20.4501050 20.4502187
0.2 20.5216656 20.5219004
0.4 20.5943201 20.5944475
0.6 20.6678961 20.6680324
0.8 20.7422736 20.7424195
1.0 20.8173650 20.8175213
1.2 20.8931052 20.8932726
1.4 20.9694457 20.9696252
1.6 21.0463508 21.0465437
1.8 21.1237962 21.1240038
2.0 21.2017671 21.2019909
2.2 21.2802580 21.2805002
2.4 21.3592732 21.3595368
2.6 21.4388286 21.4391186
2.8 21.5189551 21.5192801
3.0 21.5997064 21.6000835
3.2 21.6811763 21.6816414
3.4 21.7635421 21.7641837
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It was shown22 that the total energies of the GWF and that of
the Bethe ansatz~BA! at J/t52 are indistinguishable for any
value ofn. In the low-density limit, the total energy of the
GWF atJ/t52 is

E~GWF!/t522n1
p2

12
n31O~n4!, ~3.5!

which coincides with the BA results up to the order ofn3.
The detailed calculation for Eq.~3.5! is also given in Appen-
dix A. This is consistent with the fact that the critical expo-
nentKr approaches 1 forn→0. This Fermi-liquid state is
nothing but the GWF.

The GWF and small cluster calculation give almost the
same results forn(k) except for the singularity atkF . The
slight difference between the GWF and exact ground state is
the behavior aroundkF , which originates from the TL-liquid
nature. It is remarkable that the ground state of thet-J model
has an enhancement ofn(k) in the vicinity ofp, which was
considered before as a pathological behavior of the GWF.17

It can be shown that this enhancement originates from the
correlated electron motion

^cis
† cjs~12ni2s!~12nj2s!&0 , ~3.6!

where ^•••&0 represents the expectation value in the free
Fermi seaFF without the Gutzwiller projection. After a
straightforward calculation, Eq.~3.6! becomes

Pi j s~12n2s1n2s
2 1d i j n2s2Pi j2sPji2s! ~3.7!

and its Fourier transform is

ns
0~k!22n2sns

0~k!1 f 2~k!. ~3.8!

HerePi j s is the Fourier transform ofns
0(k)5u(kF2uku) and

f 2 is given in Appendix A as one of the lowest-order terms in
the analytic calculation. The enhancement ofn(k) in the re-
gion of k.kF is roughly reproduced from this simple lowest
order, Eq.~3.6!.

IV. FERMI-LIQUID-TYPE JASTROW FUNCTIONS

In this section we study the Fermi-liquid-type wave func-
tions to describe thet-J model away fromJ/t52, keeping
the application to higher dimensions in mind. In many-body
problems Jastrow-type wave functions with two-body corre-
lation factors are often used. First, notice that the trial state
becomes nonsinglet if the Jastrow correlation is spin
dependent.30 Therefore we study here only the spin-
independent charge density correlation31

C5)
j l

)
ss8

$12@12h~r j l !#njsnls8%FF , ~4.1!

where r j l5ur j2r l u. For h(r ) simple forms are desirable,
satisfying the condition of thet-J model:h(0)50. This con-
dition is to project out the double occupancies. In this section
we consider two cases in addition to the GWF:

h~r !55
2

p
arctan

r

z
~RJWF!, ~4.2a!

1 ~GWF!, ~4.2b!

11
a

r b ~AJWF!, ~4.2c!

whererÞ0 andz, a, andb are positive variational param-
eters. The typical forms ofh(r ) are shown in Fig. 1. In these
functions,h(`)51 holds and the value ofh(1)/h(`) is
finite for every parameter set. This point is essentially differ-
ent from the function with a long-range Jastrow factor dis-
cussed in the next section.

We evaluate the expectation values by the variational
Monte Carlo~VMC! method.16,17 This method gives virtu-
ally exactexpectation values for given trial functions. In the
VMC calculations in this work, we use systems with electron
numberN54I12 (I is an integer! with the periodic bound-
ary condition. Sample numbers (33104–23105) and sam-
pling intervals~50 Monte Carlo steps at the maximum! are
taken so as to reduce statistical fluctuations enough. In this
section we use typically 60- and 72-site systems.

A. Repulsive case

The form Eq.~4.2a!, which we call the repulsive Jastrow
wave function~RJWF! in this paper, includes repulsive cor-
relation. It prefers configurations with electrons mutually
apart. In the limitz→0, it is reduced to the GWF, Eq.~4.2b!.
This wave function was previously introduced to study the
repulsive Hubbard model in strong correlation.20 In that
work it was found that the RJWF lowers the variational en-
ergy in the Hubbard model and it reproduces qualitatively
the enhancement at 2kF of S(k). Therefore we expect that
the RJWF is suitable also for the small-J region of thet-J
model.

In Fig. 2, Et /t andEJ /J in the RJWF are plotted as a
function ofz for n50.5. Asz increases, electrons keep apart
from each other, and thusEt tends to decrease andEJ in-

FIG. 1. Correlation factorh(r ) for three types of Fermi-liquid-
type wave functions. Typical values of the parameters are chosen
for each case.
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creases. We show the total energyE(z) for J/t51.0, as an
example, in Fig. 3 using the values in Fig. 2. The minimum
is situated atz;0.7; the energy is considerably improved
upon the GWF (z50). Similarly we find that the minimum
appears atz;1.6 ~for J/t50), 1.2~0.5!, 0.7 ~1.0!, 0.4 ~1.5!,
and 0 ~2.0!, respectively. The repulsive interaction repre-
sented by the magnitude ofz becomes weaker with increas-
ing J.

