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Magnetic hysteresis from the geometrical barrier in type-1l superconducting strips
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The magnetic hysteresis due to the geometrical barrier in a type-Il superconducting strip placed in a per-
pendicular applied field is examined theoretically. We first consider ideal strips with no bulk pinning and show
results for the average flux density as a function of the applied field for both flux entry and exit. The
magnetization is found to be nearly inversely proportional to the applied field upon flux entry and to be
proportional to the applied field upon flux exit. We also present results showing the time evolution of magnetic-
flux and current-density profiles during initial flux entry for samples that are bulk-pinning free and those with
pinning characterized by a critical currely. As predicted theoretically in pinning-free strips, the vortices
collect in a dome-shaped magnetic flux profile, within which the current density is zero. A vortex-free region
develops near the edges, where a high current density flows. With bulk pinning, the vortices pile up in two
symmetric dome-shaped magnetic flux profiles, within which the current density is equal to the critical current
density, whereas the regions near the center and the edges of the strip remain vortex-free.

[. INTRODUCTION Once the field at the edge of the sample reaches the lower
critical field H;,, a vortex can be nucleated. A slight further
The first penetration of magnetic flux into a type-1l super-increase of the applied field causes the vortex to move
conducting strip subjected to a perpendicular magnetic fieldglowly to the middle of the sample. A slight reduction of the
has been found to be significantly delayed by a potentiahpplied field, on the other hand, causes the vortex to leave
barrier of geometrical origifi-3 An important consequence the sample.
of this effect is that such a strip exhibits strongly hysteretic The time dependence of flux penetration into a strip with
behavior even if the vortices in the interior of the strip areradiation-enhanced edge pinning was studied by Schuster
completely unpinned, i.e., even if the bulk critical currentet al,2 who solved a nonlinear integro-differential equation
densityJ. is zero. This geometrical barrier is due solely 10 for the time-dependent current density in the strip. They used
trt“? Shta.pe .Of.lthet S";‘:‘F’Le’s .cross sectié)r_l "’;t thel edge of the model for the local effective resistivity of the form
strip; it is similar to the barrier observed in type-l supercon- _ n 5 . ;
ducF;ors of rectangular cross sectfbhbyt is diﬁe¥gnt frorrﬁ)the p=(I3c) po, wheren>1 and the cr'|t.|cal current density
J.(r,B,) depends upon both the positionand the perpen-

Sl?agr-cl_é\rl:ggrsz':g%‘g surface  barrier observed in - type-ll o, 5 inductionB,. To simulate the behavior in vortex-free
P > . . . .regions whereB,=0, the authors formally pul,=~ in or-
The geometrical barrier arises because Meissner screenin  to makep=0 there

currents, flowing on the top and bottom surfaces of a fla The steadv-stat ¢ and field orofi duced i
strip, arise in response to an applied magnetic fiefdThe € steady-state current and neid profiies produced in a

directions of these currents are such that, if one vortex i§trip with a geometrical barrier were found analytically by

nucleated at the strip's edge, the resulting Lorentz force offeldovet al? In their model, vortices were assumed initially
the vortex tends to drive it towards the center of the strip. FofO reversibly enter a beveled edge region within a distance
a vortex at the very edge of the strip, however, its line tend/2 of the edge. The diverging Meissner screening currents
sion initially opposes the inward Lorentz force and keeps thavere cut off at a value of2=2H, /d in this edge region,
vortex near the edge. As the applied field increases until thguch that these currents do workgH¢; per unit length
vortex straightens and spans between the flat surfaces of tiggainst the line tension in driving each vortex to a distance
strip, the line tension no longer produces a significant outd/2 from the edge. In this paper we study the dynamics of
ward force, and the vortex is driven to the middle of theflux penetration using basic assumptions similar to but
sample. This inward motion occurs rapidly and dissipateslightly different from those of Zeldoet al?
energy. If the applied field is now reduced, the Lorentz force To treat the process of vortex nucleation, we consider a
on the vortex from the Meissner screening currents stillmodel strip(width 2W) that is flat (with thicknessd<W)
keeps the vortex in the middle of the sample until the appliedver most of its cross section but is rounded at the edges,
field drops below zero, at which point the Lorentz force re-such that the local radius of curvature at the edgeddsthe
verses sign and drives the vortex out of the sample. penetration depthn is assumed to be somewhat less than
Along sample of elliptical cross section would not exhibit d/2. We assume that vortices first begin to enter the sample
this kind of geometrical barrier, because for this samplevhen the local magnetic field at the sample e¢ireounting
shape the inward Lorentz force arising from the Meissnefor demagnetizing effectsexceeds the lower critical field
screening currents has exactly the same spatial dependeridg;. When this happens, each nucleating vortex gradually
as that of the outward force arising from line tenstof’®  moves through the rounded edge region to the flat region,
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FIG. 1. Sketch of the model superconducting strip considered in

