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We derive the hydrodynamic equations for the supersolid and superhexatic phases of a neutral two-
dimensional Bose fluid. We find, assuming that the normal part of the fluid is clamped to an underlying
substrate, that both phases can sustain third-sound modes and that in the supersolid phase there are additional
modes due to the superfluid motion of point defgecancies and interstitials

[. INTRODUCTION Therefore, in an attempt to explain in the first instance
only the experimental results for submonolayer coverages
Liquid helium (*He) has a reputation for being the first where no second resonance is seen and which also appears to
substance in which one is able to observe many macroscopiie the most simple case theoretically because no layering
guantum phenomena. In particular, it was the first systenphenomena are expected, we have recently proposed that be-
that could sustain superfluid flowand as a consequence low the second critical temperature the superfluid helium
display a number of amazing properties such as seconfilm is in a spatially ordered phase exhibiting both off-
sound, quantized vortices, and the fountain effect. Furtherdiagonal(superfluid and diagonalhexatig long-range order
more, thin superfluid helium films were the first two- in the one-particle density matrThe main idea behind this
dimensional systems experimentally proven to undergo @roposal is that the hexatic to fluid transition is known to be
Kosterlitz-Thouless transition to the normal stafdore re- a Kosterlitz-Thouless transition driven by disclination
cently it may have been obserethat on weakly binding unbinding’ (Disclinations are defects in the orientational or-
substrates these films are the first-known spatially ordereder of a crystal created by the insertion or removal of a
superfluids. wedge of atoms, as shown in Fig) Therefore, our physical
More precisely, measurements of the third-sound resopicture of the experiments is that at sufficiently low tempera-
nance frequencywhich is proportional to the square root of tures the film is in a superhexatic phase with only a dilute
the superfluid densijyof submonolayer helium films on hy-
drogen and deuterium substrates apparently indicate two in-
dependent Kosterlitz-Thouless transitions: the usual super-
fluid to normal transition at a temperature; that obeys the
expected universal jump relatidrand a second new transi-
tion at a temperaturd, which is roughly 0.9y for all
coverages. The second transition appears as a $hatrmot
discontinuousrise or dip in the superfluid density depending
on the substrate. In addition, for helium films thicker than
one monolayer and for temperatures betw&gand Tyt one
actually observes a second resonance frequency that corre-
sponds to a mode which is 90° out of phase with the third-
sound mode. This latter observation has lead to the sugges-
tion that atT the vortices in the film form an “ionic” lattice
that subsequently melts @i .° Although the existence of
transverse vibrations in such a vortex-antivortex lattice can
very nicely explain the presence of a second resonance fre-
quency in the third-sound measurements, it remains unclear Fjg. 1. A negative disclination in a hexagonal lattice. It is
why this second resonance is only observed for coverag&grmed by removing a 60° wedge from the lattice, and then distort-
above one monolayer. Moreover, the melting of the lattice aing the lattice so that the open edges meet. A positive disclination
Tyt will not lead to the universal jump relation for the su- (not shown is formed by the insertion of a 60° wedge of material
perfluid density as is observed experimentally. into the lattice.
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gas of bound vortices and bound disclinations present due to
thermal fluctuations. For entropic reasons the disclinations a)
then unbind af;, leading to a transition from a superhexatic
to a superfluid phase since the vortices remain bound at this
transition and the presence of free disclinations destroys the
hexatic long-range order. Ak the vortices then also un-
bind and the film is finally forced into the normal liquid
phase.

Of course, to make sure that the above picture is qualita-
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tively correct we must also consider the interaction between
vortices and disclinations. This is even more pressing if one
realizes that in a supersolid phaéghere all disclination P
pairs are themselves bound into pairs or tripliés interac-
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d Hﬁvge\./efr' to dgflm_tely Idzmc'jfy;he pfhase belaky modre hi section of the two-dimensional lattice bounded by the IGops
etailed information is needed. As a first step towards t 'Semoved andb) the edges of the loop are pulled together to form

goal we here present th_e tWO-dim_er_lsionaI hydrOdynami‘fhe dashed lineZ. The endpoints” of this line correspond to the
equations of a superhexatic by describing the superhexatic Fsitions of the dislocations.

a supersolid with free dislocatior(ge. disclination pair§.

As a result of this approach we will also be able to considefnciyde higher gradient elasticity. This leads to a consider-
the hydrodynamics of the supersolid phase, for which thergpje simplification of the theory but implies that we cannot
is at present a renewed |ntere_st4bot[1O in the context Ofroperly treat the dynamics of the disclinations. Fortunately,
Josephson-junction arrdjsand solid*He'* Moreover, spa-  for our purposes only the dynamics of the dislocations is of

tially ordered superfluid states have recently been proposegnortance and this simplification is justified.
to be also relevant for the fractional quantum Hall efféct,

since this effect can be understood as a condensation of com-
posite boson$? We therefore believe that the methods devel-
oped below might, if extended to bosons interacting with a In the case of an isotropic crystal, the action for the dis-
Chern-Simons gauge field, also be used to obtain a descripiacement field_ji()Z’ 7) in the presence of a pair of disloca-
tion of the dynamics of such exotic quantum Hall states. tions is given by*

We have organized the paper in the following manner. In
Sec. Il we first consider the normal solid and hexatic phases np R )
by formulating a gauge theory that describes the phonons,S[Ui]:Jo dTJ dx E(af ui—Bi)+u
the dislocations and the interaction between them. From this
theory we then deduce in Sec. Ill for both phases the dynam- A 5
ics of the appropriate hydrodynamic degrees of freedom. In + E(uii_ﬁii) ] (1)
Sec. IV we incorporate the effects of the additional super-
fluid order parameté? into the hydrodynamic equations de- where uij = (djuj+ d;u;)/2 is the strain tensope and\ are
rived in Sec. Il and discuss the various long-wavelengththe usual Lameoefficient$® andp is the average mass den-
modes in the supersolid and superhexatic phases obtainedsity. The unphysicaland singular contributions arising from
this manner. We conclude in Sec. V with a dispussion on thghe multivaluedness in()_()v 7) are compensated by the quan-
possible relevance of our work to future experiments on subyjties B; and B; (also known as the “plastic distortion”
monolayer helium films and with a physical interpretation of thejr relationship to the defects is best explained by the Vol-
our results. terra construction® Let " be a small loop bounding a sec-
tion of two-dimensional crystal that is excised from the
whole (cf. Fig. 2. The edges of the loop are drawn together
and form a line%#. This line may be time dependent, and its

