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Recent thermal conductivity data on the heavy fermion superconductoy hie been interpreted as
offering support for are,, model of the order parameter as opposed t& gnmodel. In this paper, we analyze
this issue from a theoretical standpoint including the detailed effects of Fermi surface and gap anisotropy. Our
conclusion is that although current data put strong constraints on the gap anisotropy, they cannot definitively
distinguish between these two models. Measurements on samples of varying quality could be decisive in this
regard, however.

Well over a decade after the discovery of heavy fermioncannot be expected to fix the detailed anisotropy due to un-
superconductivity, the pairing mechanism and even theertainties in the form of the impurity scattering amplitude,
order-parameter symmetry in these compounds remain cofrledderjohann and Hirschféldrgued recently that ratios of
troversial. Early suggestions of pairing in an unconventionafransport coefficients should lead to more robust conclusions
superconducting state, based primarily on analysis of transsince they can depend only weakly on the relaxation times.
verse ultrasound measurements in LJPtwere bolstered They therefore focused on the ratiQ/«y, between the con-
more recently by the discovery of a complex phase diagranductivities measured for heat currents directed alongcthe
for this system in applied magnetic field and presSutéere  and b axes, respectively, comparing the data of Lussier
we take “unconventional” to imply the existence of addi- etal.” to weak-coupling BCS calculations using order-
tional broken symmetries beyond the usual gaug®e) bro-  parameters representative of thgy and E,, symmetry
ken in classic superconductobs. classes of theDg, space group of the hexagonal crystal.

Several current Ginzburg-LandaiGL) theories of the While both states have lines of order-parameter ndqdas
UPt; phase diagram attribute the existence of multiple suhence higher density of excited quasipartitlesthe basal
perconducting phases to two nearly degenerate supercoplane, thek,, state has point nodes along theaxis where
ducting states, eithefi) split by a symmetry-breaking field, the order parameter vanishes quadratically, in contrast to the
such as the ordered antiferromagnetic moment in the baséihear behavior in thé 4 state. In consequence, the thermal
plane, or(ii) “accidentally” degeneraté.Such theories can conductivity(and indeed all current-current correlation func-
at the same time describe qualitatively the anisotropy of théions) was found to be isotropic in th&,, state over a
superconducting state, insofar as the GL parameters can Ispherical Fermi-surface, despite the intrinsic anisotropy of
chosen to stabilize an order parameter at low temperaturdbe superconducting state. Ellipsoidal Fermi surfaces do not
and fields which allows for a larger number of quasiparticlechange the value of the normalized conductivity ratio
excitations with wave vector in the basal plane. Such a statéx./«nc)/ (kL /xnp) from unity in this state N refers to the
is strongly indicated by analysEsof both ultrasouniand  normal statg® but it is clear that the true hexagonal crystal
thermal conductivity measuremefits.Beyond this crude structure will do so. Furthermore, is not clear whether this
statement, little is known for certain about the exact anisotresult is specific to the particuldE,, state analyzed, or
ropy or even the symmetry of the superconducting state ofvould hold for a more generd,, state. Understanding the
UPt,. extent to which these factors might improve the agreement

Recently, Lussieet al.” have argued that thermal conduc- with the large measured anisotropy is crucial to Eyg sce-
tivity measurements can shed further light on these quessario proposed by Sauls and Norriamwhich several prob-
tions. They showed that the electronic heat current dominatdems characteristic of GL theories of tygie above are re-
the phononic current down to low temperatures for theirsolved.
high-quality samples, and that the relaxation ratg i the In this paper, we study the influence of both Fermi surface
normal state is nearly isotropic. Furthermore, their measureanisotropy and gap anisotropy on superconducting state
ments imply the existence of large anisotropy in the supertransport coefficients, focusing on the thermal conductivity
conducting state which does not simply reflect normal statelata of Lussieret al.”1° In the first part, we use a simple
anisotropy; together with transverse ultrasound measurellipsoidal Fermi surface fit to normal-state transport data
ments, these data provide convincing evidence for a highlyand analyze all gap functions represented by ellipsoidal har-
anisotropic gap in URt monics up througl. =5, treating various impurity scattering

