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The superheated Meissner state in type-I superconductors is studied both analytically and numerically within
the framework of Ginzburg-Landau theory. Using the method of matched asymptotic expansions we have
developed a systematic expansion for the solutions of the Ginzburg-Landau equations in the limit of small
k, and have determined the maximum superheating fieldHsh for the existence of the metastable, superheated
Meissner state as an expansion in powers ofk1/2. Our numerical solutions of these equations agree quite well
with the asymptotic solutions fork,0.5. The same asymptotic methods are also used to study the stability of
the solutions, as well as a modified version of the Ginzburg-Landau equations which incorporates nonlocal
electrodynamics. Finally, we compare our numerical results for the superheating field for largek against recent
asymptotic results for largek, and again find a close agreement. Our results demonstrate the efficacy of the
method of matched asymptotic expansions for dealing with problems in inhomogeneous superconductivity
involving boundary layers.

I. INTRODUCTION

In equilibrium, the superconducting Meissner phase of a
bulk type-I superconducting sample exists below a thermo-
dynamic critical fieldHc ~or belowHc1 in a type-II super-
conductor!; above this field the sample reverts to the normal
phase~or the flux lattice phase in a type-II superconductor!.
However, because the phase transition in both cases is first
order it is possible to superheat the Meissner phase and delay
the transition to fields well aboveHc or Hc1 . This super-
heated, metastable Meissner phase is eventually destroyed at
a maximum superheating fieldHsh. Understanding the origin
and stability of the superheated state is the first step in pro-
viding a complete description of the time-dependent collapse
of the Meissner phase, which is important for many applica-
tions of type-I superconductors. For instance, there have
been recent proposals to use superheated type-I supercon-
ductors as detectors for elementary particles, so that the
sample acts as a superconducting ‘‘bubble chamber.’’1 The
passage of a sufficiently energetic particle through the
sample would initiate the transition to the normal state. Mea-
suring the superheating field also provides one of the few
methods of experimentally determining the Ginzburg-
Landau parameterk in type-I superconductors.2

The precise value of the maximum superheating field may
depend upon extrinsic factors such as defects in the sample
and sample preparation and geometry. If these effects can be
minimized then the limit of superheating is determined by
the boundaries and geometry of the sample. The simplest and
most widely studied geometry is a superconducting half-
space with a magnetic field applied parallel to the surface of
the superconductor, which is the geometry considered in the
remainder of this paper. To model the superconductor we
will use the Ginzburg-Landau~GL! equations, which provide
an accurate description of the surface behavior provided the
coherence lengthj is large compared to microscopic length
scales.3 Previous studies of superheating in type-I supercon-
ductors have used a variety of heuristic methods to determine
the behavior of the GL equations near the surface. Ginzburg4

inferred the leadingk21/2 dependence of the superheating
field from the form of the Ginzburg-Landau equations. Ap-
parently unaware of Ginzburg’s work, the Orsay group5 used
a variational argument to show thatHsh/Hc'221/4k21/2. By
combining an ingenious guess for the behavior of the super-
conducting order parameter near the surface with a varia-
tional calculation, Parr6 was able to calculate the next order
correction to the Orsay group’s result. In addition to this
analytical work there has also been a great deal of numerical
work on solving the GL equations in small-k limit,7–10which
is reviewed in Ref. 11. The numerical results appear to con-
firm at least some of the analytical work, although admit-
tedly over a somewhat restricted range ofk. One deficiency
common to all of the previous analytical approaches is anad
hoc construction of approximate solutions of the GL equa-
tions, leaving us without a procedure for systematically im-
proving upon these approximations. In addition, the issue of
thestabilityof the solutions in the small-k limit seems not to
have been addressed rigorously~for one attempt see Ref. 12!.

In this paper we reexamine the problem of superheating in
type-I superconductors by using the method of matched as-
ymptotic expansions13,14 to solve the GL equations in the
small-k limit. This method was originally developed to treat
boundary layer problems in fluid mechanics14 in a controlled
and systematic fashion, and is particularly well suited to the
superheating problem, as all of the technical difficulties arise
due to a ‘‘boundary layer’’ at the surface. Using this method
we can calculate the superheating field in the small-k limit as
an asymptotic expansion in powers ofk1/2, construct uni-
form asymptotic expansions~i.e., expansions valid for allx
ask→0) for the order parameter and magnetic field, deter-
mine the stability of the solutions, and treat nonlocal electro-
dynamic effects. Where appropriate we compare our asymp-
totic results against numerical solutions of the GL equations,
and we generally find excellent agreement. We have chosen
to present our results in detail, as the methods are probably
unfamiliar to most physicists. Matched asymptotic expan-
sions have recently been used by Chapman15 to study super-
heating in the large-k limit, and our results complement his

PHYSICAL REVIEW B 1 MARCH 1996-IVOLUME 53, NUMBER 9

530163-1829/96/53~9!/5650~11!/$10.00 5650 © 1996 The American Physical Society



work. This paper, taken together with Chapman’s work, dem-
onstrates that these perturbation methods can provide a pow-
erful calculational tool for solving problems in inhomoge-
neous or nonequilibrium superconductivity.

