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We derive the hydrodynamic equations for the supersolid and superhexatic phases of a neutral two-
dimensional Bose fluid. We find, assuming that the normal part of the fluid is clamped to an underlying
substrate, that both phases can sustain third-sound modes and that in the supersolid phase there are additional
modes due to the superfluid motion of point defects~vacancies and interstitials!.

I. INTRODUCTION

Liquid helium (4He! has a reputation for being the first
substance in which one is able to observe many macroscopic
quantum phenomena. In particular, it was the first system
that could sustain superfluid flow,1 and as a consequence
display a number of amazing properties such as second
sound, quantized vortices, and the fountain effect. Further-
more, thin superfluid helium films were the first two-
dimensional systems experimentally proven to undergo a
Kosterlitz-Thouless transition to the normal state.2 More re-
cently it may have been observed3 that on weakly binding
substrates these films are the first-known spatially ordered
superfluids.

More precisely, measurements of the third-sound reso-
nance frequency~which is proportional to the square root of
the superfluid density! of submonolayer helium films on hy-
drogen and deuterium substrates apparently indicate two in-
dependent Kosterlitz-Thouless transitions: the usual super-
fluid to normal transition at a temperatureTKT that obeys the
expected universal jump relation,4 and a second new transi-
tion at a temperatureTc which is roughly 0.5TKT for all
coverages. The second transition appears as a sharp~but not
discontinuous! rise or dip in the superfluid density depending
on the substrate. In addition, for helium films thicker than
one monolayer and for temperatures betweenTc andTKT one
actually observes a second resonance frequency that corre-
sponds to a mode which is 90° out of phase with the third-
sound mode. This latter observation has lead to the sugges-
tion that atTc the vortices in the film form an ‘‘ionic’’ lattice
that subsequently melts atTKT .

5 Although the existence of
transverse vibrations in such a vortex-antivortex lattice can
very nicely explain the presence of a second resonance fre-
quency in the third-sound measurements, it remains unclear
why this second resonance is only observed for coverages
above one monolayer. Moreover, the melting of the lattice at
TKT will not lead to the universal jump relation for the su-
perfluid density as is observed experimentally.

Therefore, in an attempt to explain in the first instance
only the experimental results for submonolayer coverages
where no second resonance is seen and which also appears to
be the most simple case theoretically because no layering
phenomena are expected, we have recently proposed that be-
low the second critical temperature the superfluid helium
film is in a spatially ordered phase exhibiting both off-
diagonal~superfluid! and diagonal~hexatic! long-range order
in the one-particle density matrix.6 The main idea behind this
proposal is that the hexatic to fluid transition is known to be
a Kosterlitz-Thouless transition driven by disclination
unbinding.7 ~Disclinations are defects in the orientational or-
der of a crystal created by the insertion or removal of a
wedge of atoms, as shown in Fig. 1.! Therefore, our physical
picture of the experiments is that at sufficiently low tempera-
tures the film is in a superhexatic phase with only a dilute

FIG. 1. A negative disclination in a hexagonal lattice. It is
formed by removing a 60° wedge from the lattice, and then distort-
ing the lattice so that the open edges meet. A positive disclination
~not shown! is formed by the insertion of a 60° wedge of material
into the lattice.

PHYSICAL REVIEW B 1 MARCH 1996-IVOLUME 53, NUMBER 9

530163-1829/96/53~9!/5670~13!/$10.00 5670 © 1996 The American Physical Society



gas of bound vortices and bound disclinations present due to
thermal fluctuations. For entropic reasons the disclinations
then unbind atTc , leading to a transition from a superhexatic
to a superfluid phase since the vortices remain bound at this
transition and the presence of free disclinations destroys the
hexatic long-range order. AtTKT the vortices then also un-
bind and the film is finally forced into the normal liquid
phase.

Of course, to make sure that the above picture is qualita-
tively correct we must also consider the interaction between
vortices and disclinations. This is even more pressing if one
realizes that in a supersolid phase~where all disclination
pairs are themselves bound into pairs or triples! this interac-
tion is of long range and depends logarithmically on the
distance between the two kinds of defects. Fortunately, it
turns out that this is no longer true in the superhexatic phase
due to the screening of the interaction by the surrounding gas
of disclination pairs. A renormalization-group analysis actu-
ally shows that the vortex-disclination interaction is irrel-
evant and that the two separate Kosterlitz-Thouless transi-
tions indeed survive. Nevertheless, the superfluid density is
influenced in a nonuniversal way by the unbinding of the
disclinations and Monte-Carlo simulations even show that on
the basis of our hypothesis a rough qualitative agreement
with the experiments of Chen and Mochel can be obtained.6

However, to definitely identify the phase belowTc more
detailed information is needed. As a first step towards this
goal we here present the two-dimensional hydrodynamic
equations of a superhexatic by describing the superhexatic as
a supersolid with free dislocations~i.e. disclination pairs7!.
As a result of this approach we will also be able to consider
the hydrodynamics of the supersolid phase, for which there
is at present a renewed interest both in the context of
Josephson-junction arrays8,9 and solid4He.10 Moreover, spa-
tially ordered superfluid states have recently been proposed
to be also relevant for the fractional quantum Hall effect,11

since this effect can be understood as a condensation of com-
posite bosons.12We therefore believe that the methods devel-
oped below might, if extended to bosons interacting with a
Chern-Simons gauge field, also be used to obtain a descrip-
tion of the dynamics of such exotic quantum Hall states.

We have organized the paper in the following manner. In
Sec. II we first consider the normal solid and hexatic phases
by formulating a gauge theory that describes the phonons,
the dislocations and the interaction between them. From this
theory we then deduce in Sec. III for both phases the dynam-
ics of the appropriate hydrodynamic degrees of freedom. In
Sec. IV we incorporate the effects of the additional super-
fluid order parameter13 into the hydrodynamic equations de-
rived in Sec. III and discuss the various long-wavelength
modes in the supersolid and superhexatic phases obtained in
this manner. We conclude in Sec. V with a discussion on the
possible relevance of our work to future experiments on sub-
monolayer helium films and with a physical interpretation of
our results.

II. GAUGE THEORY OF PHONONS AND DISLOCATIONS

In this section we will derive the long-wavelength~quan-
tum! dynamics of the solid and hexatic phases. The discus-
sion closely follows work by Kleinert,14 save that we will not

include higher gradient elasticity. This leads to a consider-
able simplification of the theory but implies that we cannot
properly treat the dynamics of the disclinations. Fortunately,
for our purposes only the dynamics of the dislocations is of
importance and this simplification is justified.

