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Final-state effects on superfluid*He in the deep inelastic regime
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A study of final-state effect$FSE) on the dynamic structure function of superflutiie in the Gersch-
Rodriguez formalism is presented. The main ingredients needed in the calculation are the momentum distri-
bution and the semidiagonal two-body density matrix. The influence of these ground-state quantities on the
FSE is analyzed. A variational form @ is used, even though simpler forms turn out to give accurate results
if properly chosen. Comparison to the experimental response at high momentum transfer is performed. The
predicted response is quite sensitive to slight variations on the value of the condensate fraction, the best
agreement with experiment being obtained witfx 0.082. Sum rules of the FSE broadening function are also
derived and commented. Finally, it is shown that Gersch-Rodriguez theory produces results as accurate as those
coming from other more recent FSE theories.

I. INTRODUCTION that collisions of the former with other atoms can be ne-
glected. The IA predicts a simple relation betwesg(q, )
Deep inelastic neutron scatterifiBINS) has been exten- andn(k),

sively applied to tr:f(,a study of quantum fluids, since Hohen- L .
berg and Platzman'sproposal of using DINS to determine _ -q
the momentum distribution(k) of helium atoms in super- Sa (0, 0) = (277)3pf dk n(k) 5<w_wR_ W) @
fluid “He. The determination af(k) in quantum liquids is a 5 . . :
challenging problem of fundamental interésin fact, the wherewR:q4 /2m is the free atom recoil frequenay, is the
knowledge ofn(k) provides very useful information to un- Mass of the’He atoms, anan(k) is the thermally averaged
derstand basic properties of the quantum nature of these sy@ccupation probability of the single particle state of momen-
tems as the Bose-Einstein condensation. At the same tim&/MK, which reduces to that of the ground statd &t0. The
the theoretical analysis of DINS probes and stimulates th&€lta function in Eq.(2) takes care of the momentum and
development of modern many-body techniques. These issu€S91€Tdy conservation in the scattering event between the neu-
have been the main motivations of a considerable amount ¢fon and a single atom. Assumir§(q, ) =Sa(q,»), the
measurements and theoretical work on ligide and other Moementum distributiom(k) can be extracted from Eq2)
quantum liquid$~7 by simple differentiation. Notice that in the previous equa-

The inelastic scattering of neutrons by liquféie is de- ~ tion and hencefortl is set to 1.
scribed by the double differential cross section In isotropic systems, whera(k) depends only on the
modulus ofk, it is useful to introduce the Compton profile

& 2t 1 q
dQdo kis(q"")' @ J.A(Y)=ES.A(q,w), ©)

whereb is the scattering lengttk; andk; are the initial and \yhjch is driven by a single variable
final wave vectors of the scattered neutron, grahd w are

the momentum and energy transferred from the neutron to m q?
the sample. The dynamics of the sample is entirely contained Y= a( Ok ﬁ) ) (4)
in S(q,w), the dynamic structure factor, which is the Fourier

transform of the density-density correlation functiSrat  and fulfills Y scaling®® If a finite fraction of atomsn, occu-
sufficiently high momentum transfer, the scattering is enpies the zero momentum stath,(Y) presents & peak of
tirely due to single atoms an®{g,w) can be accurately de- strengthng atY=0. However, this expected signature of the
scribed by the impulse approximatigiA),® provided that condensate is not observed in experiments performed at
the interatomic potential does not have an infinite repulsivenomentum transfer as high as 23 A* because the IA
core. In this regime, the kinetic energy of an atom recoilingspectrum is broadened by both final-state efféESE and
from a neutron collision is much larger than the potentialinstrumental resolution effectdRE). Hence the theoretical
energy due to the interaction with the neighboring atoms, sinterpretation of the experimental data requires not only the
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knowledge ofn(k), but also an accurate description of both o Mt —int
the dynamics which determines FSE and the instrumental NS(q,t):Z, (e™'eMe'Mie™)
broadening function. s

Several methods to account for FSE have been L
proposed:®2-15 Among them, we will focus on the so- :%: (edri~melargteglie= MY, (6)
called convolutive theories, in which

which can be brought to the following form:
S(q,w)=J do'Sa(q,0")R(q,0—’), 5 NS(q,t)=e“"qtj§|: <e“‘(””)eith

t
XTexr{if dt'H(rj—vgt’)
0

e—th>, (7)

whereR(q, ) is the FSE broadening function.

