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Electron collisions for a two-dimensional Fermi-liquid~FL! are shown to give a quasiparticle damping with
interesting frequency and temperature variations in the BCS superconducting state. The spin susceptibility
which determines the structure of the damping is analyzed in the normal state for a Hubbard model with a
constant on-site Coulomb repulsion. This is then generalized to the superconducting state by including coher-
ence factors and self-energy and vertex corrections. Calculations of the NMR relaxation rate reveal that the FL
damping structure can reduce the Hebel-Slichter peak, in agreement with data on the organic superconductor
~MDT-TTF!2AuI 2 ~methylenedithiotetrathiafulvalene salt!. However, the strongly suppressed FL damping in
the superconducting state does not eliminate the Hebel-Slichter peak, and thus suggests that other mechanisms
are needed to explain the NMR data on~TMTSF!2ClO4 ~bistetramethyltetraselenafulvaleneperchlorate!, the
BEDT organic compounds, and cuprate superconductors. Predictions of the temperature variation of the damp-
ing and the spin response are given over a wide frequency range as a guide to experimental probes of the
symmetry of the superconducting pairs.

I. INTRODUCTION

The damping of quasiparticles via electron collisions is
expected to produce aT2 variation of the resistivity in a
standard Fermi-liquid described by a spherical Fermi sur-
face. In ordinary metals this contribution is so weak that it is
hardly detectable.1 However, recent discoveries of a domi-
nantT2 resistivity contribution in several anisotropic metals
such as organic superconductors and layered cuprate and sul-
fide alloys provide an interesting challenge from the theoreti-
cal point of view since the observed magnitudes of such
resistivities are very large. Examples2,3 of the unconventional
resistivities are shown in Fig. 1.

In view of the conventional wisdom regarding the ex-
pected weakness of the electron-electron scattering contribu-
tion to the resistivity, alternate interpretations of the TiS2
data were proposed on the basis of unusual phonon scatter-
ing. However, decisive evidence for the Fermi-liquid origin
of the scattering was discovered by Julien3 in the infrared
spectra of TiS2 . These spectra show a remarkable frequency
and temperature variation in accordance with the Luttinger
damping for a Fermi sphere that was derived to all orders of
perturbation theory for the Coulomb interaction.4 The huge
value of the resistivity of TiS2 is on par with the data for the
Nd22xCexCuO4 cuprate which also has a layered structure.
It is also comparable to the resistivity of many organic met-
als such as that of~TMTSF! 2PF6 shown in Fig. 1. The or-
ganics have quasi-two dimensional Fermi surfaces with a
high degree of anisotropy. By contrast, the much smaller
resistivity of lead shown in Fig. 1 provides an example of the
scale set by strong electron-phonon contributions.

The purpose of the present work is to calculate the quasi-
particle damping for a two-dimensional electron system due
to spin fluctuation scattering arising from the constant on-site
Coulomb interactionU in a Hubbard model. We first com-
pute the standard normal state damping and then focus on the
influence of an isotropic superconducting energy gap on the
frequency and temperature variation of the self-energy. The
superconducting energy gap is expected to reduce the damp-

ing in a characteristic way that depends on the symmetry of
the order parameter as well as the source of the damping.
The spin susceptibility, which enters in the calculation of the
damping, is first analyzed for the normal electrons and then
generalized to include the BCS coherence factors in the su-
perconducting state. Our goal is to use the computed damp-
ing in a calculation of the NMR relaxation rate, with particu-
lar interest in the superconducting state response. The
relaxation rate is obtained from a momentum average of the
spin susceptibility that includes the calculated FL self-energy
corrections. Vertex corrections to the susceptibility are also
calculated and shown to be small in the regime considered in
the NMR studies.

We apply our results to experimental NMR measurements
on the organic superconductors. These provide insight into
the structure caused by the damping as well as the symmetry
of the superconducting state. The modification of the Hebel-
Slichter ~HS! peak is found to be particularly instructive in
the case of the anomalies seen in the organics, although the
general phenomenon is relevant to the high temperature cu-
prate superconductors as well.

Luttinger4 originally derived the classic three-dimensional
Fermi-liquid property of a quasiparticle damping arising
from electron collisions that vanishes at the Fermi energy at
zero temperature and then follows a quadratic variation in
temperatureT and frequencyv ~measured from the Fermi
energy!. Hodgeset al.5 and others6 calculated the quasiparti-
cle damping and resistivity for a cylindrical Fermi surface,
which introduces logarithmic corrections to the damping at
low T andv.

We first calculate the two-dimensional Fermi-liquid
damping in the normal state by performing a momentum
average over the exact spin susceptibility for a noninteract-
ing electron gas. We then proceed to compute the suscepti-
bility as well as the self-energy in the superconducting state,
and probe the influence of the calculated damping on the
NMR response which involves a momentum-averaged spin
susceptibility.

The original motivation for our present work was the
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mysterious absence of a Hebel-Slichter peak in the NMR
response of high temperature cuprate superconductors.7 The
resistivity of the optimally doped cuprates above the super-
conducting transition is typically linear in temperature in
contrast to the Fermi-liquid behavior considered here. A
similar physical origin of electron-electron scattering in both
cases may be plausible, because alloying changes the linear
T to aT2 variation in many of the cuprates.8 Historically the
HS peak in the NMR relaxation is considered to be one of
the key successes of the BCS theory since it occurs in vari-
ous ordinary metals.9 The organic superconductors yield
cases where the HS peak appears,~MDT-TTF! 2AuI 2 ,

10 and
also examples like~TMTSF! 2ClO4 ,

11 where the peak is sup-
pressed. The NMR relaxation in the BEDT~bis-
ethylenedithiatetrathiafulvalene! ~Ref. 12! compounds re-
sembles the cuprate anomalies, such as aT3 behavior at low
T in the superconducting state. Hence the present analysis is
directed at the organics which often have the quadraticT
variation of the resistivity that is compatible with our Fermi-
liquid analysis.