In this section we will derive the long-wavelendifjuan-  definition is not unique. However, the topological defects
tum) dynamics of the solid and hexatic phases. The discusd.e., two dislocations with opposite Burgers’ vecjoesso-
sion closely follows work by Kleinert? save that we will not  ciated with the distortion of the surface are always located at

FIG. 2. A \olterra construction for a pair of dislocation(® a

A. Solid
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Il. GAUGE THEORY OF PHONONS AND DISLOCATIONS
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the endpoints of#. If =B are the Burgers’ vectors of the This constraint can be automatically satisfied if we introduce

dislocations constituting the pair and if is their velocity the vector fieldA; and the tensor fieldA; .by. setting
then IBlj _ 5,(%)81 and BJ: _U|5|(g)B] . The delta func- gij = eik(?kAj + ekiarAkj andpj= Eki(?iAkj . SUbS“tUUng these

tion §;(.%) is singular on the time-dependent Volterra cutting :ﬁlatlons mtfq tkr;e_actu:rr]\ wehfmd that :jh?hlntzra;:tlor:_ betvyeen
line # of the dislocations and is directed along the normal 1€ gauge fie gi.e., the phononsan € dislocations 1s

- iven b
vector. If the cutting line” is parametrized by(s,7) with g y

0=s=<1, this means mathematically that hp -
Sint[Aij ,AJ]:f de dX{_iAiai+iAijJij}, (7)
o 1ooxi(s,7) - - 0

5i(2)=—¢j fo ds Js S(x—x(s, 7)), (2 where after several partial integrations the unphysical singu-

larities of 8; and B;; have disappeared and only the disloca-

wheree;; is the two-dimensional antisymmetric tensor. Notetion density and the dislocation current density remain. In-
that the dislocations are assumed to be able to move freeloducing also the functions(#)= 5()2(1,7))— 5&(0,7-)),
without any friction, through the crystal because the equawhich denotes the difference betwee# function at one end
tions of motion for the displacement field allow for time- of the cutting line# and aé function at the other end, these
dependent solutions that precisely correspond to such evolgensities and currents can conveniently be written as

tions of the crystal’ We will come back to the issue of ;= 5(7)B; andJ;;= —v;5(7)B;, respectively. As a direct
f!’iCtion in Sec. Il when we consider the effects of diSSipa— conseguence of the above definitions they Obey the conser-
tion. vation law

We now first perform a Hubbard-Stratonovich transforma-
tion by introducing the auxiliary variablﬁ (representing the -0 =0didjj . ®)

momentum densifyand adding the quadratic term In addition, the dynamics of the phonons is determined by

the remaining quadratic terms in the action which expressed

B .1 ; X :
f de dXZ—[pi—ip(ﬁfui—ﬁi)]z in terms of the gauge field&; andA;; yield
0 p
. . . hB -[ (€ikdiAj)?
to the action, which may now be rewritten as Sol Ajj ,Aj]zf drf dx T
0
S| -U']ZJ'ﬁBded;({p—iz-i- u--—Mz Lo v
PLtd= 2p HT 2 +m(0”_1+v0“ ’ ©
A i with oj; equal to € (dxA;—d,Ay;). Comparing this result
+ 5 (U _Bii)z_lpi(arui_ﬂi)+- (3)  with Eq. (1) we observe that the stress and the physical part

of the strain uﬁhysz ui;—(Bij+B;)/2 are related by
Integrating outp would return the original action up to an oj;=2uuf™* \ &;ug’*and therefore by

unimportant constant. In a similar manner we then also in-

troduce the symmetric stress tensef, to decouple the uEhys:i o — v S o (10)
terms quadratic in the strain. This results in B 2u |\ Ty TRk
5 2 We will have need of the latter relation in Sec. Ill, when we
B - pi 1 14 . . . . .
Spi,aij ,Ui]:f de dx{ L4 = (,iZJ. - 05) discuss hydrodynamics. A more formal way to justify it is to
0 2p Ap 1+v add to the actior§[u;] a source term
_ ) Bii + Bii #B R i+ B hp -
—ipi(d,u= B) +ioy | Uy — =1, ar [ ax K, | u— PP [P [ ax o upe
2 o i M 2 0 =]

(4) and perform the same manipulations as before. We then find
with »=\/(2x+\). The partition function is now given by that the sourc;; indeed couples linearly to the right-hand

the functional integral side of Eq.(10).
Following Kleinert, we now notice that the above theory
1 has a gauge symmetry as a result of the fact that the gauge
sz d[pi]f d[Uij]f d[Ui]eXD[ — 7 SLpi, 0 ,Ui]}1 fields A; andA;; are not uniquely determined if the stresses

(5) gij and momentg; are known. Indeedg;; andp; are in-
variant under the gauge transformatign—A;+d.A; and
where the integration over;; is only over the symmetrical A;—A;;+d,A;. HenceSy[A;j ,A;] is also invariant. More-
part since we have not included higher gradient elasticity. over, due to the conservation law in E®), the interaction
We can now perform the integration over the displace-5,[A;; ,A;] is invariant too.
ment field. Because the action is lineatirthis simply leads To calculate the partition function we therefore need some

to the constraint gauge-fixing procedure. The symmetry @f requires that

9.p;= 007 . (6) €ij01) = IjA| — 9-(A;;) =0 (11)
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We would now like to write the gauge fields as the appropri-ant and therefore cannot depend An After this gauge-
ate derivatives of unconstrained fields. Using the abovdixing procedure the partition function thus becomes
gauge symmetry we can always tak&=e¢;d;x and