In order to determine the actual gap anistropy for {JRt  rates, impurity phase shifts, and inelastic-scattering effects.
is necessary to go further and attempt to model the dat&irst, we find that a finite, nonzefb= 0 value of the thermal
While it has been stated that such fits to transport propertiesonductivity ratio, x;(0)/x,(0), of intrinsic origin occurs
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for a number of harmonics, not just those®f, symmetry. field anisotropy if the normal-state Pauli susceptibility has
Second, we find that the data can be fit reasonably well bppposite anisotropy to the observed normal-state susceptibil-
gaps of bothE,4 and E,, symmetry, with the latter fitting ity (the latter likely being van Vieck dominatgdt can also
slightly better than the former, although in neither case is @jive a phase diagram which has a near tetracritical point for
pure harmonic realized. These fits could be differentiatedertain choices of the GL coefficients, with the additional
more clearly by(1) extending the measurements to lowerclaim that it gives a better explanation of the pressure-
temperatures of2) by increasing or decreasing the impurity temperature phase diagram thay), .
scattering rate, that is, by analyzing cleaner or dirtier A potential method of resolving these controversies would
samples. Although fits using ellipsoidal harmonics may bebe to obtain more knowledge of the actual form of the gap
somewhat unrealistic, they allow us to obtain some usefuanisotropy. TheE,;; model has a linear dispersion of the
analytical results, and determine the qualitative features ofjuasiparticle energies about the point nodes, whereas the
order parameter anisotropy with some confidence. E,, model has a quadratic dispersion. This can have a sig-
In the second part, we turn to the more general case, usingficant effect on transport quantities, as pointed out by Yin
the multisheeted Fermi surface predicted from local-densityand Maki?® Fledderjohann and Hirschféléxploited this to
approximation(LDA) calculation$! which is in reasonable show that the thermal conductivity anisotropy ratio,
agreement with de Haas—van Alph@tvA) experiments?  «,(0)/«,(0), is small for theE,4 case(it would be zero in
up to an overall mass renormalization. Two types of gapthe clean limi}, but is unity for theE,, case, at least for an
functions are analyzed: Fermi-surface harmbhand tight  ellipsoidal Fermi surface, with the data of Lusséral’ ly-
binding**® In neither case is an adequate fit found to theing between these two results but being more consistent with
data for eitherE,, or E;4 with single basis functions, al- E;4 thanE,,. This in turn motivated Lussieet al. to take
though one of the tight-binding gap functions Bf, sym-  data at lower temperatures, where they conclude that the ex-
metry has some promise. In the Fermi-surface harmonitrapolatedT=0 anisotropy ratio of about 0.5 is probably
case, this poor agreement is due to the large number of nodéstrinsic and thus consistent with @y, model*°
these functions possess which is unlikely to arise out of any The above analysis of Fledderjohann and Hirsclifelds
microscopic gap equation. In the tight-binding case, this idased on a particular spherical harmonic form of the order
likely due to the use of a single basis function. Use of aparameter on an ellipsoidal Fermi surface. For a real metal
mixed basis set in the tight-binding case leads to a goodlke UPt;, we would expect that the actual order parameter
correspondence to the data in g, case. So far, we have is more complicated, just as we know that the actual Fermi
not found a comparably good fit for tHs,, case. surface is multisheeted and shows strong deviations from
axial symmetry? The latter is particularly important since
theE,, resultk./x,=1 is a consequence of axial symmetry.
I. ORDER PARAMETERS AND FERMI SURFACES To analyze this in more detail, we first consider the simple
ellipsoidal case treated previously, but look at other harmon-
Although a variety of models have been proposed for thdcs besidesy,; and Ygz,. The conversion from spherical to
order parameter of URt we concentrate here on the most ellipsoidal harmonics can be achieved by replacingéiby
popular model, that of a two-dimensional group representasin(ﬁ)/\/ﬁr and r? (previously unity by cog(6)
tion. The two variants most commonly explored have beent sir?(6)/m, ,%* where the mass ration,=m, /m;, is equal
the E;4 modet® and theE,, model? For a spherical Fermi to 2.8 based on normal-state transport daléote that this
surface, the gap function can be represented by sphericabnversion simply multiplie¥,; andY 3, by an overall con-
harmonics. A function of,; symmetry first occurs in the stant, so the results for these two cases are independent of the
L=2, M=1 representationd wave. TheE,, case is more mass ratio. This is not true in general. For tBg, case, the
subtle since it is an odd-parity gap and therefore a pseuaext higher harmonic to consider ¥%,,; for the E,, case
dospin triplett” The proposedE,, model assumes that the (S,=0), Ys,. Although such higher harmonics seem exaotic,
gap is a pure spin triplet with only one componeB&t=0) they do play a significant role in certain microscopic
condensed, however. In this cads,, first occurs forYs, theories™
(f wave. The E,, model based onY;, was originally For the real Fermi-surface case, we utilize the surface
proposed® since (i) its nodal structure was similar to the obtained from an LDA calculatioh:?® This surface, which is
previously consideredE;; model based orY,;, with line  shown in symmetry planes of the zone in Fig. 1, is in rea-
nodes perpendicular to tleaxis and point nodes along tae  sonable agreement with dHvA data, except for mass renor-
axis as indicated by transverse ultrasouad well as point malization effects. The mass renormalization would play no
contact spectroscopy,and (i) it has an upper critical field role here unless it was anisotropic. Unfortunately, there is not
anisotropy consistent with experimental ddtgiven the enough data available to model this anisotropy, although the
S,=0 orientation of the triplet order parameter, as demondack of observation of dHvA orbits for fields along theaxis
strated earlier by Choi and Satfigsinglet order parameters suggests that the renormalization is anisotropic and will act
give an incorrect anisotropySaul$ in turn showed that this  to increase the mass rati, .1 To check this, we calculated
model solved a major problem of the previously consideredv?2)/(v2) wherev, andv are the Fermi velocities ar(d) is
E,4 model, in that it could explain the existence of a tetrac-an average over the Fermi surface determined by using a
ritical point in theH-T phase diagram for all orientations of linear tetrahedron decomposition of the Brillouin z3hé®
the magnetic field as observed experimentally, at least foThis quantity, equal to the ratiey./ «yp given the observa-
axial symmetry. Recently, Park and Jdynhave proposed tion of isotropic relaxation timé,is 2.8 from thermal con-
thatE;4 can avoid the problem of an incorrect upper critical ductivity and 2.7 from resistivity. The LDA calculation
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H c axis. In any of these cases, theg, andE,, Fermi-surface
harmonics will vanish.