this paper. The strip has width/2, thicknessd, and rounded edges. FIG. 2. Sketch of the Meissner-response field around a super-

conducting strip in the Meissner state in a transverse applied field

. . . . H
where the outwardly directed line-tension force disappears ®

and the inwardly directed screening-current Lorentz forcestrip, the first vortex penetration into the strip, the vortex-

takes over, driving the vortex toward the center of the stripgenerated current density, the properties at flux entry and flux
To model the flux dynamics, we use Faraday’s law toexit, and the irreversibility line.

solve for the time dependence Bf(x,t), the perpendicular
component of the flux density in the plane of the strip. In the A. Meissner response
absence of flux pinningJc=0), we haveE, = pge Jy , Where
we use the Bardeen-Stephen fétrof the flux-flow resistiv-
ity per=pn(B,/B¢,). This form guarantees that the electrlc
field is zero in any region of the strip that is free of vortlces

We first treat the case of a flat strip of thicknabsn a
unlform magnetic fieldH , applied along the direction(see
g. 2. The current denS|ty is given by

regardless of the value of the current densify We show, OH. oH

for an applied magnetic field somewhat larger than that re- Jy= —( Z_ X) (1)
i ] ; oX Jz

quired to nucleate the first vortex, how a dome-shaped dis-

tribution of B,(x,t) vs x develops in the middle of a bulk- As discussed in Refs. 1219, it is almost always in strip
pinning-free sample. The current density in the vortex-filledgeometry that the first term on the right-hand side of @3.
region eventually dies away, but the vortex-free region becan be neglected relative to the second term. Thus(Hg.
tween the sample edges and the vortex-filled dome carries@&n be rewritten as

high current.

This paper is organized as follows: In Sec. Il we consider
the details of the initial flux penetration into the sample. We
then study the quasistatic fiel@f) and current J,) distri-
butions that develop at the critical flux-entry and flux-exit
conditions, and we calculate for both cases the average flux

nsi nd the aver magnetization function of th
density and the average magnetization as a function of t ehereJy is the current density averaged over the thickness.

applied magnetic field. We find that the magnetization uponConformal mapping methods can be used to obkjp, .2°

flux entry is inversely proportional to the applied field, a
behavior that is similar to, but slightly different from, the |t)r:|e<l\<ll\</e|ssner response to the applied fiellg, in the region

case of the Bean-Livingston surface barrietin Sec. Il we
present a straightforward numerical method for calculating

the time evolution oB,(x,t) andJ,(x,t) following flux en- Huy(X,z=d/2)= —H,———.
try into a type-Il superconducting strip. We show that after a M YW2—x2
long time the profiles oB, andJ, reduce to those calculated
analytically by Zeldovet aI3 and numerically by Schuster

Jy(x)= %[Hx(x,z= d/2)—H(x,z=—d/2)]

H.(x,z=d/2), (2)

)

The corresponding Meissner-response current density is

et al? for both bulk-pinning-free samples and those charac- 2H, X
terized by a critical current densifl,. In Sec. IV we present Iny(X)=——F ——. (4
a brief summary of our results. d yw-x?
Equations(3) and (4) hold for all |x|<W except very close
Il. QUASISTATIC FIELD VARIATIONS to the edge.

To estimate the local magnetic field at the edge of the

We consider a superconducting strip of widthV2and  strip, we consider a model in which the strip’s edge is
thicknesd<W. To account for demagnetizing effects in cal- rounded and has radius of curvatul2 at the edge. It is thus

culating the local magnetic field at the edge, we choose aseful to examine the Meissner-response field of a long strip

specific model, sketched in Fig. 1, with rounded edges. Wavith elliptical cross section and compare this with the corre-

now use this model to calculate the Meissner response of theponding Meissner-response field of a flat strip. For a strip



5718 M. BENKRAOUDA AND JOHN R. CLEM 53

with elliptical cross sectiort,s, the tangential field compo- —
nent at the surface of the superconductor, is givei! by ( _——
L,+L o