The absence of the coherence peak has attracted consid-
erable previous theoretical interest. Hasegawa and
Fukuyama13 derived the NMR response fors-wave and other
symmetries of the energy gap appropriate to organic super-

conductors. They obtained weaker, but nonetheless finite, HS
peak structure for both singlet and triplet pairing states in
which the order parameter exhibits line nodes on the Fermi
surface. Their calculation did not include the quasiparticle
damping.

Other groups have examined the effects of a strong en-
hancement of the quasiparticle damping nearTc , which
broadens the BCS singularity in the superconducting density
of states. Some theory groups have invoked a variety of phe-
nomenological models for the damping as a function of
temperature.14 Typically, these authors use a power law
variation for theT dependence of the damping~with a T3

behavior as one example! and neglect the frequency varia-
tion. Phenomenological models have been proposed to fit the
observed spin dynamics in the cuprates.15 The ‘‘marginal’’
Fermi-liquid response hypothesis has been used to generate a
damping model which has also been applied to the NMR
measurements.16

Tight binding energy band models have also been inves-
tigated in the context of spin dynamics of cuprates by Bulut
and Scalapino17 and by Levin’s group.18 The NMR relax-
ation fors- andd-wave energy gaps has been calculated14,17

using phenomenological models for the damping. The quasi-
particle damping from spin fluctuations in the superconduct-
ing state has also been independently computed within a
tight binding model.19

FIG. 1. The resistivity as a function of temperature is shown for
various materials at temperatures above the superconducting transi-
tion. Note that the resistivity of Pb at these temperatures is linear in
T ~above the Debye temperature! and is much lower than that of the
organic metal~TMTSF!2PF6 and the layered compounds TiS2 and
Nd1.84Ce0.16CuO42y , whose resistivities show a quadratic depen-
dence on temperature. ThisT2 variation resembles Fermi-liquid
damping with an anomalous enhancement of the electron-electron
scattering.

FIG. 2. The normal state quasiparticle dampingG(v) ~i.e., the
imaginary part of the self-energy! for a two-dimensional Fermi liq-
uid is plotted as a function of temperature at two different frequen-
cies,v50.01 eV andv51024 eV. The standard values of the cou-
pling UN(0)51 and bandwidthW51 eV produce the small
magnitude ofG.
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Our analysis of the influence of the damping on the NMR
spectra in the superconducting state is based on a standard
approximation for the momentum-averaged spin susceptibil-
ity. This allows analytic expressions to be derived and used
in the calculation of the damping, thus reducing the number
of numerical integrations. However, this limits the present
approach to reasonably isotropic Fermi surfaces, and cannot
account for features such as nesting.

Phonon damping has furnished yet another more tradi-
tional explanation for the suppressed HS peak, provided that
a large electron-phonon coupling combined with a small
Coulomb pseudopotential are assumed.20 Phonon contribu-
tions to the resistivity may be one distinguishing feature of
the mechanism responsible for the NMR anomalies, and the
organic resistivity data in Fig. 1 provide a challenge in this
regard since theT2 variation is difficult to reconcile with
phonon scattering.

Considering the wide array of theoretical proposals for the
NMR anomalies, it is important to make distinctions based
on specific features such as the response over a wide range of
temperature, and consistency of parameters with other ex-
perimental clues. TheT2 damping which characterizes the
organic superconductors considered here is one example.
The temperature dependence of the NMR relaxation rate at
low T is also a primary constraint on theory since it is par-
ticularly sensitive to the symmetry of the order parameter,
while the HS peak structure is sensitive to the damping as
well as the gap symmetry. Thus our calculations provide in-
sight into the role of damping in the organic superconductors
and the NCCO cuprate which also exhibits aT2 resistivity
above the superconducting transition.

A theoretical basis for the anomalous linearT variation of
the resistivity that is an ubiquitous feature in all of the opti-
mally doped high temperature superconductors discovered so
far is the nested Fermi-liquid theory~NFL!.21 The corre-
sponding calculations for the NFL damping in the presence
of an isotropic energy gap by Riecket al.22 reveal a very
dramatic suppression of the nested spin susceptibility in the
superconducting state which strongly reduces available scat-
tering states for electron collisions. Hence the NFL damping
is greatly reduced at frequencies lower than thrice the energy
gapD. The latter damping structure is compatible with mi-
crowave surface resistance data on the YBCO superconduc-

tor in the vicinity ofTc where the damping drops by 4 orders
of magnitude within a few degrees ofTc . There are also
numerous earlier calculations that found a sharp suppression
of the damping in the case of phenomenological models that
are extensions of the ‘‘marginal’’ Fermi-liquid hypothesis16

for the susceptibility. These are discussed in Ref. 22
Recently Won and Maki23 have shown that a nesting

model yields NMR relaxation without a HS peak if indeed
the scattering processes near the nesting vector form the
dominant contribution to the susceptibility.