. | 1
Ajj=0. This, however, does not completely fix the gaugeZ:f d[ATT]f d[ATL]f d[X’]exp{ —%(SO[ATT,ATL,X']
because these conditions are still invariant under the smaller

group of transformations y—x+d,A and A;j—A;
+0;(€jxdA). To see more clearly the consequences of this +Sim[ATT,ATL,X'])], (13
residual symmetry we expand; into its longitudinal and
transverse componentwith respect to both indicgsi.e., Note that we are left with three physical degrees of freedom,
L T L which is the correct number in two dimensions simgeand
Aij=0i(FAT) + i€k IA™) + € (A TT) p; contain, in principle, a total of five degrees of freedom but
+ el 1) ATTY, (12 Wwe have two constraints in E¢6). Note also that the trans-

formation fromoy; andp; to A™", A™ andy’ is a linear one
where we have introduced four new fields. The tracelessnes® that the Jacobian involved in the calculation of the parti-
of A;; can then be fulfilled by taking\"-=—~AT". In addi-  tion function is simply an unimportant constant. In particular,
tion, the residual gauge symmetry can now be written ashe stress is given by
x—x+d,A and A" AT+ A, This shows that instead of o - -
the fieldsy and AT we must use the gauge-invariant field 7ij = €ik€j, 9k, X'+ d(did|A"+ €y A" + € ddiA ),
x'=x—d,A" together withA as integration variables. The (14)
associated change of measure can be incorporated in the nevhich is manifestly symmetric in andj.
malization and the same is true for the “volumgt[ A ] of A straightforward calculation now shows that the free part
the residual gauge group because the action is gauge invaof the action is

hp J1 1 1 1
TT ATL 11— 27TTY2 | 92ATTV2, 27TLY2 2 ATLY2
S AT AT v'] fo drfdx[zﬂ(&T&A ) 2p(<?,<9A ) 4#(1+V)(570A ) 2p(alaA )
1 1 v
(A2 N2 2ATL 2.1
+4M(1+V)(<9X) 7 1+V(075A COGIE (15

It contains four modes: The part involvild'™ has a pair of mode&orresponding taxk) with w?= uk? p. These modes
therefore represent the transverse phonons with a speed of suipd The part involvingA™ and ' has another pair of
modes with a dispersion 0beying2=(2M+)\)I22/p. These represent the longitudinal phonons with a speed of sound
V(2u+N\)/p. Interestingly, these results can be understood much more easily if we introduce the field

X//EX/_V(?T ATL, (16)
since then the above action becomes
hB A1 1 1-v 1 1
TT ATL _n— el 2ATTN2 . = (9 22ATT\2 2ATLN2 L = (9 92ATLN\2 2.m2
So[A"L AT Y] fo er dx| ZM(&TaA ) +2p(a,aA ) +_4,U« (9,0°A™) +2p(a,aA ) +—4,u(1+v)(‘9X) ,
(17)

so that the fields are Completely uncoupled. Notice that thgve of bi . Decomposindi into its transverse and |0ngitudi-
x" field has no kinetic term, which explains why we obtainedpg| parts, i.e.,b,=a;b-+€;9;b", the interaction finally
above only four modes instead of six, as might have beepgcomes .
expected in first instance.

Furthermore, if we introduce the usual Burgers’ field hp R
b(x,r) for the total dislocation density, which is nothing Sqm[ATT,ATL,X’]=f drf dx i{x’'#*b"—ATT9_ °b"}.
more than the sum of the density, over all dislocation 0 19
pairs, then the interaction with the dislocations acquires the (19

form The total actionS=Sy+ S, reduces for time-independent
1B _ configurations to the one we previously used for a discussion
S AT AT ¥/ 1= J er dx i{xejd;bi—ATTd, gb;}, of the critical properties of the superhexatimtegrating out
0 the fieldsA™™ and y’ we can now find the time-dependent
(18) interaction among the dislocations. Physically, these interac-
where we have made use of E§) to express the longitudi- tions are thus associated with phonon exchange and the time
nal part of the current density; in terms of the time deriva- dependence arises due to the finite speeds of sound. This
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picture also explains why the effective action fgr contains nB _E. (p
just one pair of modes: The self-interaction of the transverse So[bi]=J’ de dx 7bi — ?+1 b;
dislocation density can only be mediated by longitudinal 0 K
phonons. hp E
=f dff dx?C{bT(ﬂaeraz b7
B. Hexatic 0 M
Up to this point the dislocation density has not been an P 2 ol
independent dynamical variable, since we have specified the +hb ;‘9T+ 97 |b~ . (20)

positions of the dislocations at all times and thus neglected

the influence of the phonon dynamics on their motion. How-

ever, to describe the hexatic phase we want to integrate out

the dislocations in the plasma(or continuouy This action represents free propagation of the dislocation
approximation’. For that we need the free action of the field density fluctuations which, as mentioned previously, are per-
b. Here we can again make use of the results obtained bitted by the classical equations of mottérand neglects
Kleinert, who showed that the energy associated with thelissipative coupling of the dislocation cores to the phonons.
nonlinear stresses at the heart of the defect can be lumped Integrating out the Burgers’ field using Eq$9) and(20),

into a “core contribution” to the action®8In our notation ~we obtain the following results. The effective action for
this contribution becomes ATT becomes

2 -1
Jd

B—;+1

om0

hB .1 1 1
fir ATT] — _ 2ATIN2 | = (9 92pATTN2 . _— ATT ATT
STAM] fo er dx{ ZM(aTa A +2p(0,(9 A +2EC(aT diA )( (9, giA )}. (22)
As shown in Fig. 8a), it contains two pairs of modes which fcla?|2>,u/2EC all have a dispersion obeyin@zz,ulzzlp.
However, fork?< u/2E., one pair of modes has a dispersioA=u?/Ep+2uk?p with a gap whereas the other pair of
modes is gapless with?=2E k% p. This is consistent with our expectation that in the hexatic phase there should only be one

pair of transverse gapless modes with a softer dispersion than that of the transverse phonon modes in a true solid.
The effective action fory’ andA'™ in the hexatic phase is