Hes= Ha%cosﬁ’, (5) X

FIG. 3. Sketch showing a vortex near the strip’s edge and the
wherel,/2 andL,/2 are the semimajor and semiminor axesinwardly directed force arising from the Meissner-response screen-
of the ellpse, respectively, q=[(L,/2)%si’8 ing currents.
+(L,/2)?cogB]*?, copB=x/(L,/2), and the tangent vector is
t=—x(L,/2q)sinB+z(L,/2q)cosB. The parametric equa- directed line-tension force. We now examine carefully the
tions describing the surface of the ellipse arebalance of forces exerted on a nucleating vortex.
x=(L,/2)cog8 and z=(L,/2)sinB. The magnitude of the The tangential componergin the direction oft) of the
Meissner-response field at either edge=(L,/2) is Lorentz force exerted on the top end of a nucleating vortex in
Hedge= Ha(Lx/L,+1), and the radius of curvature there is a strip of elliptical cross section is, from E¢),

(Lz/2)?/(L,/2). Choosing L, to be the strip width

(Ly/2=W) and choosingi/2 to be the radius of curvature at Ha(LytLy)
the edge [,=+2Wd), we find that the magnitude of the Fis= ¢oHs= ¢OT cosB, (10

Meissner-response field at the edge is

B where ¢ is the flux quantum. The work done by the source
Heage=Ha(R+1), ®  of the applied field as the vortex moves through a distance

whereR=L,/L,=\2W/ds 1. We note that this is the order AX into the sample(see Fig. 4 is AW=2|F|Al, where

of magnitude expected from E¢3). Evaluating Eq.(3) at Al=(20g/L,sinB)Ax is the distance the top end of the vortex
x=—W-+d/4, where we expect the equation to begin breakMoVeS along the curving sample surface, and the factor of 2

ing down, we get accounts for the equal amount of work done on the bottom
’ end of the vortex. We thus may writeW,=|F ,,| Ax, where
Hux(X=—W+d/4,z=d/2)~H,R. (7 F.x is the Lorentz force acting in the direction,
Moreover, thez component of the Meissner-response field H.(L, +L,)cosB
for a strip of width 2V is given outside the strip BY Fa= _2¢03ET;8_ (11)
X
_oyep. X . .
Hnz(X,2=0)= Ha\/ﬁv (8 When the vortex moves by a distans& into the sample,

the line energy must increase hyU= ¢yH. Az, where
where|x|>W. Evaluating this expression at=—W—d/4, H.; is the lower critical field and\z is the change in the
where we expect this equation to begin breaking down for dength of the vortex. SincAz=Ax(2L,/L,)|cos8l/sinB, we
strip of thicknessd, we obtain have AU =|F.;,|Ax, where the line-tension force acting in
the x direction is

Hy(—W—d/4,z=0)~H R, 9
i i i Heil ,cO098
in agreement with the estimates from E(®. and (7). Fop= 20— (12)
As pointed out in Ref. 21, it is not a good practice to Lysing
represent a strip of width\V® and thicknessl by an inscribed
ellipse of semimajor axi8V and semiminor axisl/2. Such a When the applied field is small, the Lorentz foreg, is

choice would give a field at the eddsee Eq.(5)] of too small to overcome the line-tension forEg,,, and the

H.(2W/d+1), which is a significant overestimate of the vortex cannot penetrate into the superconductor. However,

edge field. from Egs.(11) and(12), we see that the two forces are bal-
Although we do not solve exactly for the tangential field anced when the applied fielti, reaches the valuéi,,

at the surface of the sample sketched in Fig. 1, in the followwhere

ing we use the approximations that the tangential field is

given by Eq.(3) on the top surfacéand by the negative of z

this on the bottom surfagevhen|x| <W—d/4 and by Eq(5)

(with L,=2W andL,=+2Wd) near the edges of the strip

(W—d/a<|x|<W).

B. First vortex penetration into the film %
AX

Application of a magnetic field perpendicular to a strip x
favors the nucleation of vortices at the edges of the strip. The
current density induced in response to the applied field pro-
duces an inwardly directed force on a nucleating voft®e
Fig. 3). Because of the shape of the strip at its edges, how- FIG. 4. Sketch of the magnetic field produced outside the
ever, each nucleating vortex is also subject to an outwardlgample by a vortex at two positions separated by a distAnxce
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L, The vortices inside the strip thus have two important effects.
p= Hclm- (13 First, the return flux from the vortex-generated field reduces
X Tz the field at the edge of the sample. Second, the vortex-
Note that when we chodg,=2W andL,=2Wd, we have generated current density produces a significant contribution
to the total current density.
Suppose that a fielt, larger than the valuéi, given in
Eqg. (13) is applied to a sample initially containing no vorti-
o ces. Since the field at the edfjeg. (6)] exceedH.;, vorti-
whereR=L,/L,=2W/d>1. At this field H,=Hp), the  ces nucleate and penetrate into the strip. However, as addi-
field at the edge of the sample is equal to the lower criticakional vortices enter the strip ar, increases, the vortex-
field, generated return flux leads to a negative contributidd fat
the edge of the strip. The vortex-generated magnetic field