After the first attempt to approximateR(q,w) by a
Lorentzian of width proportional to théHe-*He cross sec-
tion, Gerschet al® expressed the response functigfy, )

whereT is the time-ordering operator amt{r; —v4t’) is the
actual Hamiltonian of the system where the position coordi-
nate of particlg has been shifted by an amount’. As the

in a 1/ series expansion, whose coefficients are given b¥ i . . . o
: X . nteratomic potential considered is velocity independent, one
integrals of many-body correlation functions averaged on th an write

ground state of the system. In this approach, the response

wheng— o is given by the first term of the expansion of the H(r —vgt’)=H+U,(vgt") ®)
incoherent part 05(q, ), which turns to be exactly the IA. b e

However, the theory could not deal with realistic interatomicwith

potentials presenting a strong repulsion at short distances. To

overcome this problem, Gersch and Rodrigupmposed a p,—2

cumulant expansion 08(q,t) which provides an adequate HIEJ-: ﬁﬂzfj v(rij) ©
frame for calculating the response function at high momen-

tum transfer. The full calculation is impractical, but with and

some approximations based on physical grouri{s}, )

can be expressed in terms of the one- and the semidiagonal Ui(vt' )= U (vat')

two-body density matrices, and the two-body interaction. At I mej Mmoo

the time the theory was proposed the numerical application

was made with a very simple approximation of the two-body Ujm(vgt ) =[V(rj=vgt',rm) = V(r;,rm)], (10)
density matrix that resulted in an overestimation of the re- )
sponse at the quasielastic peak. wherev 4= g/m and wy=q“/2m.

The main purpose of the present work is to revisit Gersch- The incoherent part of the response, which is defined by
Rodriguez theory, and show that using a realistic two-bodyaking particles labeledl andl in Eq. (7) to be the same, is
density matrix one gets 8(q,») in good agreement with thg only contrlbutlon at largq. In this limit, S(q,t) may be
both experimental data and more recent theories of B$E. Written in the following way:

In the next section, a review of the theory is presented.

Section Il is devoted to the discussion of the results and™(d:t)

their comparison with the experimental data. A sum rules
analysis ofR(q,w) is presented in Sec. IV. In Sec. V our ./ i ., ~ N
results are compared with other FSE theories, and finally =€ qt< elVa'P1e!™ Texp 'Jodt ngl Uim(vqt') € 'Ht>’
Sec. VI summarizes the main conclusions of the work. (12)

WhereU(vqt’) is the previously defined potential operator
Il. GERSCH-RODRIGUEZ THEORY OF FSE but with the position operators evaluated at titierather
_ _ ) than att=0. Notice that expressiofll) is as hard to evalu-
In the Gersch-Rodriguez thedtyhe density-density cor-  ate as the origina(q,t). An exact treatment would require
relation factorS(q,t) is expressed as the product of the IA the knowledge of the time evolution of the whole system, so
and the FSE correcting function by means of a cumulangifferent approximations should be made in order to deal
expansion. Theth order cumulant accounts for the correla- with this last relation.
tions among the struck atom and clusters gfarticles in the Gersch and Rodriguéperformed a cumulant expansion
background. In the h|gh momentum transfer ||m|t, thoseof the ground-state expectation value of Bﬂ‘) The expan-

terms withn=1 carry the most significant corrections. At sjon contains an infinite number of terms, and allows for the
this level, the FSE broadening function can be expressed astactorization of the IA from the total response

function of the interatomic potential and the one- and two-

body density matrices. S(g,t)=SA(q,t)R(q, 1), (12)
The starting point in Gersch-Rodriguez theory is the time a Sw( a

representation of the response R(q,t) being the FSE correcting function given by
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R(g,t)=ex ——1—2 e'tVaP1 Sa(g,w)=nyd w—q—2 +wa kn(k)dk
| CE AT 2m) T anteq )i g
[t 9\ -
X|1—Tex |J'0dt’Ulym(vqt’) +... (13 =n05<w—ﬁ +SA(q,w), a7

where the first term on the right-hand side is the condensate

Up to this point, the result is exact because it is nothin .
more than a rearrangement of the different terms entering ?ﬁesponse which appears as a delta peak of strengticated