We develop the formalism for the susceptibility and self-
energy in Sec. II, and present the calculated Fermi-liquid
damping results. The NMR relaxation is discussed in Sec.
III, and the conclusions of our study are in Sec. IV.

II. FORMALISM

We consider the Hubbard Hamiltonian

H5(
k,s

ekck,s
† ck,s1U(

p,q,k
cp1q,↑
† cp,↑ck2q,↓

† ck,↓ , ~1!

whereek is the energy of an electron in two dimensions, and
ck,s
† andck,s are the electron creation and destruction opera-
tors. The constant on-site Coulomb repulsionU restricts the
scattering to spin fluctuations. Within the Born approxima-
tion considered here, the dominant effect is from the nonin-
teracting spin susceptibility and the cross section is propor-
tional to U2. In other words the self-energy requires a
momentum sum overU2x(q,v). Higher order RPA correc-
tions will naturally enhance the cross section, but are not
included here.

A. Normal state

The spin susceptibility in the normal state for noninteract-
ing electrons is

x~q,v!5(
k

f ~ek1q!2 f ~ek!

v2ek1q1ek1 id
, ~2!

whered→0 andf (e) is the Fermi function. Within the lead-
ing order Born approximation, the imaginary part of the self-
energy arising from electron-electron scattering is24

G~k,v!5
U2

2 E dv8FcothS v8

2TD2tanhS v82v

2T D G E dq

~2p!3
x9~q,v!d~v2v82ek1q!, ~3!

wherex9 is the imaginary part ofx(q,v).
We first verified numerically that the imaginary part of the susceptibility in Eq.~2! does not vary significantly with

temperature for a normal two-dimensional electron gas, and hence one may use the zero-temperature analytic result in
calculatingG. Defining the frequencyv in units of\kF

2/m and the wave vectorq in units of the Fermi wave vectorkF , the
T50 analytic form forx9 is

x9~q,v!5
N~0!

q H uF12S v

q
2
q

2D
2GA12S v

q
2
q

2D
2

2uF12S v

q
1
q

2D
2GA12S v

q
1
q

2D
2J , ~4!

whereN(0) is the density of states at the Fermi level, andu(x) is the Heaviside function that is unity forx.0 and zero
otherwise. Hodges5 and others6 have used the above analytic form to calculate the damping in the asymptotic limits of small
T andv, by performing the momentum integrations@Eq. 3# to obtain the transport lifetime. Note that the imaginary part of the
self-energy isG5@12 f (v)#21\/t wheret is the quasiparticle transport lifetime.25
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To obtain a damping over the entire range of frequency
and temperature, we employ an alternate approximation: the
susceptibility in Eq.~3! is first averaged over momentum and
gives at low frequencies (v,eF),

^x9~q,v!&q5
pN~0!

W
v, ~5!

whereW is the energy bandwidth, andN(0) is the density of
states at the Fermi energy. We note that the momentum-
averaged susceptibility is independent of temperature for the
Fermi liquid. Replacing this average in Eq.~3!, we evaluate
G numerically and find a quasiparticle damping that is qua-
dratic in frequency and temperature. The limiting cases are

G~v50!5BT2, ~6!

G~T50!5Cv2, ~7!

where B5 U2N2(0)p3/2W and C5U2N2(0)p/2W. The
present method does not yield theT2lnT dependence found
asymptotically,5,6 but the lnT correction is almost indistin-
guishable fromT2 at low T.

The quadratic temperature variation of our computed FL
damping at two different frequencies is shown in Fig. 2 for a
couplingUN(0)51 and a bandwidthW51 eV. These pa-
rameters are used throughout this work. As expected, the
value of the FL damping seen in Fig. 2 is quite small. For
comparison, the experiments that we examine suggest much
larger estimates of the damping which may perhaps indicate
anisotropic Fermi surface contributions, RPA enhancement
of the spin susceptibility, or higher order scattering. Also, the
Hubbard model restricts the Coulomb interaction to a point
in real space and thus samples only the zero angular momen-
tum scattering channel.

B. Superconducting state

In the absence of the self-energy corrections from particle
collisions, the BCS susceptibility in the superconducting
state is modified by the presence of coherence factors due to
an energy gap, and thus becomes

x~q,v!5(
k
Ak,q

1
f ~Ek1q!2 f ~Ek!

v2Ek1q1Ek1 id
1
1

2 (
k
Ak,q

2 F12 f ~Ek1q!2 f ~Ek!

v1Ek1q1Ek1 id
1
f ~Ek1q!1 f ~Ek!21

v2Ek1q2Ek1 id G , ~8!

where the coherence factors are

Ak,q
6 5

1

2 F16
ekek1q1DkDk1q

EkEk1q
G ~9!

andDk is the superconducting energy gap,ek the energy dispersion in the normal state, andEk5Aek
22Dk

2 the quasiparticle
energy in the superconducting state. All the calculations described in this work are carried out using a superconducting gap of
s-wave symmetry. The temperature dependence of the gap is taken to have the standard form that fits the solution of the BCS
weak coupling gap equation,

D~T!5D0tanhS 1.76ATc
T

21D , ~10!

whereD051.76kBTc . In the limit of negligible damping,d→01, the above susceptibility@Eq. ~8!# gives the standard sharp
Hebel-Slichter peak in the NMR response.

The quasiparticle damping due to spin fluctuations in the superconducting state is26

G~p,v!5
U2

12 f ~v!
E d2p8

~2p!2
E
0

v2D

dVx9~p2p8,V!d~v2V2Ep8!F11
D2

v~v2V!G@n~V!11#@12 f ~v2V!#

1E
v1D

`

dVx9~p2p8,V!d~V2v2Ep8!F12
D2

v~V2v!G@n~V!11# f ~V2v!