H

H,=H

Hedge=Het (19 H,(x=W,z=0) at the edge of the strip is, from E.7),
as can be seen from E¢p). In other words, the vortex will
ip unti ied fi R [+W [W+x’
be unable to penetrate the strip until the applied _f||dlg H,,(Xx=W,z=0)= — f dx'B,(x’) i
exceedd,, when the Lorentz force from the screening cur- W) —w W-—x
rents overcomes the line-tension force associated with the (19

elliptical shape of the edge. Once the vortex travels a dis-

tancex; = d/4 from the edge and the cross section of the stripvhere_we have made use qf5=0)=L,/2= yWd?2 and

becomes flatsee Fig. 3, the line tension vanishes and the R=v2W/d. Note that sinceB,(x)>0, the vortex-generated

vortex is now driven rapidly towards the center of the stripfield at the edgéd,,(x=W,z=0) is always negative.

where the current density is zero. The net field at the edge is the sum of the Meissner-
For larger values oH,, this process repeats itself, pro- response field and the vortex-generated field,

ducing a band of vortices near the center of the strip. The

vortices repel each other, and produce a dome-shaped flux H (x=W,z=0) =Heqget H,2(Xx=W,z=0).  (20)

distributiqn within Which_ the total _current_density is_ Zero. From Eqs.(6) and (18) we thus obtain

The details of the repulsive vortex interactions are discussed

in the next section. H,(x=W,z=0)=H,(R+1)

C. Vortex-generated current density _ RWJ+WdX'Bz(X') . /atzi (21)
Once the vortices are inside the strip, they generate an THoWJ -w

upward flux-density contributionB,(x) in the region

[x| <W. The magnetic flux density generated by each band As long asH,(x=W,z=0)>Hc,, vortices continue to
of vortices, with flux per unit lengtrB,(x')dx’. returns nucleate and penetrate into the sample, but as more vortices

through the space around the stri|=W (see Fig. 4 enter the samplet ,(x=W,z=0) gradually decreases. Fi-

When A <d<W, the spatial dependence of this return flux nglly, whenHZ(_x:W,z:O) drops to the valuel,, vortices .

. . . will stop entering the sample. We denote the corresponding
can be calculated by conformal mapping as described in th\%Iue of the applied fielti , as the critical entry fieldH .,,. If
Appendix of Ref. 10. It follows that the tangential compo- P a y en’

nent of the vortex-generated fielth, ;5 on the superconduc- Ha is |r_1creas_ed above this value By, vortices immedi-
) ) ately will begin to enter the sample again.
tor’s top surface is

Just as we can express the net magnetic field as a sum of
the Meissner-response field and the vortex-generated field, so
- . (18 also can we express the net current density as the superposi-
-w X=X tion of the Meissner-response current den$iyg. (4)] and
the vortex-generated current dendigq. (18)],19:20-2123

1 [+W  By(x)yW?—x"?
Hyrs= dX' ——————

o]
where here, and in what follows, the principal value of the
integral is to be taken. Except very near the edges of the 3,00 =y () + Jpy (). 22)

strip, we haveg— W|sing| and t— —x when d<W, such
that thex component of the vortex-generated field on the top

surface is D. Flux entry and flux exit
Let us now vary the applied field, quasistatically and
1 *Wd , B,(x') VW?—x"2 17 find the field and current-density profiles in the cases of both
) —w X (x—x")YWZ=x2’ critical flux entry and critical flux exit. The above current-

density expressions are sufficient for us to calculate the field
Since thex component of the vortex-generated field on theprofiles inside the sample in the steady state.
bottom surface is the negative of this, we find from ER).
that the corresponding vortex-generated current density is 1. Flux entry

(see also Ref. 92 Consider the condition of critical flux entry, such that the

e applied fieldH,>H, [Egs. (13) and (14)], but, because of
2 fw NG w 8) the return field from the vortices inside the sample, the local
W (x—=x")YWP—x? field at the sample edge i$;; [Eq. (21)]. Since the sample is

‘]vy(x) = 7T,U/0d
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FIG. 5. (a) Flux-density profilesB, vs x for an applied field
H, initially at Hg, and then at smaller fieldsl./2,H./4, and
Hex, the critical exit field, forR=10.05 andH¢,=1.2H,. (b)
Current-density profileg, vs x for an applied fieldH initially at
He, and then at smaller fielddH./2,H.{3, and H.{4, for
R=10.05 andH o,=1.2H,,.

on the verge of nucleating new vortices, we will denote
quantities at this critical entry condition by the subscript
“en.”