The remainder of this paper is organized as follows. In
Sec. II we describe our numerical methods for solving the
GL equations. In Sec. III we develop the method of matched
asymptotic expansions for the solution of the GL equations
in the small-k limit, and determine the first five terms in the
expansion ofHsh in powers ofk

1/2. In addition, we construct
uniform expansions for the order parameter and magnetic
field and compare them against our asymptotic results. In
Sec. IV we examine the second variation of the GL free
energy,d2F , in order to determine the stability of our solu-
tions. This is done for both one- and two-dimensional per-
turbations. In Sec. V the method is generalized to treat non-
local electrodynamics. Section VII compares Chapman’s
asymptotic expansion forHsh for largek with our numerical
results, and we find remarkably good agreement. Finally,
Sec. VIII is a summary and discussion of our results.

II. NUMERICAL METHODS

The GL free energy of a superconducting sample occupy-
ing the half-spacex.0 is

F @ f ,q#5E
x.0

d3r F 1k2 ~“ f !21
1

2
~12 f 2!21 f 2q2

1~Ha2¹3q!2G , ~2.1!

wherek is the GL parameter,f is the amplitude of the su-
perconducting order parameter,q is the gauge-invariant vec-
tor potential (h5¹3q), and Ha is the applied magnetic
field. The lengths are in units of the penetration depthl and
fields are in units ofA2Hc . Minimizing this expression with
respect to bothf andq results in the GL equations. In one
dimension, withf5 f (x) andq5„0,q(x),0…, these equations
are

1

k2 f 92q2f1 f2 f 350, ~2.2!

q92 f 2q50, ~2.3!

h5q8. ~2.4!

The task at hand is to solve these equations numerically for a
superconducting half-space and to find the largest possible
applied field (Hsh) which permits a superconducting solu-
tion. To insure that no current passes through the boundary at
x50 and that the sample is totally superconducting infinitely
far from the surface, we impose the boundary conditions

f 8~0!50, f ~x!→1 as x→`. ~2.5!

Since the field at the surface must equal the applied field
Ha , and the field infinitely far from the surface must equal 0,
we impose the boundary conditions

h~0!5Ha , q~x!→0 as x→`. ~2.6!

Fork→0, we rescale the equations asx85kx making the
new unit of length the correlation lengthj. Sincej@l in
this limit, a numerical solution over a domain much larger
than j would insure that the regions of rapid change forf
andh would be included.~For smallk, we find that solving
for x8,500 is sufficient.! In the large-k limit, we use the
rescaled equations again, but we increase the size of the do-
main depending on the value ofk. ~The equations must be
solved for domains as large asx8,104 for values of
k;103.)

The equations can be solved using the relaxation
method.16 By replacing these ordinary differential equations
with finite difference equations, one can start with a guess to
the solution and iterate using a multidimensional Newton’s
method until it relaxes to the true solution. In order to more
accurately pick up the detail near the boundary, we choose a
grid of discrete points with a higher density nearx50. In
particular we choose a density which roughly varies as the
inverse of the distance from the boundary.~For low k our
density, in units of mesh points per coherence length, varies
approximately from 107 near the boundary to 103 at the far-
thest point from the boundary, while for highk it varies from
105 to 1022.)

Hsh can be found in the following way. For a given value
of k an initial guess is made where there is no applied field
and the sample is completely superconducting
( f[1, q[0, h[0). The fieldHa is then ‘‘turned up’’ in
small increments. For each value ofHa a solution is sought
using the result from the previous lower field solution as an
initial guess. Eventually a maximum value forHa is reached,
above which one of two things happens: our algorithm fails
to converge to a solution or it converges to the normal~non-
superconducting solution!. This maximum value ofHa is the
numerical result forHsh. Using this algorithm,Hsh(k) can
be found for a wide range ofk ’s. Each run~for a givenk)
takes about 60 cpu minutes on an IBM RS 6000/370. We find
it sufficient for the purposes of this paper to deal with super-
heating field values for 1023,k,103.

III. ASYMPTOTIC EXPANSIONS FOR SMALL k

In this section we will develop an asymptotic expansion
for the superheating field for smallk, using the method of
matched asymptotic expansions.13,14 For smallk the domi-
nant length scale is the coherence lengthj, so it is natural to
havej serve as our unit of length. This is achieved by res-
caling x by k, introducing a new dimensionless coordinate
x85kx. The resulting GL equations in these ‘‘outer vari-
ables’’ are

f 92q2f1 f2 f 350, ~3.1!

k2q92 f 2q50, ~3.2!

h5kq8, ~3.3!

with the primes now denoting differentiations with respect to
x8.

Outer solution.In order to obtain the outer solutions ex-
pand f , q, andh in powers ofk:

f5 f 01k f 11k2f 21 . . . , ~3.4!
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q5q01kq11k2q21 . . . , ~3.5!

h5h01kh11k2h21 . . . . ~3.6!

Substituting into Eqs.~3.1!–~3.3!, atO(1) we have

f 092q0
2f 01 f 02 f 0

350, ~3.7!

2 f 0
2q050. ~3.8!

Since we wantf→1 asx8→`, the only possible solution to
Eq. ~3.8! is q050. We can then immediately integrate Eq.
~3.7!,

f 0~x8!5tanhS x81x0
A2 D , ~3.9!

with x0 a constant. ToO(k), the outer equations are

f 1922q0f 0q12q0
2f 11 f 123 f 0

2f 150, ~3.10!

