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The magnetic hysteresis due to the geometrical barrier in a type-II superconducting strip placed in a per-
pendicular applied field is examined theoretically. We first consider ideal strips with no bulk pinning and show
results for the average flux density as a function of the applied field for both flux entry and exit. The
magnetization is found to be nearly inversely proportional to the applied field upon flux entry and to be
proportional to the applied field upon flux exit. We also present results showing the time evolution of magnetic-
flux and current-density profiles during initial flux entry for samples that are bulk-pinning free and those with
pinning characterized by a critical currentJc . As predicted theoretically in pinning-free strips, the vortices
collect in a dome-shaped magnetic flux profile, within which the current density is zero. A vortex-free region
develops near the edges, where a high current density flows. With bulk pinning, the vortices pile up in two
symmetric dome-shaped magnetic flux profiles, within which the current density is equal to the critical current
density, whereas the regions near the center and the edges of the strip remain vortex-free.

I. INTRODUCTION

The first penetration of magnetic flux into a type-II super-
conducting strip subjected to a perpendicular magnetic field
has been found to be significantly delayed by a potential
barrier of geometrical origin.1–3 An important consequence
of this effect is that such a strip exhibits strongly hysteretic
behavior even if the vortices in the interior of the strip are
completely unpinned, i.e., even if the bulk critical current
densityJc is zero. This geometrical barrier is due solely to
the shape of the sample’s cross section at the edge of the
strip; it is similar to the barrier observed in type-I supercon-
ductors of rectangular cross section,4 but is different from the
Bean-Livingston surface barrier observed in type-II
superconductors.5–9

The geometrical barrier arises because Meissner screening
currents, flowing on the top and bottom surfaces of a flat
strip, arise in response to an applied magnetic field.1–3 The
directions of these currents are such that, if one vortex is
nucleated at the strip’s edge, the resulting Lorentz force on
the vortex tends to drive it towards the center of the strip. For
a vortex at the very edge of the strip, however, its line ten-
sion initially opposes the inward Lorentz force and keeps the
vortex near the edge. As the applied field increases until the
vortex straightens and spans between the flat surfaces of the
strip, the line tension no longer produces a significant out-
ward force, and the vortex is driven to the middle of the
sample. This inward motion occurs rapidly and dissipates
energy. If the applied field is now reduced, the Lorentz force
on the vortex from the Meissner screening currents still
keeps the vortex in the middle of the sample until the applied
field drops below zero, at which point the Lorentz force re-
verses sign and drives the vortex out of the sample.

A long sample of elliptical cross section would not exhibit
this kind of geometrical barrier, because for this sample
shape the inward Lorentz force arising from the Meissner
screening currents has exactly the same spatial dependence
as that of the outward force arising from line tension.1–3,10

Once the field at the edge of the sample reaches the lower
critical fieldHc1 , a vortex can be nucleated. A slight further
increase of the applied field causes the vortex to move
slowly to the middle of the sample. A slight reduction of the
applied field, on the other hand, causes the vortex to leave
the sample.

The time dependence of flux penetration into a strip with
radiation-enhanced edge pinning was studied by Schuster
et al.,2 who solved a nonlinear integro-differential equation
for the time-dependent current density in the strip. They used
a model for the local effective resistivity of the form
r5(J/Jc)

nr0 , wheren@1 and the critical current density
Jc(r ,Bz) depends upon both the positionr and the perpen-
dicular inductionBz . To simulate the behavior in vortex-free
regions whereBz50, the authors formally putJc5` in or-
der to maker50 there.

The steady-state current and field profiles produced in a
strip with a geometrical barrier were found analytically by
Zeldovet al.3 In their model, vortices were assumed initially
to reversibly enter a beveled edge region within a distance
d/2 of the edge. The diverging Meissner screening currents
were cut off at a value ofJE

052Hc1 /d in this edge region,
such that these currents do workf0Hc1 per unit length
against the line tension in driving each vortex to a distance
d/2 from the edge. In this paper we study the dynamics of
flux penetration using basic assumptions similar to but
slightly different from those of Zeldovet al.3

To treat the process of vortex nucleation, we consider a
model strip~width 2W! that is flat ~with thicknessd!W)
over most of its cross section but is rounded at the edges,
such that the local radius of curvature at the edges isd/2; the
penetration depthl is assumed to be somewhat less than
d/2. We assume that vortices first begin to enter the sample
when the local magnetic field at the sample edge~accounting
for demagnetizing effects! exceeds the lower critical field
Hc1 . When this happens, each nucleating vortex gradually
moves through the rounded edge region to the flat region,
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where the outwardly directed line-tension force disappears
and the inwardly directed screening-current Lorentz force
takes over, driving the vortex toward the center of the strip.