: ; ; . t the quasielastic energy, aBg (q,») is the noncondensate
S(qg,t). The first problem in the calculation of EQL3) is attne que ; .
a:(sgogiated to thepinfinite number of terms appearing in th ontribution ofn(k) to the IA. Introducing the West variable

exponential. Such a difficulty can be skipped if one looks for =Mw/q—0/2, Sa(q,») can be expressed in terms of the
the underlying physics contained in each term: the contripu©°mMPton profile

tion of the nth order cumulant td5(q,t) accounts for the 1 (=

correlations between-particle clusters during their interac- —Sa(0,0)=Ja(Y)=ngd(Y)+ — J kn(k)dk,

tions with the struck atom. One may expect that the first M 4m°p v

significant correction to the IA is produced by the multiple (18
scattering of the struck particle with the atoms of the media\yhich scales iry.

considering them independently of each other. This corre- Moreover, at highy the response is usually expressed in
sponds to a truncation of the series beyond the first ordegrms ofy through the relation

cumulant.

The second problem lies on the evaluation of the time q
dependence appearing in the particle coordinates of J(q,Y)= ES(q,w), (19
Uim(vgt’). In the largeq limit, the displacement of the
struck particle is much larger than the average movement adnd thus Eq(15) is transformed into
the background atoms. Thus one can discard the time depen-
dence ofr(t) in U;,. This is a safe procedure as, even :f“‘ / , v
though the inclusion of such a time dependence avoids hard- )(@.Y) de Ja(YOR(G,Y=Y)
core collisions between the struck particle and other target
atoms, the contribution t&(q,t) coming from those situa- _ J"” i , oy
tions vanishes due to rapid oscillations in the imaginary ex- MoR(A.Y)+ | dY Jn(YDR(G,Y=Y"),
ponential of Eq(13). Therefore, one can write (20

where
1

1
R(q,t)zex;{—pl(—vqt)f dr po(r,0;r+vgt,0)

: R(A,Y)= R(q,0) @
—exp[ [ jodt’{V[rJrvq(t—t’)]—V[r+vqt]}}H,

(14) IIl. NUMERICAL RESULTS

In this section, we present results for the FSE correcting
function R(q,Y) and the response functiai(q,Y) calcu-
complex function, but its Fourier transform is real becaus ated in the framework of the Gersch-Radriguez formalism.

its real part is even and its imaginary part odd under the he input density matrices, (r) andpz(rl,rz;ri,r?) usgd to
changet— —t. calculate Jj4(Y) and R(q,Y) have been obtained in the

,21,23 fat
Equation(12) predictsS(q,t) as the product 08,,(q,t) framework of the HN(_: the0|?39_ _ from a variational
and R(g,t), and thereforeS(q,w) is the convolution of many-body wave function containing two- and three-body
S0, ) andR(q, ) correlations’? The variational minimization has been per-

formed for the HFDHE?2 Aziz potentidl at the experimental
. equilibrium density p=0.365"3% ¢=2.556 A. The
do’Sa(g,0)R(q,0— o). (15) ground-state description obtained with this wave function is
% in good agreement with recent Green'’s function Monte Carlo
calculation>2®The discussion is separated in two parts, the
In the particular case of liquidHe, the momentum dis- first one being devoted to the study of bd&{q,Y) and

where p, and p, are the one-body and semidiagonal two-
body density matrices of the system, respectivigly,t) is a

S(q,w)=f

tribution n(k) may be written as J(qg,Y) and their comparison to experimental data, and the
second one to the analysis of the dependence of these func-
n(k)=(2m)3pngd(k) +n(k), (16)  tions on the different approximations used in the variational
description of the ground-state wave function.
wheren, is the condensate fraction value amg) stands for The actual calculation of the FSE broadening function is

the occupation of nonzero momentum states. Consequentliitially performed in time representatiafi4). R(q,x) is a
Sa(g,w) is split in two parts complex quantity which can be written in the following way:
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FIG. 1. Real and imaginary parts B{q,x) atq=23.1 A~1. FIG. 3. R(q,Y) at q=23.1 A~ (solid line) andq=15.0 A~1
(dashed ling
R(d,x)=e? ¥ [cody(q,x))+i sin((q,x))], (22
with q=23.1 A~1. ¢(q,x) is a negative and a monotonously de-
creasing function ok, causing both the real and the imagi-
nary parts ofR(q,x) tend to zero whex—o (22).