Next, let us consider the critical valueJc below which the
RJWF has a lower variational energy than the GWF. In order
to estimateJc , we only have to see thez dependence of the
variational energy nearz50: If the slope of the energy at
z50 is positive, the optimal state isz50, which is the GWF.
On the other hand, if the slope atz50 is negative, the varia-
tional energy has a minimum at a certain value ofz.0 and
the RJWF is more stable than the GWF (z50).

In Fig. 4 variational expectation valuesEt /t andEJ /J in
the RJWF are shown forn50.3 and smallz. From this

figure we readEt(z)/t520.47120.0413z and EJ(z)/J
520.054010.0217z. Since the total variational energy is
given by

E~z!5Et~z!1EJ~z!, ~4.3!

the slope ofE(z) near z50 is 20.0413t10.0217J. This
means that forJ/t,0.0413/0.0217.1.9 the slope is negative
and the RJWF improves the variational energy upon the
GWF. In a similar way, we obtain the value ofJc /t also for
n50.5, 0.75, and 0.833 . . . . Asn increases, the statistical
fluctuation becomes severe and it is not easy to estimate
accurate values. However, we findJc /t52.060.2 for the
above densities. Actually, the value ofJc /t ought to be
slightly shifted to a larger value ofJ/t in the high-density
region, as will be seen in the next section. This is consistent
with the diagonalization study.11

We make a comparison of correlation functions. Figure
5~a! showsn(k), S(k), andN(k) for the optimized wave
function at J/t50 andn50.5, together with the result of
exact diagonalization. The reproducibility of the global fea-
tures is not perfectly good. Figure 5~b! shows similar com-

FIG. 2. Expectation values of two energy componentH t ~solid
circle! andHJ ~open circle! per site for the RJWF forn50.5. The
value of the GWF (z50) is shown by arrows on the vertical axis.
We use 33104 samples for a 60-site system.

FIG. 3. Energy expectation values for the
RJWF atJ/t51.0. The arrow on the vertical axis
is the value of the GWF and that of the exact
diagonalization ~extrapolated values for
Na→`).

FIG. 4. Expectation values of two energy componentH t ~solid
circle! andHJ ~open circle! per site for the RJW and small-z re-
gion. In this VMC calculation, 105 samples are collected for a 72-
site system.
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parisons between the variational states and exact diagonal-
ization atJ/t51. As J increases, the coincidence becomes
better, because the value ofJ/t is nearer to 2.

The discontinuityq of the momentum distributionn(k) at
kF is plotted in Fig. 6 as a function ofn in the optimized
variational states. This quantityq is one of the characteristic
properties of a Fermi-liquid-type wave function, which is
equal to the wave function renormalization factor and related
to the inverse of the effective massm* /m in the Fermi-liquid
theory.

For the supersymmetric case the result of the GWF,18

q5A12n, is also shown in Fig. 6. In this caseq becomes 1
in the limit of n→0, which is the value of the noninteracting
system. In the other limitn→1, q vanishes. This implies that
the Fermi surface vanishes—namely, the effective mass
diverges—corresponding to the metal-insulator transition. As

J/t decreases,q becomes small; the correlation affects the
whole electron density in this case. Although the result for
J/t52.5 includes a relatively large statistical error, it is ob-
vious that q tends to decrease, with increasingJ/t from
J/t52.0. Thus we conclude that the supersymmetric case is
the most weakly interacting; asJ/t goes away from it, the
correlation effect becomes severer.

B. Attractive case

An attractive Jastrow wave function~AJWF! with the cor-
relation factor Eq.~4.2c! favors local configurations with
electrons close to each other. The parametera adjusts the
amplitude of such attractiveness; asa increases, more em-
phasis is laid upon attractive electron configurations. On the
other hand, the other parameterb controls the decaying be-
havior of h(r ). With increasingb, the effective attractive
range becomes narrower. It is reduced to the GWF when
a→0 or b→0.

For J/t.2, it is natural to expect that the attractive cor-
relation between electrons is dominant. In Figs. 7~a! and 7~b!
we show the variational expectation values ofH t andHJ
for the AJWF (n50.75), respectively.EJ becomes lower
andEt becomes higher asa increases, because the amplitude
of configurations with electrons located next to one another
increases. Note thatEt abruptly approaches to zero andEJ to
the energy of the spin system in the regiona.10 for
b50.625;1. This is nothing but a sign of the phase transi-
tion.

Actually, the snapshots of electron configurations taken
along a Monte Carlo~MC! sweep~Fig. 8! show a formation
of an electron cluster forJ/t53.4, a515, andb50.75. Al-
though a small density fluctuation can be seen near the
boundary, this edge effect will be irrelevant asNa→`. Sec-
ond, the minimized energy is quite close to the energy of the
Heisenberg chain corrected by electron density. The charge-
density correlation function in real space,

FIG. 5. Comparison of momentum distribution functionn(k),
spin- and charge-correlation functionsS(k) andN(k) among the
TL-liquid wave function ~bold solid line!, the Fermi-liquid-type
wave function~dot!, and the exact diagonalization@open diamond,
open circle, and exceptionally thin solid line forN(k) of J/t50]
for ~a! J/t50 (n50.75 for the TL-liquid state,z51.6 for the
RJWF! and ~b! J/t51 (n50.37, z50.7). For the variational cal-
culations, 105 samples are averaged for 220-site systems. The total
energy for each case is also given in digits~the last digit for each
include the ambiguity due to the statistical fluctuations!. For exact
diagonalization, 52-site system is used in~a! and up to 16-site sys-
tems in~b!.