To model the flux dynamics, we use Faraday’s law to
solve for the time dependence ofBz(x,t), the perpendicular
component of the flux density in the plane of the strip. In the
absence of flux pinning (Jc50), we haveEy5rFF Jy , where
we use the Bardeen-Stephen form11 of the flux-flow resistiv-
ity rFF5rn(Bz /Bc2). This form guarantees that the electric
field is zero in any region of the strip that is free of vortices,
regardless of the value of the current densityJy . We show,
for an applied magnetic field somewhat larger than that re-
quired to nucleate the first vortex, how a dome-shaped dis-
tribution of Bz(x,t) vs x develops in the middle of a bulk-
pinning-free sample. The current density in the vortex-filled
region eventually dies away, but the vortex-free region be-
tween the sample edges and the vortex-filled dome carries a
high current.

This paper is organized as follows: In Sec. II we consider
the details of the initial flux penetration into the sample. We
then study the quasistatic field (Bz) and current (Jy) distri-
butions that develop at the critical flux-entry and flux-exit
conditions, and we calculate for both cases the average flux
density and the average magnetization as a function of the
applied magnetic field. We find that the magnetization upon
flux entry is inversely proportional to the applied field, a
behavior that is similar to, but slightly different from, the
case of the Bean-Livingston surface barrier.5–9 In Sec. III we
present a straightforward numerical method for calculating
the time evolution ofBz(x,t) andJy(x,t) following flux en-
try into a type-II superconducting strip. We show that after a
long time the profiles ofBz andJy reduce to those calculated
analytically by Zeldovet al.3 and numerically by Schuster
et al.2 for both bulk-pinning-free samples and those charac-
terized by a critical current densityJc . In Sec. IV we present
a brief summary of our results.

II. QUASISTATIC FIELD VARIATIONS

We consider a superconducting strip of width 2W and
thicknessd!W. To account for demagnetizing effects in cal-
culating the local magnetic field at the edge, we choose a
specific model, sketched in Fig. 1, with rounded edges. We
now use this model to calculate the Meissner response of the

strip, the first vortex penetration into the strip, the vortex-
generated current density, the properties at flux entry and flux
exit, and the irreversibility line.

A. Meissner response

We first treat the case of a flat strip of thicknessd in a
uniform magnetic fieldHa applied along thez direction~see
Fig. 2!. The current density is given by

Jy52S ]Hz

]x
2

]Hx

]z D . ~1!

As discussed in Refs. 12–19, it is almost always in strip
geometry that the first term on the right-hand side of Eq.~1!
can be neglected relative to the second term. Thus Eq.~1!
can be rewritten as

Jy~x!5
1

d
@Hx~x,z5d/2!2Hx~x,z52d/2!#

5
2

d
Hx~x,z5d/2!, ~2!

whereJy is the current density averaged over the thickness.
Conformal mapping methods can be used to obtainHMx ,

20

the Meissner response to the applied fieldHa , in the region
uxu,W,

HMx~x,z5d/2!52Ha

x

AW22x2
. ~3!

The corresponding Meissner-response current density is

JMy~x!52
2Ha

d

x

AW22x2
. ~4!

Equations~3! and ~4! hold for all uxu,W except very close
to the edge.

To estimate the local magnetic field at the edge of the
strip, we consider a model in which the strip’s edge is
rounded and has radius of curvatured/2 at the edge. It is thus
useful to examine the Meissner-response field of a long strip
with elliptical cross section and compare this with the corre-
sponding Meissner-response field of a flat strip. For a strip

FIG. 1. Sketch of the model superconducting strip considered in
this paper. The strip has width 2W, thicknessd, and rounded edges. FIG. 2. Sketch of the Meissner-response field around a super-

conducting strip in the Meissner state in a transverse applied field
Ha .
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with elliptical cross section,Hts , the tangential field compo-
nent at the surface of the superconductor, is given by20

Hts5Ha

Lx1Lz
2q

cosb, ~5!

whereLx/2 andLz/2 are the semimajor and semiminor axes
of the ellipse, respectively, q5@(Lx/2)

2sin2b
1(Lz/2)

2cos2b]1/2, cosb5x/(Lx/2), and the tangent vector is
t52x(Lx/2q)sinb1z(Lz/2q)cosb. The parametric equa-
tions describing the surface of the ellipse are
x5(Lx/2)cosb and z5(Lz/2)sinb. The magnitude of the
Meissner-response field at either edge (x56Lx/2) is
Hedge5Ha(Lx /Lz11), and the radius of curvature there is
(Lz/2)2/(Lx/2). Choosing Lx to be the strip width
(Lx/25W) and choosingd/2 to be the radius of curvature at
the edge (Lz5A2Wd), we find that the magnitude of the
Meissner-response field at the edge is

Hedge5Ha~R11!, ~6!

whereR5Lx /Lz5A2W/d@1. We note that this is the order
of magnitude expected from Eq.~3!. Evaluating Eq.~3! at
x52W1d/4, where we expect the equation to begin break-
ing down, we get

HMx~x52W1d/4,z5d/2!'HaR. ~7!