2 f 0
2q122 f 0q0f 150, ~3.11!

h050. ~3.12!

Once again, the only solution to Eq.~3.11! is q150; substi-
tuting this into Eq.~3.10!, we find f 15C1f 08 , with C1 a
constant:

f 15
C1

A2
sech2S x81x0

A2 D . ~3.13!

We can continue in this manner; at every orderqn50,
hn50, and f n5Cnf 0

(n) , with the Cn’s constants which are
determined by matching onto the inner solution.

Inner solution.The outer solution breaks down within a
boundary layer ofO(k) near the surface. This suggests in-
troducing a rescaled inner coordinateX5x8/k, so that
X5O(1) within the boundary layer. It is also possible to
rescalef andq, with the hope that this will lead to a trac-
table inner problem. Such a rescaling must lead to a success-
ful matching of the inner and outer solutions; i.e., the inner
solutions asX→` must match onto the outer solutions as
x8→0. Since f 0(0)5tanh(x0 /A2), then assuming thatx0
Þ0 we havef 0(0)5O(1), indicating that the order param-
eter should not be rescaled in the inner region; therefore we
set f (x8)5F(X) in the inner region. However, from the
outer solution for the vector potential we see that the only
constraint onq(X) in the inner region is thatq(X)→0 as
X→` ~presumably exponentially!. Therefore, we are free to
rescaleq by k in the inner region, hopefully in a way which
simplifies the inner equations. One possibility is
q(x8)5k2aQ(X); substituting this into the GL equations,
Eqs. ~3.1!–~3.3!, we see that unless 2a is an integer, frac-
tional powers ofk will be introduced into the inner equa-
tions, contradicting our expansion off andq in integer pow-
ers of k in the outer region. Therefore, the simplest
assumption is thata51/2, leading to the following choice
for the inner variables:

x85kX, f ~x8!5F~X!,

q~x8!5k21/2Q~X!, h~x8!5H~X!. ~3.14!

In these variables Eqs.~3.1!–~3.3! become

F92kQ2F1k2~F2F3!50, ~3.15!

Q92F2Q50, ~3.16!

k1/2H5Q8, ~3.17!

where now the primes denote differentiation with respect to
X. The boundary conditions are

F8~0!50, H~0!5Ha . ~3.18!

The next step is to expand the inner solutions in powers of
k:

F5F01kF11k2F21•••, ~3.19!

Q5Q01kQ11k2Q21•••, ~3.20!

H5k21/2H01k1/2H11••• . ~3.21!

Note that there is no term ofO(1) in the expansion forH,
since we would be unable to match such a term to the outer
solution. Using the boundary conditionH(0)5Ha leads to

Ha5k21/2H0~0!1k1/2H1~0!1••• . ~3.22!

Substituting these expansions into Eqs.~3.15!–~3.17!, at
O(1) we obtain

F0950, Q092F0
2Q050, H05Q08 . ~3.23!

Solving these equations subject to the boundary conditions
~3.18! ~we also needQ0→0 asx→` in order to match onto
the outer solution!, we obtain

F0~X!5A0 , Q0~X!5B0e
2A0X, H0~0!52A0B0 ,

~3.24!

with A0 andB0 constants. In what follows we will assign
Fn(0)5An and Qn(0)5Bn for notational simplicity. The
O(k) equations are

F195Q0
2F0 , Q192F0

2Q152F0Q0F1 , H15Q18 .
~3.25!

Solving with the boundary conditionF18(0)50, we obtain

F1~X!5A11
B0
2

4A0
@2A0X1e22A0X21#, ~3.26!

Q1~X!5e2A0XHB12
B0
3

16A0
2 F12e22A0X116

A0
2A1

B0
2 X

14A0
2X2G J , ~3.27!

H1~0!52
1

8

B0
3

A0
2A0B12A1B0 . ~3.28!

Finally, toO(k2) we have forF2

F2952F01F0
312Q0Q1F01Q0

2F1 , ~3.29!

the solution of which@with F28(0)50# is
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F2~X!5
17

128

B0
4

A0
3 1

1

4

B0
2A1

A0
2 2

1

2

B0B1

A0
1A21S B0B12

3

32

B0
4

A0
2DX2

1

2
A0~12A0

2!X2

1F12 B0B1

A0
2
1

4

B0
2A1

A0
2 2

5

32

B0
4

A0
3 2S 18 B0

4

A0
2 1

1

2

B0
2A1

A0
DX2

1

8

B0
4

A0
X2Ge22A0X1

3

128

B0
4

A0
3e

24A0X. ~3.30!

The expression forQ2 is even more unwieldy, and is not
needed in what follows.

Matching.To determine the various integration constants
which have been introduced we must match the inner solu-
tion to the outer solution. Since the outer solution forq is
simply q50, and all of our inner solutions decay exponen-
tially for largeX, the matching is automatically satisfied for
q, as well as for the magnetic fieldh. To match the inner and
outer solutions for the order parameter, we are guided by the
van Dyke matching principle,14 which states that them term
inner expansion of then term outer solution should match
onto then term outer expansion of them term inner solution.
In our case we will takem53 andn52. Therefore, write the
two-term outer solutionf 0(x8)1k f 1(x8) in terms of the in-
ner variableX, and expand for smallk, keeping the first
three terms in the expansion in powers ofk:

f 0~kX!1k f 1~kX!

