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Recent thermal conductivity data on the heavy fermion superconductor UPt3 have been interpreted as
offering support for anE2u model of the order parameter as opposed to anE1g model. In this paper, we analyze
this issue from a theoretical standpoint including the detailed effects of Fermi surface and gap anisotropy. Our
conclusion is that although current data put strong constraints on the gap anisotropy, they cannot definitively
distinguish between these two models. Measurements on samples of varying quality could be decisive in this
regard, however.

Well over a decade after the discovery of heavy fermion
superconductivity, the pairing mechanism and even the
order-parameter symmetry in these compounds remain con-
troversial. Early suggestions of pairing in an unconventional
superconducting state, based primarily on analysis of trans-
verse ultrasound measurements in UPt3 ,

1 were bolstered
more recently by the discovery of a complex phase diagram
for this system in applied magnetic field and pressure.2 ~Here
we take ‘‘unconventional’’ to imply the existence of addi-
tional broken symmetries beyond the usual gauge U~1! bro-
ken in classic superconductors.3!

Several current Ginzburg-Landau~GL! theories of the
UPt3 phase diagram attribute the existence of multiple su-
perconducting phases to two nearly degenerate supercon-
ducting states, either~i! split by a symmetry-breaking field,
such as the ordered antiferromagnetic moment in the basal
plane, or~ii ! ‘‘accidentally’’ degenerate.2 Such theories can
at the same time describe qualitatively the anisotropy of the
superconducting state, insofar as the GL parameters can be
chosen to stabilize an order parameter at low temperatures
and fields which allows for a larger number of quasiparticle
excitations with wave vector in the basal plane. Such a state
is strongly indicated by analyses4,5 of both ultrasound1 and
thermal conductivity measurements.6,7 Beyond this crude
statement, little is known for certain about the exact anisot-
ropy or even the symmetry of the superconducting state of
UPt3 .

Recently, Lussieret al.7 have argued that thermal conduc-
tivity measurements can shed further light on these ques-
tions. They showed that the electronic heat current dominates
the phononic current down to low temperatures for their
high-quality samples, and that the relaxation rate 1/tk in the
normal state is nearly isotropic. Furthermore, their measure-
ments imply the existence of large anisotropy in the super-
conducting state which does not simply reflect normal state
anisotropy; together with transverse ultrasound measure-
ments, these data provide convincing evidence for a highly
anisotropic gap in UPt3 .

In order to determine the actual gap anistropy for UPt3 , it
is necessary to go further and attempt to model the data.
While it has been stated that such fits to transport properties

cannot be expected to fix the detailed anisotropy due to un-
certainties in the form of the impurity scattering amplitude,
Fledderjohann and Hirschfeld8 argued recently that ratios of
transport coefficients should lead to more robust conclusions
since they can depend only weakly on the relaxation times.
They therefore focused on the ratiokc /kb between the con-
ductivities measured for heat currents directed along thec
and b axes, respectively, comparing the data of Lussier
et al.7 to weak-coupling BCS calculations using order-
parameters representative of theE1g and E2u symmetry
classes of theD6h space group of the hexagonal crystal.
While both states have lines of order-parameter nodes~and
hence higher density of excited quasiparticles! in the basal
plane, theE2u state has point nodes along thec axis where
the order parameter vanishes quadratically, in contrast to the
linear behavior in theE1g state. In consequence, the thermal
conductivity~and indeed all current-current correlation func-
tions! was found to be isotropic in theE2u state over a
spherical Fermi-surface, despite the intrinsic anisotropy of
the superconducting state. Ellipsoidal Fermi surfaces do not
change the value of the normalized conductivity ratio
(kc /kNc)/(kb /kNb) from unity in this state (N refers to the
normal state!,9 but it is clear that the true hexagonal crystal
structure will do so. Furthermore, is not clear whether this
result is specific to the particularE2u state analyzed, or
would hold for a more generalE2u state. Understanding the
extent to which these factors might improve the agreement
with the large measured anisotropy is crucial to theE2u sce-
nario proposed by Sauls and Norman2 in which several prob-
lems characteristic of GL theories of type~i! above are re-
solved.

