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The superheated Meissner state in type-l superconductors is studied both analytically and numerically within
the framework of Ginzburg-Landau theory. Using the method of matched asymptotic expansions we have
developed a systematic expansion for the solutions of the Ginzburg-Landau equations in the limit of small
x, and have determined the maximum superheating Figjdfor the existence of the metastable, superheated
Meissner state as an expansion in powerg%t Our numerical solutions of these equations agree quite well
with the asymptotic solutions fot<<0.5. The same asymptotic methods are also used to study the stability of
the solutions, as well as a modified version of the Ginzburg-Landau equations which incorporates nonlocal
electrodynamics. Finally, we compare our numerical results for the superheating field fox laggénst recent
asymptotic results for large, and again find a close agreement. Our results demonstrate the efficacy of the
method of matched asymptotic expansions for dealing with problems in inhomogeneous superconductivity
involving boundary layers.

I. INTRODUCTION inferred the leading«~ Y2 dependence of the superheating
field from the form of the Ginzburg-Landau equations. Ap-
In equilibrium, the superconducting Meissner phase of garently unaware of Ginzburg’s work, the Orsay grouped
bulk type-I superconducting sample exists below a thermoa variational argument to show thidt,/H ~2~ Y4~ 12 By
dynamic critical fieldH, (or belowH_; in a type-ll super- combining an ingenious guess for the behavior of the super-
conductoy; above this field the sample reverts to the normalconducting order parameter near the surface with a varia-
phase(or the flux lattice phase in a type-Il supercondugtor tional calculation, Pafrwas able to calculate the next order
However, because the phase transition in both cases is firgprrection to the Orsay group’s result. In addition to this
order it is possible to superheat the Meissner phase and delapalytical work there has also been a great deal of numerical
the transition to fields well abovel, or H;. This super- work on solving the GL equations in smailtimit, "~*°which
heated, metastable Meissner phase is eventually destroyediatreviewed in Ref. 11. The numerical results appear to con-
a maximum superheating fiekdl,. Understanding the origin firm at least some of the analytical work, although admit-
and stability of the superheated state is the first step in prdedly over a somewhat restricted rangexofOne deficiency
viding a complete description of the time-dependent collapseommon to all of the previous analytical approaches iadn
of the Meissner phase, which is important for many applica-hoc construction of approximate solutions of the GL equa-
tions of type-I superconductors. For instance, there havéons, leaving us without a procedure for systematically im-
been recent proposals to use superheated type-l supercqrroving upon these approximations. In addition, the issue of
ductors as detectors for elementary particles, so that théne stability of the solutions in the smakl-limit seems not to
sample acts as a superconducting “bubble chambditie ~ have been addressed rigorouglyr one attempt see Ref. 12
passage of a sufficiently energetic particle through the Inthis paper we reexamine the problem of superheating in
sample would initiate the transition to the normal state. Meatype-1 superconductors by using the method of matched as-
suring the superheating field also provides one of the fewmptotic expansiort§'* to solve the GL equations in the
methods of experimentally determining the Ginzburg-small« limit. This method was originally developed to treat
Landau parametex in type-l superconductors. boundary layer problems in fluid mechartits a controlled
The precise value of the maximum superheating field maynd systematic fashion, and is particularly well suited to the
depend upon extrinsic factors such as defects in the samptwiperheating problem, as all of the technical difficulties arise
and sample preparation and geometry. If these effects can Iskue to a “boundary layer” at the surface. Using this method
minimized then the limit of superheating is determined bywe can calculate the superheating field in the srrdimit as
the boundaries and geometry of the sample. The simplest arah asymptotic expansion in powers et construct uni-
most widely studied geometry is a superconducting halfform asymptotic expansions.e., expansions valid for ak
space with a magnetic field applied parallel to the surface oés k—0) for the order parameter and magnetic field, deter-
the superconductor, which is the geometry considered in thmine the stability of the solutions, and treat nonlocal electro-
remainder of this paper. To model the superconductor welynamic effects. Where appropriate we compare our asymp-
will use the Ginzburg-Landa(GL) equations, which provide totic results against numerical solutions of the GL equations,
an accurate description of the surface behavior provided thand we generally find excellent agreement. We have chosen
coherence lengtlj is large compared to microscopic length to present our results in detail, as the methods are probably
scales’ Previous studies of superheating in type-l superconunfamiliar to most physicists. Matched asymptotic expan-
ductors have used a variety of heuristic methods to determingions have recently been used by Chapthémstudy super-
the behavior of the GL equations near the surface. GinZburcheating in the larges limit, and our results complement his