2
$(q,x)=— mf dr pa(r,05r+x) In Fig. 3, we showR(q,Y) at two different values of,
23.1 A !t and 15.0 A1, The main trends oR(q,Y) in all
. 1 (x FSE convolution theories are the same: a dominant central
xsin? gqfodu{V(rer—u)—V(rva)} ’ peak and small oscillating tails which vanish B¢ in-
creases. As one can see, the shapeR@d,Y) smoothly
1 changes withg, this variation being reflected in an overall
wlax)=~ (x)j dr pa(r,0;r+x) redistribution of the strength between the main peak and the
1

wings. Whenq increases, the peak appears higher and nar-
rower pointing to the tendency &#(q,Y) to become a delta
, distribution in the limitq— oe.
The existence of a finite condensate fractignin super-
(23)  fluid “He plays an important role in the FSE corrections, as
_ is reflected in Fig. 4 where the broadening of the condensate
x beingvgt. As can be seen from Ed23), ¢(q,x) and  ang noncondensate parts f(Y) are separately shown.
¢(q,x) are even and odd functions ef respectively. There- 1o gma)l differences betweeh, (Y) (dotted ling and the
fore, the real and imaginary parts B{q,x) are respectively convolution ofj,A(Y) with R(q,Y) (long-dashed lingreveal
even and odd under. the changg»—x, and consequently small FSE on the noncondensate part of the response at high
R(q,Y) is real. Even if the potential becomes very repulsweq In contrast, the broadening of the condensate f@hort-
at shqrt distances, as i§ the case of _the Aziz potential, E%;ashed ling i’.e., the convolution product aR(q,Y) and
(14) gives anR(q,Y) which does not diverge. nyd(Y), contributes tal(q,Y) asngR(q,Y) which is a func-

The real and imaginary parts 8{(q,x) are shown in Fig. fi : ; . : : :
_ on with an appreciable width and height. The inclusion of
1 forq=23.1 A1 In the relevant range of, ReR(q,x) has o ;
a dominant decreasing behavior. TheFRe,x) and Im- the latter term produces a totd(q,Y) (solid line) which

R(q,x) are related to the symmetric and antisymmetric com-

ponents ofR(q,Y), respectively. As the imaginary part is 0.6
much smaller than the real paR(q,Y) is mostly symmetric
aroundY=0. In Fig. 2, we showy(q,x) and ¢(qg,x) at

XSir{ifxdu{V(ran—u)—V(r+x)}
vq 0

0.5
0.4
0.3
0.2 1

Ja.Y) (R)

0.1

0.0

0 =7 6 7 a2
Y (A7)

FIG. 4. Different contributions td(q,Y) atq=23.1 A~*. Dot-
ted line, noncondensate term & (Y); long-dashed line, noncon-
densate term of|5(Y) after the convolution withR(q,Y); short—
dashed line, condensate contribution once broadened by FSE; solid
FIG. 2. Functions(qg,x) and¢(q,x) atq=23.1 A2, line, total response.
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FIG. 5. Effects of the different broadenings to the response at ~ 0.4
g=23.1 A%, Dotted line, noncondensate IA prediction; dashed = 03
line, 1A broadened by FSE; solid line, totd{q,Y) including both o
FSE and IRE. o 0.2 1
=
] ) o 0.1
manifests a sizeable departure from the IA prediction. There- 0.0

fore, FSE corrections in superflufiHe appear to be relevant
even at so highy’s.t?

A direct comparison between theoretical and experimental
dynamic structure factors is not possible due to the presence
of instrumental resolution effec{dRE) in the experimental
data acquisition process. It would be desirable, from a theo-
retical viewpoint, to remove the IRE inherent to the mea-
sured response, especially at highwhere they become
larger. However, the latter is an ill-posed problem due to the
statistical noise of the data, and thus the only way to com-
pare theory and experiment is by convoluting the theoretical
J(qg,Y) with an instrumental resolution functidriq,Y). At
presentl(q,Y) is obtained from a Monte Carlo simulation
of the experimental setup, and in contrast to earlier models
used in neutron scattering analysis, it is neither Gaussian nor
symmetric aroundY=0, and is comparable in width and
height to R(q,Y) at those momenth.The influence of
[(g,Y) in the response is sketched in Fig. 5 fgpre=23.1
A~1 As one can see, the introduction of the IRE in the
response(solid line) appreciably modifiesl(q,Y) (dashed
line). The most important effect df(q,Y) is to quench the
central peak reducing the effects of the FSE correction on
Jia(Y), whereas the tails remain almost unchanged.