An alternate set of basis functions can be generated by
tight-binding expansion. In the square lattice case, the lattice
vectors of type(1,0) lead to ad-wave state of the form

Cf cosk,)—cosk,), which is currently the leading model being
explored for high-temperature cuprates. For the hexagonal

closed-packed cas&;y and E,, first appear for primitive
lattice vectors of the typ€0,1,1). These can be generated
from the next-near-neighbor basis functions listed by Putikka

\ K\\ and Joynt* by multiplying their E;, and E,qy functions by

r M K r sin(kL). They are forE4

sin(\/?gkxa),

) 1
. fi=+2 sw(kzc)cos(zkya

FIG. 1. LDA Fermi surface for URtplotted in the symmetry
planes of the Brillouin zone. The surface is composed of five bands,

_ V3
three centered arourd and two centered aroundl. 2:% sin(k,c)

1
sin(kya) +sin Ekya) cos( 7kxa

@

gives 2.1. This is consistent with the above observation that

the mass renormalization anisotropy acts to incre@se g forEy,
Since we are comparing in this paper to data normalized to

the normal-state value, we ignore this mass ratio discrepancy

in this paper, although we caution that it could influence f,=—— sin(k,c)
some of the results presented here. In particular, an alteration ' * J6 z
in Fermi-surface topology would certainly change the gap

anisotropy, but even a momentum dependence of the mass 1
renormalization would affect the results since this would act _ ; :

to alter the weighting of various momentum vectors in the fo= V2 sinkzc)sin 2kya
equations.