A. Solid

In the case of an isotropic crystal, the action for the dis-
placement fieldui(xW ,t) in the presence of a pair of disloca-
tions is given by14

S@ui #5E
0

\b

dtE dxW H r

2
~]t ui2b i !

21mS ui j2 b i j1b j i

2 D 2

1
l

2
~uii2b i i !

2J , ~1!

whereui j5(] iuj1] jui)/2 is the strain tensor,m andl are
the usual Lame´ coefficients15 andr is the average mass den-
sity. The unphysical~and singular! contributions arising from
the multivaluedness ofui(xW ,t) are compensated by the quan-
tities b j and b i j ~also known as the ‘‘plastic distortion’’!.
Their relationship to the defects is best explained by the Vol-
terra construction.16 Let C be a small loop bounding a sec-
tion of two-dimensional crystal that is excised from the
whole ~cf. Fig. 2!. The edges of the loop are drawn together
and form a lineL. This line may be time dependent, and its
definition is not unique. However, the topological defects
~i.e., two dislocations with opposite Burgers’ vectors! asso-
ciated with the distortion of the surface are always located at

FIG. 2. A Volterra construction for a pair of dislocations:~a! a
section of the two-dimensional lattice bounded by the loopC is
removed and~b! the edges of the loop are pulled together to form
the dashed lineL. The endpointsP of this line correspond to the
positions of the dislocations.
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the endpoints ofL. If 6BW are the Burgers’ vectors of the
dislocations constituting the pair and ifvW is their velocity
thenb i j5d i(L)Bj andb j52v id i(L)Bj . The delta func-
tion d i(L) is singular on the time-dependent Volterra cutting
line L of the dislocations and is directed along the normal
vector. If the cutting lineL is parametrized byxW (s,t) with
0<s<1, this means mathematically that

d i~L!52e i j E
0

1

ds
]xj~s,t!

]s
d„xW2xW~s,t!…, ~2!

wheree i j is the two-dimensional antisymmetric tensor. Note
that the dislocations are assumed to be able to move freely,
without any friction, through the crystal because the equa-
tions of motion for the displacement field allow for time-
dependent solutions that precisely correspond to such evolu-
tions of the crystal.17 We will come back to the issue of
friction in Sec. III when we consider the effects of dissipa-
tion.

We now first perform a Hubbard-Stratonovich transforma-
tion by introducing the auxiliary variablepW ~representing the
momentum density! and adding the quadratic term

E
0

\b

dtE dxW
1

2r
@pi2 ir~]tui2b i !#

2

to the action, which may now be rewritten as

S@pi ,ui #5E
0

\b

dtE dxW H pi22r
1mS ui j2 b i j1b j i

2 D 2

1
l

2
~uii2b i i !

22 ipi~]tui2b i !J . ~3!

Integrating outpW would return the original action up to an
unimportant constant. In a similar manner we then also in-
troduce the symmetric stress tensors i j , to decouple the
terms quadratic in the strain. This results in

S@pi ,s i j ,ui #5E
0

\b

dtE dxW H pi22r
1

1

4m S s i j
22

n

11n
s i i
2 D

2 ipi~]tui2b i !1 is i j S ui j2 b i j1b j i

2 D J ,
~4!

with n5l/(2m1l). The partition function is now given by
the functional integral

Z5E d@pi #E d@s i j #E d@ui #expH 2
1

\
S@pi ,s i j ,ui #J ,

~5!

where the integration overs i j is only over the symmetrical
part since we have not included higher gradient elasticity.

We can now perform the integration over the displace-
ment field. Because the action is linear inui this simply leads
to the constraint

]tpj5] is i j . ~6!

This constraint can be automatically satisfied if we introduce
the vector fieldAj and the tensor fieldAi j by setting
s i j5e ik]kAj1eki]tAkj andpj5eki] iAk j . Substituting these
relations into the action we find that the interaction between
the gauge fields~i.e., the phonons! and the dislocations is
given by

Sint@Ai j ,Aj #5E
0

\b

dtE dxW$2 iAia i1 iAi j Ji j %, ~7!

where after several partial integrations the unphysical singu-
larities ofb i andb i j have disappeared and only the disloca-
tion density and the dislocation current density remain. In-
troducing also the functiond(P )5d„xW (1,t)…2d„xW (0,t)…,
which denotes the difference between ad function at one end
of the cutting lineL and ad function at the other end, these
densities and currents can conveniently be written as
a j5d(P )Bj andJi j52v id(P )Bj , respectively. As a direct
consequence of the above definitions they obey the conser-
vation law

]ta j5] iJi j . ~8!

In addition, the dynamics of the phonons is determined by
the remaining quadratic terms in the action which expressed
in terms of the gauge fieldsAj andAi j yield

S0@Ai j ,Aj #5E
0

\b

dtE dxW H ~e ik]kAi j !
2

2r

1
1

4m S s i j
22

n

11n
s i i
2 D J , ~9!

with s i j equal toe ik(]kAj2]tAkj). Comparing this result
with Eq. ~1! we observe that the stress and the physical part
of the strain ui j

Phys[ui j2(b i j1b j i )/2 are related by
s i j52mui j

Phys1ld i j ukk
Physand therefore by

ui j
Phys5

1

2m S s i j2
n

11n
d i jskkD . ~10!

We will have need of the latter relation in Sec. III, when we
discuss hydrodynamics. A more formal way to justify it is to
add to the actionS@ui # a source term

E
0

\b

dtE dxW Ki j S ui j2 b i j1b j i

2 D5E
0

\b

dtE dxW Ki j ui j
Phys

and perform the same manipulations as before. We then find
that the sourceKi j indeed couples linearly to the right-hand
side of Eq.~10!.

Following Kleinert, we now notice that the above theory
has a gauge symmetry as a result of the fact that the gauge
fieldsAi andAi j are not uniquely determined if the stresses
s i j and momentapi are known. Indeed,s i j and pi are in-
variant under the gauge transformationAi→Ai1]tL i and
Ai j→Ai j1] iL j . HenceS0@Ai j ,Aj # is also invariant. More-
over, due to the conservation law in Eq.~8!, the interaction
Sint@Ai j ,Aj # is invariant too.