14

N R 1 1 1
ffr ATL 77— 2ATLY2 92 ATLY2 2.,1\2_ 2ATL 2.1
SAT x'] fo dTJ dx{4M(1+V)(aT(9A Pt o (GPAT 4 e (X o 1 (0, PATPX)

2

1 [P 97 1_1
+2—EC((9iX) ;32+

((%x’)]- (22

Integrating out alsd\™ we finally arrive at the effective action fo’. It reads

Seff ’_J»hﬁdfd_) 1 2!2+1 r(pa72'+l o ’
[x']= , d7) dx 4,u(1—+v)((9 x") Z—EC(ﬁiX ) n P (dix")
1/ 1 2 2 9?2\ 71
| — 2o\ T 2.1
and also contains two pairs of modésf. Fig. 3b)]. lll. HYDRODYNAMICS OF SPATIALLY ORDERED
PHASES

For I22>,u/2EC we recover of course the ordinary sound

. . 2. W) _ _ .2 2
d|sp?2r3|ons<u 2'“',( /[p(l, sz] (2p+Mkp and w We now turn to the linear hydrodynamics of the solid and
= pk®/p. However, in the I|r_n|ﬂ§ <'“/22EC these evolve into oy atic phases that follows from the theory presented above.
a pair of gapped modes with“=2u"/[E;p(1-»)] and @ o the sake of clarity, and because it will turn out to be less
pair of propagating modes with?=2u(1+ v)k?/p, respec- important for our purposes, we will not discuss temperature
tively. Clearly, the same mode structure is also present in thluctuations in the following. However, having derived the
effective action forA™ (obtained by integrating out’ in- relevant energy densities in Secs. Il Aand Il B it is, in prin-
stead ofA™) which indicates that in the hexatic phase theciple, straightforward to include temperature fluctuations in
longitudinal velocity is renormalized downwards to our theory and, in particular, to arrive at the extension of the
V2u(1+v)lp. hydrodynamic equations presented below that is required if
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6.0 ‘ ‘ where the longitudinal momentum density is given by
(a)
0=~ 5y - AT (@28)
o and the diagonal part of the stress tensor by
i; o__ P Py +g. AT 2
& i = 2(u+N) T(X T ) (27)
3 20
In the absence of defects, the hydrodynamic quantities
gr and ;) are precisely equal to the longitudinal partmf
and the diagonal part of;; , respectively. This can be seen
0.0 ' : in the following manner. In an ideal solid we have no de-
0.0 2.0 4.0 6.0 2 o . )
k REJn)" fects, and variation of the action in E_dL_?) gives x"=0 or
x'=vd, AT, which we may use to eliminate’. The equa-
100 tion of motion forA™ generated in this way is
© 32 ATt = — ZM—H\&ZATL. (28)
80 t ] 4 p
If we substitute this back into the definitions @f and }}
. 807 we obtain the longitudinal part qf, and the diagonal part of
j‘) ajj as given in Sec. Il. In the presence of defects with their
S a0} ] own dynamics this is no longer true, since the dislocation
3 density couples to the gauge fields and alters the equations of
motion. To avoid confusion about this point we have, there-
207 fore, introduced a new notation for the hydrodynamic mo-
mentum density and stress tensor which we will use for the
0.0 : : : - rest of the paper.
0.0 1.0 20 3.0 4.0 5.0

" We also note that the above equations are not Galilean
invariant and are therefore only valid in a specific reference
frame. This is a result of the fact that the gauge theory of

FIG. 3. Dispersion curves fofa) the transverse an¢b) the  Sec. Il has implicitly used the existence of an ideal lattice

longitudinal modes in the hexatic phase. In both cased/2. with respect to which the displacements(x,7) are

defined'® Hence, the prefered reference frame corresponds

one wants to consider also the hydrodynamic mode due t@) 1ot frame in which this ideal lattice is at rest. This is the

ﬁnceirgé/ cons_ervan(_)nblAfter thed equat_|on§ of motion f_fo(; ﬂ;]ecase for all the hydrodynamic equations presented below.
ydrodynamic variables are determined, we can find the ', ;s jgeal solid without interstitials or vacancies the

propagating and diffusive modes. This is done as before, b : : D_ _
Fourier transforming the equations of motion and determin—kgressure fluctuatiotfollowing from ;= —;; 5p) equals
ing the dispersiorw (k). Propagating modes appear as com- p p

plex roots of a characteristic equation and will always occur Sp= 2—4—)\)(1+ V)33 ATLzmaf AT (29
in pairs. Each physically distinct propagating excitation such (n K

as longitudinal or transverse sound corresponds therefore #ind the mass-density fluctuation becomes

two roots or modes.

K (2E /i)

We start by considering the mass-density fluctuaifipn B P DA TL p 2 ATL
above the average mass dengityand initially neglect the op=- 2(u+N) (1+v)d, F"AT= = 2u+X\ Ir AT
possible presence of vacancies and interstitials. To lowest (30

order in the strain, the density fluctuation equalpu’™sso

“ . . . . TL .
up to that order we obtain Substituting the equation of motion E@8) for A'- into Eq.

(29), we obtain the desired constitutive equation

p
9,8p=—pd, ukM=— mﬁf Tii » (24) Sp= Zuth
p

Together with the hydrodynamic equatioi2$) this correctly
leads to the sound equation

Sp. (31)

if we make use of Eq(10) to relate the stress and the strain.
Using also the decompositian; = #%x’ + d,9°A™ from Eq.
(14) we may write this as a pair of continuity equations

AR DN

9.6p=0,ar, (259 P2op=— J?8p=—cfd*p, (32

5rgjLzﬁi 77:?1 (25 with ¢ the longitudinal sound velocity.