Moreover, thez component of the Meissner-response field
for a strip of width 2W is given outside the strip by20

HMz~x,z50!5Ha

uxu

Ax22W2
, ~8!

where uxu.W. Evaluating this expression atx52W2d/4,
where we expect this equation to begin breaking down for a
strip of thicknessd, we obtain

HMz~2W2d/4,z50!'HaR, ~9!

in agreement with the estimates from Eqs.~6! and ~7!.
As pointed out in Ref. 21, it is not a good practice to

represent a strip of width 2W and thicknessd by an inscribed
ellipse of semimajor axisW and semiminor axisd/2. Such a
choice would give a field at the edge@see Eq. ~5!# of
Ha(2W/d11), which is a significant overestimate of the
edge field.

Although we do not solve exactly for the tangential field
at the surface of the sample sketched in Fig. 1, in the follow-
ing we use the approximations that the tangential field is
given by Eq.~3! on the top surface~and by the negative of
this on the bottom surface! whenuxu,W2d/4 and by Eq.~5!
~with Lx52W and Lz5A2Wd) near the edges of the strip
(W2d/4,uxu<W).

B. First vortex penetration into the film

Application of a magnetic field perpendicular to a strip
favors the nucleation of vortices at the edges of the strip. The
current density induced in response to the applied field pro-
duces an inwardly directed force on a nucleating vortex~see
Fig. 3!. Because of the shape of the strip at its edges, how-
ever, each nucleating vortex is also subject to an outwardly

directed line-tension force. We now examine carefully the
balance of forces exerted on a nucleating vortex.

The tangential component~in the direction oft! of the
Lorentz force exerted on the top end of a nucleating vortex in
a strip of elliptical cross section is, from Eq.~5!,

Fts5f0Hts5f0

Ha~Lx1Lz!

2q
cosb, ~10!

wheref0 is the flux quantum. The work done by the source
of the applied field as the vortex moves through a distance
Dx into the sample~see Fig. 4! is DW52uFtsuD l , where
D l5(2q/Lxsinb)Dx is the distance the top end of the vortex
moves along the curving sample surface, and the factor of 2
accounts for the equal amount of work done on the bottom
end of the vortex. We thus may writeDWa5uFaxuDx, where
Fax is the Lorentz force acting in thex direction,

Fax522f0

Ha~Lx1Lz!cosb

Lxsinb
. ~11!

When the vortex moves by a distanceDx into the sample,
the line energy must increase byDU5f0Hc1Dz, where
Hc1 is the lower critical field andDz is the change in the
length of the vortex. SinceDz5Dx(2Lz /Lx)ucosbu/sinb, we
haveDU5uFc1xuDx, where the line-tension force acting in
the x direction is

Fc1x52f0

Hc1Lzcosb

Lxsinb
. ~12!

When the applied field is small, the Lorentz forceFax is
too small to overcome the line-tension forceFc1x , and the
vortex cannot penetrate into the superconductor. However,
from Eqs.~11! and ~12!, we see that the two forces are bal-
anced when the applied fieldHa reaches the valueHp ,
where

FIG. 3. Sketch showing a vortex near the strip’s edge and the
inwardly directed force arising from the Meissner-response screen-
ing currents.

FIG. 4. Sketch of the magnetic field produced outside the
sample by a vortex at two positions separated by a distanceDx.
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Hp5Hc1

Lz
Lx1Lz

. ~13!

Note that when we choseLx52W andLz5A2Wd, we have

Hp5Hc1

1

R11
, ~14!

whereR5Lx /Lz5A2W/d@1. At this field (Ha5Hp), the
field at the edge of the sample is equal to the lower critical
field,

Hedge5Hc1 , ~15!

as can be seen from Eq.~5!. In other words, the vortex will
be unable to penetrate the strip until the applied fieldHa
exceedsHp , when the Lorentz force from the screening cur-
rents overcomes the line-tension force associated with the
elliptical shape of the edge. Once the vortex travels a dis-
tancexf5d/4 from the edge and the cross section of the strip
becomes flat~see Fig. 3!, the line tension vanishes and the
vortex is now driven rapidly towards the center of the strip
where the current density is zero.

For larger values ofHa , this process repeats itself, pro-
ducing a band of vortices near the center of the strip. The
vortices repel each other, and produce a dome-shaped flux
distribution within which the total current density is zero.
The details of the repulsive vortex interactions are discussed
in the next section.