FIG. 6. Discontinuity of momentum distributionn(k) at kF as a
function of n. The optimized Fermi-liquid-type wave function is
used for each value ofn andJ/t. The size of the symbols represent
the relative magnitude of possible error. For the casesn→0 and
J/t→0 and for the AJWF, it is not easy to determine the value
accurately owing to the difficulty in optimizing the parameters.
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Nr5
1

Na
(
i

@^nini1r&2n2#, ~4.4!

for a.10, shows that the state is expected as a complete
phase-separated state.

Searching a minimum of the variational energy in thea-
b plane, we obtain the optimized energy forJ/t.2. The case
of n50.5 has already been shown in Ref. 22. Here we show
in Fig. 9 the total energies forn50.75 andJ/t53.3, 3.4, and
3.5 as a function of variational parameters. The energy is
improved on that of the GWF in every case. The value of
a giving the energy minimum becomes large with increase
of J/t; this means the enhancement of the attractive correla-
tion.

One can read that the aspects of the minima are quite
different among three figures of Figs. 9~a!–9~c!. For simplic-
ity, let us consider the case ofb51 ~open circle!. In each
figure the energy curve ofb51 has two local minima, that

is, one arounda51–2 ~minimum H) and one around
a515 ~minimum S). The latter corresponds to the phase-
separated state, as discussed above. In Fig. 9~a! the lowest
energy is given by the minimumH and the minimumS has
a higher value. In Fig. 9~b! the two minima have comparable
values. On the other hand, forJ/t53.5 @Fig. 9~c!# the situ-
ation is opposite of Fig. 9~a!. Thus we find a switching from
the state of the minimumH to one of the minimumS around
J/t53.4, which represents the phase boundary to the phase
separation.

Similarly we obtain J/t.3.2 (n50.25) and J/t.3.3
(n50.5). These values are in good agreement with the
exact-diagonalization result.11

V. TOMONAGA-LUTTINGER-LIQUID-TYPE JASTROW
FUNCTION

In this section we study the trial state proposed by Hell-
berg and Mele.23 For the variational states treated in the pre-
vious section, the correlation exponent is always the same as
the Fermi liquid (Kr51). This is because the Jastrow factor
h(r ) used in Eq.~4.2! approaches 1 rapidly, namely, is short
ranged. If the correlation factorh(r ) is long ranged, the
correlation exponent becomes nontrivial, which is consistent
with the TL-liquid behavior. Hellberg and Mele23 showed
that a variational state

uF~r i↑ ,r j↓!unFF ~5.1!

gives nontrivial exponents, whereuF(r i↑ ,r j↓)u is a Slater de-
terminant of all the electron positions. Actually the correla-
tion exponent is related to the variational parametern as32

FIG. 7. Variational expectation values of~a! H t and~b! HJ per
site for the AJWF. The arrow on the left vertical axis shows the
value of the GWF (a50). The arrow on the right axis in~b! shows
the value of the Heisenberg chain~Bethe ansatz! multiplied by n.
The sample number is 33104 for each point andNa572.

FIG. 8. Snapshots of the electron configurations in the VMC
sweep forNa560,n50.5 atJ/t53.4 ~separated phase!. Each hori-
zontal line represents the one-dimensional system. A solid~open!
circle means an up-~down-! spin electron and a null space~hori-
zontal line! an empty site. In the Monte Carlo sweep, the configu-
ration of the system evolves vertically. Before taking these snap-
shots, 3000 MC steps are discarded for obtaining the statistical
equilibrium. The sampling interval is determined (I520 MC steps!
so as to make the acceptance ratio per electron larger than the unit.
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Kr5
1

2n11
, ~5.2!

which was derived using the asymptotic Bethe ansatz and the
scaling relations of the TL-liquid theory.

If we rewrite this wave function in the form Eq.~4.1!
using the Vandermonde’s determinant identity, the corre-
sponding Jastrow correlation can be written as

h~r !5FNa

p
sinS p

Na
r D Gn

. ~5.3!

Whenn.0, this correlation is repulsive and is attractive for
n,0. As we can see from Eq.~5.3!, the factorh(r ) behaves
as Na

n at the longest distance,r5Na/2. It depends on the
system sizeNa , and thus it is a very long-ranged Jastrow
factor which is different from the conventional Jastrow fac-
tor, Eq. ~4.2!. This long-range behavior stands for the effect
of phase shift of two-particle collisions and eventually
changes the correlation exponent from the noninteracting
value.

The phase diagram obtained with this trial state is given in
Fig. 10.25 Comparing that phase diagram with the one by the

exact diagonalization of small clusters,11 we find that the
variational wave function is very good in the vicinity of
J/t52 including the correlation exponents, but not so good
nearJ/t;0. For example, the optimized variational param-
eter n for J/t50 is n51 (n50.75, n50.5) nearn50
(n51/2, n51), respectively, while the exact exponent is
Kr51/2, which corresponds ton51/2, regardless ofn. One

FIG. 9. Total energy of the AJWF for a couple of values ofJ/t
around the phase transition. The same symbol with Fig. 7 is used
for each value ofb. ~a! corresponds to the homogeneous regime,
~b! is the case near the phase transition, and~c! is in the phase-
separated regime. The arrow on the left vertical axis shows the
value of the GWF. The Heisenberg value corrected by the electron
density is given by2n(J/t)ln2: 21.8195 . . . for n50.75 and
J/t53.5.

FIG. 10. Phase diagram of the 1Dt-J model calculated in the
TL-liquid wave function, Eq.~5.1!. The curves show the contours
of constant correlation exponentKr . The used system has 100 sites.
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can see this derivation directly by examining the correlation
functions, which are included in Fig. 5. Since the density
correlation functionN(k) is exactly the same as that of the
free spinless fermions atJ/t50, there must not be a peak at
2kF . However,N(k) calculated withh of Eq. ~5.1! has a
small peak at 2kF owing to the deviation of the exponent
@Fig. 5~a!#.