In Fig. 6, we present results d{q,Y) broadened by the
IRE at different values ofy in comparison with inelastic FIG. 6. Comparison of the predictel{q,Y) at (a) 23.1 A™1,
scattering data af=0.34 K from Ref. 4. There is an overall (b) 17.9 A%, (c) 15.0 A%, and(d) 10.2 A~* with experimental
agreement between the predicted and the observed scatteridgta(points with error bars
data, the quality of the Gersch-Rodriguez theory being com-
parable to results provided by other theol?d4 (see also dicted by the two approximations are slightly different,
Sec. V). Itis worth to notice that all FSE theories are stressech)=0.091 andn}'=0.082. This reduction ofi, produces a
when applied to intermediatg values. This is also apparent small decrease of strength in the peakd, Y) bringing our
in our results, as one can see for the longsalue reported  theoretical prediction closer to the experiment. A basic ingre-
in Fig. 6. Thus, whereas the experimental peak shifts its lodient in the calculation oR(q,Y) is the semidiagonal two-
cation to a small negativ&' value, the theoretical one is body density matrix, which in the framework of the HNC
shifted to so small positive values §fthat it is not appre- theory is given b§?
ciable in the figure.

The most relevant quantity in the calculationdgfy,Y) is  p,(rq,rp;r';,ry)
the momentum distributiom(k) which completely deter-
mines the Compton profil,(Y). The influence oh(k) in = , , r’

J(q,Y) is shown in Fig. 7. The dashed and solid lines corre- PP1{T12)Gwe(112 Gl AL M2 )], (24
spond to a Jastrowm(k) [n;(k)] and a Jastrow plus triplet wherep4(ry) is the one-body density matrig,,4(r) is an
n(k) [n;t(k)], respectively. The condensate fraction pre-auxiliary two-body radial distribution function, and




5666 F. MAZZANTI, J. BORONAT, AND A. POLLS 53
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mi = dvRa.v)=1,
0.50 + —
R 0.45
< o0t mi@)- | avYRav)-o,
E 0.35 | ,
~ 0.30 t ; R o )
0.25 mz(Q):jideY R(q,Y)=0,
0.20 ! L L
—-1.0 -0.5 0.0 0.5 1.0 o m
v mi(@)= [~ Y ¥R@YI= 500 [ dramia vV,
(26

FIG. 7. Detail of the central peak of the response at2§.1
A1 as predicted using two differen{k)’s. The solid and dashed L .
lines correspond ta;7(k) andn;(k), respectively. The points with As we are only considering the incoherent part of the
error bars are the experimental data. responsemg(q) is 1 at anyq. Both the first and second
moments ofR(q,Y) vanish because the impulse approxima-
tion exactly fulfills the incoherent sum rules. Finally, the
third moment ofR(q,Y) is expressed in terms of the two-
body radial distribution functiorg(r) and the interatomic

A(rq,r5;r’y) is the sum of the Abe diagrams. Notice that the
structure ofp, allows for the exact cancellation pf in Eq.
(14). As the explicit dependence b in ng is introduced in . : : i
p1, the influence ohg in R(q,Y) is almost negligible. We potentialV(r), which are not included idja(Y). :

o : . . Relations(26) are exact and partially define the behavior
have verified that the inclusion of three-body correlations

: : of R(q,Y). Therefore, one can use them to check the accu-

does not appreciable modify the structureRfiy, ). Con- acy of R(q,Y) calculated using different approximations. In
sequently, three-body correlations can be omitted in the cale®y q: 9 bp :

culation ofR(q,Y). In a further step, we have also studied the Gersch-Rodriguez theory, the sum rules analysis can be

the influence of the Abe diagrams using a Jastrow Wavgnalytlcally performed. In fact, expressions for the sum rules

function. As is well known, it is not possible to calculate can be easily derived from the time derivativesRify,t) at

A(rq,r,,rq) exactly but a good estimation of its contribution t=0,

can be obtained through the scaling approximatiofhe 1 g
inclusion of the Abe diagrams in EqR4) using the scaling mE(q): ——x —xR(a,1) ) 27
approximation produce negligible effects in the final form of I"vg dt t=0