The problem of what gap function to use for the realwith a gap modulus of/f+f3 for an assumed gap of the
Fermi surface case is a more complicated issue. Alleform f,+if, (the 1j statg. Both functions have line nodes
showed a number of years ago that functions could be cornn the k,=0 andk,= m/c planes. In addition, th& 4 func-
structed on the Fermi surface which were orthornormal angion has point nodes with linear dispersion along all three
so could be used as basis functions, which he labeled Ferméymmetry axes [—A, M—L, K—H), whereasE,, has
surface harmonic¥’ They can be obtained from the spherical quadratic point nodes alonf—A and linear point nodes

harmonics by replacing; by v;,* although there are more alongK —H. We note that the basis functions listed by Pu-
Fermi-surface harmonics for a given powerwgfthan there  tikka and Joynt for the near-neighbor case are not properly
are spherical harmonics since the lattice symmetry is discref@variant under reciprocal-lattice translations due to the non-
rather than continuous. A complication is that the relativesymmorphic nature of the URtlattice (that is, the near
size of the gap function on independent sheets of the Fernfieighbors are separated by a nonprimitive translation vec-
surface cannot be determined outside the context of a micrqor). This problem has been addressed by Konno and &eda.
scopic theory of the superconductivity. In fact, the problem isunder the highly simplistic assumption that the phase of the
a more general one since the simple gap functions treategingle-particle wave functions on the two sites in the unit cell
here are likely to be modulated at eaktvector by some s determined by a simple near-neighbor interaction, they
complicated function(of A;y symmetry that contains the ere able to generate analytic near neighbor basis functions
affects of wave function anisotropy, etc. We further note thaiyvhich have proper translational symmetry. In this paper, we
the Fermi-surface harmonics will be small when the Fermiyse theirl} (E1g) andT'5 (Ey,) basis functions. These, in
velocities are small. On the other hand, we would anticipatgact, can be generated from the tight-binding basis functions
that in most microscopic theories, the gap function will begiscussed above by replacing $ej by sink.c/2)/| 4|

large where thef electron weight is highest, which is also \yhere ¢ is the Fourier transform of the near-neighbor dis-
where the Fermi velocities will in general be lowest. Keep-tance vectors projected onto the basal plane

ing these caveats in mind, we define Fermi-surface harmon-

ics for theE, 4 case andE,, case by replacing; by v; in the

Y,, andY g, spherical harmonics. That is, the modulus of the b= i
Eiy 9ap is v, and the Ep, gap vcvrz where

v2=v2+v2.%° The nodal structure of these functions are

very complicated given the complicated Fermi-surface ge{¢ is complex since the lattice is nonsymmorphithe ef-
ometry. There are many points on the Fermi surface wheréect of this is to remove the line nodes in thg= 7/c plane
the velocity vector points either along or perpendicular to theand the linear point nodes alokg—H.

1 V3
cogk,a)—co > kya|co > k,a

sin

3
7 kxa

, @

()

el (ka/\3) 1 o co{ %) e i (ka/2(3)
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Il. THERMAL CONDUCTIVITY K (o) 1 Ref d_SK Vki2 E)2+|E)|2—2|Ak|2

The thermal conductivity in the presence of impurities "'’ o' [Vi| (vkiz) Val—|A? '
is evaluated using a Kubo formula for the heat-current cor-
relation function as in the original treatment for sswave  where®’ and " are the real and imaginary parts @fand
superconductor by Ambegaokar and TewdfdThis treat- I'v=T/(1+c?) is the normal-state scattering rate. Here
ment was generalized to unconventional states by severdlS, is the area measure on the Fermi surface, gni$ the
groups, giving results for a spherical Fermi surface and~ermi velocity.
modelp- andd-wave states which agreed qualitatively with  For a complete description of the data, we must take into
experiment:>*-%|n the limit of vanishing impurity concen- account the effects of inelastic scattering. This is known to
trations, identical results were also obtained by A&tfal®*  vary asbT? times the elastic rate in the normal state, with

)

using a transport equation method. b=4/K2.” This effect can be included in the above equations
The Kubo formula approach begins with an impurity- by replacingl’ by T'(1+bT?). In the superconducting state,
averaged single-particle matrix propagator we can make the ansatz that the inelastic rate varies as
bT3/T, since the number of quasiparticles variesTa, at
o0+ £ 3+ A, low temperature; due to t_he Iing nodes in_ the §aphe
gko)=———F——, (4)  exact form of this makes little difference, since by far the
- °— &~ Ay largest effect inelastic scattering has is#g(T). Therefore,