C. Vortex-generated current density

Once the vortices are inside the strip, they generate an
upward flux-density contributionBz(x) in the region
uxu,W. The magnetic flux density generated by each band
of vortices, with flux per unit lengthBz(x8)dx8, returns
through the space around the strip,uxu>W ~see Fig. 4!.
When l,d!W, the spatial dependence of this return flux
can be calculated by conformal mapping as described in the
Appendix of Ref. 10. It follows that the tangential compo-
nent of the vortex-generated fieldHVTS on the superconduc-
tor’s top surface is

HVTS52
1

pm0q
E

2W

1W

dx8
Bz~x8!AW22x82

x2x8
, ~16!

where here, and in what follows, the principal value of the
integral is to be taken. Except very near the edges of the
strip, we haveq→Wusinbu and t→2x when d!W, such
that thex component of the vortex-generated field on the top
surface is

Hvx5
1

pm0
E

2W

1W

dx8
Bz~x8!AW22x82

~x2x8!AW22x2
. ~17!

Since thex component of the vortex-generated field on the
bottom surface is the negative of this, we find from Eq.~2!
that the corresponding vortex-generated current density is
~see also Ref. 22!

Jvy~x!5
2

pm0d
E

2W

W

dx8
Bz~x8!AW22x82

~x2x8!AW22x2
. ~18!

The vortices inside the strip thus have two important effects.
First, the return flux from the vortex-generated field reduces
the field at the edge of the sample. Second, the vortex-
generated current density produces a significant contribution
to the total current density.

Suppose that a fieldHa larger than the valueHp given in
Eq. ~13! is applied to a sample initially containing no vorti-
ces. Since the field at the edge@Eq. ~6!# exceedsHc1 , vorti-
ces nucleate and penetrate into the strip. However, as addi-
tional vortices enter the strip andBz increases, the vortex-
generated return flux leads to a negative contribution toHz at
the edge of the strip. The vortex-generated magnetic field
Hvz(x5W,z50) at the edge of the strip is, from Eq.~17!,

Hvz~x5W,z50!52
R

pm0W
E

2W

1W

dx8Bz~x8!AW1x8

W2x8
,

~19!

where we have made use ofq(b50)5Lz/25AWd/2 and
R5A2W/d. Note that sinceBz(x).0, the vortex-generated
field at the edgeHvz(x5W,z50) is always negative.

The net field at the edge is the sum of the Meissner-
response field and the vortex-generated field,

Hz~x5W,z50!5Hedge1Hvz~x5W,z50!. ~20!

From Eqs.~6! and ~18! we thus obtain

Hz~x5W,z50!5Ha~R11!

2
R

pm0W
E

2W

1W

dx8Bz~x8!AW1x8

W2x8
. ~21!

As long asHz(x5W,z50).Hc1 , vortices continue to
nucleate and penetrate into the sample, but as more vortices
enter the sample,Hz(x5W,z50) gradually decreases. Fi-
nally, whenHz(x5W,z50) drops to the valueHc1 , vortices
will stop entering the sample. We denote the corresponding
value of the applied fieldHa as the critical entry fieldHen. If
Ha is increased above this value ofHen, vortices immedi-
ately will begin to enter the sample again.

Just as we can express the net magnetic field as a sum of
the Meissner-response field and the vortex-generated field, so
also can we express the net current density as the superposi-
tion of the Meissner-response current density@Eq. ~4!# and
the vortex-generated current density@Eq. ~18!#,10,20,21,23

Jy~x!5JMy~x!1Jvy~x!. ~22!

D. Flux entry and flux exit

Let us now vary the applied fieldHa quasistatically and
find the field and current-density profiles in the cases of both
critical flux entry and critical flux exit. The above current-
density expressions are sufficient for us to calculate the field
profiles inside the sample in the steady state.

1. Flux entry

Consider the condition of critical flux entry, such that the
applied fieldHa.Hp @Eqs. ~13! and ~14!#, but, because of
the return field from the vortices inside the sample, the local
field at the sample edge isHc1 @Eq. ~21!#. Since the sample is
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on the verge of nucleating new vortices, we will denote
quantities at this critical entry condition by the subscript
‘‘en.’’

We first determine the field profileBz(x) in the region
where vortices have collected. This field profile is symmetric
in x, since no transport current is applied, and extends from
2b to 1b, where 0<b,W2d/4. In order for the vortices
to be in equilibrium with each other, each vortex must feel
no net Lorentz force; hence the current densityJy(x) must be
zero over the region2b<x<b. From Eqs.~22!, ~4!, and
~18!, we thus obtain

Jy~x!52
2Hax

dAW22x2
1

2

pm0d
E

2b

b

dx8
Bz~x8!AW22x82

~x2x8!AW22x2

50. ~23!