5676 STOOF, MULLEN, WALLIN, AND GIRVIN 53

verify this result by noting that in the static cagsand

a nA—>inA because of our conventions in the ima}ginary time
(a) ® ® ® ® ® @ formalism of Sec. |l the Euler-Lagrange equation for the
Airy stress function, following from the action in E@l5)
o o e o @ @ together ~with the above interaction, becomes
#*x=2(m+\)Vony which correctly leads tofdx ul™s
] ® o @ e ® =V0fd;< n, . Furthermore, the free action of the defects be-
comes[cf. Eg. (20)]
® © ©¢ © o o © - .
fﬁﬁdfd”EA Py 34
® ° @ o o o Snal= g dr] dxgmfy gz m. (9
with E, of orderE_.V,.
® ® ® o ® ® Redoing our calculations with, nonzero, we find that
n, displaces they’ field. Thereforey” in Eq. (16) is also
® @ © ® @ ® nonzero. Moreover, we now obtain instead of E8R) the
coupled set of equations
2 2
2 2 V’YA) 2 . 27A) 2
Sp=—cfjl 1+ ——|9°8p+ 1-—
(b) o e o6 o o ® J26p=—cj Ein #PSp+ivy, Eup ny,

(353

2%} Yal
2 _ _ A2 2 H 2
® ¢ o o o o T me I g, | Tt g 2 ok, (39D
® for the longitudinal degrees of freedom. Note that the densit
e 6 o o e o g g ' y

fluctuation p receives a contribution from both the lattice
vibrations as well as from the net defect density, since

o o o @ [ ] e )
S ! 9. PATE+ 2 (36)

=—= ny .

o o o [ [ & p==—z29 Z M

As a result the longitudinal momentum density has also two
FIG. 4. A Volterra construction for an interstitial in a hexagonal contributions

lattice: (a) three half-infinite lines of lattice points are removed .
indicated by the arrowsand (b) the lattice is distorted by drawing L 1 2 ATL 21y L
together the edges about the removed lines in such a manner that g9i=- Eﬁ‘?iaf AT _Cﬁ_‘]i ' (37
the crystal symmetry at large distances from the interstitial is re-
stored. The removal of the three half-infinite lines is simply theywhere Jt is the longitudinal part of the net defect current
Volterra construction of three dislocations. Thus an interstitial carjensity obeying the continuity equatien ny=—a,J- .
be viewed as being made from three dislocations. A similar con- This almost completes our discussion of the hydrody-
struction can be made for vacancies. namical descriptiorfwithout dissipatioh of the solid phase.
However, we have not yet obtained the transverse modes.
From our expressions for the strain tensgrone can easily
how that in the solid phase the transverse part of the dis-
lacement field is given by

However, as stressed by Martin, Parodi, and PefShan
and again by Zippelius, Halperin, and Nels8nye are not in
general allowed to assume that the crystal is ideal, Withou;
vacancies or interstitials. We must include the effects o
(long-wavelengthfluctuations in the net defect density , 1 1
which is defined as the density of vacancies minus the den- U =—¢;d;(d, AT = —5€;9;(3, AT, (38)
sity of interstitials. To do so we can make use of the fact that K PCL
in a hexagonal system these defects can be regarded asyfierec, is the transverse speed of sound. Hence, the trans-
“bound state” of three dislocations with radial Burgers, vec- verse dynamics Of the |attice is so'e'y determined by the

tors pointing symmetrically outwardnterstitia) or inward  transverse phonons and we have the additional hydrody-
(vacancy.?! This is illustrated for an interstitial in Fig. 4. AS namic equation

a result the interaction of the net defect density with the
gauge fields is given by 92 ATT=—c2g2ATT, (39

N - YA 5, which is completely uncoupled from the previous ones and
SnlA AT X = fo de dxi 7%(7 (33 in particular does not depend on the net defect demsity
Moreover, if we introduce the standard hexatic order param-
whereV, denotes the area deficit induced by a defect in areter 9¢, which is equal to the local bond angle and may
otherwise perfect crystal and,=ucfVo/2c?. We can therefore be written as
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1 1 Next the question arises how we need to modify Eq.
V6= 5 €jdilj =~ ﬁ(&r J*ATT), (400 (44e. This equation is a result of the fact that we have al-
PEL lowed the dislocations, and hence the interstitials and vacan-
the equation foA'" is equivalent to cies, to move freely through the lattice and used [B4) for
the free action of the defects. If the defects effectively expe-
afﬁﬁz —cf Vg, (41 rience friction(for example due to their interaction with the

) phonong, then it is more appropriate to add a Leggett fric-
so that J can also be used to describe the transversggn ternf? and use

phonons.

From Eq.(38) we also find that the transverse part of the B LEy (p &P p
momentum density is given by SO[nA]=J dq-J dx TnA(; 0—;+i ;&?,4—1 Ny
0

(45)

instead. The dispersions  then indeed obey
Theref h has th di | ibuti w*=*c, k—i£k?2 at long wavelengths, and we must add
erefore the stress tensor has the nondiagonal contri Uthtﬂe term&V(V - J) to the right-hand side of Eq44e. If we
1 further assume that the transverse part of the defect current
0=~ — €;j(9> AT)=2pc’ € Vs, (43)  density behaves as in a gas and simply diffuses to zero with
I a diffusion constank, we obtain in total
and both the longitudinal as well as the transverse hydrody-

1
9/ =—7€;,(6> AT). (42)
Cy

namic equations in the solid phase can be summarized by _55‘0 =-V.g (469
ot ’
0 __ g 44
Jt - 'g! ( a (76 B 2 n 27
9 E:—;V(‘)‘p—'yAVnA‘szCLVXﬂB'F ;V g
at + ’ +;V(V-g), (46b)
Po_ L uxg (449 95 _ 1
- = g, C 14 6 -
a2 ot 2,
p ot 2pVXg’ (469
any >
“Eov.j, (449 Ny 3
at =-V.J, (460)
at
0J 5 N
i = CaVnat+yVép, (449 J 2 23 j
—r = T CAVNa+yVap+kVEIHEV(V-J), (469

after a transformation to real time, which in this case not
only means that—it but alsog—ig andn,—in, . More- with B=p &p/&p|nA ’-|-=pC2 the appropriate isothermal bulk
over, note that the constardsy, , ¢, , andy should here be modulus in view of the fact that the pressure is a function of
interpreted as renormalized quantities which are determinelloth the particle density as well as the net defect density.
in terms of the microscopic parameters of our gauge theorjrrom thermodynamics we therefore also conclude that
by a comparison with E¢35). ya=0plany|, 1.