1E
0

`

dVx9~p2p8,V!d~V1v2Ep8!F11
D2

v~V1v!Gn~V!@12 f ~V1v!#, ~11!

wheren(v) and f (v) are the Bose and Fermi functions, respectively. To simplify the multiple integrations needed for the
damping, we note that the momentum variation of the susceptibility arising from a free electron dispersion is relatively smooth,
in contrast to tight binding models considered, for example, by Quinlanet al.19 Hence we approximate the damping calculation
by taking a momentum average of the susceptibility~for v.0)
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^x9~k,v!&q5
pN~0!

W F 2E
D

`

dE
E~v1E!1D2

AE22D2A~v1E!22D2
@ f ~E!2 f ~v1E!#

1E
D

v2D

dE
E~v2E!2D2

AE22D2A~v2E!22D2
@12 f ~E!2 f ~v2E!#G . ~12!

The resulting calculated susceptibility average is shown in
Fig. 3, where the peak just belowTc at low frequencies
~solid line! is a consequence of the coherence factors. At
higher frequencies, as seen in the case ofv50.8D0 ~dashed
line!, the susceptibility drops off rapidly asT decreases
though there is no coherence peak belowTc . This character-
istic drop of the susceptibility belowTc is the key to deter-
mining the temperature variation of the quasiparticle damp-
ing in the superconducting state. We have used here a
superconducting transition temperatureTc54.2 K, which
corresponds to the organic compound~MDT-TTF! 2AuI 2 .

We next compute the quasiparticle damping in Eq.~11! as
a function of frequency and temperature for a superconductor
with Tc54.2 K. The frequency dependence ofG is shown in
Fig. 4 at three-different temperatures, and it reveals the dra-

matic drop inG at lowv caused by the isotropic energy gap.
Note that at zero temperature there is no structure inG below
3D0 . At higher temperatures,G displays an unusual fre-
quency variation below 3D(T), and displays a roughly qua-
dratic increase at higher frequencies.

The temperature dependence of the computedG is shown
in Fig. 5 at three different frequencies. For frequencies below
v53D0 , the damping drops to zero at lowT, but reduces to
a finite value even in the zero temperature limit when the
frequency exceeds thrice the energy gap.

For the calculation of the NMR relaxation rate described
in the next section, we reduce the computational complexity
by developing a model fit to the numerically calculated fre-
quency and temperature dependence of the Fermi-liquidG at

FIG. 3. The momentum averaged BCS susceptibility in the su-
perconducting state is plotted as a function of temperature at two
frequencies,v50.1D0 andv50.8D0 , for a transition temperature
Tc54.2 K. Note that the overall decrease in^x9&q at very lowT
remains a feature at all frequencies, while the coherence peak is
only visible at lower frequencies.

FIG. 4. The calculated quasiparticle damping in the supercon-
ducting state is plotted as a function of frequency at three different
temperatures. We have used here the parametersUN(0)51,
W51 eV, andTc54.2 K. Note that atT50 the damping vanishes
belowv53D0 . At higher temperatures, however, there is a finite
response below 3D(T) with an unusual frequency variation. The
damping is quadratic in frequency forv.3D(T).
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a given value ofTc . Above Tc , the damping is presumed
quadratic in frequency and temperature.

III. NUCLEAR RELAXATION RATE

The standard expression for the NMR relaxation in nor-
mal metals is

1

T1T
5uAu2

1

v0
(
q

x9~q,v0!, ~13!

whereuAu denotes the hyperfine coupling andv0;10 MHz
is the typical radio frequency of the measurement. For a
Fermi liquid, the momentum average of the spin susceptibil-
ity in Eq. ~5! is linear in frequency, and thus produces the

familiar Korringa relation for the nuclear relaxation that is of
the form

1

T1T
;uAu2N2~0!5const. ~14!

If the self-energy is only weakly momentum dependent,
the general form of the susceptibility in Eq.~13! can be
averaged overk andq independently, and the Korringa be-
havior persists with very little contribution from the damping
in the normal state. However, an isotropic energy gap pro-
duces a divergent density of states in the superconducting
state which is naturally quite sensitive to the form of the
damping. Since the above analysis demonstrates that the
structure of the damping is particularly important at frequen-
cies comparable to the energy gap, these features are impor-
tant for the NMR spectra in the superconducting regime.

A. Self-energy corrections

The NMR relaxation rate is computed using the form,27

1

T1
52uAu2N2~0!E

D

` EdE

AE22D2ED

` E8dE8

AE822D2 S 11
D2

EE8D f ~E!@12 f ~E8!#G

~v1E2E8!21G2 , ~15!

whereN(0) is the normal state density of states at the Fermi
energy, and the spin hyperfine couplinguAu is taken to be
constant, thereby neglecting crystalline anisotropy. Thed
function in the original expression forx9 in Eq. ~13! is re-
placed by a Lorentzian of widthG, the quasiparticle damping
computed in Eq.~11!. Thus the conventional BCS result is
recovered in the limitG→0. The self-energy corrections in-
cluded in Eq.~15! depend on both temperature and energy,
and enter asG5(1/2)@G(E,T)1G(E8,T)#. In all the calcu-
lations discussed below, the damping is defined as

G5aGFL, ~16!

where a is varied to show the consequences of enhance-
ments beyond the Born approximation used here with one
standard set of parameter valuesW51 eV andUN(0)51. A
remarkable feature of the organic compound resistivities
shown in Fig. 1 is that their high values would indicate very
short mean free paths if a standard transport model is ap-
plied. However, the temperature variation of the resistance is
compatible with Fermi-liquid behavior, so that the enhance-
ment remains anomalous in these cases even though the
likely physical origin is electron-electron scattering. Aniso-
tropic Fermi surface effects or higher order scattering such as
the RPA corrections may be likely suspects for this mystery.