That the solution of this equation is

Bz~x!5m0HaA b22x2

W22x2
~24!

can be shown with the help of Eq.~7! of Ref. 22.
Outside this region, i.e.,b<uxu<W, Bz(x)50, and the

current density, obtained from Eqs.~22!, ~4!, and~18!, is

Jy~x!52
2Hax

duxu A
x22b2

W22x2
. ~25!

From Eq.~24! we find that the average flux density in the
strip is

B̄z5
m0Ha

W E
0

b

dxA b22x2

W22x2
~26!

or

B̄z5
m0Ha

W

b

W
E~b/W,W/b!, ~27!

whereE(b/W,W/b) is an elliptic integral of the second kind.
Because of the symmetry of the current-density distribu-

tion, we can write the magnetization as

Mz5
1

WE
0

W

dxxJy~x!. ~28!

Using Eq.~25! and carrying out the integral, we obtain

Mz'2
p

4
HaR

2~12b2/W2!, ~29!

where R5A2W/d. Corrections to Eq.~29! are required,
however, whenb becomes close toW. In this case, more
careful attention must be paid to the contribution of currents
that flow on the rounded edges of the sample.

The above expressions@Eqs.~24!–~29!# hold for arbitrary
values ofHa andb. However, asHa is increasing, the value
of b at the critical entry condition, i.e.,ben, is determined
from Eq. ~21! by setting the right-hand side equal toHc1 ,
using Eq.~24!, and carrying out the required integral. The
expression from whichben(Ha) can be obtained is

FIG. 5. ~a! Flux-density profilesBz vs x for an applied field
Ha initially at Hen and then at smaller fieldsHen/2,Hen/4, and
Hex, the critical exit field, forR510.05 andHen51.2Hp . ~b!
Current-density profilesJy vs x for an applied fieldHa initially at
Hen and then at smaller fieldsHen/2,Hen/3, and Hen/4, for
R510.05 andH en51.2Hp .
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Ha5
Hc1

11RA12~ben/W!2
. ~30!

The average flux densityB̄en(Ha) in the strip at the critical
entry condition is, from Eq.~27!,

B̄en5
m0Ha

W

ben
W

E~ben/W,W/ben!. ~31!

The magnetizationMen(Ha) for increasing fieldHa is, from
Eq. ~29!,

Men5H 2
p

4
HaR

2 for Ha,Hp ,

2
p

4
~Hc12Ha!

2/Ha for Ha.Hp .

~32!

When R@1, we see from Eqs.~14! and ~32! that when

Ha;Hp!Hc1 , we haveMen'2 p
4 Hc1

2 /Ha , a result close
to that found in Ref. 3. This feature appears to be character-
istic of the geometrical barrier.

The above procedure determinesben(Ha) andB̄en(Ha) as
functions of an increasing fieldHa . Alternatively, one may
also regardben and the critical entry fieldHen ~the value of
Ha at the critical entry condition! as functions of the average
flux density B̄. One may combine Eqs.~30! and ~31! to
eliminate Ha in favor of ben; one may then determine
ben(B̄) from the resulting equation. In turn,Hen(B̄) can be
determined by usingb en(B̄) in Eq. ~30!.

2. Flux exit

Suppose that we have increased the applied fieldHa to
some maximum valueHen aboveHp . Since additional vor-
tices have just entered into the strip, the width of the vortex-
filled strip, 2ben, and the average flux density in the strip,
B̄en, can be determined from Eqs.~30! and~31! by replacing
Ha by Hen.

When we now reduce the applied fieldHa , the total num-
ber of vortices in the strip remains constant~and thus the
average flux densityB̄z remains constant!, but the value ofb
increases. We can use Eqs.~27! and ~31! to derive an equa-
tion for determiningb under decreasingHa , as long asB̄ is
constant:

Ha

b

W
E~b/W,W/b!5Hen

ben
W

E~ben/W,W/ben!. ~33!

By substituting the resulting value ofb(Ha) into Eq. ~29!,
we can determine the corresponding magnetizationMz at
this value ofHa .