To calculate the partition function we therefore need some
gauge-fixing procedure. The symmetry ofs i j requires that

e i js i j5] jAj2]t~Aj j !50. ~11!
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We would now like to write the gauge fields as the appropri-
ate derivatives of unconstrained fields. Using the above
gauge symmetry we can always takeAi5e i j ] jx and
Aii50. This, however, does not completely fix the gauge
because these conditions are still invariant under the smaller
group of transformations x→x1]tL and Ai j→Ai j
1] i(e jk]kL). To see more clearly the consequences of this
residual symmetry we expandAi j into its longitudinal and
transverse components~with respect to both indices!, i.e.,

Ai j5] i~] jA
LL !1] i~e jk]kA

LT!1e ik]k~] jA
TL!

1e ik]k~e j l ] lA
TT!, ~12!

where we have introduced four new fields. The tracelessness
of Ai j can then be fulfilled by takingALL52ATT. In addi-
tion, the residual gauge symmetry can now be written as
x→x1]tL andALT→ALT1L. This shows that instead of
the fieldsx andALT we must use the gauge-invariant field
x8[x2]tA

LT together withL as integration variables. The
associated change of measure can be incorporated in the nor-
malization and the same is true for the ‘‘volume’’*d@L# of
the residual gauge group because the action is gauge invari-

ant and therefore cannot depend onL. After this gauge-
fixing procedure the partition function thus becomes

Z5E d@ATT#E d@ATL#E d@x8#expH 2
1

\
~S0@A

TT,ATL,x8#

1Sint@A
TT,ATL,x8# !J . ~13!

Note that we are left with three physical degrees of freedom,
which is the correct number in two dimensions sinces i j and
pi contain, in principle, a total of five degrees of freedom but
we have two constraints in Eq.~6!. Note also that the trans-
formation froms i j andpi to A

TT, ATL andx8 is a linear one
so that the Jacobian involved in the calculation of the parti-
tion function is simply an unimportant constant. In particular,
the stress is given by

s i j5e ike j l ]k] l x81]t~] i] jA
TL1e ik]k] jA

TT1e jk]k] iA
TT!,
~14!

which is manifestly symmetric ini and j .
A straightforward calculation now shows that the free part

of the action is

S0@A
TT,ATL,x8#5E

0

\b

dtE dxW H 1

2m
~]t]

2ATT!21
1

2r
~] i]

2ATT!21
1

4m~11n!
~]t]

2ATL!21
1

2r
~] i]

2ATL!2

1
1

4m~11n!
~]2x8!22

1

2m

n

11n
~]t]

2ATL!~]2x8!J . ~15!

It contains four modes: The part involvingATT has a pair of modes~corresponding to6kW ) with v25mkW2/r. These modes
therefore represent the transverse phonons with a speed of soundAm/r. The part involvingATL andx8 has another pair of
modes with a dispersion obeyingv25(2m1l)kW2/r. These represent the longitudinal phonons with a speed of sound
A(2m1l)/r. Interestingly, these results can be understood much more easily if we introduce the field

x9[x82n]t A
TL, ~16!

since then the above action becomes

S0@A
TT,ATL,x9#5E

0

\b

dtE dxW H 1

2m
~]t ]2ATT!21

1

2r
~] i]

2ATT!21
12n

4m
~]t ]2ATL!21

1

2r
~] i]

2ATL!21
1

4m~11n!
~]2x9!2J ,

~17!

so that the fields are completely uncoupled. Notice that the
x9 field has no kinetic term, which explains why we obtained
above only four modes instead of six, as might have been
expected in first instance.

Furthermore, if we introduce the usual Burgers’ field
bW (xW ,t) for the total dislocation density, which is nothing
more than the sum of the densitya i over all dislocation
pairs, then the interaction with the dislocations acquires the
form

Sint@A
TT,ATL,x8#5E

0

\b

dtE dxW i $x8e i j ] jbi2ATT]t ] ibi%,

~18!

where we have made use of Eq.~8! to express the longitudi-
nal part of the current densityJi j in terms of the time deriva-

tive of bi . DecomposingbW into its transverse and longitudi-
nal parts, i.e.,bi5] ib

L1e i j ] jb
T, the interaction finally

becomes

Sint@A
TT,ATL,x8#5E

0

\b

dtE dxW i $x8]2bT2ATT]t ]2bL%.

~19!

The total actionS5S01Sint reduces for time-independent
configurations to the one we previously used for a discussion
of the critical properties of the superhexatic.6 Integrating out
the fieldsATT andx8 we can now find the time-dependent
interaction among the dislocations. Physically, these interac-
tions are thus associated with phonon exchange and the time
dependence arises due to the finite speeds of sound. This
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picture also explains why the effective action forx8 contains
just one pair of modes: The self-interaction of the transverse
dislocation density can only be mediated by longitudinal
phonons.

B. Hexatic

Up to this point the dislocation density has not been an
independent dynamical variable, since we have specified the
positions of the dislocations at all times and thus neglected
the influence of the phonon dynamics on their motion. How-
ever, to describe the hexatic phase we want to integrate out
the dislocations in the plasma ~or continuous!
approximation.7 For that we need the free action of the field
bW . Here we can again make use of the results obtained by
Kleinert, who showed that the energy associated with the
nonlinear stresses at the heart of the defect can be lumped
into a ‘‘core contribution’’ to the action.14,18 In our notation
this contribution becomes

S0@bi #5E
0

\b

dtE dxW
Ec

2
bi S r

m

]t
2

]2
11Dbi

5E
0

\b

dtE dxW
Ec

2 H bTS r

m
]t
21]2DbT

1bLS r

m
]t
21]2DbLJ . ~20!

This action represents free propagation of the dislocation
density fluctuations which, as mentioned previously, are per-
mitted by the classical equations of motion17 and neglects
dissipative coupling of the dislocation cores to the phonons.

Integrating out the Burgers’ field using Eqs.~19! and~20!,
we obtain the following results. The effective action for
ATT becomes

Seff@ATT#5E
0

\b

dtE dxW H 1

2m
~]t ]2ATT!21

1

2r
~] i]

2ATT!21
1

2Ec
~]t ] iA

TT!S r

m

]t
2

]2
11D 21

~]t ] iA
TT!J . ~21!

As shown in Fig. 3~a!, it contains two pairs of modes which forkW2@m/2Ec all have a dispersion obeyingv2.mkW2/r.
However, forkW2!m/2Ec , one pair of modes has a dispersionv2.m2/Ecr12mkW2/r with a gap whereas the other pair of
modes is gapless withv2.2EckW

4/r. This is consistent with our expectation that in the hexatic phase there should only be one
pair of transverse gapless modes with a softer dispersion than that of the transverse phonon modes in a true solid.