_ for practical purposes when comparing to data normalized to
where 7' represent the Pauli matrices spanning particle-holéts value atT,, one can simply scale the result of ) by
space. Here, we have already exploited the approximatgl -+ ng)/(1+ bT?).
particle-hole symmetry of the normal state, as well as the Finally, we note that URt has a split superconducting
symmetries of the gap functions which lead to vanishingphase transition. In thE models considered here, this split-
off-diagonal scattering self-energy contributions. In thisting is assumed to be due to the weak antiferromagnetism
limit, only self-energy contibutions to the frequeney,  which has orthorhombic symmetry. Its effect is to cause only
namely ®=w—3, need to be includedf. The self-energy one of the twoE components to condense at the upper phase
3, due to the elastic impurity scattering is treated in a selftransition. Thus, in the region between the upper
consistent T-matrix approximation and is given by (T. =050 K) and lower [[._=0.44 K) transitions, the
30=TGy/(c?~G§), whereI'=n;n/(mNy) is the unitarity  point nodes along the axis become line nodes perpendicu-
limit scattering rate depending on the concentration of detar to the basal plane. This explains the lack of gap anisot-
fectsn;, the electron density, and the density of states at ropy in the thermal conductivity observed in this region. Be-
the Fermi levelNy. The quantityc=cotd, parametrizes the low T._, the secondE component condenses, and the
scattering strength of an individual impurity through the anisotropy begins to occur, as observed. Modeling this is
wave phase shifiy. In this work we consider primarily complicated since the calculation would have to be per-
unitarity limit scatteringc=0, since it is clear that weak formed for orthorhombic symmetry with two different gaps
scattering will lead to a weak temperature dependence incorand appropriate domain averaging performed. We therefore
sistent with experiment for the states in quesfid®. The  take the approach of previous work which ignores this sym-
integrated propagator iGy=(1/27Ng) =, Tr{7°g(K,w)}. metry breaking but normalizesc./k, to its value at
The equation for the self-energies are now solved selfT._."#°This normalization does not work so well, though,
consistently. We ignore the complication of resolving the gapvhen comparing to the individual(T)/T themselves, since
equation in this paper since all results are scaled@t@and the thermal conductivity does change abdye . We have
impurity corrections are small. The gap itself is given by found that normalizing «(T)/T to its value at
T.0o=0.47 K, the average of., andT._ (the “hexagonal”

T.), works quite well in this regard. Obviously, one cannot
take too seriously the results in the immediate vicinity of

. , . T¢ until the effects of the symmetry-breaking field are prop-
where AgcHT) is the BCS gap andy is one of the basis erly included.

functions(or mixtures theregfdescribed in the previous sec-

20 2
AT)=Ageg T)e~ FnIfiDATOF L (5)

tion.
The bare heat current response is given by a convolution IIl. RESULTS
of the Green’s functiorg with itself at zero external fre- A. Ellipsoidal harmonics

guency and wave vector weighted with the bare heat current o ,
vertex ov, 7.3 Impurity scattering vertex corrections to Results forx./«, are shown in Fig. 2 for all harmonics

current-current correlation functions have been shown tdhfough L=5 on an ellipsoidal Fermi surface with
vanish identically for even parity stated (=A _,).32 Even m,=2.8, compared to the experimental results of Lussier

10 Thi o : -

for odd-parity states, such corrections vanish in the unitarigft @~ This quantity is normalized to its value at_ as
limit. For the diagonal thermal conductivity tensor one ob-discussed above. The results were generated with an impu-
tains rity scattering rate in the unitarity limit of OTL, consistent

with experimental datgparticularly with the observation of a
5 residual linear specific-heat coefficient of 0.16 the normal-
) secﬁ(%) Ki(w,T), (6) state valug!® To understand these results more clearly, we

Ki(T)IT 3FNJ°° dw(w
have analytically calculated

ki (T)ITe am2)e TI\T
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FIG. 2. k. /kp (normalized to its value af._) for various har-
monics throughL=5 (curves labled byL,M) on an ellipsoid
(m,=2.8). All plots, unless otherwise noted, are for an impurity
scattering ratd” of 0.1T in the unitarity limit, with an inelastic-
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TABLE I. k.(0)/kp(0) in the clean limit for severa¥,, gap
functions for two values of the mass ratim, . The harmonics
Y1 and Y,y haveE;q symmetry and the harmonids;,, Ys,, and
Ys4 haveE,, symmetry.