0163-1829/96/5®)/5650(11)/$10.00 53 5650 © 1996 The American Physical Society



53 SUPERHEATING FIELDS OF SUPERCONDUCTORS: ... 5651

work. This paper, taken together with Chapman’s work, dem- For k— 0, we rescale the equationsxs= «x making the
onstrates that these perturbation methods can provide a powew unit of length the correlation length Since &>\ in
erful calculational tool for solving problems in inhomoge- this limit, a numerical solution over a domain much larger
neous or nonequilibrium superconductivity. than ¢ would insure that the regions of rapid change for
The remainder of this paper is organized as follows. Inandh would be included(For smallx, we find that solving
Sec. Il we describe our numerical methods for solving thefor x’ <500 is sufficiend. In the largex limit, we use the
GL equations. In Sec. Il we develop the method of matchedescaled equations again, but we increase the size of the do-
asymptotic expansions for the solution of the GL equationsnain depending on the value &f (The equations must be
in the small« limit, and determine the first five terms in the solved for domains as large as <10* for values of
expansion oHg, in powers ofx/2 In addition, we construct x~103.)
uniform expansions for the order parameter and magnetic The equations can be solved using the relaxation
field and compare them against our asymptotic results. Imethod® By replacing these ordinary differential equations
Sec. IV we examine the second variation of the GL freewith finite difference equations, one can start with a guess to
energy,6%7, in order to determine the stability of our solu- the solution and iterate using a multidimensional Newton's
tions. This is done for both one- and two-dimensional permethod until it relaxes to the true solution. In order to more
turbations. In Sec. V the method is generalized to treat nonaccurately pick up the detail near the boundary, we choose a
local electrodynamics. Section VII compares Chapman'gyrid of discrete points with a higher density nea# 0. In
asymptotic expansion fdtl g, for large « with our numerical  particular we choose a density which roughly varies as the
results, and we find remarkably good agreement. Finallyinverse of the distance from the boundaffyor low « our

Sec. VIl is a summary and discussion of our results. density, in units of mesh points per coherence length, varies
approximately from 10near the boundary to $Gt the far-
Il. NUMERICAL METHODS thest point from the boundary, while for highit varies from
, 10° to 10 2.)
_ The GL free energy of a superconducting sample occupy- _ can be found in the following way. For a given value
ing the half-space>0 is of x an initial guess is made where there is no applied field
1 1 and the sample is completely superconducting
_y‘[f,q]:f d3r[_2(Vf)2+_(1_f2)2+f2q2 (f=1, 9=0, h=0). The fieldH, is then “turned up” in
x>0 K 2 small increments. For each value léf, a solution is sought

using the result from the previous lower field solution as an
, (2.1 Initial guess. Eventually a maximum value fd, is reached,
above which one of two things happens: our algorithm fails
to converge to a solution or it converges to the nortnah-
superconducting solutignThis maximum value oH, is the
numerical result foH,. Using this algorithmH(«) can
be found for a wide range of’s. Each run(for a givenk)
takes about 60 cpu minutes on an IBM RS 6000/370. We find
it sufficient for the purposes of this paper to deal with super-
heating field values for I< k<10°.

+(Ha—V><Q)2

where k is the GL parameterf is the amplitude of the su-
perconducting order parameterjs the gauge-invariant vec-
tor potential f=VXx(q), and H, is the applied magnetic
field. The lengths are in units of the penetration deptand
fields are in units of\/EHC. Minimizing this expression with
respect to botlf andq results in the GL equations. In one
dimension, withf =f(x) andg=(0,q(x),0), these equations

are
lIl. ASYMPTOTIC EXPANSIONS FOR SMALL «

7 — g2+ f—f3=0, 29 In this section we WI|| develop an agymptotlc expansion
«? q 2.2 for the superheating field for smadl, using the method of
matched asymptotic expansiofis:* For small x the domi-

q’—f2q=0, (2.3 nant length scale is the coherence lengtiso it is natural to
have ¢ serve as our unit of length. This is achieved by res-
h=q’. (2.9 caling x by «, introducing a new dimensionless coordinate

) ) ) x"=kx. The resulting GL equations in these “outer vari-
The task at hand is to solve these equations numerically for gpjes” are

superconducting half-space and to find the largest possible

applied field Hgy) which permits a superconducting solu- f—g?f+f—f3=0, (3.9
tion. To insure that no current passes through the boundary at
x=0 and that the sample is totally superconducting infinitely k’q"—f%q=0, (3.2

far from the surface, we impose the boundary conditions
h=«q’, (3.3

with the primes now denoting differentiations with respect to
Since the field at the surface must equal the applied fiele’.
H,, and the field infinitely far from the surface must equal 0O, Outer solution.In order to obtain the outer solutions ex-
we impose the boundary conditions pandf, q, andh in powers of«:

f’(0)=0, f(x)—1 asx—oo. (2.5

h(0)=H,, q(x)—0 asx—ox. (2.6) f=fot+xf+u2frt ..., (3.9
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q=0qo+ kQy+ K20p+ ..., (3.5 x'=kX, f(x'")=F(X),

h=ho+ xhy+ k%Nt . .. . (3.6 ax)=k""Q(X), h(x)=HX). (314
In these variables Eq$3.1)—(3.3) become
Substituting into Eqs(3.1)—(3.3), at O(1) we have
F"—kQ%F + k*(F—F3%)=0, (3.19
n_ ~2 _f3_

0 q0f0+f0 f0 0, (37) Q//_FZQ:O, (31@
—f290=0. (3.9 kPH=Q’, (3.17

where now the primes denote differentiation with respect to

Since we wanf—1 asx’ —, the only possible solution to iy
- . yp X. The boundary conditions are

Eq. (3.8 is qp=0. We can then immediately integrate Eq.