To understand the reason of this deviation, we rewrite the
variational state, Eq.~5.1!, as33

uF~r i↑ ,r j↓!unFF5)
i, j

uzi2zj un)
i, j

uzi↑2zj↑u)
i, j

uzi↓2zj↓u

5)
i, j

uzi2zj u11n Y)
i , j

uzi↑2zj↓u,

~5.4!

apart from the sign. Herezjs5exp(2pir js /Na) and $zj% rep-
resents all the electrons irrespective of their spins. On the
other hand, the exact density-correlation function atJ/t50 is
reproduced by the free spinless fermion,) i, j uzi2zj u. We
can see that it is difficult to reproduce the exact density cor-
relation using the form Eq.~5.4!.

In this connection, for the region ofJ/t;0, a better trial
function will be obtained as the form,C5xFSF on the anal-
ogy of the exact eigenfunction in the small-J/t limit,12 where
FSF is the wave function of spinless fermion andx is that
for spin degree of freedom.34

Figure 5 also shows that the optimized RJWF- and TL-
type wave functions give almost identical results. Actually,
we find that the two optimized forms ofh(r ) of two varia-
tional states are similar in short distance. This suggests that
the global features of the correlation functions are deter-
mined mainly by the short-range behavior of the Jastrow
factor.

Before closing this section we confirm that the long-range
part of the correlation factor controls the critical behavior of
correlation functions, while the short-range part determines
the global features of correlation functions as well as energy.
Let us consider the wave functions with four different types
of correlation factors, two of which connect the correlation
factors of two kinds of variational states, namely,

case ~1!: h~r !5hTLL~r ! for all r ;

case ~2!: h~r !5H hFL~r ! for r,r c ,

hTLL~r ! for r>r c ;

case ~3!: h~r !5H hTLL~r ! for r,r c ,

hFL~r ! for r>r c ;

case ~4!: h~r !5hFL~r ! for all r ,

wherehTLL denotesh(r ) of Eq. ~5.3!, hFL either that of the
RJWF or AJWF, Eq.~4.2!, and r c is a certain value ofr
which dividesh(r ) into a short-range part and a long-range
part. We choose the variational parameters andr c so that the
two parts may be smoothly connected. By using these corre-
lation factors, we perform VMC calculations for the energy,
n(k), S(k), andN(k). We fix the system size toNa5100 for
n50.5 and take 53104 samples for each case.

For the repulsive case we chooser c55, n50.5 ~the opti-
mal value forJ/t;0.7) andz56.9847. In Table III~a! we
show expectation values of several physical quantities for the
four cases.dn(k) in the last two columns indicates the dif-
ferences ofn(k) between the two possiblek points adjacent
to kF from inside and outside, respectively. For the bulk
quantities likeEt /t, EJ /J, andn(k50), cases~1! and ~3!
give similar values, which are different from cases~2! and
~4!. This implies that the short-range part of the correlation
factor is responsible for the bulk properties like energy and
magnitude of correlation functions. On the other hand, for
dn(k) cases~1! and ~2! have similar values compared with
cases~3! and~4!. This indicates that the long-range part con-
trols the critical behavior of correlation functions.

In Table III~b!, the result of the same quantities in the
attractive regime is summarized. Here we selectr c510 and
n520.15 ~the optimal value forJ/t;2.5) and the two pa-
rameters are determined by requestingh TLL(1)5hAJ(1)
and hTLL(r c)5hAJ(r c) as a50.6804 andb50.5481. The
tendency agrees with the repulsive case. These facts explain
the similarity ofn(k) and the slight energy difference shown
in Fig. 5.

VI. STATIC PROPERTIES OF CHARGE AND SPIN

In this section we focus on the behavior of charge suscep-
tibility xc and spin susceptibilityxs . Since the trial states in
the half filling are always Mott insulating for thet-J model,
we can see the critical behavior variationally and discuss the
difference between the present case and the Brinkman-Rice
transition~Appendix B!.

We calculatexc andxs from the VMC data for systems
with finite sizes from the formulas

xc
215

]2E

]n2
5
Na
2

4
$E~N12,0!1E~N22,0!22E~N,0!% ~6.1!

and

TABLE III. Comparison of expectation values for four kinds of
correlation factors hybridized~a! between the RJWF, Eq.~4.2!
(z56.9847) and Eq.~5.1! (n50.5), for the repulsive case, and~b!
between the AJWF, Eq.~4.2! (a50.6804, b50.5481) and Eq.
~5.1! (n520.15), for the attractive case. Digits include some sta-
tistical errors.

Et /t EJ /J n(k50) dn(k),kF dn(k).kF

~a!
Case~1! 20.60865 20.13972 0.7382620.02925 20.02948
Case~2! 20.60959 20.12047 0.7070520.02665 20.02811
Case~3! 20.60880 20.13955 0.7380420.01958 20.01989
Case~4! 20.60983 20.12037 0.7081620.02242 20.02178

~b!