LM Form m,=1 m,=2.8
10 cosf) 0 0
11 sin) oo 0
20 3 cod(4)—r? 1 0.357
21 sin@)cos() 0 0
22 Sirt(6) o w
30 cos@)[5 cog(6)—3r?] 617 0.423
31 sin@)[5 co(6)—r?] 1/2 0.180
32 sirf(6)cos() 1 1
33 sir’(6) o o
41 sin@)[7 cos(6)—3cos@)r?] 0.647 0.252
52 sirf(6)[3 cos(6) —cos@)r?] 0.744 0.267
54 sirf(#)cos (@) oo o

with the rest giving an intrinsic nonzero ratio. In particular,
we note that harmonics of the for¥j ; only have line nodes,
so a finite, nonzero ratio is not something just associated
with quadratic point nodes or with gaps Bf, symmetry.
We also note that no pure harmonic provides a good fit to the
observed anisotrop¥, although some higher harmonics give
adequate fits.

To study this further, we have looked into the possibility
of mixed solutions. FoE,y, we included mixing ofY »; with
Ya1; for Euy, Yap with Ys,.37 Typical results fork./«, are
shown in Fig. 8a), with the coefficients roughly optimized to
fit the data. Both fits give a reasonable description of the
data, with the lowest temperature data intermediate between
the two resultqit should be remarked that the error bars on
the experimentak./ «;, are about 15% at low temperattfte
The Eq4 fit can be greatly improved at lower temperature by
going to a larger scattering rate of O[3, but the individual
ki /T in this case are in poor agreement with experiment.
Altering the scattering phase shift from the unitarity value of
cot(s) of 0 to 0.2 slightly improves things at the lowest
temperatures, but this is probably not significant given the
experimental error bars. For tif®,, case, lowering the scat-
tering rate by a factor of 10 only slightly suppresses the ratio
and only for temperatures below where experimental data
exist[the same slight suppression also occurs by increasing
cot(&y)]. In Fig. 3b), we compare these fits to the individual
k; /T, normalized to their value af., as discussed previ-

scattering rate %2 times the elastic rate. The black dots are dataOUsly. As can be seen, boh, andE,, provide good fits to

from Ref. 10.
ko(0) | Reveye— Ay ®
kp(0) o RgvZJw?—AZ)

the data, with thé=,,, fit being slightly superior. An interest-

ing point is that the experimental /T are linear in tempera-
ture down to the lowest measured temperatures. This behav-
ior cannot continue indefinitely since /T would be zero at

a temperature larger than zdthat is, «; /T must flatten off.

The calculated curves, though, predict that this flattening

In the clean limit for a spherical Fermi surface, and showshould occur in the measured temperature range in contra-
these results in Table I. We see that harmonics of the forndiction with experiment. As suggested by the authors of Ref.

Y.L, which have only point hodes along tleeaxis, give a

10, the calculated low-temperature behavior can be improved

divergent ratio. On the other hand, only two of the remainingby reducingl’ to roughly one-tenth its normal-state value.

harmonics,Y,, and Y,;, give a ratio of zerdthe nonzero
value in Fig. Za) is due to impurity-induced gaplessn8ss

Although this does improve the fit at low temperatures, it
leads to a substantial deviation from the data at higher tem-



53 HEAT TRANSPORT AND THE NATURE OF THE ORDER ... 5711

1.5 T T T T 1.5 T T
(a)
// \\
1.0 + o/ " -
// \\\
< f |
/ A
/ A
7 AY
19 // \
05 | ; | .
’ A
7 \
/ 2u \
// \\
/ A\
// \\
// 3
0.0 , | . | . | | 0.0 Pid | \
0.0 0.2 04 0.6 0.8 1.0 0.0 30.0 60.0 90.0
T/T, ]
1.5 : ‘ FIG. 4. Order parameter versus polar angle for mixed harmonics
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been unable to find a satisfactory phenomenological expla-
nation of the data in these terms. WhileTadependent pa-
rametrization ofl" could possibly account for the discrep-

could arise.