(3.7, F'(0)=0, H(0)=H,. (3.18
X" +Xg The next step is to expand the inner solutions in powers of
fo(x')=tan ——/|, 3.9 :
o(x") *( N7 B9 «
. . F=Fo+«Fi+«%Fo+---, (3.19
with Xy a constant. T®(«), the outer equations are
. ) Q=Qo+kQ;+k*Qp+ -+, (3.20
f1—290fo0;—0qgf,+f,—3f5f1=0, 3.1
1~ 20oTod1—Gol1 1 T1 ol1 (3.10 H kY2 4 2 4o (3.21)
—f§q1—2f0q0f1=0, (3.11) Note that there is no term @(1) in the expansion foH,
since we would be unable to match such a term to the outer
he=0. (3.12 solution. Using the boundary conditid(0)=H, leads to
Ha=x"YH(0)+ «MH (0) +--- . (3.22

Once again, the only solution to E.11) is g, =0; substi- o _ .
tuting this into Eq.(3.10, we find f,=C,fj, with C;, a  Substituting these expansions into Ed8.15—-(3.17, at

constant: 0O(1) we obtain
c - F5=0, Qg—F§Qo=0, Ho=Q. (323
X"+ X
flz_l sech 0 (3.13  Solving these equations subject to the boundary conditions
\/E \/5 (3.18 (we also need),— 0 asx—o in order to match onto

. . . the outer solutioy we obtain
We can continue in this manner; at every ordgr=0,

h,=0, andf,=C,f{"”, with the C,’s constants which are Fo(X)=Ag, Qo(X)=Bge "%, Hq(0)=—AgB,,

determined by matching onto the inner solution. (3.29
Inner solution.The outer solution breaks down within a with A, and B, constants. In what follows we will assign

boundary layer ofO(«) near the surface. This suggests in-F (0)=A, and Q,(0)=B,, for notational simplicity. The

troducing a rescaled inner coordinak=x'/«x, so that Q(k) equations are

X=0(1) within the boundary layer. It is also possible to

rescalef andq, with the hope that this will lead to a trac- Fi=QfFo, Qi—FiQi=2FQoF;, H;=Qj.

table inner problem. Such a rescaling must lead to a success- (3.29

ful matching of the inner and outer solutions; i.e., the innergolying with the boundary conditioR}(0)=0, we obtain

solutions asX— must match onto the outer solutions as

x'—0. Sincef0(0)=tanhé<0/\/§), then assuming that,

#0 we havefy(0)=0(1), indicating that the order param-

eter should not be rescaled in the inner region; therefore we

set f(x")=F(X) in the inner region. However, from the  ax 3

outer solution for the vector potential we see that the only Qu(X)=e "% By~ 16A2

constraint onq(X) in the inner region is thatj(X)—0 as

BZ
FiX)=A+ —~[2AX+e 2A*—1],  (3.26
4A,

AZA
1—e 20Xy 16%X
0

X—o (presumably exponentiallyTherefore, we are free to 202

rescaleq by « in the inner region, hopefully in a way which TAAKE| 1 3.27
simplifies the inner equations. One possibility is

g(x') =k~ “Q(X); substituting this into the GL equations, 1 Bg

Egs. (3.1)—(3.3, we see that unlessa?is an integer, frac- H.(0)=— 3 A_O_AOBl_AlBO- (3.28

tional powers ofx will be introduced into the inner equa- )

tions, contradicting our expansion bandq in integer pow-  Finally, to O(«“) we have forF,

ers of x in the outer region. Therefore, the simplest w_ 3 2

assumption is thatr=1/2, leading to the following choice F2=~FotFot2QoQiFo* QoFy, (329
for the inner variables: the solution of whicHwith F;(0)=0] is
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4

|:x—17Bg+1B?’Al LBoBy [ BBy— = 20| = Lo 1-n2)x
2( )_@A_S ATAL 2 A TR B~ A2 5 Aol 0)

1BoB, 1BjA; 5By (1B 1BfA\  1Bj ] . . 3 By .

A A A A2 a5 A3 ——2+—— ———X“|e 0+——3€ 0™, (33@

2 Ay 4 A2 32A (8AZ 2 A 8 Ao 128 A3

|
The exp'ression foQ, is even more unwieldy, and is not BS X0 | Cy 2 1—A§ , Cy
needed in what follows. A1=K+secﬁ =57 A—+(1_A0)_’
Matching.To determine the various integration constants 0 V2/) 2 0 V2

which have been introduced we must match the inner solu- (3.39
tion to the outer solution. Since the outer solution @pis 3 5
simply =0, and all of our inner solutions decay exponen- B _ 3By V2Ag(1-A)) (&1 (3.36
tially for large X, the matching is automatically satisfied for 17323 Bo 2 '

g, as well as for the magnetic field To match the inner and

outer solutions for the order parameter, we are guided by thEliminating C,
van Dyke matching princip)& which states that then term 3 2
inner expansion of th@ term outer solution should match __ V2A0A i E } 1-A (3.37)
onto then term outer expansion of thra term inner solution. . Bo 32 AS 2 By ’