;tanhS x0A2D 1ksech2S x0A2D 1

A2
@C11X#

1k2sech2S x0A2D tanhS x0A2D F2C1X2
X2

2 G .
~3.31!

Next, write the three term inner solution
F0(X)1kF1(X)1k2F2(X) in terms of the outer variable
x8, and expand for smallk, this time keeping the first two
terms of the expansion:

F0~x8/k!1kF1~x8/k!1k2F2~x8/k!

;A01
B0
2

2
x82

1

2
A0~12A0

2!x82

1kFA12
B0
2

4A0
1S B0B12

3

32

B0
4

A0
2D x8G . ~3.32!

By writing both expressions in terms ofx8, and equating the
various coefficients ofx8 andk, we see that the expansions
do indeed match if we choose

A05tanhS x0A2D , ~3.33!

B05221/4sechS x0A2D 5221/4~12A0
2!1/2, ~3.34!

A15
B0
2

4A0
1sech2S x0A2D C1

A2
5

A2
4

12A0
2

A0
1~12A0

2!
C1

A2
,

~3.35!

B15
3

32

B0
3

A0
2 2

A2A0~12A0
2!

B0

C1

A2
. ~3.36!

EliminatingC1 ,

B152
A2A0A1

B0
1

3

32

B0
3

A0
2 1

1

2

12A0
2

B0
. ~3.37!

Substituting into our expressions forH0(0) andH1(0) from
Eqs.~3.24! and ~3.28!, we obtain

H0~0!521/4A0~12A0
2!1/2, ~3.38!

H1~0!5
23/4

64

~2A0
2114!~12A0

2!1/2

A0
2
21/4~2A0

221!

~12A0
2!1/2

A1 .

~3.39!

In order to calculate the superheating field~or, more cor-
rectly, themaximumsuperheating field!, we need to maxi-
mize H0(0) andH1(0) with respect toA0 andA1 . Maxi-
mizingH0(0) with respect toA0 , we find that the maximum
occurs atA0*51/A2, B0*52221/4, so thatH0(0)5223/4.
Substituting this result intoH1(0), we find thesurprising
result that the coefficient of A1 is zero, and
H1(0)523/415/64. Our superheating field is then

Hsh5223/4k21/2F11
15A2
32

k1O~k2!G . ~3.40!

In order to determineA1 we need to proceed to a higher-
order calculation. The method is the same as before, al-
though the algebra quickly becomes tedious; we have used
the computer algebra systemMAPLE V to organize the expan-
sion. The results from a six-term inner expansion are sum-
marized in Table I. Including the next order term in the ex-
pansion of the superheating field, we have

Hsh5223/4k21/2F11
15A2
32

k2
325

1024
k21O~k3!G . ~3.41!

The first term is exactly the result obtained by the Orsay
group,4,5 who used a variational argument to obtain their re-
sult. The second term is identical to the result obtained by
Parr.6 Parr combined an inspired guess for the behavior of
the order parameter near the surface with a variational cal-
culation in order to obtain his result. It is interesting to note
that our result forA1 also agrees with Parr’s result. The
advantage of the method of matched asymptotic expansions
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is that we can make this expansion systematic, and therefore,
in principle, carry out this expansion as far as we wish. The
third term in Eq. ~3.41! is one of the new results of this
paper; the fourth and fifth terms are included in Table I. With
the five-term expansion forHsh it is possible to employ re-
summation techniques to improve the expansion. For in-
stance, the@2,2# Padéapproximant13 is

Hsh
Pade´5223/4k21/2

115.444 781 2k14.218 101 2k2

114.781 868 6k11.365 523 0k2 .

~3.42!

In Fig. 1 we compare the numerically calculated superheat-
ing field against the one-, two-, and three-term asymptotic
expansions. The one-term~i.e., the Orsay group! result never
seems particularly accurate. There is a marked improvement
with the two-term expansion, with the three-term expansion
offering only a modest additional improvement. The@2,2#

Padéapproximant agrees with the numerical data to within
about 1% all the way tok51.

Uniform solutions.From the inner and outer expansions it
is possible to constructuniform solutions, which are asymp-
totically correct for allx ask→0. To do this we simply add
the inner and outer solutions of a given order, which guaran-
tees the correct behavior in the outer region as well as in the
boundary layer. However, this would produce a result which
was 2fmatch in the matching region, so we need to subtract
fmatch in order to obtain the correct behavior in this region.
As an example, we will construct the two-term uniform so-
lution for the order parameter. Adding the two-term outer
solution, f 0(x8)1k f 1(x8), to the two-term inner solution,
F0(X)1kF1(X), subtracting the solution in the matching
region, which is 1/A21(A2/4)kX2(15/32)k, and writing
the entire combination in terms of the original variablex
~which is the same asX!, we obtain

f unif,2~x!5tanhS kx1x0

A2 D 2
15

16
ksech2S kx1x0

A2 D 1
k

4
e2A2x.

~3.43!

FIG. 2. A comparison of the three-term inner and outer solutions
for the order parameter and the magnetic field with the numerical
solution for k50.1. The asymptotic solutions approximate the
computed values only in the appropriate regions. The matching re-
gion where the inner and outer meet isO(k) as can be estimated
from the inner solution forf .