R(q,Y). In fact, the Abe terms, which quickly vanish when

the interparticle separation increases, only modify the struc- Performing a McLaurin expansion d¥(q,t), Eq. (14),
ture of p, when coordinates 1,1 and 2 are very close to the different coefficients of the series are directly related to
each other. These small changespinare then suppressed the Y-weighted sum rules. In this way, one obtains the rela-
when integrated to obtaifR(q,t). Furthermore, one can tions

slightly change the functiong,,4(r) and no influences in

R(q,Y) are observed. This fact, which will be explicitly mch’GR(CI)=1,
commented in Sec. V, points to the relevance of the func-
tional decomposition op, rather than the exact form of the m;‘aGR(q):o,

functions entering in it.

my%(q)=0,
IV. SUM RULES

In this section we study the sum rules satisfied by thqng,GR(q)zszf dr p,(r,0:r)(q- V)2V(r)
Gersch-Rodriguez FSE broadening functigfq,Y). From ap
the relation

3m
w +ﬁf dr(q- V)V(r)1[(a- V) pa(r,0:%) Jx=r
sav= [ dvaRraY-Y), @ 8
wheremi ®R(q) stand for theY-weighted integral of the FSE

function in Gersch-Rodriguez theory. Integrating by parts the
R,GR

and the first sum rules of both,(Y) and the incoherent part
of J(q,Y), an equivalent set ofr-weighted integrals for S
R(q,Y) can be derived? Notice that Eq.(25) can be taken S€Cond term omg™(q), and taking into 1?22“”t.ge”era'
as a possible definition dR(q,Y) provided thatq is large ~ SYMMEUry properties Ofz, One can expressiz~(q) in the
enough for the coherent part d{g,Y) to be negligible. following way:
These sum rules are model independent, and so any suitable

convolutive FSE broadening function must fulfill them. The R,G (q) m

_ . )2
first sum rules oRR(q,Y) are M3 qupf dr p2(r,0:0)(q-V)?V(r). (29
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R(a,Y) (A)

0.6

(@]
N

FIG. 10. Comparison between Gersch-Rodriguez and Silver re-
sults for bothR(q,Y) andJ(q,Y) atq=15.0 A%,

FIG. 8. Comparison ofR(q,Y) calculated using the Gersch- tions obtained in the framework of the Gersch-Rodriguez
Rodriguezp, with different values of , (solid lineg and the varia-  theory.
tional p, (dashed ling In the Gersch-Rodriguez theoR(q,Y) is formulated in

terms of the semidiagonal two-body density matrix of the

As the diagonal part op, is p2g(r), the analytical expres- System. In the present work, a variational ansatz for this
sion of m§ is recovered. Therefore, the zero, first, secondduantity has been employed and discussed, but at the time
and third moments oR(q,Y) are exactly fulfilled in the the formalism was devgloped only a quahtatlve description
Gersch-Rodriquez theory. of p, was available. This led the original al_Jtho_rs to use a

Nevertheless, the exags is not known, and the use of an form of p, based on a Hartree-Fock approximation and the

approximation can produce numerical differences betweerCWwartz inequality
Egs.(29) and(26). In fact, we have checked that the inclu-

sion of the Abe terms in the variationaJ defined in Eq(24) P2(r1,02;1 " 1,72) =pp1(r1)V9(r12)g9(ri), (30
is crucial in reproducingy(r) in its diagonal part, and con- ) . ]
sequentlymg(q). p1(r) being the one-body density matrix agdr) the two-

body radial distribution function. At that time, detailed mi-
croscopic calculations ofi(r) were not available, so they
V. COMPARISON WITH OTHER FSE THEORIES had to approximate it. The form selected for the radial dis-

] S tribution function was simply a step function
FSE theories can be classified in different groups depend-

ing on the way they incorporate the corrections to the IA. — e
4 g(r)=0(r—ry), (31
The two most important groups are, on one hand, convolu-