No vortices will exit the strip until the outermost vortices
at uxu5b reach the rounded edge of the strip at
uxu5bex[W2d/4. When this occurs, since the field

Hz(uxu5W,z50),Hc1 , the outermost vortices will exit the
sample. We denote the value ofHa at which flux exit occurs
for this value ofB̄ asHex(B̄). It is determined via Eq.~33!
from

Hex

bex
W

E~bex/W,W/b ex!5Hen

ben
W

E~ben/W,W/ben!,

~34!

wherebex5W2d/4.
For decreasing applied fieldsHa at the critical exit condi-

tion, we thus havebex5W2d/4 ~independent ofHa), while
the average flux density in the sample,B̄ex(Ha), is deter-
mined via Eq.~27! from

B̄ex5
m0Ha

W

bex
W

E~bex/W,W/b ex!, ~35!

and the magnetizationMex(Ha) is given via Eq.~29! by

Mex'2
p

4
Ha ~36!

whenR@1.
Shown in Fig. 5~a! is a plot of several profiles ofBz(x) vs

x as the applied fieldHa is reduced from its initial value
Hen to the corresponding critical exit fieldHex. The area
under each curve, which is proportional to the average flux
densityB̄, is constant. Note also thatb increases asHa de-
creases. Several plots of the current densityJy(x) vs x are
shown in Fig. 5~b!. Since the magnitude ofJy(x) decreases
as Ha decreases, the magnitude of the magnetization also
decreases.

The average flux densityB̄ is shown in Fig. 6 as a func-
tion of the applied fieldHa . For increasing fields at the
critical entry condition,B̄5B̄en @Eq. ~31!#, while for decreas-
ing fields at the critical exit condition,B̄5B̄ex @Eq. ~35!#.

FIG. 6. The average flux densityB̄ as a function of the applied
field Ha at the critical entry condition (B̄ en, increasing fields!, the
critical exit condition (B̄ex, decreasing fields!, and the constant-flux
condition (Hex,Ha,Hen) for R510.05.
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Note thatB̄ is constant forHex,Ha,Hen, because the geo-
metrical barrier prevents vortices from entering or leaving
the sample.

Shown in Fig. 7 isb, the half-width of the vortex-filled
region, as a function ofHa . For increasing fields at the criti-
cal entry condition,b5ben, which is determined from Eq.
~30!, and for decreasing fields at the critical exit condition,
b5bex5W2d/4. As Ha is varied fromHen to Hex the ex-
pansion of the vortex-filled region is given by Eq.~33!. The
arrows pointing in both directions on these curves indicate
that, in the absence of bulk pinning, this breathing motion of
the vortex-filled region is reversible.

Figure 8 shows the magnetizationMz as a function of the
applied fieldHa . The magnetization for increasingHa is
given by Eq.~32!, first forHa,Hp in the Meissner state and
then forHa.Hp at the critical entry condition. The magne-
tization for decreasingHa at the critical exit condition is
given by Eq. ~36!. The magnetization on the reversible
branches between these limiting curves corresponds to the
reversible breathing motion of the vortex-filled region, and
the values ofMz are calculated from Eq.~29! using values of
b obtained from Eq.~33!.

E. Irreversibility line

From Figs. 6–8 and the corresponding equations we see
that the curves ofB̄en andB̄ex converge, as do the curves of
b en andbex and those ofMen andMex, at an applied field

given by Eq. ~30! when ben5bex5W2d/4, or
H irr'Hc1/2. For Ha,H irr , the magnetization is hysteretic
~irreversible!, but for Ha.H irr , the hysteresis arising from
the geometrical barrier completely disappears, though it is
possible that hysteresis from a Bean-Livingston barrier or
bulk pinning ~neither of which has been considered here!
may still be present. Note that the temperature dependence of
the irreversibility fieldH irr is the same as that ofHc1 .

Vortices are generally not present in the rounded edges of
the strip whenHa,H irr . They appear there only briefly as
they move inward at the critical entry condition or outward
at the critical exit condition. ForHa.H irr , however, vortices
are forced into the rounded-edge region. In equilibrium, no
net currents flow in the flat region of the film; otherwise, the
vortices would move under the influence of the Lorentz
force. Thus the entire magnetization of the strip arises from
the surface currents in the rounded-edge region. The local
surface-current density is proportional to the discontinuity in
the tangential component ofB at the film edges.

Exactly atHa5H irr , the value ofB in the rounded-edge
region is zero and the net field at the edge isHc1 . The
current carried by the rounded edge atx5W is approxi-
mately I y(x5W)'2Hc1d. From an expression similar to
Eq. ~28! we thus find that the magnetization isMz'2Hc1 .

For applied fields larger thanH irr , the net field at the
edge,Hedge, rises aboveHc1 , and the value of the flux den-
sity just inside the rounded-edge region is determined by the
equilibrium curveBeq(Hedge). Although it is not possible
with the present model to accurately calculateH edge, we can
show, using Eq.~21!, that this field approaches the applied

FIG. 7. The behavior ofb, the edge of the vortex-filled region,
as a function of the applied fieldHa at the critical entry condition
(ben, increasing fields!, the critical exit condition (b ex, decreasing
fields!, and the constant-flux condition (Hex,Ha,H en) for
R510.05.