The effective action forx8 andATL in the hexatic phase is

Seff@ATL,x8#5E
0

\b

dtE dxW H 1

4m~11n!
~]t ]2ATL!21

1

2r
~] i]

2ATL!21
1

4m~11n!
~]2x8!22

1

2m

n

11n
~]t ]2ATL!~]2x8!

1
1

2Ec
~] ix8!S r

m

]t
2

]2
11D 21

~] ix8!J . ~22!

Integrating out alsoATL we finally arrive at the effective action forx8. It reads

Seff@x8#5E
0

\b

dtE dxW H 1

4m~11n!
~]2x8!21

1

2Ec
~] ix8!S r

m

]t
2

]2
11D 21

~] ix8!

1
1

2 S 1

2m

n

11n D 2~]t]
2x8!S ]t

2

2m~11n!
1

]2

r D 21

~]t]
2x8!J ~23!

and also contains two pairs of modes@cf. Fig. 3~b!#.

For kW2@m/2Ec we recover of course the ordinary sound

dispersionsv2.2mkW2/@r(12n)#5(2m1l)kW2/r and v2

.mkW2/r. However, in the limitkW2!m/2Ec these evolve into
a pair of gapped modes withv2.2m2/@Ecr(12n)# and a

pair of propagating modes withv2.2m(11n)kW2/r, respec-
tively. Clearly, the same mode structure is also present in the
effective action forATL ~obtained by integrating outx8 in-
stead ofATL) which indicates that in the hexatic phase the
longitudinal velocity is renormalized downwards to
A2m(11n)/r.

III. HYDRODYNAMICS OF SPATIALLY ORDERED
PHASES

We now turn to the linear hydrodynamics of the solid and
hexatic phases that follows from the theory presented above.
For the sake of clarity, and because it will turn out to be less
important for our purposes, we will not discuss temperature
fluctuations in the following. However, having derived the
relevant energy densities in Secs. II A and II B it is, in prin-
ciple, straightforward to include temperature fluctuations in
our theory and, in particular, to arrive at the extension of the
hydrodynamic equations presented below that is required if
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one wants to consider also the hydrodynamic mode due to
energy conservation. After the equations of motion for the
hydrodynamic variables are determined, we can find the
propagating and diffusive modes. This is done as before, by
Fourier transforming the equations of motion and determin-
ing the dispersionv(k). Propagating modes appear as com-
plex roots of a characteristic equation and will always occur
in pairs. Each physically distinct propagating excitation such
as longitudinal or transverse sound corresponds therefore to
two roots or modes.

We start by considering the mass-density fluctuationdr
above the average mass densityr and initially neglect the
possible presence of vacancies and interstitials. To lowest
order in the strain, the density fluctuation equals2ruii

Physso
up to that order we obtain

]tdr52r]t uii
Phys52

r

2~m1l!
]t s i i , ~24!

if we make use of Eq.~10! to relate the stress and the strain.
Using also the decompositions i i5]2x81]t]

2ATL from Eq.
~14! we may write this as a pair of continuity equations

]tdr5] igi
L , ~25a!

]tgj
L5] ip i j

D , ~25b!

where the longitudinal momentum density is given by

gi
L52

r

2~m1l!
]t ] i~x81]t A

TL! ~26!

and the diagonal part of the stress tensor by

p i j
D52

rd i j
2~m1l!

]t
2~x81]t A

TL!. ~27!

In the absence of defects, the hydrodynamic quantities
gi
L andp i j

D are precisely equal to the longitudinal part ofpi
and the diagonal part ofs i j , respectively. This can be seen
in the following manner. In an ideal solid we have no de-
fects, and variation of the action in Eq.~17! givesx950 or
x85n]t A

TL, which we may use to eliminatex8. The equa-
tion of motion forATL generated in this way is

]t
2 ATL52

2m1l

r
]2ATL. ~28!

If we substitute this back into the definitions ofgi
L andp i j

D

we obtain the longitudinal part ofpi and the diagonal part of
s i j as given in Sec. II. In the presence of defects with their
own dynamics this is no longer true, since the dislocation
density couples to the gauge fields and alters the equations of
motion. To avoid confusion about this point we have, there-
fore, introduced a new notation for the hydrodynamic mo-
mentum density and stress tensor which we will use for the
rest of the paper.

We also note that the above equations are not Galilean
invariant and are therefore only valid in a specific reference
frame. This is a result of the fact that the gauge theory of
Sec. II has implicitly used the existence of an ideal lattice
with respect to which the displacementsuW (xW ,t) are
defined.16 Hence, the prefered reference frame corresponds
to that frame in which this ideal lattice is at rest. This is the
case for all the hydrodynamic equations presented below.

In this ideal solid without interstitials or vacancies the
pressure fluctuation~following from p i j

D52d i jdp) equals

dp5
r

2~m1l!
~11n!]t

3 ATL5
r

2m1l
]t
3 ATL ~29!

and the mass-density fluctuation becomes

dr52
r

2~m1l!
~11n!]t ]2ATL52

r

2m1l
]t ]2ATL.

~30!

Substituting the equation of motion Eq.~28! for ATL into Eq.
~29!, we obtain the desired constitutive equation

dp5
2m1l

r
dr. ~31!

Together with the hydrodynamic equations~25! this correctly
leads to the sound equation

]t
2dr52

2m1l

r
]2dr52cuu

2]2dr, ~32!

with cuu the longitudinal sound velocity.

FIG. 3. Dispersion curves for~a! the transverse and~b! the
longitudinal modes in the hexatic phase. In both casesn51/2.
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However, as stressed by Martin, Parodi, and Pershan19

and again by Zippelius, Halperin, and Nelson,20 we are not in
general allowed to assume that the crystal is ideal, without
vacancies or interstitials. We must include the effects of
~long-wavelength! fluctuations in the net defect densitynD ,
which is defined as the density of vacancies minus the den-
sity of interstitials. To do so we can make use of the fact that
in a hexagonal system these defects can be regarded as a
‘‘bound state’’ of three dislocations with radial Burgers’ vec-
tors pointing symmetrically outward~interstitial! or inward
~vacancy!.21 This is illustrated for an interstitial in Fig. 4. As
a result the interaction of the net defect density with the
gauge fields is given by

Sint@A
TT,ATL,x8#5E

0

\b

dtE dxW i
gD

m
nD]2x8, ~33!