In our case we will taken=3 andn=2. Therefore, write the o .

two-term outer solutiorfo(x’)+ «f1(x') in terms of the in- Substituting into our expressions fbl(0) andH(0) from

ner variableX, and expand for smalk, keeping the first Egs.(3.24) and (3.28, we obtain

three terms in the expansion in powerssof HO(O)=21’4A0(1—A3)1’2, (3.39
fo(kX)+ kf1(kX) 234 (2A5+14)(1—-A3)Y2  2Y42A%-1)
Hl(o)_a AO - (1_AS)1/2 Al'
~tanH 22| + ksech| 22 i[Cl+ X] (3.39
V2 V2) \2

In order to calculate the superheating fi¢tmt, more cor-
Xo Xo rectly, the maximumsuperheating field we need to maxi-
E tan E mize Hy(0) andH,(0) with respect toA, and A;. Maxi-
mizing Hy(0) with respect tA,, we find that the maximum
(3:3D  oecurs atAy=1/2, BX=—2"4 so thatHy(0)=2"34
Next write the three term inner  solution Substituting this result intdd,(0), we find thesurprising

- : It that the coefficient of A; is zero, and
Fo(X)+ kF1(X)+ k?F,(X) in terms of the outer variable resu o3 I ’
x", and expand for smalk, this time keeping the first two H1(0)=2""15/64. Our superheating field is then

X2

+ k%secht —CiX— =

terms of the expansion:
15y2
Heg=2 4 Y21+ S[KJF O(x?)|. (3.40
Fo(X'/k)+ kF1(X'/ k) + K?F (X' k)
2 In order to determiné\; we need to proceed to a higher-
N E ,_E CA2\yr2 order calculation. The method is the same as before, al-
Aot X' = 5 A(1-Ag)x . ;
2 2 though the algebra quickly becomes tedious; we have used
52 4 the computer algebra systempLE Vv to organize the expan-
0 0}, sion. The results from a six-term inner expansion are sum-
+xk|Aj———+|BB1— 5= |x"|. (3.3
™M g, 07l 32 Aé) (3.32 marized in Table I. Including the next order term in the ex-

pansion of the superheating field, we have

By writing both expressions in terms »f, and equating the 15,2 395
various coefficients ok’ and x, we see that the expansions — =34, 1/2 _ 2 3

. : Hy=2 " 1+ K k“+0(k%)|. (3.4)
do indeed match if we choose 32 1024

The first term is exactly the result obtained by the Orsay

r( Xo) group?® who used a variational argument to obtain their re-

Ag=tanh —|, (3.33 sult. The second term is identical to the result obtained by

V2 Parr® Parr combined an inspired guess for the behavior of

the order parameter near the surface with a variational cal-

culation in order to obtain his result. It is interesting to note

50:_21/459Cy( ﬁ) =—2M41-A2)¥2 (334  that our result forA, also agrees with Parr's result. The

V2 advantage of the method of matched asymptotic expansions
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TABLE I. Summary of the results of the smatlexpansion for the superheating field. H&reis the value
of the order parametd¥(X) at the surface atth order,B,, is the value of the vector potenti@l(X) atnth
order,C, is the coefficient of th@th term in the outer expansion of the order parametertHy{@) is thenth
order term in the expansion of the superheating field.

n An Bn Cn H,(0)

0 o-112 _p-14 1 234

1 —7/32 —(9/16) 24 —(15/16) 2 (15/64) 24

2 —(17/1024) 2" (159/2048) 3 225/256 —(325/2048) 2/

3 3211/16384 —(745/4096) 2" —(1125/4096) 32 (14191/65536)2*

4 —(623575/1572864)% (16223049/20971520F%  16875/131072 —(78495727/62914560}%

is that we can make this expansion systematic, and thereforBadeapproximant agrees with the numerical data to within
in principle, carry out this expansion as far as we wish. Theabout 1% all the way tac=1.

third term in Eq.(3.41) is one of the new results of this Uniform solutionsFrom the inner and outer expansions it
paper; the fourth and fifth terms are included in Table . Withis possible to construainiform solutions, which are asymp-
the five-term expansion fdflg, it is possible to employ re- totically correct for allx ask—0. To do this we simply add
summation techniques to improve the expansion. For inthe inner and outer solutions of a given order, which guaran-

stance, th¢2,2] Padeapproximant® is tees the correct behavior in the outer region as well as in the
boundary layer. However, this would produce a result which
,1+5.444 781 Z+4.218 101 22 was X ,chin the matching region, so we need to subtract

HSPr?de: 273/4K71

. f in order to obtain the correct behavior in this region.