We first determine the field profil8,(x) in the region
where vortices have collected. This field profile is symmetric
in X, since no transport current is applied, and extends from
—b to +b, where Gsb<W-d/4. In order for the vortices
to be in equilibrium with each other, each vortex must feel
no net Lorentz force; hence the current dendjtfx) must be
zero over the region-b<x<b. From Egs.(22), (4), and
(18), we thus obtain

2H x 2 (b B,(x)JyWZ—x'2
G el (X)W

=0. (23
That the solution of this equation is

‘]y(x) =

b2—x?
WZ_XZ

can be shown with the help of E¢7) of Ref. 22.
Outside this region, i.eb<|x|<W, B,(x)=0, and the
current density, obtained from Eg®2), (4), and(18), is

2H.x [x?—Db?
Jy(x)= -~ djx| Vw2—x* (25

From Eq.(24) we find that the average flux density in the

B,(X)=puoH4 (24)

strip is

—_,LLoHa b b2—X2

=", 0\ e (29
or

> _MOHa b

B,= W WE(b/W,W/b), (27

whereE(b/W,W/b) is an elliptic integral of the second kind.
Because of the symmetry of the current-density distribu-
tion, we can write the magnetization as

1 (W
Mzzv—vfo dxxJ,(x). (28

Using Eq.(25) and carrying out the integral, we obtain

o

M~—

H,R?(1—b%/W?), (29)

where R={2W/d. Corrections to Eq.(29) are required,
however, wherb becomes close t&V. In this case, more
careful attention must be paid to the contribution of currents
that flow on the rounded edges of the sample.

The above expressiofi§gs.(24)—(29)] hold for arbitrary
values ofH, andb. However, adH, is increasing, the value
of b at the critical entry condition, i.eh.,, is determined
from Eg. (21) by setting the right-hand side equal .,
using Eq.(24), and carrying out the required integral. The
expression from whiclb.(H,) can be obtained is
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Hey

Ha= .
? 14+ RV1I— (b /W)2

(30

The average flux densiiﬁen(Ha) in the strip at the critical
entry condition is, from Eq(27),

MOHa%
W W

Ber= E(Den/W, W/ bg,). (31)

The magnetizatioM .(H,) for increasing fieldH, is, from
Eq. (29),

ko

4HaR2 for Ha<H,,

Men= (32

™ 2
—Z(Hcl—Ha) IHy for Hy>H,.

When R>1, we see from Eqs(14) and (32) that when
Ha~Hp<H.;, we haveMg~— 5 HZ/H,, a result close

5721

B / IJOHp
w
\

tr Ben(Ha)

0 1 2 3 r 5
H./H,
FIG. 6. The average flux densié'a_s a function of the applied
field H, at the critical entry conditiong ., increasing fields the

critical exit condition B,,, decreasing fieldsand the constant-flux
condition Hg,<H,<H,, for R=10.05.

H,(|x|=W,z=0)<H_;, the outermost vortices will exit the
sample. We denote the valueldf, at which flux exit occurs

to that found in Ref. 3. This feature appears to be charactefor this value ofB asH.(B). It is determined via Eq(33)

istic of the geometrical barrier. _

The above procedure determingg(H,) andB.(H,) as
functions of an increasing fielHl ;. Alternatively, one may
also regardb,, and the critical entry fieldH,, (the value of

H, at the critical entry conditionas functions of the average

flux density B. One may combine Egq30) and (31) to

from

bex ben
Hexea E(Dgy/ W, WIb ¢) = Hgneer E(Don/ W, W/bgy)
(34

eliminate H, in favor of be,; one may then determine \whereb,=W-d/4.

be(B) from the resulting equation. In turid(B) can be
determined by using .(B) in Eq. (30).

2. Flux exit

Suppose that we have increased the applied fi|cto
some maximum valuél., aboveH, . Since additional vor-

tices have just entered into the strip, the width of the vortex-
filled strip, 2b.,, and the average flux density in the strip,

Ben, can be determined from Eq®80) and(31) by replacing
H, by Hep.

When we now reduce the applied figi,, the total num-
ber of vortices in the strip remains constdahd thus the
average flux densit, remains constantbut the value ob
increases. We can use E@27) and(31) to derive an equa-
tion for determiningb under decreasingl,, as long a3 is
constant:

Ben

enysy E(Den/ W, W/bgp).

b
Ha iy E(b/W,W/b)=H (33

By substituting the resulting value &f(H,) into Eq. (29),
we can determine the corresponding magnetizatibn at
this value ofH,.