Case~1! 20.55403 20.17331 0.7487620.00589 20.01103
Case~2! 20.54695 20.17619 0.7477720.00309 20.00559
Case~3! 20.55392 20.17334 0.7487120.00096 20.00553
Case~4! 20.54701 20.17615 0.7474520.00090 20.00279
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xs
215

]2E

]m2 5
Na
2

16
$E~N,8!1E~N,0!22E~N,4!%, ~6.2!

whereE(N,M ) is total energy per site ofN-electron systems
with M5N↑2N↓ . Henceforth we take 1/t as the unit ofxc
andxs . We confirm that the size dependence is mostly neg-
ligible for the systems we use:Na5100–200. In contrast to
the Hubbard model in the strong-coupling regime, a rela-
tively accurate estimate ofx is possible for the 1Dt-J model
because of the less statistical fluctuations. In this section, we
mainly use the wave function, Eq.~5.3!, and GWF. Typically,
53104–23105 independent VMC samples are used for
each value of the parametern. To search the optimized value
of E(N,M ) for eachN andM , we pick out 61–121 values of
n between21 and 2.

A. Charge susceptibility

In Fig. 11,xc is shown for several values ofJ/t. Here we
observe that with increasingJ/t, xc becomes large. This is
because the enhanced attractive interaction between electrons
enlarges the charge compressibilityk (5xc /n

2). In the
high-electron-density region (n;1), xc for every value of

J/t is divergent asn→1. This divergence is due to the strong
correlation effect, which suppresses charge fluctuation; this
is in contrast with the noninteracting case, where
xc

215psin(np/2) and remains a finite value 1/p as n ap-
proaches 1. ForJ/t50 and 2, the exact values are known;
the spinless fermion resultxc

2152psin(np) for the former
case and the Bethe-ansatz solution for the latter.4,9 In both
cases the exactxc diverges asxc}1/d (d512n) in the limit
of n→1. The variational result is quantitatively similar to the
exact one. To see this divergence more closely, we plot
chemical potentialm5]E/]n vs d2 for J/t50 and 2 in Fig.
12. ForJ/t<2 we can fitm asm5m02ad2 in the vicinity of
the half filling, although the linearity is not so clear for
J/t.2. Sincexc5]n/]m, the coefficienta is related to the
divergence ofxc as xc52a/d(d→0). From Fig. 12, we
determine this coefficient 2a for a couple of values ofJ/t,
which are shown in Table IV.

As can be seen in Table IV, the estimation by the varia-
tional state is in good agreement with the exact value at
J/t50. However, atJ/t52, the deviation is quite large. This
is probably because the range of linear behavior ofm vsd2 is
rapidly reduced asJ/t increase.9

The divergence ofxc near the Mott transition has been
understood from the Bethe ansatz. Using the correlation ex-
ponentKr and the charge velocityvc , xc can be written
as5–8

xc5
2

p

Kr

vc
.

FIG. 11. Charge susceptibility vsn for some values ofJ/t.
Symbols are the results of the optimized TL-liquid state. The solid
line for J/t50 and 2~Ref. 9! represents the exact analytic value.
The dashed line is the result for the noninteracting system. The
dotted line forJ/t51.0 and 2.5 is a guide to the eyes. The sizes of
the symbols represent the relative magnitude of possible error. 50–
210-site systems are used.

FIG. 12. Chemical potential as a function of
d2 for J/t50 and 2. Symbols indicate different
system sizes, namely,Na5200 ~solid diamond!,
150 ~open circle!, 100 ~solid circle!, 70 ~solid
square!, and 50~open diamond!.

TABLE IV. Coefficient of 1/n and 1/d of charge susceptibility in
the limit of n→0 andd→0, respectively. For comparison we also
show the values of the free-electron system and the supersymmetric
t-J model with long-range exchange and transfer, denoted by
‘‘Free’’ and ‘‘L.-r. t-J’’ respectively in the first column.

n→0 d→0
J/t Variational Exact Variational Exact

0 0.046 1

2p250.05066
0.054 1

2p250.05066
1 0.053 - 0.062 -
2 0.204 2

p250.20264
0.070 16(ln2)2

3p2z(3)
50.21598

Free 2

p250.20264
- Finite xc

L.-r. t-J Exact Finitexc Exact 2

p250.20264
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Since vc vanishes linearly asd→0, vc5bd, xc diverges
as35,10,14

2

p

Kr

b

1

d
.

SinceKr→1/2 asd→0,11 the coefficient 2a is solely related
to the coefficientb, which is 2p>b>3pz(3)/16(ln2)2 for
0<J/t<2.11,9 However, forJ/t.2, we cannot expandm as
m5m02ad2, but fit m asm5m02adp instead. The leading
power p is estimated as 1,p,2, namely, p51.8 ~for
J/t52.0), 1.5~2.5!, and 1.3~3.0!. Although xc diverges as
d→0 for J/t>2, we have not understood the origin of this
power. This may be due to the poorness of the trial wave
function of Eq.~5.1! or due to an anomalous dependence of
vc as vc;adp21. At any rate, we can consider that this
divergence is attributed to the divergence of density of state
at the band edge of the spinless fermion.

In low-electron-density area (n;0), xc again diverges
except for the case ofJ/t52.5, in which the variational state
becomes unstable against phase separation andxc becomes
negative. One can find that the divergence ofxc is propor-
tional to 1/n by plottingm as a function ofn2. The coeffi-
cients of 1/n are shown also in Table IV. Since forJ/t52 the
trial wave function~GWF! is exact in the limitn→0, the
exact value is within the range of error. Furthermore, the
GWF result and the exact one are extremely close to the
noninteracting gas, which means a ‘‘free-electron’’ state is
realized in the supersymmetric case. Actually, using the
variational energy Eq.~3.12!, we obtain

xc5
2

p2n
1O~n0!,

which is the same as in the noninteracting case. Asn in-
creases, however, the suppression of charge fluctuation in the
t-J model prevents the wave function from the free-electron
behavior.

For J/t50 the variational value is a little different from
the exact one. This difference corresponds to the deviation of
Kr in this area, as described in the previous section. The
divergence ofxc is not due to the correlation effect, but
simply to the divergence of the density of state at the band
edge.