whereV0 denotes the area deficit induced by a defect in an
otherwise perfect crystal andgD5mcuu

2V0/2c'
2 . We can

verify this result by noting that in the static case~and
nD→ inD because of our conventions in the imaginary time
formalism of Sec. II! the Euler-Lagrange equation for the
Airy stress function, following from the action in Eq.~15!
together with the above interaction, becomes
]2x52(m1l)V0nD which correctly leads to*dxW uii

Phys

5V0*dxW nD . Furthermore, the free action of the defects be-
comes@cf. Eq. ~20!#

S0@nD#5E
0

\b

dtE dxW
ED

2
nDS r

m

]t
2

]2
11DnD , ~34!

with ED of orderEcV0 .
Redoing our calculations withnD nonzero, we find that

nD displaces thex8 field. Thereforex9 in Eq. ~16! is also
nonzero. Moreover, we now obtain instead of Eq.~32! the
coupled set of equations

]t
2dr52cuu

2S 11
ngD

2

EDm D ]2dr1 igDS 12
2gD

2

EDm D ]2nD ,

~35a!

]t
2 nD52c'

2 S 11
2gD

2

EDm D ]2nD1 i
gDl

EDr2
]2dr, ~35b!

for the longitudinal degrees of freedom. Note that the density
fluctuationdr receives a contribution from both the lattice
vibrations as well as from the net defect density, since

dr52
1

cuu
2 ]t ]2ATL1

2igD

cuu
2 nD . ~36!

As a result the longitudinal momentum density has also two
contributions

gi
L52

1

cuu
2 ] i]t

2 ATL2
2igD

cuu
2 Ji

L , ~37!

where JWL is the longitudinal part of the net defect current
density obeying the continuity equation]t nD52] iJi

L .
This almost completes our discussion of the hydrody-

namical description~without dissipation! of the solid phase.
However, we have not yet obtained the transverse modes.
From our expressions for the strain tensorui j one can easily
show that in the solid phase the transverse part of the dis-
placement field is given by

ui
T5

1

m
e i j ] j~]t A

TT!5
1

rc'
2 e i j ] j~]t A

TT!, ~38!

wherec' is the transverse speed of sound. Hence, the trans-
verse dynamics of the lattice is solely determined by the
transverse phonons and we have the additional hydrody-
namic equation

]t
2 ATT52c'

2 ]2ATT, ~39!

which is completely uncoupled from the previous ones and
in particular does not depend on the net defect densitynD .
Moreover, if we introduce the standard hexatic order param-
eter q6 , which is equal to the local bond angle and may
therefore be written as

FIG. 4. A Volterra construction for an interstitial in a hexagonal
lattice: ~a! three half-infinite lines of lattice points are removed~as
indicated by the arrows! and ~b! the lattice is distorted by drawing
together the edges about the removed lines in such a manner that
the crystal symmetry at large distances from the interstitial is re-
stored. The removal of the three half-infinite lines is simply the
Volterra construction of three dislocations. Thus an interstitial can
be viewed as being made from three dislocations. A similar con-
struction can be made for vacancies.
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q6[
1

2
e i j ] iuj52

1

2rc'
2 ~]t ]2ATT!, ~40!

the equation forATT is equivalent to

]t
2q652c'

2 ]2q6 , ~41!

so that q6 can also be used to describe the transverse
phonons.

From Eq.~38! we also find that the transverse part of the
momentum density is given by

gi
T5

1

c'
2 e i j ] j~]t

2 ATT!. ~42!

Therefore the stress tensor has the nondiagonal contribution

p i j
ND52

1

c'
2 e i j ~]t

3 ATT!52rc'
2 e i jq6 , ~43!

and both the longitudinal as well as the transverse hydrody-
namic equations in the solid phase can be summarized by

]dr

]t
52¹•gW , ~44a!

]gW

]t
52c2¹dr2gD¹nD12rc'

2¹3q6 , ~44b!

]q6

]t
5

1

2r
¹3gW , ~44c!

]nD

]t
52¹•JW , ~44d!

]JW

]t
52cD

2¹nD1g¹dr, ~44e!

after a transformation to real time, which in this case not
only means thatt→ i t but alsogW→ igW andnD→ inD . More-
over, note that the constantsc, gD , cD , andg should here be
interpreted as renormalized quantities which are determined
in terms of the microscopic parameters of our gauge theory
by a comparison with Eq.~35!.

Now we are ready to discuss dissipation. In principle dis-
sipation has already been included because there is a cou-
pling between the net defect densitynD and the phonons.
Hence if for example an interstitial were, in a discrete pic-
ture, to tunnel from one location to another there would be a
‘‘shake up’’ of the phonon field. However, if we treatnD as a
smooth continuously varying field, the action in Eq.~34! is
quadratic and the bilinear couplingnD]2x8 produces only
mixing of the collective modes but no real dissipation.
Therefore, we choose to include effective dissipation in the
same manner as explained in detail by Zippelius, Halperin,
and Nelson.20 Using their notation we first of all add
to the right-hand side of Eq. ~44b! the terms

@h¹2gW 1z¹(¹•gW )]/r associated with the dissipative part of
the stress tensorp i j and representing viscous diffusion of the
momentum density.

Next the question arises how we need to modify Eq.
~44e!. This equation is a result of the fact that we have al-
lowed the dislocations, and hence the interstitials and vacan-
cies, to move freely through the lattice and used Eq.~34! for
the free action of the defects. If the defects effectively expe-
rience friction~for example due to their interaction with the
phonons!, then it is more appropriate to add a Leggett fric-
tion term22 and use

S0@nD#5E
0

\b

dtE dxW
ED

2
nDS r

m

]t
2

]2
1 i

r

m
j]t11DnD

~45!

instead. The dispersions then indeed obey
v6.6c'k2 i jk2/2 at long wavelengths, and we must add
the termj¹(¹•JW ) to the right-hand side of Eq.~44e!. If we
further assume that the transverse part of the defect current
density behaves as in a gas and simply diffuses to zero with
a diffusion constantk, we obtain in total

]dr

]t
52¹•gW , ~46a!

]gW

]t
52

B

r
¹dr2gD¹nD12rc'

2¹3q61
h

r
¹2gW

1
z

r
¹~¹•gW !, ~46b!

]q6

]t
5

1

2r
¹3gW , ~46c!

]nD

]t
52¹•JW , ~46d!