In this paper, we study the influence of both Fermi surface
anisotropy and gap anisotropy on superconducting state
transport coefficients, focusing on the thermal conductivity
data of Lussieret al.7,10 In the first part, we use a simple
ellipsoidal Fermi surface fit to normal-state transport data
and analyze all gap functions represented by ellipsoidal har-
monics up throughL55, treating various impurity scattering
rates, impurity phase shifts, and inelastic-scattering effects.
First, we find that a finite, nonzeroT50 value of the thermal
conductivity ratio,kc(0)/kb(0), of intrinsic origin occurs
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for a number of harmonics, not just those ofE2u symmetry.
Second, we find that the data can be fit reasonably well by
gaps of bothE1g andE2u symmetry, with the latter fitting
slightly better than the former, although in neither case is a
pure harmonic realized. These fits could be differentiated
more clearly by~1! extending the measurements to lower
temperatures or~2! by increasing or decreasing the impurity
scattering rate, that is, by analyzing cleaner or dirtier
samples. Although fits using ellipsoidal harmonics may be
somewhat unrealistic, they allow us to obtain some useful
analytical results, and determine the qualitative features of
order parameter anisotropy with some confidence.

In the second part, we turn to the more general case, using
the multisheeted Fermi surface predicted from local-density
approximation~LDA ! calculations11 which is in reasonable
agreement with de Haas–van Alphen~dHvA! experiments,12

up to an overall mass renormalization. Two types of gap
functions are analyzed: Fermi-surface harmonic13 and tight
binding.14,15 In neither case is an adequate fit found to the
data for eitherE2u or E1g with single basis functions, al-
though one of the tight-binding gap functions ofE1g sym-
metry has some promise. In the Fermi-surface harmonic
case, this poor agreement is due to the large number of nodes
these functions possess which is unlikely to arise out of any
microscopic gap equation. In the tight-binding case, this is
likely due to the use of a single basis function. Use of a
mixed basis set in the tight-binding case leads to a good
correspondence to the data in theE1g case. So far, we have
not found a comparably good fit for theE2u case.

I. ORDER PARAMETERS AND FERMI SURFACES

Although a variety of models have been proposed for the
order parameter of UPt3 , we concentrate here on the most
popular model, that of a two-dimensional group representa-
tion. The two variants most commonly explored have been
theE1g model

16 and theE2u model.
2 For a spherical Fermi

surface, the gap function can be represented by spherical
harmonics. A function ofE1g symmetry first occurs in the
L52, M51 representation (d wave!. TheE2u case is more
subtle since it is an odd-parity gap and therefore a pseu-
dospin triplet.17 The proposedE2u model assumes that the
gap is a pure spin triplet with only one component (Sz50)
condensed, however. In this case,E2u first occurs forY32
( f wave!. The E2u model based onY32 was originally
proposed18 since ~i! its nodal structure was similar to the
previously consideredE1g model based onY21, with line
nodes perpendicular to thec axis and point nodes along thec
axis as indicated by transverse ultrasound1 as well as point
contact spectroscopy,19 and ~ii ! it has an upper critical field
anisotropy consistent with experimental data20 given the
Sz50 orientation of the triplet order parameter, as demon-
strated earlier by Choi and Sauls21 ~singlet order parameters
give an incorrect anisotropy!. Sauls2 in turn showed that this
model solved a major problem of the previously considered
E1g model, in that it could explain the existence of a tetrac-
ritical point in theH-T phase diagram for all orientations of
the magnetic field as observed experimentally, at least for
axial symmetry. Recently, Park and Joynt22 have proposed
thatE1g can avoid the problem of an incorrect upper critical

field anisotropy if the normal-state Pauli susceptibility has
opposite anisotropy to the observed normal-state susceptibil-
ity ~the latter likely being van Vleck dominated!. It can also
give a phase diagram which has a near tetracritical point for
certain choices of the GL coefficients, with the additional
claim that it gives a better explanation of the pressure-
temperature phase diagram thanE2u .

A potential method of resolving these controversies would
be to obtain more knowledge of the actual form of the gap
anisotropy. TheE1g model has a linear dispersion of the
quasiparticle energies about the point nodes, whereas the
E2u model has a quadratic dispersion. This can have a sig-
nificant effect on transport quantities, as pointed out by Yin
and Maki.23 Fledderjohann and Hirschfeld8 exploited this to
show that the thermal conductivity anisotropy ratio,
kc(0)/kb(0), is small for theE1g case~it would be zero in
the clean limit!, but is unity for theE2u case, at least for an
ellipsoidal Fermi surface, with the data of Lussieret al.7 ly-
ing between these two results but being more consistent with
E1g thanE2u . This in turn motivated Lussieret al. to take
data at lower temperatures, where they conclude that the ex-
trapolatedT50 anisotropy ratio of about 0.5 is probably
intrinsic and thus consistent with anE2u model.