B. Magnetic properties

First, we discuss the spin susceptibility under zero field.
Figure 13 showsxs for a couple of values ofJ/t. In sharp
contrast toxc , xs does not diverge asn→1 for every value
of J/t, but remains a finite value close to that of the Heisen-
berg chain.36 The divergence ofxc hardly affectsxs ; this is
due to the separation between spin and charge degrees of
freedom in the low-energy excitations.

For J/t50, all the spin configurations are degenerate;
hence,xs is infinite. This aspect is special in 1D. By intro-
ducing J/t, this degeneracy is lifted and the value ofxs
becomes finite except for the low-density limit, which is
shown in Fig. 13. In the TL-liquid theory,xs can be repre-
sented as5,6,35,7

xs5
2

p

1

vs
,

wherevs is the spin velocity. Basically,vs is proportional to
the exchange couplingJ and thusxs decreases asJ/t in-
creases, which means that the enhanced exchange coupling
hinders the response of spins to the magnetic field. For a
low-density area (n;0), xs diverges sincevs}n, which is
due to the divergence of density of states. On the other hand,
asn→1, xs approaches that of Heisenberg chain,

xs→
2

p

1

vSW
,

with sSW being the spin-wave velocity of Heisenberg chain:
vSW5Jp/2.

For the supersymmetric case, we observe that the varia-
tional results agree quite well with that of the noninteracting
system~Pauli paramagnetism! xs

215psin(np/2), especially
in the low-density region. Here the idea of the GWF as a
‘‘free-electron’’ state is again useful. Likexc , however, the
two results become a little apart asn→1. For J/t52.5 and
n,0.1, the decrease ofxs is due to the phase separation.

Now let us turn to the case under a finite magnetic field
gmBH, and here we putg52 andmB51. Applying an ex-
ternal field alongz axis, a Zeeman term

Hext522H(
j
Sj
z52NaHm ~6.3!

is added to the original Hamiltonian, Eq.~2.1!. The total
energy per site is written as

E5E~m,n!2Hm, ~6.4!

FIG. 13. Spin susceptibility vsn for some values ofJ/t. The
open circle is the result of the GWF forJ/t52 and the open dia-
monds is the result of the optimized TL-liquid state. The solid line
for J/t52 represents the exact analytical value~Refs. 4,9!. The
dashed line is the value for the noninteracting system. The dotted
line for J/t51.0 and 2.5 is a guide to the eyes. The arrow on the
right vertical axis shows the exact value for the Heisenberg antifer-
romagnet 2/p2 for J/t52 ~Ref. 36!. The sizes of the symbols rep-
resent the relative magnitude of possible error. 50–210-site systems
are used.

5768 53HISATOSHI YOKOYAMA AND MASAO OGATA



whereE(m,n) is the total energy per site with electron den-
sity n and magnetizationm under zero field. In Fig. 14,
E(m,n) is shown forn50.5 and 1.0 as a function ofm
(0<m<n). For each case the energy is a monotonically
increasing function ofm. By minimizing the total energy,
Eq. ~6.4!, we obtain the magnetization curves, which are
shown in Fig. 15. The critical fieldHs at which spin saturates
is determined from the slope ofE(m,n) nearm5n. The
value ofHs is 0.34 (J/t51.0), 0.99~2.0!, and 1.32~2.5! for
the quarter filling and 2.000~2.0! for the half filling.

For the half filling, the data of the GWF are very close to
the exact value36 ~Heisenberg antiferromagnet! for all the
range ofH.37 In the weak-field limit,m/H is nothing but
xs ; the similarity of the two results is obvious from Fig. 13.

For the quarter filling,m saturates at smallerH as J/t
decreases. This is naturally understood since the energy to
excite the system to a higher spin state becomes less asJ/t
decreases. In the supersymmetric case, the GWF is in good
agreement with the BA result also for the quarter filling.38

Furthermore, the noninteracting result agrees well for all the
values ofH/t.

C. Comparisons and discussion

First, we compare the above result with the Hubbard
model. Exact results39,40,35show that in the limitn→1, xc
diverges asxc5a/d, wherea is a numeral factor which
depends onU/t.35 The value ofa changes from zero for
U/t50 to 1/2p2 for U/t5`, which is the same with thet-J
model withJ/t50. On the other hand,xs converges upon a
finite value asn approaches 1.39 In the strong-U limit, the
expansion coefficient int2/U of xs is the same as thet-J
model. These features qualitatively agree with the variational
results of the present study as well as the exact one for the
t-J model.

Meanwhile, Otsuka41 and Furukawa and Imada10 investi-
gated the critical behavior ofxc and xs for the Hubbard
model on 2D square lattices by using quantum Monte Carlo
methods. According to their results, essentially the same
properties with the 1D models are observed. Thus one can
consider that a universal profile of a kind of Mott transition
appears in these results ofxc andxs .

Keeping these in mind, next let us compare with the
Brinkman-Rice transition in the Hubbard model. As summa-
rized in Appendix B,xs calculated with the Gutzwiller ap-
proximation diverges whenU→Uc (n51) or n→1
(U>Uc). On the other hand,xc remains finite for a finite
value ofU, even ifU.Uc , although effective massm* /m
diverges similarly asxs . This indicates that the Brinkman-
Rice transition describes a quite different type of metal-
insulator transition from those in the 1D and 2D Hubbard
models and the 1Dt-J model.

Last, we mention the results in the long-ranget-J
model.42 In this model, susceptibilities are written as

xc
215

p2

2
~12n!, xs

215
p2

2
~12m!. ~6.5!