2 match

1+4.781 868 &+1.365 523 @[(3 42 As an example, we will construct the two-term uniform so-
' lution for the order parameter. Adding the two-term outer

In Fig. 1 we compare the numerically calculated superheat'éo'unon' fo(x") + kf4(X ),.to the two-term inner SOIUt'O.n'

ing field against the one-, two-, and three-term asymptotid:‘)(_x)JrKF,l(x),' subtracting the solution in the mgtphlng

expansions. The one-terfie., the Orsay groupesult never ~ région, which is 1‘(/§+(_\/§/4)KX_(15/32)K3 and writing

seems particularly accurate. There is a marked improvemeff€ entire combination in terms of the original variable

with the two-term expansion, with the three-term expansiorfWhich is the same aX), we obtain

offering only a modest additional improvement. TH& 2]

¢ ) kX+Xg| 15 R KX+tXo| K _ 5
unif, 2 X)=tan — — KSeC —e Y.
oo J2 16 J2 4
» T T T T (3.43
1.0 T T 2.0
numerical
15| ] ~._inner
- 08 \\\
2 . 16
i- \
o two terms N
£ 10 - . - Souter N =
o E | i
Q K ) 210 r
=1 N\ a S 3
(5] [2,2] Pade 5 ' 5
T 04 2
05 - one term o \
three terms \ 05
02 -
0-0 Il 1 1 1
0.0 0.4 0.8 1.2 1.6 2.0
0.0 : : 0.0 . +
K - 0.0 1.0 20 3.0 0.0 20 4.0 6.0
x outer length scale x inner length scale

FIG. 1. A comparison of the numerically calculated superheat- FIG. 2. A comparison of the three-term inner and outer solutions
ing field Hgy, (heavy ling with the three-term asymptotic expansion for the order parameter and the magnetic field with the numerical
for small x, and the[ 2,2] Padeapproximant. The one-term expan- solution for k=0.1. The asymptotic solutions approximate the
sion due to the Orsay group deviates systematically from the calcuzomputed values only in the appropriate regions. The matching re-
lated superheating field. The two- and three-term expansions prajion where the inner and outer meetQg«) as can be estimated
vide a marked improvement over the one-term expansion. from the inner solution for.
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IV. STABILITY ANALYSIS OF THE SOLUTIONS

1.0 2.0

numerical

Having obtained an asymptotic expansion for the super-
T iner heating fieldHg, in powers of k2, we now examine the

S 161 1 stability of the solution with respect to infinitesimal pertur-
bations by studying the second variation of the free energy,

N 8°.7. Perturbations with$>.7>0 correspond to stable solu-
06 b\ k 12 ¢ 1 tions, while those with$2.7<0 correspond to unstable solu-

tions. We will again use the method of matched asymptotics
to solve for the eigenfunctions of the linear stability operator.
1 We first determine the stability in the simpler one-
dimensional situation and then we discuss the two-
dimensional case.

0.8 -

04|

Order Parameter f
Magnetic Field h

02 r b 04

A. Stability with respect to one-dimensional perturbations
calculated

iner—_ ™ If we perturb the extremal solutionf(q) of the GL
%% 10 20 80 %0 20 40 60 equations by allowing f(x)—f(x)+f(x) and
x outer length scale x inner length scale g(x)—q(x)+q(x), then the second variation of the free-
energy functional is

FIG. 3. The same as Fig. 2 fer=0.5.

1.
7= f dx —2 124 (3f2+2—1)F2
As x—, funiea(X)—1; also,f i (0)=1/12—(7/32)«, as
we expect. Howeverf,(mifvz(O):(15/64)K2, so that the zero- .
derivative boundary condition is only satisfied®q«). +4fqfq+f29%+q'?|. (4.2

In Figs. 2 and 3 we compare the numerically calculated N
order parameter and magnetic field with the two-term outerhe boundary conditions ohandg should be chosen so as
solutions and the three-term inner solutions. The agreemeig not perturbf andh at the surface, so that
is quite good forx=0.1, with deviations appearing at . .

«=0.5. These figures also illustrate the existence of a match- f'(0)=q'(0)=0, f()=q()=0. (4.2
ing region where the inner and outer solutions overlap; thi

region grows as<—0. Lastly, we show in Fig. 4 how the We can then integrate E¢4.1) by parts to obtain

two-term uniform expansion constructed earlier supplies a d? .
uniform approximation to the order parameter and magnetic P T = f dx f ( pr i +q%+3f2-1|f
field over the whole region.
L[ d?
+a| - 4 — +f2 q+4qqu} 4.3
This quadratic form can be conveniently written as
=L .1
27= [ Tadal ). 4.4
0 q
‘a_: Wherel:l is the self-adjoint linear operator
6_'6 i "F —FW"-QZ'stZ_l 2fq ?
Eoal : Ll(~)= 2 (N)
o d
S g 2fq gt P a
o 4.5
' In order to analyze the stability, exparﬁchnda as
f fo
0.00,0 220 410 6.0 (E]) = ; Cn( G, (4.6

x inner length scale ~ L.
where thec,’'s are real constants, and(,q,) is a hormal-

_ , , ized eigenfunction of ; with eigenvaluekE,,:
FIG. 4. A comparison of the two-term uniform solution for the

order parametef, i »(X) (dashed ling with the numerical solution (¥ f
(solid line) at k=0.5. The disagreement of the uniform solution L, ~n) =En( Nn . 4.7
with the boundary condition at=0 is of order«?. Un On
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Then

27 =, Enc2. (4.8
n

The second variations®>7 ceases to be positive definite
when the lowest eigenvalue first becomes negative, indicat-

ing that the corresponding solution§,q) of the GL equa-

tions are unstable. Therefore the entire issue of the stability
of the solutions has been reduced to finding the eigenvalue

spectrum of the linear stability operatar, which in the

x— 0 limit can be studied using matched asymptotic expan-

sions.