Now we are ready to discuss dissipation. In principle dis- It is interesting to point out that these hydrodynamic
sipation has already been included because there is a cogquations differ from the results obtained by Zippelius, Hal-
pling between the net defect density and the phonons. perin, and Nelson. In particular, their E@.32 differs from
Hence if for example an interstitial were, in a discrete pic-our Eq.(46€ and reads
ture, to tunnel from one location to another there would be a
“shake up” of the phonon field. However, if we treaf as a
smooth continuously varying field, the action in E84) is
quadratic and the bilinear coupling,d?y’ produces only
mixing of the collective modes but no real dissipation. The difference can easily be traced back to the fact that Zip-
Therefore, we choose to include effective dissipation in thePelius, Halperin, and Nelson assume on phenomenological
same manner as explained in detail by Zippelius, Halperingrounds that the dynamics of the net defect density is purely
and Nelsorf® Using their notation we first of all add diffusive. Indeed, we exactly reproduce their results if we
to the right-hand side of Eq.(44b the terms Use in our calculation a free action of the form
[ pV2g+V(V-g)]/ p associated with the dissipative part of i £ ”
the stress tensar;, and representing viscous diffusion of the Solnal= J de dx _AnA(_Ter 1
momentum density. 0 2 Dad

. (47)

> Ny
J:_FAV ——yAﬁp
XA

Ny (48)
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instead of Eq(34). We can therefore consider the hydrody- Combining the longitudinal and transverse parts as before,
namic equations of Zippelius, Halperin, and Nelson as thehis equals

overdamped(or classical limit of our Eq. (46). Clearly,
Kleinert's more microscopic approach does not lead to
purely diffusive, but in the first instance, to propagating be-
havior of the defects, which is appropriate for the quantum
crystals of interest in Sec. IV. We now turn to the modifica-
tion of the above results in the hexatic phase.

9.0p=V-9, (553

- 1
_ _ A2 - 2.n 2
d.0= CHV5P 2(1+V)V(V X )+2pCLV><1361

In the hexatic phase there are free dislocations present and (55b)
x" replacesn, as the appropriate dynamical degree of free-
dom. To see most clearly how this comes about we will work <9§X": _ chz " (550

perturbatively in 1E.. Up to first order in 1. the effective
action for y” is

fﬁﬂd fd_) 1 (92 "2
o 97) M 27X
PPN U XL
+2_EC(‘9iX);?+

1_ .
9:¥6=~ 5 VX0, (550

and clearly reduces to the hydrodynamic equations for the
ideal crystal if we puty”=0.
(&iX")}v We now have to consider how the above picture changes
for a finite value ofE.. Here we can use the results of Sec.
which upon Fourier transformation displays two modes withy| g_ |n the hydrodynamic regimg?< u/2E, we saw that the
w?=c?K?+2u?(1+ v)/(Ecp). So in the limit Ec~%  transverse speed of sound was renormalized to zero, because
(which physically means that we are looking at the nonhy-we found the quadratic (particlelike dispersion
drodynamic regimé?s u/2E.) we approximately have w?=2EKk*p. As a result we have for the transverse part of
the hydrodynamic equations

-1

2x"=—c29%y", (49)
whereas the equations of motion faft andA™ are 2 a7 2Bc 417
92 ATT=——¢*ATT, (56)
14
2 ATL 2v2ATL ”
Iz AT=—CIVIAT+ T3 dx (50 which implies that in the right-hand side of E55b) we
must replace Bc?VXdg by —4E.e,XV(V29g). This
and gives
92 ATT=—c?V2ATT, (51) 3 R
, , . . d,9"=—4Ee,X V(V?J), (573
respectively. For the mass-density fluctuation we now find
Sp= ! 2pTL p 2, 52 9.9 =—iv><§T (57b
p= C_ﬁ&T J mé‘ X (52 Vs 2p )
and for the stress tensor which is in complete agreement with Zippelius, Halperin,
and Nelson if we identify the Frank constaf with 8E..
D__s. i&3 AL p 2y For the longitudinal part we need to analyze the dynamics
i el 2(p+n) ‘X of x" andAT™. A straightforward calculation shows that the

effective action for these fields contains precisely the four
modes already found in Sec. Il B. The propagating modes
with w?=2u(1+ v)k?%p obeyy' = x"+vd,A™=0 and are

therefore indeed associated with density fluctuations propor-

Puttlng all this together we obtain in first instance thetiona| to (;)ZX”_ We thus need to use a renormalized |0ngitu-
following set of hydrodynamic equations for the hexatic dinal speed of sound equal to

phase

1
=—5ij(0ﬁ5p+ m&zxﬂ]. (53

- 2u(1+ 21 21+ 2\
9,6p=V-g", (548 C:\/yz 7“ 2l;+>\ (58)

(V?x"), (54b)  thatis always smaller than the longitudinal speed of sound in
the solid phase. In fact, this actually exhausts the longitudi-
nal hydrodynamic modes since the other modes in the effec-
tive action fory” andA'™ are gapped. As a result we now

2 1T Pp— obtain in real time the following set of hydrodynamic equa-
9z A" =—CciV-A". (54d  tions for the hexatic phase:

(9,.6": —Vép= —CﬁV5p— mv

)" =—c2V2y", (540)
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adp R mal phase. The procedure consists, in principle, of four steps.
T -V.g, (593 First, the total(average densityp of the system is split up
into a normal densityp, and a superfluid densitgs. In

- general these densities are tensors of second rank, but for

_g: —c2Vp— &é XV (V29¢) (59h) systems with hexagonal symmetry which are of interest here
at 27 o they are proportional to the identi§; and can be consid-
ered as scalars. Second, the total momentum derjsisl
(wﬁ ! — VX g, (590 similarly split up into a normal componemﬁn and a su-
at 2p perfluid componen'pSJS with a superfluid velocity that is
not including dissipation. purely longitudinal ¥ xXvs=0). Third, for an effectively