FIG. 8. The magnetizationMz as a function of the applied field
Ha at the critical entry condition (Men, increasing fields!, the criti-
cal exit condition (Mex, decreasing fields!, and the constant-flux
condition (Hex,Ha,Hen) for R510.05.
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field Ha . The sample magnetizationMz , arising from the
surface-current density in the rounded-edge region, therefore
approaches the equilibrium~reversible! magnetization
Meq(H). Note that in the mixed state,Meq(Hc1)52Hc1 ,
and that it decreases in magnitude with increasing fieldH.

III. TIME EVOLUTION OF THE FLUX PENETRATION

A. Pinning-free samples

We now examine how the flux penetration occurs with
time and how the dome-shaped field profile is reached, tak-
ing into account the geometrical barrier. Since our calcula-
tions are done numerically, we can even include the other
part of the current@see Eq.~1!#, which is due to the gradient
of the thermodynamic field,2]Hz /]x. In the case of flux
flow, we assume that the resistivity is given by the Bardeen-
Stephen model11

rFF5rn
Bz

Bc2
, ~37!

wherern is the normal resistivity andBc2 is the upper criti-
cal field. An electric field is produced by the motion of vor-
tices under the influence of the currents in the strip. For flux
flow the electric field thus obeys

Ey~x!5rFF Jy~x!, ~38!

whereJy @see Eqs.~4! and ~18!# is given by

Jy~x!5JMy~x!1Jvy~x!2
]Hz~x!

]x
. ~39!

Notice that if there are no vortices inside the strip~i.e., if
Bz50), there cannot be any electric field, sincerFF is pro-
portional toBz . Faraday’s law yields a time-dependent equa-
tion for the flux densityBz ,

]Bz~x,t !

]t
52

]Ey~x,t !

]x
. ~40!

Using the previous equations, we obtain an integro-
differential equation, which in dimensionless units becomes

]bz~x,t !

]t
52

]

]x F2
habz~x,t !x

A12x2
1
bz~x,t !

p

3E
21

1

dx8
bz~x8,t !A12x82

~x2x8!A12x2

2
d

2
bz~x,t !

]hz~x,t !

]x G , ~41!

where x and d are in units ofW, bz(Bz) is in units of
m0Hc1 , ha(Ha) andhz(Hz) are in units ofHc1 , and t is in
units of t5Bc2Wd/2rnHc1 . For example, forBc25100 T,
W550 mm, d51mm, andBc1510 mT, we obtaint53 ns.

Equation~41! is solved numerically, taking into account
the continuity ofHz at the edges; i.e., at every step of the
time integration the fieldBz at the edges is adjusted such that

FIG. 9. ~a! Current-density profiles for different timest ~in units
of the characteristic timet) after an applied fieldHa51.2Hp is
turned on. The numerical results for times greater thant537t are
indistinguishable from the analytical result given in Eq.~25!. ~b!
Field profiles for different times t after an applied field
Ha51.2Hp is turned on. The numerical results for times greater
thant537t are indistinguishable from the analytical result given in
Eq. ~24!. (R510.05.)
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Hz is continuous there.Hz andBz are assumed to be related
by the equilibrium conditionH5Heq(B), which is approxi-
mated by the equation7

Hz~Bz!5
Bz

uBzu
AHc1

2 1Bz
2/m0

2. ~42!

The exact form of this function is not very important close to
the steady state in the range of applied fields,Ha,H irr , be-
cause in this range the flux density in the steady state is zero
at the edges of the strip. WhenHz at the strip’s edge is equal
to or less thanHc1 , Bz50 at the edge, and no flux can enter
the strip.

When an applied fieldHa.Hp is suddenly applied to a
strip containing no vortices, the fieldHz at the edge is ini-
tially greater thanHc1 , and vortices are admitted into the
sample. The net fieldHz at the edge is the sum of two con-
tributions, one due to the applied field and the other due to
the return flux that arises from vortices that have penetrated
into the strip. The return flux produced by the vortices enter-
ing the sample gradually reduces the value ofHz at the edge
down toHc1 . At this point, no additional vortices can pen-
etrate the strip. The vortices inside the sample, however,
keep moving toward the center of the strip under the influ-
ence of the current densityJy(x,t), in such a way that the
current density becomes zero in the vortex-filled region
when the vortices achieve their final distribution@see Figs.
9~a! and 9~b!#. The steady-state profiles of both the field and
the current density are very nearly the same as those obtained
in Sec. II, where we neglected the current part due to the
gradient ofHz ,

Bz~x!5H HaAb22x2

W22x2
for uxu,b,

0 for b,uxu,W,

Jy~x!5H 0 for uxu,b,

2
x

uxu
2Ha

d
A x22b2

W22x2
for b,uxu,W,

~43!