The relaxation rate data of Takahashiet al.10 on the or-
ganic superconductor~MDT-TTF! 2AuI 2 is shown in Fig. 6
along with the theoretical curves calculated using Eq.~15!.
The solid curve is calculated using the superconducting state
quasiparticle damping computed above@Eq. ~11!# for the
Fermi liquid. To examine the influence of the energy gap on
the relaxation rate, we compare this to the dot-dashed curve
calculated using the normal state damping that is quadratic in

frequency and temperature at allT andv. Note that in both
these cases the Hebel-Slichter peak is strongly reduced over
the BCS result~dashed line! obtained in the absence of a
broadening G. However, in order to fit the ~MDT-
TTF! 2AuI 2 data, the amplitude enhancement of the calcu-
lated Fermi-liquid damping needs to bea540. The standard
case witha51 resembles the dashed BCS curve because the
damping is very small.

The case of~TMTSF! 2ClO4 presents an interesting chal-
lenge since the NMR data of Takigawaet al.11 clearly show
the absence of a Hebel-Slichter peak as seen in Fig. 7. The
resistivity of this organic superconductor has a temperature
dependence that is close toT2 in some samples,28 while care-
fully quenched samples exhibit a linearT resistivity.29 This
material is notable for nesting of the Fermi surface which
gives rise to spin density wave~SDW! phase transitions in a
magnetic field as discussed in terms of the nested orbit quan-
tization by Gorkov and Lebed.30 Our goal is to fit the NMR
data using the Fermi-liquid damping to see whether the
damping alone can account for the suppression of the Hebel-
Slichter peak. The results shown in Fig. 7 reveal that the
Fermi-liquid damping actually gives a weak, but neverthe-
less significant peak in the NMR relaxation just belowTc
even for very large damping cross sections. The two curves
in Fig. 7 are calculated using an increase in amplitude of the
damping by factors ofa5 40 and 400, respectively, and both
curves are normalized to the value of 1/T1T at Tc51.06 K.
The a5 400 curve resembles the data, indicating that an
anomalously large damping may indeed be the cause of the
suppression of the HS peak.

The data shown in Fig. 8 provide another illustration of
non-Fermi-liquid behavior in the organic compound
k-~BEDT-TTF! 2CuN~CN! 2Br. The NMR relaxation rate
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data of Kanodaet al.12 on this organic compound are shown
~dots! along with the theoretical curve~solid line! calculated
using the Fermi-liquid damping and enhancementa540.
Unlike the calculated curve, the data show no evidence of a
Hebel-Slichter peak, and also drop much more sharply at low
temperatures than the calculated curves. The conventional
BCS result with a more pronounced coherence peak is also
shown ~dashed line!. The data for this organic compound
exhibit aT3 temperature dependence at lowT, which is sug-
gestive of an unconventional pairing state with line nodes on
the Fermi surface, e.g.,d-wave pairing. In the normal state
the data are also anomalous in that they do not follow a
Korringa law.31 A peak in 1/T1 is observed at 50 K which
tends to vanish under pressure.32 This pressure variation of
T1T in the normal state may arise from spin fluctuations
whose contributions increase with the degree of nesting of
the Fermi surface.

B. Vertex corrections

The NMR relaxation rate discussed above has been cal-
culated in the presence of self energy corrections to the spin
susceptibility. Schrieffer33 has raised the issue of the impor-
tance of vertex corrections for pairing schemes that rely on

the exchange of spin fluctuations, suggesting that the pairing
coupling may be strongly suppressed. We have addressed
this question in the case of the lowest order bubble suscep-
tibility x(q,v). We are interested in vertex corrections to the
NMR relaxation rate consistent with the Ward identity. Since
1/T1T5 limv→0(qx9(q,v)/v, it suffices to calculate the

FIG. 5. The calculated quasiparticle damping in the supercon-
ducting state is plotted as a function of temperature at three differ-
ent frequencies. We use the transition temperatureTc54.2 K, and
UN(0)51,W51 eV. In the normal state, the damping is quadratic
in temperature. AsT decreases below the superconducting transi-
tion, the damping drops rapidly to zero at low frequencies~i.e,
v<3D0) and saturates at a value that depends on the frequency at
higherv.

FIG. 6. The NMR relaxation rate 1/T1T data of Takahashiet al.
on the organic superconductor~MDT-TTF!2AuI 2 are plotted as a
function of temperature at a frequencyv542 MHz. The data show
a weak Hebel-Slichter peak belowTc54.2 K. Also shown are the
theoretical curves for 1/T1T using the calculated Fermi-liquid qua-
siparticle dampingGFL that includes the energy gap~solid line!, and
a normal state damping that is quadratic in frequency and tempera-
ture at allT andv ~dot-dashed line!. The dashed line represents the
conventional BCS result in the limitG→0. In order to fit the~MDT-
TTF!2AuI 2 data, the amplitude of the Fermi-liquid dampingGFL is
increased by a factor ofa540. The calculated curves as well as the
data have been normalized to the value of 1/T1T at Tc .