For decreasing applied field$, at the critical exit condi-
tion, we thus havdé.,=W-—d/4 (independent oH,), while
the average flux density in the sampk,,(H,), is deter-
mined via Eq.(27) from

MOHa%
W W

Bo= E(bey /W, W/b o), (35)

and the magnetizatioM .(H,) is given via Eq.(29) by

(36)

whenR>1.

Shown in Fig. %a) is a plot of several profiles d&,(x) vs
x as the applied fielH, is reduced from its initial value
H., to the corresponding critical exit fielt,,. The area
under each curve, which is proportional to the average flux
densityB, is constant. Note also thatincreases asl, de-
creases. Several plots of the current dengjffx) vs x are
shown in Fig. %b). Since the magnitude af,(x) decreases
as H, decreases, the magnitude of the magnetization also
decreases. _

The average flux densit is shown in Fig. 6 as a func-

No vortices will exit the strip until the outermost vortices tion of the applied fieldH,. For increasing fields at the
at |x|=b reach the rounded edge of the strip atcritical entry conditionB=B,[Eq.(31)], while for decreas-
[x|=be,=W—d/4. When this occurs, since the field ing fields at the critical exit conditionB=Bg, [Eq. (35)].
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Note thatB is constant foH ., <H,<H,,, because the geo- given by Eq. (300 when bg=b,=W-d/4, or
metrical barrier prevents vortices from entering or leavingH ir=Hc1/2. For Ha<Hj;, the magnetization is hysteretic
the sample. (irreversiblg, but for H,>H,,, the hysteresis arising from
Shown in Fig. 7 isb, the half-width of the vortex-filled the geometrical barrier completely disappears, though it is
region, as a function dfl,. For increasing fields at the criti- Possible that hysteresis from a Bean-Livingston barrier or
cal entry conditionp=b,,, which is determined from Eq. bulk pinning (neither of which has been considered here
(30), and for decreasing fields at the critical exit condition, may still be present. Note that the temperature dependence of
b=be=W-d/4. AsH, is varied fromH,, to H,, the ex- the |rrgver3|bility fieldH;, is the same as that &f ;.
pansion of the vortex-filled region is given by E&3). The Vortices are generally not present in the rounded edges of
arrows pointing in both directions on these curves indicatdhe strip whenH,<H;,. They appear there only briefly as
that, in the absence of bulk pinning, this breathing motion ofthey move inward at the critical entry condition or outward
the vortex-filled region is reversible. at the critical exit condition. Fad ,>H;,, however, vortices

Figure 8 shows the magnetizatith, as a function of the ~are forced into the rounded-edge region. In equilibrium, no
applied fieldH,. The magnetization for increasing, is net currents flow in the flat region of the film; otherwise, the
given by Eq.(32), first for H,<H,, in the Meissner state and vortices would move under ihe _influence of_ the_ Lorentz
then forH,>H, at the critical entry condition. The magne- force. Thus the entire magnetization of the strip arises from
tization for decreasindd, at the critical exit condition is the surface currents in the rounded-edge region. The local
given by Eq.(36). The magnetization on the reversible Surface-current density is proportional to the discontinuity in
branches between these limiting curves corresponds to tH8€ tangential component & at the film edges.
reversible breathing motion of the vortex-filled region, and  Exactly atH,=H;,, the value ofB in the rounded-edge

the values oM, are calculated from Eq29) using values of ~region is zero and the net field at the edgeHs,. The
b obtained from Eq(33). current carried by the rounded edge>atW is approxi-

mately I ,(x=W)~ —H.d. From an expression similar to
Eq. (28) we thus find that the magnetizationhé,~—H; .
E. Irreversibility line For applied fields larger thahl;,, the net field at the
From Figs. 6-8 and the corresponding equations we se@d9€,Hedge rises aboved, , and the value of the flux den-
that the curves oB,, andB,, converge, as do the curves of sity just inside the rounded-edge region is determined by the

b.. andb,, and those oM. andM.,. at an applied field equilibrium curve Bgg(Heggd - Although it is not possible
en & en & PP with the present model to accurately calculbitgyge, we can