10

The above analysis of Fledderjohann and Hirschfeld8 was
based on a particular spherical harmonic form of the order
parameter on an ellipsoidal Fermi surface. For a real metal
like UPt3 , we would expect that the actual order parameter
is more complicated, just as we know that the actual Fermi
surface is multisheeted and shows strong deviations from
axial symmetry.12 The latter is particularly important since
theE2u resultkc /kb51 is a consequence of axial symmetry.

To analyze this in more detail, we first consider the simple
ellipsoidal case treated previously, but look at other harmon-
ics besidesY21 andY32. The conversion from spherical to
ellipsoidal harmonics can be achieved by replacing sin(u) by
sin(u)/Amr and r 2 ~previously unity! by cos2(u)
1sin2(u)/mr ,

24 where the mass ratio,mr5m' /mc , is equal
to 2.8 based on normal-state transport data.7 Note that this
conversion simply multipliesY21 andY32 by an overall con-
stant, so the results for these two cases are independent of the
mass ratio. This is not true in general. For theE1g case, the
next higher harmonic to consider isY41; for the E2u case
(Sz50), Y52. Although such higher harmonics seem exotic,
they do play a significant role in certain microscopic
theories.25

For the real Fermi-surface case, we utilize the surface
obtained from an LDA calculation.11,26This surface, which is
shown in symmetry planes of the zone in Fig. 1, is in rea-
sonable agreement with dHvA data, except for mass renor-
malization effects. The mass renormalization would play no
role here unless it was anisotropic. Unfortunately, there is not
enough data available to model this anisotropy, although the
lack of observation of dHvA orbits for fields along thec axis
suggests that the renormalization is anisotropic and will act
to increase the mass ratio,mr .

12 To check this, we calculated
^vc

2&/^vb
2& wherevb andvc are the Fermi velocities and̂& is

an average over the Fermi surface determined by using a
linear tetrahedron decomposition of the Brillouin zone.27,28

This quantity, equal to the ratiokNc /kNb given the observa-
tion of isotropic relaxation time,7 is 2.8 from thermal con-
ductivity and 2.7 from resistivity.7 The LDA calculation
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gives 2.1. This is consistent with the above observation that
the mass renormalization anisotropy acts to increasemr .
Since we are comparing in this paper to data normalized to
the normal-state value, we ignore this mass ratio discrepancy
in this paper, although we caution that it could influence
some of the results presented here. In particular, an alteration
in Fermi-surface topology would certainly change the gap
anisotropy, but even a momentum dependence of the mass
renormalization would affect the results since this would act
to alter the weighting of various momentum vectors in the
equations.

The problem of what gap function to use for the real
Fermi surface case is a more complicated issue. Allen
showed a number of years ago that functions could be con-
structed on the Fermi surface which were orthornormal and
so could be used as basis functions, which he labeled Fermi-
surface harmonics.13 They can be obtained from the spherical
harmonics by replacingki by v i ,

24 although there are more
Fermi-surface harmonics for a given power ofv i than there
are spherical harmonics since the lattice symmetry is discrete
rather than continuous. A complication is that the relative
size of the gap function on independent sheets of the Fermi
surface cannot be determined outside the context of a micro-
scopic theory of the superconductivity. In fact, the problem is
a more general one since the simple gap functions treated
here are likely to be modulated at eachk vector by some
complicated function~of A1g symmetry! that contains the
affects of wave function anisotropy, etc. We further note that
the Fermi-surface harmonics will be small when the Fermi
velocities are small. On the other hand, we would anticipate
that in most microscopic theories, the gap function will be
large where thef electron weight is highest, which is also
where the Fermi velocities will in general be lowest. Keep-
ing these caveats in mind, we define Fermi-surface harmon-
ics for theE1g case andE2u case by replacingki by v i in the
Y21 andY32 spherical harmonics. That is, the modulus of the
E1g gap is vcv r and the E2u gap vcv r

2 where
v r
25va

21vb
2 .29 The nodal structure of these functions are

very complicated given the complicated Fermi-surface ge-
ometry. There are many points on the Fermi surface where
the velocity vector points either along or perpendicular to the

c axis. In any of these cases, theE1g andE2u Fermi-surface
harmonics will vanish.