tive theories in which the total response is expressed as giih a parameter, to mimic the radius of the hole af(r).
convolution ofJ,(Y) andR(q,Y) and, on the other, addi- oyiginally, r, was taken as a fitting parameter. However,
tive theories where the leading FSE corrections are summegooretical arguments brought them to fix its value to
up to the IA. Examples of theories belon.g‘i‘ng to the first classr0:2'5 A0 With this prescription, Gersch and Rodriguez
are those of S"VéF or Carraro and KO,O””]"A” example of  hreqicted al(q,Y) that visibly overestimates the measured
additive theory is that originally derived by Gersch, Rod-grength of the response around its maximum. This failure
riguez and Smitfi, which was next generalized by R0 \yas later discussed and partially attributed to a somewhat
treat also hard core potentials. o . excessively simplified approximation to the probl&Nev-
Gersch-Rodriguez formalism was the first in predictingetheless, this discrepancy seems to be eliminated by choos-
convolutive FSE corrections. Silver’'s and Carraro and Koo'mg a different value ofro. In order to show this feature,
nin’s theories appeared some years after. In this section, W&, eral calculations using Eq®1) and (32) with different
present a comparison between their results and our predicy eg ofr, have been performed. In Fig. 8, results for
R(q,Y) with ro equal to 2.0, 2.1, and 2.2 A are depicted and
1.8 0.6 compared tdR(q,Y) computed with the variational,. Even
1.5¢ Jo.5 though the behavior of the tails ¢¥(q,Y) in the Gersch-
1216 loa Rodriguez approximation gb, is different from the one of
R(q,Y) with the variational two-body density matrix, the

=09+ 10.3 = . . .
G 2 height and width of both peaks are in good agreement for a
¥ 0.6} 102 = .
value ofr, laying between 2.1 and 2.2 A. Then, a proper
0-31 10 choice ofrg in the simple Gersch-Rodriguez model fos
0.0 0.0 produces accurate results, provided that the height and width
0335 "¢ 1T 32 -4 =2 o 5 4701 of the central peak are the most important features of the
Y (A7) Y (A FSE broadening function.

We have compared our results f&(q,Y) and J(q,Y)

FIG. 9. Comparison between Gersch-Rodriguez, Silver, andvith those obtained by Silv&r and Carraro and Koonitf.
Carraro and Koonin results for botR(q,Y) and J(g,Y) at  Figures 9, 10, and 11 shoR®(q,Y) andJ(q,Y) in Gersch-
g=23.1A% Rodriguez(GR), Silver (HCPT), and Carraro and Koonin
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1.8 0.6 convolution product of the Compton profilga(Y) and the
FSE broadening functioR(q,Y).

Two quantities describing the ground state of the system
are needed. The first one is the momentum distributidd)
which completely determine(Y). The second one is the
semidiagonal two-body density matrix, which enters in the
Gersch-Rodriguez form dR(q,Y).

Jia(Y) has two terms, one corresponding to the noncon-
—0.1 densate part oh(k) and another given by,4(Y). This

splitting produces, after convoluting witR(q,Y), a total
response which is also the sum of two terms, corresponding
to the condensate and noncondensate contributions. The

FIG. 11. Comparison between Gersch-Rodriguez and Carrarformer is linear inn, and mostly affectsJ(q,Y) around
and Koonin results for botR(q,Y) andJ(q,Y) atq=10.2 A~*. Y=0. The latter is much less affected by FSE, although the

effects are nonnegligible. We have verified that Gersch-
(CK) theories for three values af, 23.1, 15.5, and 10.2 Rodriguez theory gives accurate results when proper forms
A 1. The FSE functiorR(q,Y) is slightly different in the  for the one- and two-body density matrices are used. A varia-
three theories, though both the height and width of the centional p, obtained in the HNC framework accurately repro-
tral peak are quite similar. The tails of the FSE broadeningjuces the experimental response at high Furthermore,
function show a different behavior, although they quickly we have checked that the functional decompositiop.ofs
vanish as|Y| increases. Despite of the discrepancies invery important in the calculation d®(q,Y). Simple models
R(q,Y), the predicted responses are nearly the same a@jnserving the variational functional form can also produce a
q=23.1 A~! and in good agreement with the experimentalgood estimation of the response.
data. Asq is lowered, the deficiencies of the FSE theories OQur results are comparable to other calculations using
show up butJ(q,Y) is still reasonably well described at more recent convolutive FSE theories. None of the theories
q=15.5 A1, For the lowestj value,q=10 A™! (Fig. 11,  correctly accounts for the observed response wiénlow-
the theoretical responses move away from experiment, and iéred below about 10 A, Further improvements could arise
particular do not present the small shift of the peak to negawhen higher order terms in the Gersch-Rodriguez cumulant
tive Y values(see also Fig. 6 Then, even for intermediate  expansion are considered or the time dependence of the par-
values, the Gersch—Rodriguez theory reproduces the dyicle coordinates is taken into account.
namic structure function as precisely as other existing theo-
ries for the FSE.

033576 1 2 -4 =2 0 2 4
Y (A7) Y (A7)
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