show, using Eq(21), that this field approaches the applied
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0.0
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FIG. 7. The behavior ob, the edge of the vortex-filled region,
as a function of the applied field, at the critical entry condition FIG. 8. The magnetizatioM, as a function of the applied field
(ben, increasing fields the critical exit conditionlf .., decreasing H, at the critical entry conditionNl ., increasing fields the criti-
fields), and the constant-flux conditionHg<H,<H,) for cal exit condition M., decreasing fields and the constant-flux
R=10.05. condition He<H,<H,,) for R=10.05.
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field H,. The sample magnetizatiod ,, arising from the
surface-current density in the rounded-edge region, therefore
approaches the equilibrium(reversibl¢ magnetization
Me(H). Note that in the mixed statéMo(H¢1)=—Hcq,

and that it decreases in magnitude with increasing tield

[ll. TIME EVOLUTION OF THE FLUX PENETRATION

A. Pinning-free samples

We now examine how the flux penetration occurs with
time and how the dome-shaped field profile is reached, taks
ing into account the geometrical barrier. Since our calcula-=
tions are done numerically, we can even include the otheE
part of the currenfsee Eq(1)], which is due to the gradient <
of the thermodynamic field;- 9H,/dx. In the case of flux ™
flow, we assume that the resistivity is given by the Bardeen-
Stephen modét

B,
PFF=Png > (37

c2
wherep,, is the normal resistivity an@., is the upper criti-
cal field. An electric field is produced by the motion of vor-
tices under the influence of the currents in the strip. For flux
flow the electric field thus obeys

Ey(X) = prr Jy(X), (39)
whereJ, [see Egs(4) and(18)] is given by
dH(x)

Jy(X) = JIyy(X) + Iy (X) — . (39

oX

Notice that if there are no vortices inside the stfig., if
B,=0), there cannot be any electric field, singg is pro-
portional toB,. Faraday’s law yields a time-dependent equa-
tion for the flux densityB,,

BZ//“LOI_ICI

dB,(Xx,t) _ IE(X,t)

at X (40)

Using the previous equations, we obtain an integro-
differential equation, which in dimensionless units becomes

o?bz(x,t)_ e, hab,(X,t)x  b,(x,t)
ot N 5 ‘/1—Xz + v
Xfl g by(x, ) J1-x"?
X _—
“1 (Xx—X')J1-x%x°
d ah,(x,t)
_EbZ(X’t)ﬁ—X s (41)

wherex and d are in units of W, b,(B,) is in units of
moHer, ha(HL) andh,(H,) are in units ofH.,, andt is in
units of r=B ,Wd/2p,H.,. For example, foB; =100 T,
W=50 um, d=1um, andB.;;=10 mT, we obtainr=3 ns.
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time integration the fieldB, at the edges is adjusted such thatEq. (24). (R=10.05.)

FIG. 9. (a) Current-density profiles for different timegin units
of the characteristic time) after an applied fieldH,=1.2H is
turned on. The numerical results for times greater thaB7+ are
indistinguishable from the analytical result given in Eg5). (b)
Field profiles for different timest after an applied field

Equation(41) is solved numerically, taking into account H_=1.2H, is turned on. The numerical results for times greater
the continuity ofH, at the edges; i.e., at every step of the thant=37 are indistinguishable from the analytical result given in
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H, is continuous thered, andB, are assumed to be related Different field and current profiles are obtained, depending
by the equilibrium conditiorH=H.{B), which is approxi- on the values oH, and J.. The most interesting case is

mated by the equatidn

whenH,>H,, such that vortices penetrate into the sample,

but J. is smaller thanJ, at the edges. As shown in Figs.

B, > sy 10(a) and 1@b), vortices enter the strip until the field at the
H,(B,)= @\/HcﬁBz/Mo- (42) edge is reduced tbl;;, and under the influence of the cur-

rentJ, the vortices are pushed towards the center. Because of

The exact form of this function is not very important close to
the steady state in the range of applied fieldg<H,,, be-
cause in this range the flux density in the steady state is zero
at the edges of the strip. Wheét, at the strip’s edge is equal
to or less thaH;,, B,=0 at the edge, and no flux can enter
the strip.

When an applied field,>H, is suddenly applied to a
strip containing no vortices, the field, at the edge is ini-
tially greater thanH_;, and vortices are admitted into the
sample. The net fielth, at the edge is the sum of two con-
tributions, one due to the applied field and the other due to —~
the return flux that arises from vortices that have penetrated™3
into the strip. The return flux produced by the vortices enter-
ing the sample gradually reduces the valudigfat the edge
down toH_;. At this point, no additional vortices can pen-
etrate the strip. The vortices inside the sample, however,
keep moving toward the center of the strip under the influ-
ence of the current density(x,t), in such a way that the
current density becomes zero in the vortex-filled region
when the vortices achieve their final distributifsee Figs.
9(a) and 9b)]. The steady-state profiles of both the field and
the current density are very nearly the same as those obtained
in Sec. Il, where we neglected the current part due to the
gradient ofH,,

e

a

~
>

J

2 2

X
Ha W for |X|<b,

0 for b<|x|<W,

B,(x)=

0 for |x|<b,

Jy(X)= X 2H, [x°—b? (43
y( _mTa W2 for b<|x|<w,
andb is given by Eq.(30).