]JW

]t
52cD

2¹nD1g¹dr1k¹2JW1j¹~¹•JW !, ~46e!

with B5r ]p/]runD ,T5rc2 the appropriate isothermal bulk
modulus in view of the fact that the pressure is a function of
both the particle density as well as the net defect density.
From thermodynamics we therefore also conclude that
gD5]p/]nDur,T .

It is interesting to point out that these hydrodynamic
equations differ from the results obtained by Zippelius, Hal-
perin, and Nelson. In particular, their Eq.~3.32! differs from
our Eq.~46e! and reads

JW52GD¹S nD

xD
2gDdr D . ~47!

The difference can easily be traced back to the fact that Zip-
pelius, Halperin, and Nelson assume on phenomenological
grounds that the dynamics of the net defect density is purely
diffusive. Indeed, we exactly reproduce their results if we
use in our calculation a free action of the form

S0@nD#5E
0

\b

dtE dxW
ED

2
nDS i ]t

DD]2
11DnD ~48!
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instead of Eq.~34!. We can therefore consider the hydrody-
namic equations of Zippelius, Halperin, and Nelson as the
overdamped~or classical! limit of our Eq. ~46!. Clearly,
Kleinert’s more microscopic approach does not lead to
purely diffusive, but in the first instance, to propagating be-
havior of the defects, which is appropriate for the quantum
crystals of interest in Sec. IV. We now turn to the modifica-
tion of the above results in the hexatic phase.

In the hexatic phase there are free dislocations present and
x9 replacesnD as the appropriate dynamical degree of free-
dom. To see most clearly how this comes about we will work
perturbatively in 1/Ec . Up to first order in 1/Ec the effective
action forx9 is

E
0

\b

dtE dxW H 1

4m~11n!
~]2x9!2

1
1

2Ec
~] ix9!S r

m

]t
2

]2
11D 21

~] ix9!J ,
which upon Fourier transformation displays two modes with
v25c'

2kW212m2(11n)/(Ecr). So in the limit Ec→`
~which physically means that we are looking at the nonhy-
drodynamic regimekW2@m/2Ec) we approximately have

]t
2x952c'

2 ]2x9, ~49!

whereas the equations of motion forATL andATT are

]t
2 ATL52cuu

2¹2ATL1
n

12n2
]tx9 ~50!

and

]t
2 ATT52c'

2¹2ATT, ~51!

respectively. For the mass-density fluctuation we now find

dr52
1

cuu
2 ]t ]2ATL2

r

2~m1l!
]2x9 ~52!

and for the stress tensor

p i j
D52d i j H 1

cuu
2 ]t

3 ATL1
r

2~m1l!
]t
2x9J

52d i j H cuu
2dr1

1

2~11n!
]2x9J . ~53!

Putting all this together we obtain in first instance the
following set of hydrodynamic equations for the hexatic
phase

]tdr5¹•gW L, ~54a!

]tgW
L52¹dp52cuu

2¹dr2
1

2~11n!
¹~¹2x9!, ~54b!

]t
2x952c'

2¹2x9, ~54c!

]t
2 ATT52c'

2¹2ATT. ~54d!

Combining the longitudinal and transverse parts as before,
this equals

]tdr5¹•gW , ~55a!

]tgW 52cuu
2¹dr2

1

2~11n!
¹~¹2x9!12rc'

2¹3q6 ,

~55b!

]t
2x952c'

2¹2x9, ~55c!

]tq652
1

2r
¹3gW , ~55d!

and clearly reduces to the hydrodynamic equations for the
ideal crystal if we putx950.

We now have to consider how the above picture changes
for a finite value ofEc . Here we can use the results of Sec.
II B. In the hydrodynamic regimekW2!m/2Ec we saw that the
transverse speed of sound was renormalized to zero, because
we found the quadratic ~particlelike! dispersion
v252EckW

4/r. As a result we have for the transverse part of
the hydrodynamic equations

]t
2 ATT5

2Ec

r
]4ATT, ~56!

which implies that in the right-hand side of Eq.~55b! we
must replace 2rc'

2¹3q6 by 24EceW z3¹(¹2q6). This
gives

]tgW
T524EceW z3¹~¹2q6!, ~57a!

]tq652
1

2r
¹3gW T, ~57b!

which is in complete agreement with Zippelius, Halperin,
and Nelson if we identify the Frank constantKA with 8Ec .

For the longitudinal part we need to analyze the dynamics
of x9 andATL. A straightforward calculation shows that the
effective action for these fields contains precisely the four
modes already found in Sec. II B. The propagating modes
with v252m(11n)kW2/r obeyx85x91n]tA

TL50 and are
therefore indeed associated with density fluctuations propor-
tional to ]2x9. We thus need to use a renormalized longitu-
dinal speed of sound equal to

c5A2m~11n!

r
5A2m

r

2m12l

2m1l
~58!

that is always smaller than the longitudinal speed of sound in
the solid phase. In fact, this actually exhausts the longitudi-
nal hydrodynamic modes since the other modes in the effec-
tive action forx9 andATL are gapped. As a result we now
obtain in real time the following set of hydrodynamic equa-
tions for the hexatic phase:

5678 53STOOF, MULLEN, WALLIN, AND GIRVIN



]dr

]t
52¹•gW , ~59a!

]gW

]t
52c2¹dr2

KA

2
eW z3¹~¹2q6!, ~59b!

]q6

]t
5

1

2r
¹3gW , ~59c!

not including dissipation.
To include dissipation we again follow Zippelius, Halp-

erin, and Nelson and add to the right-hand side of Eq.~59b!
the terms@h¹2gW 1z¹(¹•gW )#/r. However, we do not add
the termk¹2q6 to the right-hand side of Eq.~59c! because,
just as in the solid phase, the dissipation of the transverse
modes is already accounted for in the termh¹2gW that is
added to the momentum equation. Put differently, a term of
the formk¹2q6 can be absorbed by an appropriate redefi-
nition of KA andh. Again introducing the isothermal bulk
modulusB5r dp/druT5rc2 we then find

]dr

]t
52¹•gW , ~60a!

]gW

]t
52

B

r
¹dr2

KA

2
eW z3¹~¹2q6!1

h

r
¹2gW 1

z

r
¹~¹•gW !,

~60b!