andb is given by Eq.~30!.
The main difference between our numerical results and

the profiles shown in Ref. 3 is in the details of how the edges
are treated. In Ref. 3, the current density is cut off there at
JE
0 . In addition, the slope ofBz at6b in our treatment is no
longer infinite because we have included the term
2]Hz /]x in the expression of the currentJy . The dome-
shaped magnetic flux profile has been seen experimentally
by both Zeldovet al.3 and Schusteret al.2

B. Samples with bulk pinning

In the presence of bulk pinning characterized by a critical
current densityJc , we model the electric field as in Ref. 24,

Ey~x,t !5H rFF@Jy~x,t !2Jc# for Jy~x,t !.Jc ,

0 for uJy~x,t !u,Jc ,

rFF@Jy~x,t !1Jc# for Jy~x,t !,2Jc .
~44!

Different field and current profiles are obtained, depending
on the values ofHa and Jc . The most interesting case is
whenHa.Hp , such that vortices penetrate into the sample,
but Jc is smaller thanJy at the edges. As shown in Figs.
10~a! and 10~b!, vortices enter the strip until the field at the
edge is reduced toHc1 , and under the influence of the cur-
rentJy the vortices are pushed towards the center. Because of

FIG. 10. ~a! Current-density profiles for different timest ~in
units of the characteristic timet) after an applied field
Ha51.2Hp is turned on, for the case of bulk pinning characterized
by a critical current densityJc51.1Hp /d. ~b! Field profiles for the
same conditions as in~a!.
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theE-J relationship given above, however, the vortices come
to rest whenuJyu<Jc . The vortices therefore pile up in two
symmetric regions where the current is reduced toJc . The
rest of the sample is vortex free, and the current density
greatly exceedsJc at the edges@see Figs. 10~a! and 10~b!#.
The final field and current-density profiles are similar to
those obtained by Zeldovet al.3 except for details of the
behavior at the edges. In the case of largeJc , the steady-
state profiles approach the analytical results obtained in Refs.
21, 23.

IV. SUMMARY

In this paper we have studied the effects of the geometri-
cal barrier that impedes vortex entry and exit in type-II su-
perconducting strips. We have used a specific model, a strip
that is mostly flat but has rounded edges, to estimate the
magnetic fields and currents in the strip. The key contribu-
tions are~a! the Meissner response to a transverse applied
field and~b! fields and currents generated by vortices in the
strip. By considering the effects of demagnetization, we de-
terminedHp , the value of the applied field at which the local
magnetic field at the edge of the strip first reaches the lower
critical field Hc1 . For increasing fieldsHa.Hp , when vor-
tices are present in a dome-shaped field distribution in the
strip, we calculated the flux-density and current-density dis-
tributions at the critical entry condition. If the applied field is
subsequently reduced, the geometrical barrier prevents vorti-
ces from immediately leaving the sample. No vortices leave
the sample until the outermost vortices reach the rounded
edge of the strip, the critical exit condition. We calculated
hysteresis in the magnetizationMz , including Men at the
critical entry condition for increasingHa , M ex at the critical
exit condition for decreasingHa , and the reversible magne-
tization in the constant-flux condition for applied fields be-
tweenHex andHen.

We also investigated vortex dynamics in strip geometry
by numerically solving a time-dependent equation governing
the penetration ofBz into the strip. We presented plots of

Bz andJy showing the time evolution of these distributions
after a transverse magnetic field is applied. We showed that
these distributions closely approach those calculated analyti-
cally.

Although most of this paper concerned the behavior of
vortices in a strip in which there is no bulk or surface pin-
ning, we also briefly considered the vortex dynamics in a
strip with bulk pinning to show how the flux distributions are
altered. In confirmation of results reported in Ref. 3, we find
that the vortices penetrate from both edges and collect in two
dome-shaped distributions, within which the magnitude of
the current density isJc .

Note that our results forJc50 exhibit hysteresis~irrevers-
ibility ! in the magnetization even though pinning plays no
role whatsoever. The hysteresis arises entirely from the ef-
fects of sample geometry, as noted in Refs. 1–3. We calcu-
lated an irreversibility fieldH irr , the value of the applied
field (;Hc1), above which the magnetization becomes com-
pletely reversible.

A possible extension of the present approach would be to
relax the condition of continuity ofHz at the edge of the
sample, which would permit the study of the Bean-
Livingston barrier in strip geometry. It is likely that this
would increase not only the value of the applied field at
which the first vortex penetration would occur but also the
value of the irreversibility fieldH irr .

Further studies of vortex dynamics, including numerical
studies of ac losses at arbitrary frequencies, would also be
possible using Eq.~41!. Vortex distributions during flux flow
under the influence of a transport current also could be easily
computed using our approach.
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