The gap functions in th&,4 andE,, cases are plotted as
a function of polar angle in Fig. 4. Both gap functions look
similar (except for the different dispersions around the point

K\T

1.0
2u

0.8 4

FIG. 3. (&8 k¢/k, and (b) «;/T for mixed harmonics on an
ellipsoid (m;=2.8. The curve marked ¢ is for Eq
(Y,,—0.15v,;) and the one markedw2for E,, (Y3,+0.2Y5)).
Black dots in(a) and black(white) dots in(b) are data from Ref. 10.
The solid(dashegicurves in(b) are the respective theoretical results
fori=b (i=c).

peratures. In fact, we have found that the valug .~0.1
(the normal-state valyegives roughly the best fit over the
entire temperature range beldvw. We have also found that . } . {
altering the scattering phase shift from the unitarity value of "0.00 0.10 0.20 0.30 0.40 0.50
/2 does not improve the fit in this regard, at least for small [T,

values of cot§y). If this discrepancy between the low-

temperature and high-temperature behavior is taken at face FiG. 5. x./«, at T/T.=0.02(solid line) and T/T.= 0.2 (dashed
value, a strong temperature dependence of eitletot(%) line) vs normalized impurity scattering ratg/T,, for pure ellip-
or I' must be assumed. Although dynamical scattering effectsoidal harmonic#/3, (2u) andY,; (1g), as well as for the mixed
could easily influence the phase shifts in this way, we havéarmonics of Fig. @) (2u* and 1g*).

ancy, we have no physical understanding of how such effects
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FIG. 6. (a) x./x, and(b) «; /T for Fermi-surface harmonics on FIG. 7. (a) x¢/x, and(b) «; /T for tight-binding functiong0,1,1
the LDA Fermi surface. Same notation as Fig. 3. type primitive lattice vectopson the LDA Fermi surface. Same
notation as Fig. 3.

nodes at zero degreedhis indicates that the primary deter-
minant of the thermal conductivity is the overall shape of thements to lower temperatures, although given experimental
gap function. We also note that the maximum gap occurs at arror bars, it may be difficult to conclude anything definitive.
polar angle of 52° folE;; and 49° forE,,. Not only are At the least, one would hope to seg/T flatten off. Perhaps
these angles close, but they are also close to the angle afbetter way would be to degrade the quality of the sample.
54° that the vector connecting near neighbor uranium atomm the presence of a finite concentration of impurities, states
makes with thec axis. This could be taken as indirect evi- with line nodes yield a linear term in the thermal conductiv-
dence that the electrons in the Cooper pairs reside at nedty, «;(T)~T/A, at the lowest temperatures. For generic
neighbor sites as would be predicted by microscopic modelsonfigurations of the thermal currejy and the line nodes,
based on antiferromagnetic spin fluctuations. the proportionality constant is actually independent of the
We conclude this part by remarking that both tag, and  impurity scattering rate to leading order, yielding a universal
E,, models can explain the data. One way to more clearlyalue for the lowT thermal conductivity analogous to the
distinguish between the two would be to carry the experi-electrical conductivity result found by Lé&.In the final
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FIG. 8. (a) x./kp and(b) «; /T for near-neighbor tight-binding FIG. 9. (8 «./kp and (b) «;/T for mixed tight-binding func-
functions(Konno-Ueda typeon the LDA Fermi surface. Same no- tions on the LDA Fermi surface. Same notation as Fig. 3.
tation as Fig. 3.

broadeningy is found by solving the transcendental equation

stages of writing, we received a paper from Geafal*® in c’+ 72<F'<>2:.F<Fk>’ and yields a Sqf,g“e'ro"t dependence
which this result was obtained independently and explored i?" concentrationk (0)/xy(0)~ (I'/A0) ™ up to logarithmic
some detail. _correqhons in the u_mtarlty limit=0. In Fig. 5,_ we plot thg _

Because of impurity-induced gapless effects of this typelmpurlty concentration dependence of the anisotropy ratio in
the anisotropy ratiac,(0)/x,(0) is always finite even for bOth.Elg andE,, cases foff=0.02 and 0.2.. _We note th_e
states likeE,y, as mentioned above. In such a situation anquahtgtlvely strqnger dependence of the anisotropy ratio on
estimate of the anisotropy may be performed by considerin purity scattering rate for the,, case as compared to the

Eqg. (7) in the gapless regime, i.e., take=aw+i vy, with a, 2y Case at low temperatures.