An alternate set of basis functions can be generated by
tight-binding expansion. In the square lattice case, the lattice
vectors of type~1,0! lead to ad-wave state of the form
cos(kx)2cos(ky), which is currently the leading model being
explored for high-temperature cuprates. For the hexagonal
closed-packed case,E1g and E2u first appear for primitive
lattice vectors of the type~0,1,1!. These can be generated
from the next-near-neighbor basis functions listed by Putikka
and Joynt14 by multiplying theirE1u andE2g functions by
sin(kzc). They are forE1g

f 15A2 sin~kzc!cosS 12 kyaD sinSA32 kxaD ,
f 25

2

A6
sin~kzc!Fsin~kya!1sinS 12 kyaD cosSA32 kxaD G ,

~1!

and forE2u

f 15
2

A6
sin~kzc!Fcos~kya!2cosS 12 kyaD cosSA32 kxaD G ,
f 25A2 sin~kzc!sinS 12 kyaD sinSA32 kxaD , ~2!

with a gap modulus ofAf 121 f 2
2 for an assumed gap of the

form f 11 i f 2 ~the 1,i state!. Both functions have line nodes
in the kz50 andkz5p/c planes. In addition, theE1g func-
tion has point nodes with linear dispersion along all three
symmetry axes (G2A, M2L, K2H), whereasE2u has
quadratic point nodes alongG2A and linear point nodes
alongK2H. We note that the basis functions listed by Pu-
tikka and Joynt for the near-neighbor case are not properly
invariant under reciprocal-lattice translations due to the non-
symmorphic nature of the UPt3 lattice ~that is, the near
neighbors are separated by a nonprimitive translation vec-
tor!. This problem has been addressed by Konno and Ueda.15

Under the highly simplistic assumption that the phase of the
single-particle wave functions on the two sites in the unit cell
is determined by a simple near-neighbor interaction, they
were able to generate analytic near neighbor basis functions
which have proper translational symmetry. In this paper, we
use theirG6

1 (E1g) andG5
2 (E2u) basis functions. These, in

fact, can be generated from the tight-binding basis functions
discussed above by replacing sin(kzc) by sin(kzc/2)/ufu
wheref is the Fourier transform of the near-neighbor dis-
tance vectors projected onto the basal plane

f5
1

A3
Fei ~kxa/A3!12 cosS kya2 De2 i ~kxa/2A3!G ~3!

(f is complex since the lattice is nonsymmorphic!. The ef-
fect of this is to remove the line nodes in thekz5p/c plane
and the linear point nodes alongK2H.

FIG. 1. LDA Fermi surface for UPt3 plotted in the symmetry
planes of the Brillouin zone. The surface is composed of five bands,
three centered aroundG and two centered aroundA.
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II. THERMAL CONDUCTIVITY

The thermal conductivityk in the presence of impurities
is evaluated using a Kubo formula for the heat-current cor-
relation function as in the original treatment for ans-wave
superconductor by Ambegaokar and Tewordt.30 This treat-
ment was generalized to unconventional states by several
groups, giving results for a spherical Fermi surface and
modelp- andd-wave states which agreed qualitatively with
experiment.4,5,31,32In the limit of vanishing impurity concen-
trations, identical results were also obtained by Arfiet al.33

using a transport equation method.
The Kubo formula approach begins with an impurity-

averaged single-particle matrix propagator

g~k,v!5
ṽtI 01jktI

31DI k

ṽ22jk
22uDku2

, ~4!

wheretI i represent the Pauli matrices spanning particle-hole
space. Here, we have already exploited the approximate
particle-hole symmetry of the normal state, as well as the
symmetries of the gap functions which lead to vanishing
off-diagonal scattering self-energy contributions. In this
limit, only self-energy contibutions to the frequencyv,
namely ṽ5v2S0 need to be included.32 The self-energy
S0 due to the elastic impurity scattering is treated in a self-
consistent T-matrix approximation and is given by
S05GG0 /(c

22G0
2), whereG5nin/(pN0) is the unitarity

limit scattering rate depending on the concentration of de-
fectsni , the electron densityn, and the density of states at
the Fermi levelN0 . The quantityc[cotd0 parametrizes the
scattering strength of an individual impurity through thes
wave phase shiftd0 . In this work we consider primarily
unitarity limit scatteringc50, since it is clear that weak
scattering will lead to a weak temperature dependence incon-
sistent with experiment for the states in question.34,35 The
integrated propagator isG05(1/2pN0)(kTr$tI

0gI (k,v)%.
The equation for the self-energies are now solved self-
consistently. We ignore the complication of resolving the gap
equation in this paper since all results are scaled toTc and
impurity corrections are small. The gap itself is given by

DkW~T!5DBCS~T!e2^ f
kW
2
lnu f kW u&/^ f

kW
2
& f kW , ~5!

whereDBCS(T) is the BCS gap andf kW is one of the basis
functions~or mixtures thereof! described in the previous sec-
tion.