TABLE I. Summary of the results of the small-k expansion for the superheating field. HereAn is the value
of the order parameterF(X) at the surface atnth order,Bn is the value of the vector potentialQ(X) at nth
order,Cn is the coefficient of thenth term in the outer expansion of the order parameter, andHn(0) is thenth
order term in the expansion of the superheating field.

n An Bn Cn Hn(0)

0 221/2 2221/4 1 223/4

1 27/32 2(9/16)21/4 2(15/16)21/2 (15/64)23/4

2 2(17/1024)21/2 (159/2048)23/4 225/256 2(325/2048)21/4

3 3211/16384 2(745/4096)21/4 2(1125/4096)21/2 (14191/65536)23/4

4 2(623575/1572864)21/2 (16223049/20971520)23/4 16875/131072 2(78495727/62914560)21/4

FIG. 1. A comparison of the numerically calculated superheat-
ing fieldHsh ~heavy line! with the three-term asymptotic expansion
for smallk, and the@2,2# Padéapproximant. The one-term expan-
sion due to the Orsay group deviates systematically from the calcu-
lated superheating field. The two- and three-term expansions pro-
vide a marked improvement over the one-term expansion.
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As x→`, f unif,2(x)→1; also, f unif,2(0)51/A22(7/32)k, as
we expect. However,f unif,28 (0)5(15/64)k2, so that the zero-
derivative boundary condition is only satisfied toO(k).

In Figs. 2 and 3 we compare the numerically calculated
order parameter and magnetic field with the two-term outer
solutions and the three-term inner solutions. The agreement
is quite good for k50.1, with deviations appearing at
k50.5. These figures also illustrate the existence of a match-
ing region where the inner and outer solutions overlap; this
region grows ask→0. Lastly, we show in Fig. 4 how the
two-term uniform expansion constructed earlier supplies a
uniform approximation to the order parameter and magnetic
field over the whole region.

IV. STABILITY ANALYSIS OF THE SOLUTIONS

Having obtained an asymptotic expansion for the super-
heating fieldHsh in powers ofk1/2, we now examine the
stability of the solution with respect to infinitesimal pertur-
bations by studying the second variation of the free energy,
d2F . Perturbations withd2F .0 correspond to stable solu-
tions, while those withd2F ,0 correspond to unstable solu-
tions. We will again use the method of matched asymptotics
to solve for the eigenfunctions of the linear stability operator.
We first determine the stability in the simpler one-
dimensional situation and then we discuss the two-
dimensional case.

A. Stability with respect to one-dimensional perturbations

If we perturb the extremal solution (f ,q) of the GL
equations by allowing f (x)→ f (x)1 f̃ (x) and
q(x)→q(x)1q̃(x), then the second variation of the free-
energy functional is

d2F 5E
0

`

dxF 1k2 f̃ 8
21~3 f 21q221! f̃ 2

14 f q f̃ q̃1 f 2q̃21q̃82G . ~4.1!

The boundary conditions onf̃ and q̃ should be chosen so as
to not perturbf andh at the surface, so that

f̃ 8~0!5q̃8~0!50, f̃ ~`!5q̃~`!50. ~4.2!

We can then integrate Eq.~4.1! by parts to obtain

d2F 5E
0

`

dxF f̃ S 2
1

k2

d2

dx2
1q213 f 221D f̃

1q̃S 2
d2

dx2
1 f 2D q̃14q f q̃f̃ G . ~4.3!

This quadratic form can be conveniently written as

d2F 5E
0

`

dx~ f̃ ,q̃!L̂1S f̃q̃D , ~4.4!

whereL̂1 is the self-adjoint linear operator

L̂1S f̃q̃D 5S 2
1

k2

d2

dx2
1q213 f 221 2 f q

2 f q 2
d2

dx2
1 f 2

D S f̃
q̃
D .

~4.5!

In order to analyze the stability, expandf̃ and q̃ as

S f̃
q̃
D 5(

n
cnS f̃ nq̃nD , ~4.6!

where thecn’s are real constants, and (f̃ n ,q̃n) is a normal-
ized eigenfunction ofL̂1 with eigenvalueEn :

L̂1S f̃ nq̃nD 5EnS f̃ nq̃nD . ~4.7!

FIG. 3. The same as Fig. 2 fork50.5.

FIG. 4. A comparison of the two-term uniform solution for the
order parameter,f unif,2(x) ~dashed line!, with the numerical solution
~solid line! at k50.5. The disagreement of the uniform solution
with the boundary condition atx50 is of orderk2.
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Then

d2F 5(
n

Encn
2 . ~4.8!

The second variationd2F ceases to be positive definite
when the lowest eigenvalue first becomes negative, indicat-
ing that the corresponding solutions (f ,q) of the GL equa-
tions are unstable. Therefore the entire issue of the stability
of the solutions has been reduced to finding the eigenvalue
spectrum of the linear stability operatorL̂1 , which in the
k→0 limit can be studied using matched asymptotic expan-
sions.

Outer solution.The outer equations for (f̃ ,q̃) are rescaled
with x85kx as before to yield~we will drop the subscriptn
for notational convenience!

2 f̃ 91~3 f 21q221! f̃12 f qq̃5E f̃ , ~4.9!

2k2q̃91 f 2q̃12 f q f̃5Eq̃. ~4.10!