FIG. 7. The NMR relaxation rate 1/T1T data of Takigawaet al.
on the organic superconductor~TMTSF!2ClO4 is shown~dots! as a
function of temperature at a frequencyv542 MHz. This material
has a transition temperatureTc51.06 K and does not display a
Hebel-Slichter peak belowTc . Also shown are the theoretical
curves for 1/T1T using the calculated Fermi-liquid quasiparticle
dampingGFL where the magnitude of the damping is increased over
the calculated value by a factora. The curves are shown for two
different values ofa. The theoretical curves have been normalized
to the value of the 1/T1T data atT5Tc . Note that even whena is
made unrealistically large, the coherence peak is present in the cal-
culations.
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correction to the momentum-averaged imaginary part of the
spin susceptibility. Wermbter and Tewordt34 have used strong
coupling Eliashberg theory to compute the vertex corrections
within a two-dimensional~2D! Hubbard model for an inter-
action arising from the exchange of spin and charge fluctua-
tions as well as phonons. In their calculations, they approxi-
mate the bubble susceptibilityx(q,v) by its average over
momentum. Their approach is thus a good starting point for
our calculation which is carried out in the weak coupling
limit for the lowest order electron-hole bubble.

In the absence of self-energy and vertex corrections, the
momentum average of the imaginary part of the susceptibil-
ity is given by the expression for 1/T1T in Eq. ~15!. Includ-
ing vertex corrections to orderU2, the one-loop contribution
relevant to the spin fluctuations becomes34

x̄9~v!5pE
2`

`

dE
E~E1v!1D2

AE22D2A~E1v!22D2

3$ f ~E!@12J1~E,v!1p2J2~E,v!#

2 f ~E1v!@12J1~E,v!1p2J28~E,v!#%,

~17!

wherex̄95^x9(q,v)&q is the momentum-averaged suscepti-
bility. The correction termsJ1 , J2 are given by

J1~E,v!52
U2N2~0!

2p E
2`

`

dnx̄9~n!

3E
2`

`

dm1

f ~2m1!1n~n!

Am1
22D2 E

2`

` dm2

v2m2

3H um1uum12m2u1D2

~E1v2m12n!A~m12m2!
22D2

2
um1uum11m2u1D2

~E2m12n!A~m11m2!
22D2 J , ~18!

where f (x), n(x) are the Fermi and Bose functions, respec-
tively, and

J2~E,v!52
U2N2~0!

2p E
2`

`

dnx̄9~n!

3
@ f ~n2E2v!1n~n!#~ uE1v2nuuE2nu1D2!

A~E1v2n!22D2A~E2n!22D2
.

~19!

The termJ28 in Eq. ~17! is obtained fromJ2 by substituting
f (n2E) for f (n2E2v).
The NMR relaxation rate is obtained from thev→0 limit

of x̄9(v) in Eq. ~17!. We therefore calculateJ1(E,0) and
J2(E,0), noting thatJ28(E,0)[J2(E,0). Them2 integration
in Eq. ~18! can be carried out analytically, giving

J1~E,0!5
U2N2~0!

p E
2`

`

dnx̄9~n!E
2`

`

dm1Fcoth n

2T
1tanh

m1

2TG 1

E2m12n

D2

m1
22D2 lnUm11Am1

22D2

m12Am1
22D2U . ~20!

In the low temperature limit,T→0, we can obtain an esti-
mate of the vertex contribution by replacing coth(x/2T), and
tanh(x/2T) by sgn(x), and them1 integration in Eq.~20! can
also be carried out analytically. The remainingn integrations
in J1 and J2 @Eq. ~19!# are carried out numerically. In the
limit v→0, Eq. ~17! becomes

1

T1T
} lim

v→0

1

v
x̄9~v!5pE

2`

`

dE
E21D2

E22D2 S 2
] f

]ED @12J1~E,0!

1p2J2~E,0!#. ~21!

The resulting total vertex correction, 2J1(E,0)
1p2J2(E,0) is shown in Fig. 9. We find that the contribu-
tion of J1 is approximately an order of magnitude larger than
J2 for T,Tc . SinceJ1 is proportional toD

2, the correction
is larger for a system with higherTc . This is illustrated in
Fig. 9 forTc5 10, 20, 100 K. We find thatJ1 decreases with
increasing temperature, and vanishes asT→Tc sinceD→0.
In this limit, J2(E,0)→2U2N2(0)@p2T21E2#/4W2, which
is small for E!W. The temperature dependence ofJ2 re-
veals thatJ2(T,Tc),J2(Tc) for all E. Thus the total cor-
rection term decreases asT increases. The transition tem-
peratures of the organics are at most of the order of 10 K,

and the total vertex correction forTc510 K is less than 3%.
We also find from Fig. 9 that at a fixed temperature, regard-
less of the value ofTc , the correction does not depend
strongly onE. It can thus be taken out of the integral in Eq.
~21! and the net result is a renormalized value of the inter-
action strengthU.

We basically concur with the conclusions of Wermbter
and Tewordt34 who estimated vertex contributions by another
method and found them to be negligible for their choice of
parameters.

IV. CONCLUSIONS

We have calculated the quasiparticle dampingG arising
from electron-electron collisions in a two-dimensional
Fermi-liquid. We have presented results for the temperature
and frequency variation ofG in the normal and the supercon-
ducting state with an isotropic energy gap. The damping is
found to be quadratic in temperature and frequency
above the superconducting transition, consistent with the
T2 resistivity of the organic superconductors and the
Nd22xCexCuO4 cuprate.