The bare heat current response is given by a convolution
of the Green’s functiong with itself at zero external fre-
quency and wave vector weighted with the bare heat current
vertex vvktI

3.30 Impurity scattering vertex corrections to
current-current correlation functions have been shown to
vanish identically for even parity states (Dk5D2k).

32 Even
for odd-parity states, such corrections vanish in the unitarity
limit. For the diagonal thermal conductivity tensor one ob-
tains

k i~T!/T

kN,i~Tc!/Tc
5
3GN

4p2E
0

` dv

T S v

T D 2sech2S v

2TDKi~v,T!, ~6!

Ki~v,T!5
1

ṽ8ṽ9
ReE dSk

uvku
vki

2

^vki
2&

ṽ21uṽu222uDku2

Aṽ22uDku2
, ~7!

whereṽ8 and ṽ9 are the real and imaginary parts ofṽ and
GN[G/(11c2) is the normal-state scattering rate. Here
dSk is the area measure on the Fermi surface, andvk is the
Fermi velocity.

For a complete description of the data, we must take into
account the effects of inelastic scattering. This is known to
vary asbT2 times the elastic rate in the normal state, with
b.4/K2.7 This effect can be included in the above equations
by replacingG by G(11bT2). In the superconducting state,
we can make the ansatz that the inelastic rate varies as
bT3/Tc since the number of quasiparticles varies asT/Tc at
low temperatures due to the line nodes in the gap.36 The
exact form of this makes little difference, since by far the
largest effect inelastic scattering has is onkN(T). Therefore,
for practical purposes when comparing to data normalized to
its value atTc , one can simply scale the result of Eq.~6! by
(11bTc

2)/(11bT2).
Finally, we note that UPt3 has a split superconducting

phase transition. In theE models considered here, this split-
ting is assumed to be due to the weak antiferromagnetism
which has orthorhombic symmetry. Its effect is to cause only
one of the twoE components to condense at the upper phase
transition. Thus, in the region between the upper
(Tc150.50 K! and lower (Tc250.44 K! transitions, the
point nodes along thec axis become line nodes perpendicu-
lar to the basal plane. This explains the lack of gap anisot-
ropy in the thermal conductivity observed in this region. Be-
low Tc2 , the secondE component condenses, and the
anisotropy begins to occur, as observed. Modeling this is
complicated since the calculation would have to be per-
formed for orthorhombic symmetry with two different gaps
and appropriate domain averaging performed. We therefore
take the approach of previous work which ignores this sym-
metry breaking but normalizeskc /kb to its value at
Tc2 .7,8,10This normalization does not work so well, though,
when comparing to the individualk i(T)/T themselves, since
the thermal conductivity does change aboveTc2 . We have
found that normalizing k i(T)/T to its value at
Tc050.47 K, the average ofTc1 andTc2 ~the ‘‘hexagonal’’
Tc), works quite well in this regard. Obviously, one cannot
take too seriously the results in the immediate vicinity of
Tc until the effects of the symmetry-breaking field are prop-
erly included.

III. RESULTS

A. Ellipsoidal harmonics

Results forkc /kb are shown in Fig. 2 for all harmonics
through L55 on an ellipsoidal Fermi surface with
mr52.8, compared to the experimental results of Lussier
et al.10 This quantity is normalized to its value atTc2 as
discussed above. The results were generated with an impu-
rity scattering rate in the unitarity limit of 0.1Tc , consistent
with experimental data~particularly with the observation of a
residual linear specific-heat coefficient of 0.16 the normal-
state value!.10 To understand these results more clearly, we
have analytically calculated

53 5709HEAT TRANSPORT AND THE NATURE OF THE ORDER . . .



kc~0!

kb~0!
5 lim

v→0

Rê vc
2Av22Dk

2&

Rê vb
2Av22Dk

2&
. ~8!