The main difference between our numerical results and
the profiles shown in Ref. 3 is in the details of how the edges
are treated. In Ref. 3, the current density is cut off there at
Jg. In addition, the slope dB, at =b in our treatment is no
longer infinite because we have included the term
—dH,/dx in the expression of the curredf,. The dome-
shaped magnetic flux profile has been seen experimentally
by both Zeldovet al® and Schusteet al?

BZ//"OI{CI

B. Samples with bulk pinning

In the presence of bulk pinning characterized by a critical
current densityl,, we model the electric field as in Ref. 24,

PFF[Jy(th)_‘]C] for Jy(X,t)>JC,
Ey(X,t): 0 for |‘Jy(xvt)|<‘JC1
ped Jy(X, 1) +Jc] for Jy(x,t)<—J.
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FIG. 10. (a) Current-density profiles for different times (in
units of the characteristic timer) after an applied field
H,=1.2H is turned on, for the case of bulk pinning characterized
by a critical current density.=1.1H,/d. (b) Field profiles for the
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the E-J relationship given above, however, the vortices comeB, andJ, showing the time evolution of these distributions
to rest whenjJ,|<J.. The vortices therefore pile up in two after a transverse magnetic field is applied. We showed that
symmetric regions where the current is reduced{o The these distributions closely approach those calculated analyti-
rest of the sample is vortex free, and the current densitgally.
greatly exceedd, at the edge$see Figs. 1@&) and 1@b)]. Although most of this paper concerned the behavior of
The final field and current-density profiles are similar tovortices in a strip in which there is no bulk or surface pin-
those obtained by Zeldoet al® except for details of the ning, we also briefly considered the vortex dynamics in a
behavior at the edges. In the case of ladge the steady- strip with bulk pinning to show how the flux distributions are
state profiles approach the analytical results obtained in Refsltered. In confirmation of results reported in Ref. 3, we find
21, 23. that the vortices penetrate from both edges and collect in two
dome-shaped distributions, within which the magnitude of
the current density ig..
IV. SUMMARY Note that our results fai.= 0 exhibit hysteresifirrevers-
ibility ) in the magnetization even though pinning plays no
In this paper we have studied the effects of the geometritole Whatsoever. The hysteresis arises entirely from the ef-
cal barrier that impedes vortex entry and exit in type-Il su-fécts of sample geometry, as noted in Refs. 1-3. We calcu-
perconducting strips. We have used a specific model, a strift€d an irreversibility fieldH;,, the value of the applied
that is mostly flat but has rounded edges, to estimate th#€ld (~H.1), above which the magnetization becomes com-
magnetic fields and currents in the strip. The key contribuPletely reversible.
tions are(a) the Meissner response to a transverse applied A Possible extension of the present approach would be to
field and(b) fields and currents generated by vortices in the'€lax the condition of continuity of, at the edge of the
strip. By considering the effects of demagnetization, we deSample, which would permit the study of the Bean-
terminedH,,, the value of the applied field at which the local Livingston barrier in strip geometry. It is likely that this
magnetic field at the edge of the strip first reaches the lowewould increase not only the value of the applied field at
critical field Hg,. For increasing field$i,>H,, when vor-  Which the f|r§t vortex penetration would occur but also the
tices are present in a dome-shaped field distribution in th¥alue of the irreversibility field;,. _ _
strip, we calculated the flux-density and current-density dis- Further studies of vortex dynamics, including numerical
tributions at the critical entry condition. If the applied field is Studies of ac losses at arbitrary frequencies, would also be
subsequently reduced, the geometrical barrier prevents vortRossible using Eq41). Vortex distributions during flux flow
ces from immediately leaving the sample. No vortices leavéinder the influence of a transport current also could be easily
the sample until the outermost vortices reach the rounde@omputed using our approach.
edge of the strip, the critical exit condition. We calculated
hysteresis in the magnetizatidv,, including Mg, at the
critical entry condition for increasinbl ;, M ,, at the critical

exit condition for decreasinbl,, and the reversible magne- ACKNOWLEDGMENTS
tization in the constant-flux condition for applied fields be-
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