The computed damping follows an unusual frequency
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variation in the superconducting state for frequencies
v,3D(T). The reduction in available scattering states due
to the opening of an isotropic energy gap causes the quasi-
particle damping to drop at temperatures below the super-
conducting transition, as seen in our results. On the other
hand an energy gap ofd-wave symmetry has nodes and thus
ensures the availability of scattering states even atT50. This
would produce a quasiparticle damping that drops less rap-
idly asT decreases belowTc .

We have also explored the influence of the calculated FL
damping on the NMR relaxation rate. We find that the damp-
ing acts to reduce the magnitude of the Hebel-Slichter peak
below Tc , but does not eliminate it. Our results are com-
pared to experimental data on three organic superconductors.
In the case of~MDT-TTF! 2AuI 2 , our results fit the data and
reproduce the weak HS peak seen in the experiment. In the
case of~TMTSF! 2ClO4 , the data show no HS peak and
deviate from our FL results. We find, however, that if the
damping is made anomalously large, our results resemble the

data on~TMTSF! 2ClO4 , though a small HS peak is still
present in the calculations. Since the HS peak is sensitive to
the BCS coherence factors, the gap symmetry and the quasi-
particle damping, the analogous ‘‘coherence peak’’ in the mi-
crowave conductivity should provide a further test of our
analysis. Applications of the FL damping to microwave con-
ductivity and surface resistance measurements on the NCCO
cuprate35 reveal that these probes are also sensitive to the
self-energy structure.36

The NMR data on the BEDT organic superconductors ex-
hibit a very rapid decrease belowTc that is similar to the
behavior seen in the high temperature cuprate superconduct-
ors. These cases appear to require additional mechanisms to
explain the lack of a Hebel-Slichter peak as well as the cur-
vature of the NMR relaxation belowTc . Our microscopic
analysis yields a relaxation curve that remains considerably
higher than the BEDT data in the superconducting state even
if the Coulomb coupling is artificially increased to unrealistic
values.

The influence of the symmetry of the gap on the relax-
ation rate may be seen from the behavior of the density of

FIG. 8. The NMR relaxation rate 1/T1T data of Kanodaet al.on
the organic superconductork-~BEDT-TTF!2CuN~CN!2Br is plotted
as a function of temperature at a frequencyv525 MHz. The solid
line represents the theoretical curve for 1/T1T using the calculated
Fermi liquid quasiparticle dampingaGFL where the magnitude of
the damping is increased over the bare value by a factora540.
Also shown is the BCS result~dashed line! for which the coherence
peak is more pronounced. The theoretical curves as well as the data
have been normalized to the value of 1/T1T at Tc512 K. The low
temperatureT3 variation of the data resemblesd-wave pairing be-
havior, and the pressure variation of the normal stateT1T may
indicate spin fluctuation contributions which are enhanced by Fermi
surface nesting, that is beyond the scope of the present analysis.

FIG. 9. The total contributionJ(E) from the calculated vertex
corrections to the NMR relaxation rate is plotted as a function of the
energyE scaled to the energy gapD at a fixed temperatureT51 K.
The three curves correspond to superconducting transition tempera-
tures ofTc5 100, 20, and 10 K. The correction increases withTc as
seen in the figure. For a fixedTc the vertex contribution at the
T51 K value chosen here is close to the maximum and falls off as
the temperature approachesTc . ForTc510 K, the magnitude of the
correction atE54D is ,3%, and thus negligible. We also note that
sinceJ(E) is practically independent ofE, the effect of this cor-
rection is to renormalize the interaction strengthU.
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states. For ans-wave gap, the superconducting density of
states is zero belowD and has a square root singularity at
D. The density of states for ad-wave gap is linear at low
energies and has only a logarithmic singularity atD. While
the Hebel-Slichter peak is greatly reduced as a result of re-
placing a square root singularity by a logarithmic one, the
relaxation rate in thed-wave case falls off more slowly than
the s-wave case asT decreases belowTc . At low tempera-
tures, thed-wave relaxation rate varies asT3 , and the BEDT
data provide evidence for the latter symmetry.

We note here that in the case of the NFL damping calcu-
lated for a nested Fermi surface by Riecket al.,22 the quasi-
particle damping drops to zero at frequenciesv,3D more
rapidly than the FL damping discussed here. Also the nesting
generates an enhanced peak in the susceptibility at the nest-
ing vector whose suppression by an isotropic energy gap is
more pronounced than the case of the averaged susceptibility

that dominates the Fermi-liquid response in the present work.
The extension of the present analysis to incorporate a

d-wave energy gap is in progress. Future studies of a model
Fermi surface that includes nesting features are warranted in
view of the remaining anomalies in the NMR spectra of the
BEDT organic compound as well as the cuprate supercon-
ductors.

ACKNOWLEDGMENTS

It is a pleasure to thank Attila Virosztek for helpful dis-
cussions, and David Djajaputra, Carsten Rieck and Jeff
Thoma for their input. We thank K. Kanoda for sending us
their preprint and T. Takahashi for useful exchanges. We also
thank K. Kanoda, T. Takahashi, and M. Takigawa for use of
their data. This work was supported by DOE Grant No.
DEFG05-84ER45113.

1N. W. Ashcroft and N. D. Mermin,Solid State Physics~Holt,
Rinehart, and Winston, New York, 1975!.