In the clean limit for a spherical Fermi surface, and show
these results in Table I. We see that harmonics of the form
YLL , which have only point nodes along thec axis, give a
divergent ratio. On the other hand, only two of the remaining
harmonics,Y10 andY21, give a ratio of zero@the nonzero
value in Fig. 2~a! is due to impurity-induced gaplessness8#,

with the rest giving an intrinsic nonzero ratio. In particular,
we note that harmonics of the formYL0 only have line nodes,
so a finite, nonzero ratio is not something just associated
with quadratic point nodes or with gaps ofE2u symmetry.
We also note that no pure harmonic provides a good fit to the
observed anisotropy,24 although some higher harmonics give
adequate fits.

To study this further, we have looked into the possibility
of mixed solutions. ForE1g , we included mixing ofY21 with
Y41; for E2u , Y32 with Y52.

37 Typical results forkc /kb are
shown in Fig. 3~a!, with the coefficients roughly optimized to
fit the data. Both fits give a reasonable description of the
data, with the lowest temperature data intermediate between
the two results~it should be remarked that the error bars on
the experimentalkc /kb are about 15% at low temperature10!.
TheE1g fit can be greatly improved at lower temperature by
going to a larger scattering rate of 0.3Tc , but the individual
k i /T in this case are in poor agreement with experiment.
Altering the scattering phase shift from the unitarity value of
cot(d0) of 0 to 0.2 slightly improves things at the lowest
temperatures, but this is probably not significant given the
experimental error bars. For theE2u case, lowering the scat-
tering rate by a factor of 10 only slightly suppresses the ratio
and only for temperatures below where experimental data
exist @the same slight suppression also occurs by increasing
cot(d0)#. In Fig. 3~b!, we compare these fits to the individual
k i /T, normalized to their value atTc0 as discussed previ-
ously. As can be seen, bothE1g andE2u provide good fits to
the data, with theE2u fit being slightly superior. An interest-
ing point is that the experimentalk i /T are linear in tempera-
ture down to the lowest measured temperatures. This behav-
ior cannot continue indefinitely sincek i /T would be zero at
a temperature larger than zero~that is,k i /T must flatten off!.
The calculated curves, though, predict that this flattening
should occur in the measured temperature range in contra-
diction with experiment. As suggested by the authors of Ref.
10, the calculated low-temperature behavior can be improved
by reducingG to roughly one-tenth its normal-state value.
Although this does improve the fit at low temperatures, it
leads to a substantial deviation from the data at higher tem-

FIG. 2. kc /kb ~normalized to its value atTc2) for various har-
monics throughL55 ~curves labled byL,M ! on an ellipsoid
(mr52.8!. All plots, unless otherwise noted, are for an impurity
scattering rateG of 0.1Tc in the unitarity limit, with an inelastic-
scattering rate 4T2 times the elastic rate. The black dots are data
from Ref. 10.

TABLE I. kc(0)/kb(0) in the clean limit for severalYLM gap
functions for two values of the mass ratio,mr . The harmonics
Y21 andY41 haveE1g symmetry and the harmonicsY32, Y52, and
Y54 haveE2u symmetry.

LM Form mr51 mr52.8

10 cos(u) 0 0
11 sin(u) ` `

20 3 cos2(u)2r2 1 0.357
21 sin(u)cos(u) 0 0
22 sin2(u) ` `

30 cos(u)@5 cos2(u)23r2# 6/7 0.423
31 sin(u)@5 cos2(u)2r2# 1/2 0.180
32 sin2(u)cos(u) 1 1
33 sin3(u) ` `

41 sin(u)@7 cos3(u)23cos(u)r2# 0.647 0.252
52 sin2(u)@3 cos3(u)2cos(u)r2# 0.744 0.267
54 sin4(u)cos(u) ` `
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peratures. In fact, we have found that the valueG/Tc;0.1
~the normal-state value! gives roughly the best fit over the
entire temperature range belowTc . We have also found that
altering the scattering phase shift from the unitarity value of
p/2 does not improve the fit in this regard, at least for small
values of cot(d0). If this discrepancy between the low-
temperature and high-temperature behavior is taken at face
value, a strong temperature dependence of eitherc5cot(d0)
or G must be assumed. Although dynamical scattering effects
could easily influence the phase shifts in this way, we have

been unable to find a satisfactory phenomenological expla-
nation of the data in these terms. While aT-dependent pa-
rametrization ofG could possibly account for the discrep-
ancy, we have no physical understanding of how such effects
could arise.