]q6

]t
5

1

2r
¹3gW ~60c!

as our final result for the hexatic phase. Apart from the ab-
sence of a dissipative term in Eq.~60c! it agrees with the
findings of Zippelius, Halperin, and Nelson and therefore
contains the same mode structure as derived in that paper.
For completeness sake, we mention however that the equa-
tions of motion for the hexatic order parameterq6 can be
derived from an effective action

Seff@q6#5E
0

\b

dtE dxW
1

2
q6S 4r

]t
2

]2
14ih]t2KA]2Dq6 ,

~61!

that can easily be understood physically: The first term on
the right-hand side corresponds to the kinetic energy
*dxW r(]t uW )2/2 of the displacement field. The second term is
a Leggett friction term and the last term corresponds to the
usual Frank energy, which is responsible for the fact that the
hexatic to liquid transition is of the Kosterlitz-Thouless type.

IV. HYDRODYNAMICS OF SUPERFLUID PHASES

Having arrived at the hydrodynamic equations for the
solid and hexatic phases, our next objective is to incorporate
the effects of the additional hydrodynamic degree of freedom
associated with the phase of the superfluid order parameter.
Fortunately, from the microscopic theories developed for su-
perfluid liquids23 and gases24 it is well known how we should
proceed to obtain the hydrodynamic~two-fluid! equations for
the superfluid phases starting from the equations for the nor-

mal phase. The procedure consists, in principle, of four steps.
First, the total~average! densityr of the system is split up
into a normal densityrn and a superfluid densityrs . In
general these densities are tensors of second rank, but for
systems with hexagonal symmetry which are of interest here
they are proportional to the identityd i j and can be consid-
ered as scalars. Second, the total momentum densitygW is
similarly split up into a normal componentrnvW n and a su-
perfluid componentrsvW s with a superfluid velocity that is
purely longitudinal (¹3vW s50). Third, for an effectively
isotropic system the dissipative terms in the momentum
equation must be generalized to

h¹2vW n1z1
rs
r

¹@¹•~vW s2vW n!#1z2¹~¹•vW n!.

Finally, we must add the dynamics of the superfluid velocity,
which is basically determined from the Josephson relation
and reads

]vW s
]t

52
B

r2
¹dr1z3

rs
r

¹@¹•~vW s2vW n!#1z4¹~¹•vW n!,

~62!

whereB5r2dm/druT is again the isothermal bulk modulus
andm is the chemical potential per unit mass. We again leave
out temperature fluctuations since we are primarily interested
in third-sound modes, for which these fluctuations are~at
least qualitatively! unimportant.

A. Supersolid

To apply the above procedure to Eq.~46! we must realize
that we are here in fact already dealing with a two-fluid
hydrodynamics. We must therefore not only split up the total
momentum densitygW into a normal and a superfluid compo-
nent but also the net defect current, i.e.,JW5JWn1JW s . More-
over, we have to account for the fact that the chemical po-
tential, just like the pressure, is a function of the particle
density and the net defect density. In this manner we arrive at
the following hydrodynamic equations:

]dr

]t
52¹•gW , ~63a!

]gW

]t
52

B

r
¹dr2gD¹nD12rc'

2¹3q61h¹2vW n

1z1
rs
r

¹~¹•~vW s2vW n!!1z2¹~¹•vW n!, ~63b!

]q6

]t
5

1

2r
¹3gW , ~63c!

]vW s
]t

52
B

r2
¹dr1bD¹nD1z3

rs
r

¹@¹•~vW s2vW n!#

1z4¹~¹•vW n!, ~63d!
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]nD

]t
52¹•JW , ~63e!

]JW

]t
52cD

2¹nD1g¹dr1k¹2JWn1j1¹~¹•JW s!1j2¹~¹•JWn!,

~63f!

]JW s
]t

52
BDrs

r2
¹nD1brs¹dr1j3

rs
r

¹~¹•JW s!

1j4¹~¹•JWn!, ~63g!

with bD52]m/]nDur,T . These represent nine equations for
the nine unknown functionsdr, vW n , vW s , q6 , nD , JWn , and
JW s .

Although a complete analysis of the various hydrody-
namic modes is now possible, we will consider here only the
situation which is most relevant to experiments, namely that
the normal part of the two-dimensional system is clamped to
an underlying substrate. As a result we havevW n5JWn50W and
Eqs.~63b! and~63f! determining the normal properties of the
supersolid are no longer valid. The hydrodynamic equations
therefore reduce to

]2dr

]t2
5
Brs
r2

¹2dr2bDrs¹
2nD1z3

rs
r

]

]t
~¹2dr!,

~64a!

]2nD

]t2
5
BDrs

r2
¹2nD2brs¹

2dr1j3
rs
r

]

]t
~¹2nD!.

~64b!

They contain two pairs of propagating modes, which in the
limit of a small coupling constantb!BBD /bDr4 essentially
correspond to a pair of third-sound modes withdr unequal
to zero but a constant net defect density and a pair of modes
with an oscillating net defect density.

One might have expected that the coupling of a superfluid
density to a propagating defect density would have resulted
in one pair of gapped excitations and one pair of gapless
excitations instead. Consider, for example, two identical su-
perfluid layers. If the layers are uncoupled the dynamics of
the phasesq1 and q2 of the layers is determined by the
action

Slayers@q1 ,q2#5E
0

\b

dtE dxW H r2

2B
~]tq1!

21
rs
2

~¹q1!
2

1
r2

2B
~]tq2!

21
rs
2

~¹q2!
2J , ~65!

which clearly has two pairs of gapless~third-sound! modes,
one pair for each superfluid. If we couple the order param-
eters by allowing the particles to tunnel with an amplitude
2J/r from one layer to the other we must add a Josephson
coupling

Stunnel@q1 ,q2#52E dtE dxWJ cos~q12q2! ~66!

to this action. The hydrodynamics modes couple to form two
in-phase and two out-of-phase excitations. The modes with
q1 and q2 oscillating out of phase get gapped~i.e.,
v2.BJ/r2 for kW2!J/rs) and only the modes withq1 and
q2 oscillating in phase remain gapless. Yet in Eq.~64! we
find only gapless modes.

This paradox can be resolved by noting that we have
made the standard assumption20 that both the total number of
particles and the net number of defects is conserved. Hence,
after an atom has tunneled from a lattice site to the position
of a vacancy, a new vacancy is created near the original site
of the atom. The analogous process for the two coupled su-
perfluid layers in not simply tunneling of individual atoms
from one layer to another, but rather the exchange of a pair
of atoms in different layers, returning the system to its origi-
nal state. Such a process is not a Josephson coupling and
therefore the modes remain gapless. The existence of sepa-
rate conservation laws for the particle and defect density thus
allows, in principle, two separate broken symmetries.