2See review by L. N. Bulaevskii, Adv. Phys.37, 443 ~1988!;
~TMTSF!2PF6 data from K. Bechgaardet al., Solid State Com-
mun.33, 1119~1980!; NCCO data from Y. Hidaka and M. Su-
zuki, Nature338, 635~1989!; Pb data from J. P. Moore and R. S.
Graves, J. Appl. Phys.44, 1174~1973!.

3C. Julien, J. Ruvalds, A. Virosztek, and O. Gorochov, Solid State
Commun.79, 875 ~1991!.

4J. M. Luttinger, Phys. Rev.121, 942 ~1961!.
5C. Hodges, H. Smith, and J. W. Wilkins, Phys. Rev. B4, 302

~1971!. See also A. V. Chaplik, Zh. Eskp. Teor. Fiz.60, 1845
~1971! @Sov. Phys. JETP33, 997 ~1971!#.

6G. F. Giuliani and J. J. Quinn, Phys. Rev. B26, 4421 ~1982!.
7See, for example, the reviews by R. E. Walstedt and W. W. War-
ren, Science248, 1082 ~1990!; C. H. Pennington and C. P.
Slichter, inPhysical Properties of High Temperature Supercon-
ductors II , edited by D. M. Ginsberg~World Scientific, Sin-
gapore, 1990!.

8H. Takagiet al., Phys. Rev. Lett.69, 2975~1992!.
9L. C. Hebel and C. P. Slichter, Phys. Rev.113, 1504~1959!; see
also review by D. E. MacLaughlin,Solid State Physics, edited
by H. Ehrenreich, F. Seitz, and D. Turnbull~Academic Press,
New York, 1976!, Vol. 31.

10T. Takahashiet al., Physica C235-240, 2461~1994!.
11M. Takigawa, H. Yasuoka, and G. Saito, J. Phys. Soc. Jpn.56,

873 ~1987!.
12A. Kawamoto, K. Miyagawa, K. Kanoda, and Y. Nakazawa, Phys.

Rev. B52, 15 522~1995!.
13Y. Hasegawa and H. Fukuyama, J. Phys. Soc. Jpn.56, 877~1987!.
14L. Coffey, Phys. Rev. Lett.64, 1071~1990!; Q. P. Li and R. Joynt,

Phys. Rev. B47, 530 ~1993!; A. Sudbøet al., ibid. 49, 12 245
~1994!.

15H. Monien and D. Pines, Phys. Rev. B41, 6297 ~1990!; A. J.
Millis, H. Monien, and D. Pines,ibid. 42, 167 ~1990!.

16C. M. Varmaet al., Phys. Rev. Lett.63, 1996~1989!; Y. Kuroda

and C. M. Varma, Phys. Rev. B42, 8619~1990!; M. Nusset al.,
Phys. Rev. Lett.66, 3305 ~1991!; P. B. Littlewood and C. M.
Varma, J. Appl. Phys.69, 4979 ~1991!; Phys. Rev. B46, 405
~1992!.

17N. Bulut et al., Phys. Rev. B41, 1797~1990!; N. Bulut and D. J.
Scalapino, Phys. Rev. Lett.68, 706 ~1992!; Phys. Rev. B45,
2371 ~1992!.

18J. P. Lu, Q. Si, J. H. Kim, and K. Levin, Phys. Rev. Lett.65, 2466
~1990!.

19S. M. Quinlan, D. J. Scalapino, and N. Bulut, Phys. Rev. B49,
1470 ~1994!.

20P. B. Allen and D. Rainer, Nature349, 396 ~1991!; A. V. Dolgov,
A. A. Golubov, and A. E. Koshelev, Solid State Commun.72, 81
~1989!; R. Akis and J. P. Carbotte,ibid. 78, 393 ~1991!.

21A. Virosztek and J. Ruvalds, Phys. Rev. B42, 4064~1990!.
22C. T. Riecket al., Phys. Rev. B51, 3772~1995!.
23H. Won and K. Maki, Physica B206, 664 ~1995!.
24A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,Methods

of Quantum Field Theory in Statistical Physics~Prentice-Hall,
New Jersey, 1963!.

25G. D. Mahan,Many-Particle Physics~Plenum, New York, 1990!.
26L. Tewordt, Phys. Rev.127, 371 ~1962!; 128, 12 ~1962!; S. B.

Kaplanet al., Phys. Rev. B14, 4854~1976!.
27J. R. Schrieffer,Theory of Superconductivity~Benjamin, New

York, 1964!.
28K. Bechgaardet al., Phys. Rev. Lett.46, 852 ~1981!.
29H. Schwenk, K. Andres, and F. Wudl, Phys. Rev. B29, 500

~1984!.
30L. P. Gorkov and A. G. Lebed, J. Phys. Lett.45, L533 ~1984!.
31A. Kawamotoet al., Phys. Rev. Lett.74, 3455~1995!.
32H. Mayaffreet al., Europhys. Lett.28, 205 ~1994!.
33J. R. Schrieffer, J. Low Temp. Phys.99, 397 ~1995!.
34S. Wermbter and L. Tewordt, Phys. Rev. B44, 9524 ~1991!;

Physica C199, 375 ~1992!.
35S. M. Anlageet al., Phys. Rev. B50, 523 ~1994!.
36S. Tewari and J. Ruvalds~unpublished!.

53 5705FERMI-LIQUID DAMPING AND NMR RELAXATION IN . . .