The gap functions in theE1g andE2u cases are plotted as
a function of polar angle in Fig. 4. Both gap functions look
similar ~except for the different dispersions around the point

FIG. 5. kc /kb atT/Tc50.02~solid line! andT/Tc50.2 ~dashed
line! vs normalized impurity scattering rate,G/Tc , for pure ellip-
soidal harmonicsY32 (2u) andY21 (1g), as well as for the mixed
harmonics of Fig. 3~a! (2u* and 1g* ).

FIG. 3. ~a! kc /kb and ~b! k i /T for mixed harmonics on an
ellipsoid (mr52.8!. The curve marked 1g is for E1g

(Y2120.15Y41) and the one marked 2u for E2u (Y3210.2Y52).
Black dots in~a! and black~white! dots in~b! are data from Ref. 10.
The solid~dashed! curves in~b! are the respective theoretical results
for i5b ( i5c).

FIG. 4. Order parameter versus polar angle for mixed harmonics
on an ellipsoid (mr52.8!.
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nodes at zero degrees!. This indicates that the primary deter-
minant of the thermal conductivity is the overall shape of the
gap function. We also note that the maximum gap occurs at a
polar angle of 52° forE1g and 49° forE2u . Not only are
these angles close, but they are also close to the angle of
54° that the vector connecting near neighbor uranium atoms
makes with thec axis. This could be taken as indirect evi-
dence that the electrons in the Cooper pairs reside at near-
neighbor sites as would be predicted by microscopic models
based on antiferromagnetic spin fluctuations.

We conclude this part by remarking that both theE1g and
E2u models can explain the data. One way to more clearly
distinguish between the two would be to carry the experi-

ments to lower temperatures, although given experimental
error bars, it may be difficult to conclude anything definitive.
At the least, one would hope to seek i /T flatten off. Perhaps
a better way would be to degrade the quality of the sample.
In the presence of a finite concentration of impurities, states
with line nodes yield a linear term in the thermal conductiv-
ity, k i(T);T/D0 at the lowest temperatures. For generic
configurations of the thermal currentjQ and the line nodes,
the proportionality constant is actually independent of the
impurity scattering rate to leading order, yielding a universal
value for the low-T thermal conductivity analogous to the
electrical conductivity result found by Lee.38 In the final

FIG. 6. ~a! kc /kb and~b! k i /T for Fermi-surface harmonics on
the LDA Fermi surface. Same notation as Fig. 3.

FIG. 7. ~a! kc /kb and~b! k i /T for tight-binding functions~0,1,1
type primitive lattice vectors! on the LDA Fermi surface. Same
notation as Fig. 3.
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stages of writing, we received a paper from Grafet al.39 in
which this result was obtained independently and explored in
some detail.

Because of impurity-induced gapless effects of this type,
the anisotropy ratiokc(0)/kb(0) is always finite even for
states likeE1g , as mentioned above. In such a situation, an
estimate of the anisotropy may be performed by considering
Eq. ~7! in the gapless regime, i.e., takeṽ5av1 ig, with a,
g constant. We then findkc(0)/kb(0)5^vc

2Fk
3&/^vb

2Fk
3&,

with Fk5(g21Dk
2)21/2. For theY21 case (E1g) in spherical

symmetry, we findkb(T);T/D0 , kc(T);gT/D0
2 , giving

kc(0)/kb(0).2g/D0 for small concentrations. The residual

broadeningg is found by solving the transcendental equation
c21g2^Fk&

25G^Fk&, and yields a square-root dependence
on concentration,kc(0)/kb(0);(G/D0)

1/2 up to logarithmic
corrections in the unitarity limitc50. In Fig. 5, we plot the
impurity concentration dependence of the anisotropy ratio in
bothE1g andE2u cases forT50.02 and 0.2Tc . We note the
qualitatively stronger dependence of the anisotropy ratio on
impurity scattering rate for theE1g case as compared to the
E2u case at low temperatures.

B. Fermi-surface harmonics

The above analysis assumes an ellipsoidal Fermi surface.
The actual Fermi surface for UPt3 is very complicated and

FIG. 8. ~a! kc /kb and ~b! k i /T for near-neighbor tight-binding
functions~Konno-Ueda type! on the LDA Fermi surface. Same no-
tation as Fig. 3.