Expanding f̃ , q̃, andE in powers ofk, and recalling that
q50 to all orders ink in the outer region, we have at leading
order

2 f̃ 091~3 f 0
221! f̃ 05E0 f̃ 0 , ~4.11!

where f 05tanh@(x81x0)/A2#. By changing variables to
y5tanh@(x81x0)/A2# we see that the solution of Eq.~4.11! is
the associated Legendre function of the first kind:

f̃ 0~x8!5c0P2
mF tanhS x81x0

A2 D G , ~4.12!

wherem52A2(22E0) and c0 is a constant. The leading-
order solution forq̃ is q̃050.

Inner solution.To obtain the inner equations, we rescale
as in Eq.~3.14!, with the perturbations rescaled as

f̃ ~x8!5F̃~X!, q̃~x8!5k21/2Q̃~X!, ~4.13!

such that

2
1

k2 F̃91S 3F21
1

k
Q221D F̃1

1

k
2FQQ̃5EF̃, ~4.14!

2Q̃91F2Q̃12FQF̃5EQ̃. ~4.15!

To leading order,F̃0950, so thatF̃05a0 , with a0 a constant.
The leading-order equation for the variation inQ is

2Q̃0912F0Q0F̃01~F0
22E0!Q̃050. ~4.16!

The solution which satisfies the boundary condition
Q̃8(0)50 is

Q̃0~X!5
2a0A0B0

E0
S e2A0X2

A0

AA0
22E0

e2AA0
2
2E0XD .

~4.17!

At O(k) we find

F̃195Q0
2F̃012F0Q0Q̃0 , ~4.18!

with the solution

F̃1~X!5a11a0B0
2FE014A0

2

4A0
2E0

e22A0X

2
4A0

2

E0

e2~A01AA0
2
2E0!X

~A01AA0
22E0!

2AA0
22E0

G
1a0B0

2FE014A0
2

2A0E0
2

4A0
3/E0

~A01AA0
22E0!AA0

22E0
GX.

~4.19!

We now have enough terms in the inner and outer region for
a nontrivial match.

Matching.We complete the matching of the inner and
outer perturbations to obtain the eigenvalue,E0 . Performing
a two-term inner expansion of the one-term outer solution,
we have

f̃ 0~kX!;c0FP2
m~A0!1

1

A2
sech2~x0 /A2!

dP2
m~A0!

dA0
kXG ,
~4.20!

where we have used tanh(x0 /A2)5A0 . Next, the one-term
outer expansion of the two-term inner solution is

F̃0~x8/k!1kF̃1~x8/k!;a01
a02

1/2~12A0
2!

E0
FE014A0

2

2A0

2
4A0

3

~A01AA0
22E0!AA0

22E0
Gx8,
~4.21!

where we have usedB05221/4(12A0
2)1/2. Matching the

two expansions using the van Dyke matching principle
yields

c05
a0

P2
m~A0!

, ~4.22!

1

P2
m~A0!

dP2
m~A0!

dA0
5

2

E0
FE014A0

2

2A0

2
4A0

3

~A01AA0
22E0!AA0

22E0
G .
~4.23!

The last equation is a rather complicated implicit equation
for the eigenvalueE0(A0), which generally must be solved
numerically. However, whenA051/A2 we findE050, cor-
responding to the critical case, withE.0 for A0.1/A2. The
numerical evaluation of Eq.~4.23! is shown in Fig. 5. There-
fore, we see that our maximum superheating field~at lowest
order! corresponds to the limit of metastability for these one-
dimensional perturbations. In Fig. 6 we showA0 as a func-
tion of the lowest order magnetic field at the surface,H0 ,
from Eq. ~3.38!. The stability analysis of this section shows
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that only the upper branch of this double valued function
corresponds to solutions which are locally stable, with the
field at the ‘‘nose’’ being the superheating field.

B. Stability with respect to two-dimensional perturbations

We next turn to the stability of the solutions with respect
to two-dimensional perturbations. If we perturb the extremal
solution (f ,q) of the GL equations by allowingf→ f1d f
andq→q1dq, then the second variation of the free-energy
functional is

d2F 5E dxdyF 1k2 ~“d f !214 f ~d f !q•dq1 f 2~dq!2

1~3 f 21q221!~d f !21~“3dq!2G ~4.24!

~we neglect perturbations along thez direction!. Expanding
in Fourier modes with respect toy,8

d f ~x,y!5 f̃ ~x!cosky, dqx~x,y!5q̃x~x!sinky,

dqy~x,y!5q̃y~x!cosky, ~4.25!

substituting into Eq.~4.24!, recalling thatq5„0, q(x), 0…,
and integrating overy, we obtain ~up to a multiplicative
constant!

d2F 5E
0

`

dxF 1k2 f̃ 8
21S 3 f 21q21

1

k2 k
221D f̃ 214 f q f̃ q̃y

1 f 2~ q̃x
21q̃y

2!1~ q̃y82kq̃x!
2G . ~4.26!

By integrating by parts and using the boundary conditions,
Eq. ~4.2!, we can cast this functional into the form

d2F 5E
0

`

dx~ f̃ ,q̃y ,q̃x!L̂2S f̃

q̃y

q̃x
D , ~4.27!

where the self-adjoint linear operatorL̂2 is given by

L̂2S f̃

q̃y

q̃x
D 5S 2

1

k2

d2

dx2
1q213 f 21k2/k221 2 f q 0

2 f q 2
d2

dx2
1 f 2 2k

d

dx

0 k
d

dx
f 21k2

D S f̃

q̃y

q̃x
D . ~4.28!