Outer solution.The outer equations forf(E]) are rescaled
with X' = kx as before to yieldwe will drop the subscriph
for notational convenienge

17+ (3f2+q2- 1)+ 2fqg=ET, (4.9

— k2§"+ 12§+ 2fqf=EQ. (4.10

Expanding?, g, andE in powers ofx, and recalling that

g=0 to all orders irnk in the outer region, we have at leading

order

— 0+ (32— 1)Fo=E,fo, (4.12)

where f0=tank[(x’+x0)/\/§]. By changing variables to

y=tant[(x’+xo)/\/§] we see that the solution of E1.11) is
the associated Legendre function of the first kind:

) }_(X’ero)
an
V2

fo(x')=coP4

, (4.12

where u=—+2(2—E,) andcg is a constant. The leading-

order solution forg is g,=0.

Inner solution.To obtain the inner equations, we rescale

as in Eq.(3.14), with the perturbations rescaled as

F(x)=F(X), q(x')=x"Q(X), (4.13

such that
~ 1 ~ ~
F+;2FQQ=EF, (4.19

1~// 2 1 2
— SF"+|3F2+ 2Q%-1
K K

~Q"+F2Q+2FQF=EQ. (4.15

To leading orderﬁgzo, S0 thalf:O:aO, with a a constant.
The leading-order equation for the variationQnis

— Q)+ 2F gQoF o+ (F2—E)Qo=0. (4.16
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with the solution

Eo+4A3
4AASE,

4AS e~ (Aot \/AoszO)X

Bo (Aot VAG—Eq)®VAG—Eo

l~:1(X)=al+ aoBS 72A0X

4AYE, “
(Ao+ VAG—Eo) VAS—Eg
(4.19

We now have enough terms in the inner and outer region for
a nontrivial match.

Matching. We complete the matching of the inner and
outer perturbations to obtain the eigenvallg, Performing
a two-term inner expansion of the one-term outer solution,
we have

3 1 dP4(A,)
fo(kX)~Co| P5(Ag)+ ﬁ sech(xo/+/2) %KX

(4.20

where we have used tanda(\/§)=A0. Next, the one-term
outer expansion of the two-term inner solution is

ap2"41-Aj)
Eo

Eo+4A}

Fo(X'/x)+ kE (X' [ k) ~ag+ oA

4A3
(Ao+ VAS—Eq) VAT Eg
(4.21)

where we have use®,=—2Y4(1—A2)¥2 Matching the
two expansions using the van Dyke matching principle
yields

!

X ’

Ao

Co=——, 4.2
O~ PE(Ay) 422
1 dPY(Ag) 2 |Eq+4A}
P4(Ag) dAy  Eo| 2Ag
4AA3
(Aot \/Ag_Eo)\/A(Z)_Eo .
(4.23

The solution which satisfies the boundary conditionThe last equation is a rather complicated implicit equation

Q'(0)=0is
~ 2a0AoBO AO 2
X = —_— efAOX_—e* AO*EOX .
WOTTE VR
(4.17)
At O(k) we find
F}=Q2F o+ 2F4QoQo, (4.18

for the eigenvalud=y(Ag), which generally must be solved
numerically. However, whei,= 1/\/2 we find Eo=0, cor-
responding to the critical case, wil>0 for Ag> 1\2. The
numerical evaluation of Eq4.23 is shown in Fig. 5. There-
fore, we see that our maximum superheating fieldlowest
orden corresponds to the limit of metastability for these one-
dimensional perturbations. In Fig. 6 we shdwy as a func-
tion of the lowest order magnetic field at the surfakl,
from Eq. (3.38. The stability analysis of this section shows
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FIG. 5. The stability eigenvalug(A,), with A, the value of the
order parameter at the surface at leading order. We se& thatfor
Ay> 142, indicating locally stable solutions.

FIG. 6. The order parameter at the surfatg, as a function of
the field at the surfacd{,, at leading order. The stability analysis
shows that only the upper branch corresponds to locally stable so-

. . lutions. The field at the “nose” is the limit of stability, and corre-
that only the upper branch of this double valued functiongpongs to the superheating fitth = 2~3=0.595.

corresponds to solutions which are locally stable, with the
field at the “nose” being the superheating field.