y constant. We then findkc(0)/xp(0)=(vZF/{viFy), _ _

with Fi=(¥?+Af) "2 For theY,; case Ey) in spherical B. Fermi-surface harmonics

symmetry, we findx,(T)~T/Ay, KC(T)~7T/A§, giving The above analysis assumes an ellipsoidal Fermi surface.

kc(0)/k,(0)=2y/A for small concentrations. The residual The actual Fermi surface for URis very complicated and
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could substantially alter the above conclusions. In this part, As in the ellipsoidal harmonic case, to test the idea of
we present results using Fermi-surface harmonic gap funawhether a mixture of tight-binding basis functions would im-
tions as described in the first section with the Fermi surfacg@rove the results, we have done calculations mixing the two
shown in Fig. 1. We again assume an impurity scattering ratéght-binding functions considered above for each symmetry.
of 0.1T.. Results forx./ky, are shown in Fig. @ and for  Only a rough optimization of the mixing coefficients could

«; /T in Fig. 6b). TheE, 4 case gives a fair representation of be determined due to calculational demands. These results
the anisotropy ratio, especially at higher temperatures. Bothre presented in Figs(® and 9b). A good fit was obtained
cases, though, predict too large/T at lower temperatures. for the E;4 case with an equal admixture of the two func-
This occurs since the Fermi-surface harmonic gap functionons. This result is somewhat surprising since an equal ad-
have a very large number of nodes. These nodes are due maixture would imply(within a tight-binding frameworkthat

the complicated Fermi surface, which has many points on ithe pair interaction has a substantial rafitpe near-neighbor
where the velocity vector is either parallel or perpendicularseparation is 7.8 a.u., but 48,1, vector is 14.3 a.U. In

to thec axis, either case in which thg,; andE,, Fermi-  theE,, case, we never found an adequate fit, although we do
surface harmonics vanish. This large number of nodes is urshow a typical resul{equal admixture, but with opposite
likely to arise out of any microscopic gap equation sincesign. One should be cautious, though, about ruling against
such a solution would not have an optimal condensation eran E,, model based on this, since there are other functions
ergy. This indicates that Fermi-surface harmonics are uninvolving nonprimitive translation vectors, with distances
likely to be useful in modeling heavy fermion superconduct-comparable to th€0,1,1) primitive vectors, which we have
ors. Because of this, and since the addition of higher-ordenot considered herone at 13.4 a.u., another at 15.2 a.u.
harmonics will not reduce the number of nodes, we have not
explored using mixed Fermi-surface harmonics as done in

the previous subsection for ellipsoidal harmonics. IV. CONCLUSIONS

In conclusion, we have found by analyzing simple ellip-
C. Tight-binding functions soidal models for the Fermi surface that recent thermal con-
We next present results for tight-binding gap functions. ductivity data cannot unambiguously differentiate between
These functions represent short-range interactions in the latt® E1u @nd Ey models for the symmetry of the order pa-
tice, and therefore are more likely to arise out of a micro-rameter. Such a differentiation s_,houl_d be _possmle by looking
scopic gap equation than the Fermi-surface harmonics. R&t Samples with degraded quality, since in &g, case, the
sults for the functions based 8,1, type primitive lattice ~Nonzero value ofx(0)/xy(0) is intrinsic, whereas for
vectors are shown fok./«, in Fig. 7(@) and «;/T in Fig.  Eig, itis due to impurities. We have also found that results
7(b). Although the magnitude of; /T is improved over the USINg rgahsuc Fermi surfaces.an.d. gaps with proper lattice
Fermi-surface harmonic case, the anisotropy ratio is in poofranslational symmetry differ significantly from those based
agreement with experiment. We therefore turn to results us2n ellipsoidal Fermi surfaces, and have discovered=gy
ing the Konno-Ueda functions based on near-neighbofght-binding gap function which gives a good representation
interaction$® [Figs. §a) and 8b)]. The observed anisotropy ©Of the data. We emphasize that the thermal conductivity data
ratio is intermediate between ti®;, and E,, cases. Al- appear to putgreat constraints on the overall shape of the gap
though«; /T is too large at lower temperatures B, it is fupcpon, and 'ths will pe an important ingredient in deter-
not too bad forE;,. Perfect agreement with experiment mining the validity of microscopic models for the supercon-

would not be expected anyway since the above basis funductivity in UPts.

tions do not take into account the complicated single-particle
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