FIG. 5. The stability eigenvalueE(A0), with A0 the value of the
order parameter at the surface at leading order. We see thatE.0 for
A0.1/A2, indicating locally stable solutions.

FIG. 6. The order parameter at the surface,A0 , as a function of
the field at the surface,H0 , at leading order. The stability analysis
shows that only the upper branch corresponds to locally stable so-
lutions. The field at the ‘‘nose’’ is the limit of stability, and corre-
sponds to the superheating fieldH05223/450.595.
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As in the previous section, we want to determine the eigen-
value spectrum of this operator. We are primarily interested
in the effects of long-wavelength perturbations~i.e., k→0),
so we rescalek ask5kk8. Then the eigenvalue equations in
terms of the outer coordinatex85kx are~dropping the prime
on k from now on!

2 f̃ 91~3 f 21q2211k2! f̃12 f qq̃5E f̃ , ~4.29!

2k2q̃y91 f 2q̃y12 f q f̃2k2kq̃x85Eq̃y , ~4.30!

k2kq̃y81~ f 21k2k2!q̃x5Eq̃x . ~4.31!

By using the last equation we may eliminateq̃x from Eq.
~4.30!, which becomes

2k2
d

dx F f 22E

f 21k2k22E
q̃y8G1 f 2q̃y12 f q f̃5Eq̃y . ~4.32!

For k50 Eqs. ~4.29! and ~4.32! reduce to the one-
dimensional perturbation equations of the last section, Eqs.
~4.9! and~4.10!; for E50 they reduce to the Euler-Lagrange
equations derived by Kramer.8

The perturbation equations~4.29! and ~4.32! may be
solved by the method of matched asymptotic expansions, just
as in the one-dimensional case. The derivation of the eigen-
value condition is essentially identical, with the final result
that

1

P2
m~A0!

dP2
m~A0!

dA0
5

2

E0
FE014A0

2

2A0

2
4A0

3

~A01AA0
22E0!AA0

22E0
G ,
~4.33!

where nowm52A2(21E02k2). The eigenvalueE0(k) is
plotted in Fig. 7 for several different values ofA0 . For
A0.1/A2, E0(k).0 for all k, while for A0,1/A2 there
exists a band of long-wavelength perturbations for which
E0(k),0. In all cases the most unstable modes are at
k50, i.e., the one-dimensional perturbations are the least
stable. This is in contrast to the large-k limit, where the most
unstable mode occurs forkÞ0.17,8,15

V. NONLOCAL EFFECTS AS k˜0

In the previous sections we have studied superheating in
type-I superconductors starting from the conventional GL
equations, which assume alocal relationship between the
current and the vector potential. However, in very clean
type-I superconductorsnonlocaleffects are often important
~in thePippard limit; see Ref. 18!. We can model these ef-
fects by replacing the second GL equation, Eq.~3.2!, by a
nonlocal equation of the form

k2q92E
0

`

K~x2x8! f 2~x8!q~x8!dx850, ~5.1!

whereK(x2x8) is a kernel whose Fourier transformK(k)
behaves as

K~k!5H l2/lL
2 ~ local limit!;

a/uku ~extreme anomalous limit!,
~5.2!

with lL the London penetration depth anda a constant.
18 For

l'lL we recover the local limit considered in the previous
sections of this paper. It is still possible to calculate the su-
perheating field in this nonlocal limit using the method of
matched asymptotic expansions. Indeed, the prescription is
the same as for the local case discussed above; we only need
to solve a slightly more complicated inner problem. In this
section we will calculate the leading-order superheating field
in the nonlocal limit, in order to further illustrate the power
and flexibility of our method.

Outer solution.The outer solution is the same as before;
the vector potential is zero to all orders, and the first two
terms in the expansion for the order parameter are given by
Eqs.~3.9! and ~3.13!.

Inner solution.In the inner region we rescale the variables
as in Eq.~3.14!. In terms of these variables Eq.~5.1! be-
comes

Q92E
0

`

K~X2X8!F2~X8!Q~X8!dX850. ~5.3!

We need to solve this equation, along with the first GL equa-
tion, Eq. ~3.15!, perturbatively ink. ExpandingF andQ as
in Eqs.~3.19!–~3.21!, we obtainF0(X)5A0 , as before, and

FIG. 7. The stability eigenvalueE(k) for two-dimensional per-
turbations of wave numberk, for several different values ofA0 . For
A0.1/A2 the eigenvalue is stable for all wave numbers, while for
A0,1/A2 there exists a band of wave numbers for which the solu-
tion is unstable.
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Q092A0
2E

0

`

K~X2X8!Q0~X8!dX850. ~5.4!

This is an integral equation of the Wiener-Hopf type.19 To
solve, we Fourier transform, introducing

Q1~k!5E
0

`

Q0~X!eikXdX. ~5.5!

After Fourier transforming the integral equation, we perform
a Wiener-Hopf factorization,19 with the result that

Q1~k!5B0

ieiw~k!