Notice thatxs does not depend onn andxc does not depend
onm, since the contributions to the energy ofn andm are
mutually independent, and that there is no system size de-
pendence, because the size-dependent terms in the energy are
exhausted in the linear order. The value ofxs is constant
(2/p2) under zero field irrespective ofn, which is the same
for the nearest-neighbor Heisenberg model and is close to the
variational value~GWF!. The divergent behavior ofxc near
the half filling is also similar to thet-J model~see Table IV!.
On the other hand, a quite different feature appears in the
low-electron-density region, where there is no divergence.
This difference originates in the band structure of the model;
the noninteracting long-range model has linear energy dis-

FIG. 14. Total energy under zero field as a function ofm calcu-
lated with the TL-liquid wave function. For the half filling, where
the TL-liquid state is reduced to the GWF, the value in the super-
symmetric case is shown for an example. Forn51.0 ~0.5!, a 102-
~100-! site system is used. 53104 samples are averaged.

FIG. 15. Comparison of magnetization curves forn50.5 and
1.0. Symbols represent the result of the variational functions. The
optimized TL-liquid wave functions are used except for the super-
symmetric case, in which the GWF is substituted. The solid line is
the Bethe-ansatz result forJ/t52 ~Refs. 36,38!. The dotted line is
the result for the noninteracting system. The result for the super-
symmetric long-range-t-J model is shown by the dashed line~Refs.
43,44!.
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persion and there is no divergence in the density of state at
the band edge. From this we can see that electron correlation
affects severely the high-electron-density regime, while in
the low-density regime the density of states of the original
noninteracting system determines the charge susceptibility.

In Fig. 15 we also plot the magnetization curve of the
long-ranget-J model:43,44

m5122A1

4
2

H

p2t
. ~6.6!

This formula does not depend onn. The critical fieldHs for
the long-range model is somewhat larger (p2/4 for n51 and
3p2/16 forn50.5) than the value of the ordinaryt-J model.
And the difference is larger forn50.5. This is probably
because the long-range exchange terms tend to disturb the
ferromagnetic spin alignment. Especially in the low-density
region, where the particle distance is large, the long-range
terms play important roles.

VII. SUMMARY AND DISCUSSION

We have pursued the ground-state properties of the
one-dimensionalt-J model in the light of wave functions, as
an extension of the preceding paper.22 By comparing the
variational Monte Carlo results with those of the exact di-
agonalization, the Bethe ansatz and the Gutzwiller approxi-
mation, we have obtained some remarkable aspects as fol-
lows.

~1! From diagonalization, exact energy, momentum dis-
tribution, and spin and charge correlation functions are
obtained, which show the unusual behaviors asJ/t in-
creases.

~2! In the supersymmetric case (J/t52) the Gutzwill-
er wave function is an extremely good state for bulk
quantities. In the low-density limit, the GWF becomes
exact.

~3! The whole parameter space spanned by electron
density n and coupling strengthJ/t is well described
by the repulsive or the attractive Jastrow-type wave
functions. The parameter space can be roughly divided
into

~a! J/t,2 repulsive region~RJWF!,

~b! J/t52 freelike region~GWF!,

~c! J/t.2 attractive region~AJWF!.

In region ~a!, the electron hopping term is dominant. In re-
gion ~c!, dominant is the exchange term, which induces at-
tractive interaction. In the supersymmetric case~b!, the two
terms are well balanced and a kind of ‘‘noninteracting’’ state
is realized, especially for the low electron density.

~4! The phase transition from a homogeneous state to a
phase-separated state is quantitatively described within the
AJWF.

~5! In the Jastrow wave functions, the short-range part of
intersite correlation factors are responsible for relatively

high-energy processes which determine the bulk properties
like energy and magnitude of the correlation functions. On
the other hand, a long-range part is mainly concerned in
low-energy processes near the Fermi surface, which cause
the critical properties characteristic of the Tomonaga-
Luttinger liquid.

~6! The Jastrow wave functions reproduces the charge and
spin susceptibilities and magnetization curve correctly, in
contrast with the Gutzwiller approximation.

Keeping these results in mind, we mention some remain-
ing issues.

In the region of low electron density andJ/t.2, there
exists a spin gap state~without a charge gap!.11,45We have
not found an indication of a spin gap in the trial functions
used. On the other hand, Chen and Lee46 introduced a trial
state for a gas of singlet pairs and showed that there is a
region where this function is stabler than the TL-liquid wave
function, Eq.~5.1!.

An interesting extension of the present method is to 2D
systems. In 2D we do not know even the ground state—the
Fermi liquid or the TL liquid for the metallic regime. Fur-
thermore, magnetically ordered phases can be stabilized,
near the half filling.47 Actually the TL-liquid wave function
has been extended to a 2D system by Valenti and Gros.48

According to their results, the energy lowering by their func-
tion is very small~1%! compared with the simple Gutzwiller
wave function. Also, the critical exponent atkF in the mo-
mentum distribution is small, assuming that it exists. Since
critical properties are in a low-energy scale, it may not be
easy to judge the realization of a TL-liquid state in 2D only
by the stability in energy.

Recently, the behaviors of the specific-heat coefficient,
effective mass,xc , xs , etc., have been investigated experi-
mentally for the high-Tc superconductors and related Mott
insulators,49 in connection with the metal-insulator transition.
The results of these experiments together with the theoretical
calculations41,10 have suggested a reconsideration of the ap-
propriate Hamiltonian, namely, whether the simplet-J model
is pertinent to describe various aspects of the high-Tc cu-
prates.