To include dissipation we again follow Zippelius, Halp- isotropic system the dissipative terms in the momentum
erin, and Nelson and add to the right-hand side of (5§b) equation must be generalized to
the terms[ nV2§+ §V(V-§)]/p. However, we do not add
the termx V29, to the right-hand side of Eq59¢) because, -
just as in the solid phase, the dissipation of the transverse V% +§1 “VIV- (U= o) ]+ 5V (V- vp).
modes is already accounted for in the temW2g that is
added to the momentum equation. Put differently, a term ofinally, we must add the dynamics of the superfluid velocity,
the form szﬂe can be absorbed by an appropriate redeﬁ_WhiCh is basically determined from the Josephson relation
nition of K, and #. Again introducing the isothermal bulk and reads
modulusB=p dp/dp|r+=pc? we then find

5 e ot LIV Gy ]+ V(Y
J N Q. = - (Vg™ U *Un)s
_P:_V'g’ (604 at p2 P 3p s~ Un 4 n
ot (62)
a9 B Ka- Y . R whereB=p2du/dp|; is again the isothermal bulk modulus
il —Vép— ?ezx V(V29g)+ —V2g+=V(V-Q), andu is the chemical potential per unit mass. We again leave
p P P (60 out temperature fluctuations since we are primarily interested
in third-sound modes, for which these fluctuations &t
295 1 o . least qualitatively unimportant.
ot " 2p" 19 (600

A. Supersolid

as our frfnal crjesglt f?r thte he>_<at|é p(r)ra)se. Apart fror?htr;he ab- To apply the above procedure to E46) we must realize
sence of a dissipative term in E(GOQ it agrees wi € that we are here in fact already dealing with a two-fluid

findings of Zippelius, Halperin, and Nelson and therefore drodynamics. We must therefore not only split up the total
contains the same mode structure as derived in that papery

For completeness sake, we mention however that the equtomentum densitg into a normal and a superfluid compo-
tions of motion for the hexatic order parametég can be ~ nent but also the net defect current, i.ds J,+Js. More-
derived from an effective action over, we have to account for the fact that the chemical po-
tential, just like the pressure, is a function of the particle

. hp .1 ai ) 5 density and the net defect density. In this manner we arrive at
s [%]ZJO de dx 5 Fg| 4p -2 +4i 179, Kad” | s, the following hydrodynamic equations:
(61) 26p
that can easily be understood physically: The first term on —=-V-g, (633

at
the right-hand side corresponds to the kinetic energy

fdx p(d, u)?/2 of the displacement field. The second term is
a Leggett friction term and the last term corresponds to the ~__ EV5p— yAVNy+2pc2V X 9+ V2o
usual Frank energy, which is responsible for the fact that the gt p * "
hexatic to liquid transition is of the Kosterlitz-Thouless type. 0
+4H=V(V- (Us=0p) + LV (Y vy), (63b)

IV. HYDRODYNAMICS OF SUPERFLUID PHASES p

Having arrived at the hydrodynamic equations for the 9% 1 .
solid and hexatic phases, our next objective is to incorporate e ZVXQ, (630
the effects of the additional hydrodynamic degree of freedom
associated with the phase of the superfluid order parameter. R
Fortunately, from the microscopic theories developed for su- dvs Ps - -
perfluid liquid$® and gase¥ it is well known how we should e ,7V5p+ BaVna+ §3FV[V (vs—vn)]

proceed to obtain the hydrodynanttevo-fluid) equations for R
the superfluid phases starting from the equations for the nor- +Z,V(V-v,), (63d



5680
o=V, (638
aJ 2 23 J j
1= GVt yVop+ VIt £ V(V-J9)+ EV(V-dn),
(63f)
&j BAP p £l
a—tsz—7SVnA+,3PsV5P+§3;SV(V'Js)
+EV(V-3y), (639
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S[unne[ﬁlvﬁZJZ_f er’ dxJ cog ¥~ ;)  (66)

to this action. The hydrodynamics modes couple to form two
in-phase and two out-of-phase excitations. The modes with
¥, and 9, oscillating out of phase get gappede.,
w?=BJlp? for k*<J/ps) and only the modes with, and

¥, oscillating in phase remain gapless. Yet in E64) we

find only gapless modes.

This paradox can be resolved by noting that we have
made the standard assumpfidthat both the total number of
particles and the net number of defects is conserved. Hence,
after an atom has tunneled from a lattice site to the position
of a vacancy, a new vacancy is created near the original site

with 8y=—duldn,|,v. These represent nine equations for of the atom. The analogous process for the two coupled su-

the nine unknown functionsp, vy, vs, 96, Na, Iy, and
Js

Although a complete analysis of the various hydrody-

perfluid layers in not simply tunneling of individual atoms
from one layer to another, but rather the exchange of a pair
of atoms in different layers, returning the system to its origi-
nal state. Such a process is not a Josephson coupling and

namic modﬁ_sr:s_now possllble, we will consider here onlly thhetherefore the modes remain gapless. The existence of sepa-
situation which Is most relevant to experiments, namely thaf,o ¢qnservation laws for the particle and defect density thus

the normal part of the two-dimensional system is clamped tQ

an underlying substrate. As a result we haye=J,=0 and

llows, in principle, two separate broken symmetries.
We also note in passing that the third-sound modes in Eq.

Eqgs.(63b) and(63f) determining the normal properties of the (64) are not present in the hydrodynamic equations proposed
supersolid are no longer valid. The hydrodynamic equationgy Andreev and Lifshit? and considered in more detail by

therefore reduce to

azép Bps 2 2 pS (9 2
W—FV op— BapsV nA+§3;E(V op),
(643
#ny  Bups_, ) ps d _,
W——pz—v Ny—BpsV 5P+§3;5(V ny).
(64b)

Liu.?® This is a result of the fact that these authors use a
somewhat different physical picture for the supersolid phase:
They assume that the superfluid current density is carried by
(Bose condensediefects and that the normal current density

is solely due to lattice vibrations. Hence if we takg=0,

which in their context means thau/at=0, only transport

of defects is possible and only the latter two modes survive.
However, as a consequence of their picture the hydrody-
namic equations in thénorma) solid phase describe only
longitudinal and transverse sound modes in an ideal lattice
and do not include the effect of vacancies or interstitials. As