@k21A0
2K~k!#1/2

, ~5.6!

whereB05Q0(0) is a constant, and

w~k!5
k

pE0
`

lnFk21A0
2K~x!

x21A0
2K~k!G 1

x22k2
dx. ~5.7!

The Fourier transform can be inverted once a particular form
for K(k) is specified~although this is unnecessary for the
calculation of the superheating field; see below!. The mag-
netic field at this order isH0(0)52A0B0 as before.

Proceeding to the next order, we have

F195A0Q0
2 . ~5.8!

By applying the boundary conditionF18(0)50, we find the
general solution

F1~X!5A11A0FXE
0

X

Q0
2~y!dy2E

0

X

yQ0
2~y!dyG , ~5.9!

with A15F1(0) another constant. The equation forQ1(X) is
a rather messy inhomogeneous Wiener-Hopf integral equa-
tion. Fortunately, its solution is not needed for the leading-
order calculation of the superheating field.

Matching.We now turn to the matching of the inner and
outer solutions. The two term inner expansion of the one-
term outer solution is

f 0~kX!;tanhS x0A2D 1
k

A2
sech2S x0A2DX. ~5.10!

The one-term outer expansion of the two-term inner solution
is

F0~x8/k!1kF1~x8/k!;A01A0S E
0

`

Q0
2~y!dyD x8.

~5.11!

By using the van Dyke matching principle we find
A05tanh(x0 /A2) as before, and

A0E
0

`

Q0
2~y!dy5

1

A2
~12A0

2!. ~5.12!

We can use Parseval’s identity to express the left-hand side
of Eq. ~5.12! in terms ofuQ1(k)u2, and then use Eq.~5.6! to
finally arrive at

A0B0
2

2p E
2`

` 1

k21A0
2K~k!

dk5
1

A2
~12A0

2!. ~5.13!

To calculate the superheating field we use Eq.~5.13! to
expressB0 as a function ofA0; we then substitute this result
into H0(0)52A0B0 and maximize with respect toA0 in
order to determine the lowest order superheating field. In the
local limit, K(k)5l2/lL

2 , and we obtainA0*51/A2 and
H0(0)5223/4(lL /l), which is the same as our previous re-
sult when l'lL . In the extreme anomalous limit
K(k)5a/uku, with a5(3p/4)(l2j/lL

2j0) in the Pippard
theory,18 wherej0 is the zero-temperature coherence length.
Performing the integral, we find

B05233/4223/4a1/6A0
21/6~12A0

2!1/2, ~5.14!

so that

H0~0!533/4223/4a1/6A0
5/6~12A0

2!1/2. ~5.15!

The maximum occurs at A0*5A5/11, so that
H0(0)50.721a1/6. Therefore, the superheating field is

Hsh50.721a1/6k21/2

1O~k1/2! ~extreme anomalous limit!.
~5.16!

The same result has been obtained by Smithet al.20 using an
approximation for the order parameter along with a varia-
tional calculation~in the spirit of method used by the Orsay
group5!. The advantage of our method is that it can be sys-
tematically improved upon. Although we have not checked
the stability in the extreme anomalous limit, the procedure
should be entirely analogous to that of the previous section.

FIG. 8. The numerically calculated superheating field for large
k ~solid line!, compared with the two-term asymptotic expansion
derived by Chapman~dashed line!. The slope of the dashed line is
24/3.
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VI. LARGE- k RESULTS

So far we have used the method of matched asymptotics
to solve the GL equations in the small-k limit. Chapman15

has recently used the same method to treat the one-
dimensional GL equations in the high-k limit. His final result
for the superheating field is

Hsh5
1

A2
1Ck24/31O~k26/3!, ~6.1!

where the constantC is determined from the solution of the
second Painleve` transcendent; a numerical evaluation yields
C50.326.21 The first term was originally derived by
Ginzburg,4 and the second term with the unusual dependence
uponk is the new term. As seen in Fig. 8 the asymptotic and
numerical results agree very well. It turns out, however, that
the calculatedHsh is not actually the superheating field, since
the one-dimensional solution in the large-k limit is unstable
with respect to two-dimensional perturbations;17,8,15these in-
stabilities occur at the smaller fieldHsh

2D5A5/3A250.527.
This situation is quite different from that of the small-k limit
in which our stability calculation~Sec. IV! found the limit of
stability to be right atHsh.

VII. DISCUSSION

In this paper, the one-dimensional GL equations are
solved analytically and numerically for a semi-infinite super-

conducting sample in the small-k limit in order to determine
the maximum superheating fieldHsh. We have used the
method of matched asymptotic expansions to construct a sys-
tematic perturbative solution of the Ginzburg-Landau equa-
tions, the results of which agree quite closely with our nu-
merical solutions. The same method has been used to
determine the stability of these solutions with respect to both
one- and two-dimensional infinitesimal fluctuations; our
analysis shows that two-dimensional fluctuations do not lead
to any additional destabilizing effects, in contrast to the situ-
ation in the large-k limit. With little modification this
method can also be adapted to treat nonlocal electrodynamic
effects. Finally, our numerical results for large-k compare
well with Chapman’s asymptotic analysis of this regime.
Taken collectively, our results demonstrate the effectiveness
of the method of matched asymptotic expansions for dealing
with boundary layer problems in the theory of superconduc-
tivity. We hope that others will find useful applications of the
methods developed in this paper in treating inhomogeneous
superconductors.
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