In these contexts, 2D systems have to be further studied
with the variation theory.
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APPENDIX A: ANALYTICAL APPROACH TO THE GUTZWILLER WAVE FUNCTION

In this appendix, we summarize the analytic expressions for various expectation values in the GWF. They were developed
by Metzner and Vollhardt18 and by Gebhard and Vollhardt19 for the Hubbard model. In order to apply to the 1Dt-J model, we
carry out the calculation of̂ninj& and ^Si

zSj
z&.

The momentum distribution for spins is obtained by an infinite summation18

ns~k!5ns
0~k!2~12g!2n2sns

0~k!1
1

~11g!2 (m52

`

~g221!m$12~12g2!ns
0~k!% f ms~k!, ~A1!

whereg is identical toh(0) in our notation@Eq. ~4.1!#, and thusg50 for thet-J model.ns
0(k) is the momentum distribution

of the noninteracting system given byns
0(k)5u(kF2uku), andns5n/2. In the 1D case,f m(k) is given by a polynomial of

order<m. According to the notation in Ref. 18, we can summarize as follows:

f m~k!55
nmRm~k! ~ in region I: 0<k<kF!,

nmQm~k!1Cm21 „in region II: kF<k<min~3kF,2p23kF!…,

Cm21 ~ in region III: 3kF<k<p when 3kF,p!,

nm@Qm~k!1Qm~2p2k!#1Cm21 ~ in region IV: 2p23kF<k<p when 2p23kF,p!,

~A2!

where

Cm215~21!m
nm

2m
,

Rm~k!5(
j51

m Rm
~ j !

j ! S k

2pn
2
1

4D
j

,

Qm~k!5(
j51

m Qm
~ j !

j ! S k

2pn
2
3

4D
j

. ~A3!

The coefficients of these Taylor series are determined via a recursion relation

2~m2 j11!Rm11
~ j ! 52~2m22 j11!Rm

~ j !2Qm11
~ j11! ,

Qm11
~ j12!52~m22 j !Qm11

~ j11!12mRm
~ j !24 j ~m2 j11!~Rm

~ j !1Rm11
~ j ! !,

Rm11
~m11!5H 0, m115odd,

22Qm11
~m11! , m115even,

~A4!

with initial values

R1
~ j !52

1

2
d j ,0 ,

Qm11
~0! 5Qm11

~1! 50.

Apparently, the series in Eq.~A1! gives an expansion with respect ton in the low-density region. Form52, we get

f 2~k!55
n2S k2

4p2n2
1

5

16D in I,

2
n2

2 S k

2pn
2
3

4D
2

1
n2

4
in II,

n2

4
in III,

2
n2

2 S k

2pn
2
3

4D
2

2
n2

2 S 2p2k

2pn
2
3

4D
2

1
n2

4
in IV.

~A5!
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Then the kinetic energy in the dilute limit is

Et522tS n2
n2

2
2

p2

24
n32

n3

3 D1O~n4!. ~A6!

Compact analytic expressions forS(k) andN(k) are

S~k!5H 2 lnS 12
uku
p D , 0<k,2kF ,

2 ln~12n!, 2kF,k<p

~A7!

(2kF5np), and

Their Fourier transforms give the spin- and charge-correlation functions in real space. Through a straightforward calcula-
tion, we get

4^Si
zSi1r

z &5
~21!r

pr
$Si~pr !2Si„~12n!pr …% ~A9!

and

^nini1r&5n21
1

2p2r 2
~cos4kFr21!2

~21!r

pr H sinnpr

pr
1~12n!cosnpr J $Si~pr !2Si„~12n!pr …%, ~A10!

wherer is an integer,r>1. Whenr51, Eqs.~A9! and~A10! give the exchange energy given in Eq.~3.3!. In the low-density
limit, we obtain

^Si
zSi11

z &52
n2

8
2
n3

12
1O~n4!

and

^nini11&5
n2

2
1
n3

3
1O~n4!. ~A11!

The total energy is

E522tn1S t2 J

2Dn21 p2

12
tn31S 23 t2 1

3
JDn31O~n4!. ~A12!

At J/t52, we get Eq.~3.5!.
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APPENDIX B: xs AND xc AROUND THE BRINKMAN-
RICE TRANSITION

Brinkman and Rice discussed the metal-insulator transi-
tion for the Hubbard model based on the Gutzwiller approxi-
mation ~GA!.50 Although it was confirmed by solving the
variation problem accurately that this transition does not ex-
ist in the realistic~one, two, and three! dimensions,17,18 the
conception of the Brinkman-Rice transition is still widely
used. In this appendix we briefly review the behavior ofxs

andxc in the GA, especially around the Brinkman-Rice tran-
sition for the comparison in Sec. VI.51

According to the GA, the states ofnÞ1 in the Hubbard
model is always metallic and has a Fermi surface with a
finite discontinuityq of n(k) atk5kF . On the other hand, in
the half filling the GA gives a metallic state forU,Uc and
an insulating one forU.Uc , whereUc58u«0u and«0 is the
energy of the noninteracting system; the Brinkman-Rice
transition occurs atU5Uc . WhenU increases from under
Uc fixing n51, xs as well as effective massm* /m(}q21)
diverges as 1/@12(U/Uc)

2#. xs andm* /m remain infinite
for U>Uc . Meanwhile,xc decreases with increasingU and
vanishes atU5Uc and then increases forU.Uc . In Fig. 16
we actually plot the numerical GA values ofxs and xc .
According to the Fermi-liquid theory, the charge susceptibil-
ity is related tom* /m as

xc5
m* /m

11F0
s xc

0 , ~B1!

whereF0
s is the usual Landau parameter andxc

0 is the value
for the noninteracting case. ThereforeF0

s is more divergent
thanm* /m at U5Uc .
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