We also note in passing that the third-sound modes in Eq.
~64! are not present in the hydrodynamic equations proposed
by Andreev and Lifshitz25 and considered in more detail by
Liu.26 This is a result of the fact that these authors use a
somewhat different physical picture for the supersolid phase:
They assume that the superfluid current density is carried by
~Bose condensed! defects and that the normal current density
is solely due to lattice vibrations. Hence if we takevW n50W ,
which in their context means that]uW /]t50W , only transport
of defects is possible and only the latter two modes survive.
However, as a consequence of their picture the hydrody-
namic equations in the~normal! solid phase describe only
longitudinal and transverse sound modes in an ideal lattice
and do not include the effect of vacancies or interstitials. As
explained above this is incorrect, in principle, and one should
at least also allow for a normal current density due to the
motion of defects. In addition, we have seen in Sec. III that
even in the presence of defects the density fluctuations are
equal to2ruii

Phys. It is therefore perfectly reasonable that if
there is superfluid mass transport possible in the solid, it can
be caused both by the motion of defects and by lattice vibra-
tions. Indeed, as an existence proof of this latter possibility
we can, for instance, consider superfluid4He in a weak pe-
riodic and commensurate potential, which is clearly a super-
solid without defects.

While it is generically possible to have both density and
defect superfluid modes, we might expect however, for real-
istic films on realistic substrates, that in a supersolid it may
be harder for particles to perform ring exchanges16,27than for
vacancies to exchange positions. Thus,a priori, we might
expect the effective superfluid stiffness for the density fluc-
tuations to be smaller than that of the vacancies, perhaps to
the point where the former is entirely absent.

B. Superhexatic

We next turn to the superhexatic phase. In a similar man-
ner as in Sec. IV A we obtain from Eq.~60! the full set of
hydrodynamic equations
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]dr

]t
52¹•gW , ~67a!

]gW

]t
52

B

r
¹dr2

KA

2
eW z3¹~¹2q6!1h¹2vW n

1z1
rs
r

¹@¹•~vW s2vW n!#1z2¹~¹•vW n!, ~67b!

]q6

]t
5

1

2r
¹3gW , ~67c!

]vW s
]t

52
B

r2
¹dr1z3

rs
r

¹@¹•~vW s2vW n!#1z4¹~¹•vW n!,

~67d!

that leads to the usual two-fluid hydrodynamics of a super-
fluid if we omit Eq. ~67c! and putq650. Therefore these
equations allow for first and second sound,28 and for a pair of
transverse modes involvingvW n

T andq6 which are either dis-
persive or propagating depending on the sign of
D5KA/4r2(h/rn)

2: If D<0 we have two purely dispersive
modes withv652 i (h/rn6A2D)kW2/2, whereas ifD.0
we have two propagating modes and the particlelike disper-
sion v656ADkW2/22 i (h/rn)kW

2/2. However, considering
again the casevW n50W the hydrodynamic equations now sim-
ply reduce to

]2dr

]t2
5
Brs
r2

¹2dr1z3
rs
r

]

]t
~¹2dr!, ~68!

which contains only a pair of third-sound modes with the
velocity c35ABrs /r

2 and the diffusion constant
D35z3rs /r.

V. CONCLUSIONS AND DISCUSSION

In this paper we have derived the hydrodynamic equations
for the supersolid and superhexatic phases of a neutral two-
dimensional Bose fluid. For the supersolid these equations
are rather complex, since they incorporate the effects of de-
fect motion and lattice vibrations on both the normal and
superfluid parts of the momentum density. Our physical pic-
ture for the influence on the superfluid part is roughly speak-
ing that in a mean-field theory the condensate wave function
C(xW ,t) obeys the Schro¨dinger equation

i\
]C~xW ,t !

]t
5H 2

\2¹2

2m
1E dxW8V~xW2xW8!n~xW8,t !J C~xW ,t !,

~69!

wherem is the mass of the Bose particles andV(xW2xW8) is
their interaction. In addition,n(xW ,t) is the particle density
which will be determined by an additional mean-field theory
that, for a supersolid, shows the instability associated with
the formation of a density wave. Hence the~thermal! average

^n(xW ,t)& is periodic in space and independent of time. As a
result the condensate wave function is, if we neglect density
fluctuations, also periodic and we have indeed both diagonal
as well as off-diagonal long-range order. Fluctuations in the

density, however, induce variations in the phase of the wave
function and therefore in the superfluid velocity. Because
these density fluctuations can be caused by both lattice vi-
brations and oscillations in the net defect density we con-
clude that both mechanisms can lead to superfluid motion.
Together with the existence of a conservation law for the net
number of defects, this explains from a more microscopic
view why we found two third-sound modes and two modes
with an oscillatory net defect density in the case of a super-
solid adsorbed onto a substrate.

For the superhexatic phase we have shown that the
hexatic long-range order leads to an additional~as compared
to the superfluid! hydrodynamic degree of freedom that af-
fects only the transverse modes and is therefore at long
wavelengths decoupled from the superfluid momentum den-
sity. This can also be understood from the above picture,
since variations in the orientational order parameterq6 do
not lead to density fluctuations in first instance. As a result
we find on a substrate only two third-sound modes and thus
at the hydrodynamic level of description nothing to distin-
guish the superhexatic from the superfluid. Although this is
in agreement with the experiments of Chen and Mochel, who
indeed only observe one third-sound branch below the sec-
ond critical temperatureTc , it is unfortunate for the purpose
of suggesting a possible identification of the superhexatic
phase. On the basis of our results we can, however, conclude
that a more microscopic probe is needed if one wants to
detect the orientational order present in a superhexatic he-
lium film. In our opinion this appears to be an important, but
also difficult experimental challenge.

Finally, we would also like to point out the possible rel-
evance of our results to the recent experiments with bulk
solid 4He.10 In these experiments Lengua and Goodkind ob-
serve at sufficiently high frequencies an additional~resonant!
attenuation and velocity change of sound. Moreover, they
notice that their data can be explained by a simple model of
two coupled wave equations which turns out to be identical
to the longitudonal part of our solid hydrodynamics derived
in Sec. III. Because our two-dimensional hydrodynamics
should be able to describe the propagation of sound perpen-
dicular to thec axis of hcp4He, this confirms the conjecture
of Lengua and Goodkind that the collective mode observed
is associated with the motion of defects. For a more detailed
discussion of the coupling between sound and the defects
one should of course consider the fully three-dimensional
situation and include the anisotropy of the hcp crystal. Work
in this direction is in progress.
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