8ay(x,y) = Qy(x)coky, (4.29
o _ _ _ substituting into Eq(4.24), recalling thatg= (0, q(x), 0),
B. Stability with respect to two-dimensional perturbations and integrating over, we obtain(up to a multiplicative
We next turn to the stability of the solutions with respectconstank
to two-dimensional perturbations. If we perturb the extremal " 1 1
solution (f,q) of the GL equations by allowind— f + 5f 52&7:] dx| 5 f'2+| 3f2+ g2+ —k?—1|f2+4fqfq,
andg—q+ 8q, then the second variation of the free-energy 0 K K
functional is
+f2(ﬁ§+ﬁ§)+(ﬁ§—kax)2}- (4.26

1
52.?=f dxdy{—z(Vﬁf)z+4f(5f)q~5q+f2(5q)2 _ _ _ y
K By integrating by parts and using the boundary conditions,
Eq. (4.2), we can cast this functional into the form

+(3f2+0%—1)(8)2+ (VX 60)? (4.24 7
(we neglect perturbations along tkedirection). Expanding 5?72] dx(?,dy,dx)li2 dy |, (4.27
in Fourier modes with respect ig® 0 8
5f(x,y):?(x)cosky, 89, (X,y) =0, (X)sinky, where the self-adjoint linear operatf)g is given by
1 & +02+3f2+ k% k2—1 2fq 0
. K2 dx? .
f f
N d? 5 d ~
|_2 (jy = 2fq _W—i_f —k& E]y . (42&
qX d qX
0 K— 2+ k2
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0.8 : : : 1 dPS(Ag) 2 | Eot+4A]

P4(Ag) dA;  Eo| 2A,

4AA3
(Ag+ VA3 —Eo) VAZ—Eo|’
(4.33

where nowu=—2(2+Ey—k?). The eigenvalud&y(k) is
plotted in Fig. 7 for several different values @f,. For
A=05 Ay>1\2, Eo(k)>0 for all k, while for Ag<1/\2 there
exists a band of long-wavelength perturbations for which
Eo(k)<O. In all cases the most unstable modes are at
k=0, i.e., the one-dimensional perturbations are the least
02 L 1] stable. This is in contrast to the largelimit, where the most
unstable mode occurs fér0.1781°

Stability Eigenvalue

0.0

045 1o 20 3.0 2.0 V. NONLOCAL EFFECTS AS k—0

k In the previous sections we have studied superheating in
type-l superconductors starting from the conventional GL
FIG. 7. The stability eigenvalug(k) for two-dimensional per- ~equations, which assume lacal relationship between the
turbations of wave numbds;, for several different values @&,. For ~ current and the vector potential. However, in very clean
Ay>1/\2 the eigenvalue is stable for all wave numbers, while fortype-I superconductorsonlocal effects are often important

A,<1/\/2 there exists a band of wave numbers for which the solu{in the Pippard limit; see Ref. 18 We can model these ef-
tion is unstable. fects by replacing the second GL equation, E3}2), by a
nonlocal equation of the form

As in the previous section, we want to determine the eigen- -
value spectrum of this operator. We are primarily interested qu"—f K(x—x")f2(x")q(x")dx =0, (5.1
in the effects of long-wavelength perturbatiofe., k—0), 0
so we rescalé& ask= kk’. Then the eigenvalue equations in whereK(x—x') is a kernel whose Fourier transfor(k)
terms of the outer coordinat€ = xx are(dropping the prime behaves as
on k from now on
[)\2/)\5 (local limit);
~ ~ L. K(k)= ... (5.2
— "+ (3f24+ 2 -1+ KO f+2fqg=Ef, (4.29 a/lk| (extreme anomalous limit
with A, the London penetration depth aadx constant® For
N~\_ we recover the local limit considered in the previous
sections of this paper. It is still possible to calculate the su-
perheating field in this nonlocal limit using the method of
~, - - matched asymptotic expansions. Indeed, the prescription is
"2qu+(f2+ K?K?)Gx=E . (4.3) the same as for the local case discussed above; we only need
to solve a slightly more complicated inner problem. In this
By using the last equation we may elimindje from Eq.  Section we will calculate the leading-order superheating field
(4.30, which becomes in the nonlocal limit, in order to further illustrate the power
and flexibility of our method.
Outer solution.The outer solution is the same as before;
. .~ the vector potential is zero to all orders, and the first two
+f2G,+2fqf=EQ,. (4.32  terms in the expansion for the order parameter are given by
Egs.(3.9 and(3.13.
Inner solutionIn the inner region we rescale the variables
For k=0 Egs. (4.29 and (4.32 reduce to the one- as in Eq.(3.14. In terms of these variables E¢b.1) be-
dimensional perturbation equations of the last section, Eqzomes
(4.9 and(4.10; for E=0 the%y reduce to the Euler-Lagrange
equations derived by Kramer. R , , , .
The perturbation equation§.29 and (4.32 may be Q _fo K(X=X)F*(X")Q(X")dX'=0. (5.3
solved by the method of matched asymptotic expansions, just
as in the one-dimensional case. The derivation of the eigenA/e need to solve this equation, along with the first GL equa-
value condition is essentially identical, with the final resulttion, Eq.(3.15, perturbatively ink. ExpandingF andQ as
that in Egs.(3.19-(3.21), we obtainFy(X)=A,, as before, and