They contain two pairs of propagating modes, which in theexplained above this is incorrect, in principle, and one should

limit of a small coupling constanB<BB, / B,p* essentially
correspond to a pair of third-sound modes wéih unequal

at least also allow for a normal current density due to the
motion of defects. In addition, we have seen in Sec. Il that

to zero but a constant net defect density and a pair of modesven in the presence of defects the density fluctuations are

with an oscillating net defect density.

equal to—puiﬁ’h”s. It is therefore perfectly reasonable that if

One might have expected that the coupling of a superfluidhere is superfluid mass transport possible in the solid, it can

density to a propagating defect density would have resultege caused both by the motion of defects and by lattice vibra-
in one pair of gapped excitations and one pair of gaplesgons. Indeed, as an existence proof of this latter possibility
excitations instead. Consider, for example, two identical SUye can, for instance, consider superfldide in a weak pe-
perfluid layers. If the layers are uncoupled the dynamics ofjodic and commensurate potential, which is clearly a super-
the phases}; and ¥, of the layers is determined by the gglid without defects.

action While it is generically possible to have both density and
defect superfluid modes, we might expect however, for real-
istic films on realistic substrates, that in a supersolid it may
be harder for particles to perform ring excharlgééthan for
vacancies to exchange positions. Thaspriori, we might
expect the effective superfluid stiffness for the density fluc-
tuations to be smaller than that of the vacancies, perhaps to
the point where the former is entirely absent.

B [ p? p
Sl 01,071 [ [ 03] 25 0002+ 270,

2

L 2, Ps 2
+ ZB(&T{}Z) + 5 (Vdy)%;, (65)

which clearly has two pairs of gapleéhird-sound modes,
one pair for each superfluid. If we couple the order param-
eters by allowing the particles to tunnel with an amplitude We next turn to the superhexatic phase. In a similar man-
—J/p from one layer to the other we must add a Josephsoner as in Sec. IV A we obtain from E¢60) the full set of
coupling hydrodynamic equations

B. Superhexatic
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adp . density, however, induce variations in the phase of the wave
TZ—V'Q, (678 function and therefore in the superfluid velocity. Because
these density fluctuations can be caused by both lattice vi-
brations and oscillations in the net defect density we con-
e,XV(V29)+ 7V, clude that both mechanisms can lead to superfluid motion.
Together with the existence of a conservation law for the net
Ps . . number of defects, this explains from a more microscopic
+4—=V[V-(vs—vn)]+ YV (Vev,), (67D view why we found two third-sound modes and two modes
P with an oscillatory net defect density in the case of a super-
s 1 . solid adsorbed onto a substrate.
e ZVXQ, (679 For the superhexatic phase we have shown that the
hexatic long-range order leads to an additiof@e compared
B p to the superfluigl hydrodynamic degree of freedom that af-
=— —Vop+ia—V[V-(0s— 0]+ LV(V-0,), fects only the transverse modes and is therefore at long
p p wavelengths decoupled from the superfluid momentum den-
(67d sity. This can also be understood from the above picture,
that leads to the usual two-fluid hydrodynamics of a supersince variations in the orientational order paramelgrdo
fluid if we omit Eq. (670 and putds=0. Therefore these not lead to density fluctuations in first instance. As a result
equations allow for first and second soufiénd for a pair of  we find on a substrate only two third-sound modes and thus
transverse modes involving and 9 which are either dis- at the hydrodynamic level of description nothing to distin-
persive or propagating depending on the sign ofguish the superhexatic from the superfluid. Although this is
A=Kaldp—(75lpy)?: If A<O we have two purely dispersive in agreement with the experiments of Chen and Mochel, who
modes witho™=—i(7/p,* \/—_A) k22, whereas ifA>0 indeed only observe one third-sound branch below the sec-
we have two propagating modes and the particlelike disperond critical temperatur&_, it is unfortunate for the purpose
sion w* =+ JAK%2—i(7/p,)K?/2. However, considering Of suggesting a p_ossible identification of the superhexatic
again the case,=0 the hydrodynamic equations now sim- phase. On the t_)a5|s of our results_ we can, hqwever, conclude
ply reduce to that a more microscopic probe is negded if one war!ts to
detect the orientational order present in a superhexatic he-
9?6p Bps ) ps d _, lium film. In our opinion this appears to be an important, but
e FZ‘V 5P+§3; =1 (V=p), (68 also difficult experimental challenge.
. ) ) . . Finally, we would also like to point out the possible rel-
which contains only a pair of third-sound modes with théeyance of our results to the recent experiments with bulk
velocity c3=\Bps/p= and the diffusion constant ggjig 4He 0 In these experiments Lengua and Goodkind ob-

Ka

—BV5
_pp2

v
at

D3={sps/p. serve at sufficiently high frequencies an additiomasonant
attenuation and velocity change of sound. Moreover, they
V. CONCLUSIONS AND DISCUSSION notice that their data can be explained by a simple model of

In this paper we have derived the hydrodynamic equation&VC coupled wave equations which turns out to be identical
for the supersolid and superhexatic phases of a neutral twd® the longitudonal part of our solid hydrodynamics derived
dimensional Bose fluid. For the supersolid these equation& S€c. Ill. Because our two-dimensional hydrodynamics
are rather complex, since they incorporate the effects of deshould be able to describe the propagation of sound perpen-
fect motion and lattice vibrations on both the normal angdicular to thec axis of hcp®He, this confirms the conjecture
superfluid parts of the momentum density. Our physical picOf Leéngua and Goodkind that the collective mode observed
ture for the influence on the superfluid part is roughly speak!S associated with the motion of defects. For a more detailed
ing that in a mean-field theory the condensate wave functioffiScussion of the coupling between sound and the defects
W(x t) obeys the Scfidinger equation one should olf course conglder the fully three-dimensional

' situation and include the anisotropy of the hcp crystal. Work
in this direction is in progress.

h&‘I’()Z,t)_ #2y2
ot | 2m

+J di'v&—i')n(izt)]\Ir(i,t),
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