FIG. 9. ~a! kc /kb and ~b! k i /T for mixed tight-binding func-
tions on the LDA Fermi surface. Same notation as Fig. 3.
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could substantially alter the above conclusions. In this part,
we present results using Fermi-surface harmonic gap func-
tions as described in the first section with the Fermi surface
shown in Fig. 1. We again assume an impurity scattering rate
of 0.1Tc . Results forkc /kb are shown in Fig. 6~a! and for
k i /T in Fig. 6~b!. TheE1g case gives a fair representation of
the anisotropy ratio, especially at higher temperatures. Both
cases, though, predict too largek i /T at lower temperatures.
This occurs since the Fermi-surface harmonic gap functions
have a very large number of nodes. These nodes are due to
the complicated Fermi surface, which has many points on it
where the velocity vector is either parallel or perpendicular
to the c axis, either case in which theE1g andE2u Fermi-
surface harmonics vanish. This large number of nodes is un-
likely to arise out of any microscopic gap equation since
such a solution would not have an optimal condensation en-
ergy. This indicates that Fermi-surface harmonics are un-
likely to be useful in modeling heavy fermion superconduct-
ors. Because of this, and since the addition of higher-order
harmonics will not reduce the number of nodes, we have not
explored using mixed Fermi-surface harmonics as done in
the previous subsection for ellipsoidal harmonics.

C. Tight-binding functions

We next present results for tight-binding gap functions.
These functions represent short-range interactions in the lat-
tice, and therefore are more likely to arise out of a micro-
scopic gap equation than the Fermi-surface harmonics. Re-
sults for the functions based on~0,1,1! type primitive lattice
vectors are shown forkc /kb in Fig. 7~a! and k i /T in Fig.
7~b!. Although the magnitude ofk i /T is improved over the
Fermi-surface harmonic case, the anisotropy ratio is in poor
agreement with experiment. We therefore turn to results us-
ing the Konno-Ueda functions based on near-neighbor
interactions15 @Figs. 8~a! and 8~b!#. The observed anisotropy
ratio is intermediate between theE1g and E2u cases. Al-
thoughk i /T is too large at lower temperatures forE2u , it is
not too bad forE1g . Perfect agreement with experiment
would not be expected anyway since the above basis func-
tions do not take into account the complicated single-particle
wave functions which occur in heavy fermions due tof or-
bital degeneracy andf -ligand hybridization. It is interesting
to note that the near-neighbor tight-binding functions provide
the best overall comparison to the data for those functions
we have analyzed on the real Fermi surface, since this rein-
forces the idea of near-neighbor pairing that was suggested
from the ellipsoidal results above. Given this, it will interest-
ing in the future to calculatek for recent microscopic models
which do not involve such pairing.40

As in the ellipsoidal harmonic case, to test the idea of
whether a mixture of tight-binding basis functions would im-
prove the results, we have done calculations mixing the two
tight-binding functions considered above for each symmetry.
Only a rough optimization of the mixing coefficients could
be determined due to calculational demands. These results
are presented in Figs. 9~a! and 9~b!. A good fit was obtained
for the E1g case with an equal admixture of the two func-
tions. This result is somewhat surprising since an equal ad-
mixture would imply~within a tight-binding framework! that
the pair interaction has a substantial range@the near-neighbor
separation is 7.8 a.u., but an~0,1,1! vector is 14.3 a.u.#. In
theE2u case, we never found an adequate fit, although we do
show a typical result~equal admixture, but with opposite
sign!. One should be cautious, though, about ruling against
anE2u model based on this, since there are other functions
involving nonprimitive translation vectors, with distances
comparable to the~0,1,1! primitive vectors, which we have
not considered here~one at 13.4 a.u., another at 15.2 a.u.!.

IV. CONCLUSIONS

In conclusion, we have found by analyzing simple ellip-
soidal models for the Fermi surface that recent thermal con-
ductivity data cannot unambiguously differentiate between
the E1u andE2u models for the symmetry of the order pa-
rameter. Such a differentiation should be possible by looking
at samples with degraded quality, since in theE2u case, the
nonzero value ofkc(0)/kb(0) is intrinsic, whereas for
E1g , it is due to impurities. We have also found that results
using realistic Fermi surfaces and gaps with proper lattice
translational symmetry differ significantly from those based
on ellipsoidal Fermi surfaces, and have discovered anE1g
tight-binding gap function which gives a good representation
of the data. We emphasize that the thermal conductivity data
appear to put great constraints on the overall shape of the gap
function, and thus will be an important ingredient in deter-
mining the validity of microscopic models for the supercon-
ductivity in UPt3 .
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