— k2§ + %G, +2fqf— %k, =Eq,,  (4.30

f2—E

d ~1
21 2K2—E Wy

T
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* AB3 (= 1 1
”—Azj K(X—=X)Qo(X)dX'=0. (5.4 0 Of _ T (1-A2
o~ R 0 o= _mkz-l—ASK(k)dk \/5(1 Aj). (513
This is an integral equation of the Wiener-Hopf tylJeTo

solve, we Fourier transform, introducing To calculate the superheating field we use Ex13 to

expressB, as a function ofA,; we then substitute this result
o _ into Hy(0)=—AyBy and maximize with respect td, in
Q. (k)= f Qo(X)e**dX. (5.5 order to determine the lowest order superheating field. In the
0 local limit, K(k)=X%/\?, and we obtainAj =1/\/2 and
After Fourier transforming the integral equation, we performHo(0)=2"3*\_/\), which is the same as our previous re-

a Wiener-Hopf factorizatioh’ with the result that sult when A~\_. In the extreme anomalous limit
. K(k)=a/|k|, with a=(37/4)(A\2£I\2&) in the Pippard
iel ek theory® where¢, is the zero-temperature coherence length.
Q. (k)= Bon (5.6 Pperforming the integral, we find
whereB,=Q(0) is a constant, and Bo=—3%%2 3aleA  Y(1-A))Y? (5.19
k2+AgK(X) 1 so that

Kk [«
e(k)= ;Jl) In

The Fourier transform can be inverted once a particular fornrthe  maximum occurs  at A%¥=1/5/11, so that

for K(k) is specified(although this is unnecessary for the { (0)=0.721a6. Therefore, the superheating field is
calculation of the superheating field; see belofhe mag-

netic field at this order i$1,(0)= —AyB, as before. H=0.721a8c 12
Proceeding to the next order, we have

dx. 5.
X2+ AZK (k) |x*—k? S Ho(0)=3%42-34q 18361 — A2) 12, (5.15

+0(k*?) (extreme anomalous limit
Fi=AqQ3. (5.9

By applying the boundary conditioR;(0)=0, we find the  The same result has been obtained by Swithl° using an
general solution approximation for the order parameter along with a varia-
tional calculation(in the spirit of method used by the Orsay
group). The advantage of our method is that it can be sys-
tematically improved upon. Although we have not checked
the stability in the extreme anomalous limit, the procedure
with A;=F,(0) another constant. The equation @{(X) is  should be entirely analogous to that of the previous section.
a rather messy inhomogeneous Wiener-Hopf integral equa-
tion. Fortunately, its solution is not needed for the leading-
order calculation of the superheating field. 10

Matching.We now turn to the matching of the inner and
outer solutions. The two term inner expansion of the one-
term outer solution is

+ 2 sech| 22

Xo
fo(kX) tanf( \/f \/5 \/f

The one-term outer expansion of the two-term inner solution " 10* |

% 2 X 2
Fi(X)=A1+Ao XJO Qo(y)dy— fo yQo(y)dy|, (5.9

107

X. (5.10

is &
Fo(X'/ k) + kF1(X' /1)~ Ag+ Ag ng(y)dy)x’. o
0 L ]
(5.11
By using the van Dyke matching principle we find
Ao=tanh§,/\2) as before, and . . . .
1 ' 10 100
Joc 2 1 2 X
A dy=—=(1-Aj). 51
0 0Qo()/) y \/E( 0) (5.12

FIG. 8. The numerically calculated superheating field for large
We can use Parseval’s identity to express the left-hand sidg (solid line), compared with the two-term asymptotic expansion
of Eq.(5.12 in terms of|Q . (k)|2, and then use Ed5.6)to  derived by Chapmardashed ling The slope of the dashed line is
finally arrive at —4/3.
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VI. LARGE- k¥ RESULTS conducting sample in the smatHimit in order to determine
Ct e maximum superheating fieldg,. We have used the
thethod of matched asymptotic expansions to construct a sys-
tematic perturbative solution of the Ginzburg-Landau equa-
%ons the results of which agree quite closely with our nu-
merical solutions. The same method has been used to
determine the stability of these solutions with respect to both
1 one- and two-dimensional infinitesimal fluctuations; our
Hey=—+Ck 3+ 0(k%3), (6.1)  analysis shows that two-dimensional fluctuations do not lead
\/5 to any additional destabilizing effects, in contrast to the situ-

where the constar€ is determined from the solution of the ation in the large« limit. With little modification this :
second Painleve&ranscendent; a numerical evaluation yieldsmethoOI can also be adapte_d to treat nonlocal electrodynamic
C=03262 The first term, was originally derived by effects: Finally, our numerical r_esults for_ Iargeepmparg
Ginzburg? and the second term with the unusual dependenc ell with Chgpmans asymptotic analysis of this regime.
upon« is the new term. As seen in Fig. 8 the asymptotic and aken collectively, our results demo_nstrate th_e effectlven_ess
) ' f the method of matched asymptotic expansions for dealing

numerical results agree very well. It turns out, however, that .

the calculatedd ¢, is not actually the superheating field, since V.V'Fh boundary layer problems in the theory of superconduc-

the one-dimensional solution in the largelimit is unstable tivity. We hope that others will find useful applications of the
with respect to two-dimensional perturbatiori€:these in- methods developed in this paper in treating inhomogeneous

So far we have used the method of matched asymptoti
to solve the GL equations in the smalllimit. Chapman®
has recently used the same method to treat the on
dimensional GL equations in the highlimit. His final result
for the superheating field is

stabilities occur at the smaller field 2P =/5/3,2=0.527. superconductors.
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