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Magnetic impurity coupled to interacting conduction electrons
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We consider a magnetic impurity which interacts by hybridization with a system of weakly correlated
electrons and determine the energy of the ground state by meansf expyansion. The correlations among
the conduction electrons are described by a Hubbard Hamiltonian and are treated to the lowest order in the
interaction strength. We find that their effect on the Kondo temperaliye,in the Kondo limit is twofold:
first, the position of the impurity level is shifted due to the reduction of charge fluctuations, which reduces
Tk . Secondly, the bare Kondo exchange coupling is enhanced as spin fluctuations are enlarged.Tig total,
increases. Both corrections require intermediate states beyond the standard Varma-Yafet ansatz. This shows
that the Hubbard interaction does not just provide quasiparticles, which hybridize with the impurity, but also
renormalizes the Kondo coupling.

. INTRODUCTION the Fermi sea FS) where all states below the Fermi momen-
tum, kg, are occupied. The magnetic impurity is assumed to

Recently, heavy-fermion behavior has been observed igontain one orbitale.g., 4), which is either empty or singly
the electron-doped cuprate Bld.Ce,CuO, (0.1=x=<0.2)!  occupied. Double occupancies are excluded because of the
Below 03 K a linear specific heaf,= yT is observed with  strong repulsion of electrons in that orbital. The energy of the
a large Sommerfeld coefficieny=4 J/( mole Nd K). In  f orbital is then given by
the same temperature regime, the spin susceptibility is found
to be independent of the temperature and the Sommerfeld-
Wilson ratio is of order unity. These are characteristic fea- Hi=e > f’[jg, (1.3
tures of heavy-fermion excitatiofddowever, the character- o
istic low-energy scale of the ordef d K which is associated R
with this behavior cannot be explained by applying the usuaWhereff,z |o){0| are Hubbard operators forbidding a double
theory of the Kondo effect which assumes that the conduceccupancy of the impurity site anei<<0. The two sub-
tion carriers behave as free particfeBhis is not too surpris- systems are coupled by a local hybridization
ing because undoped MduOQ, is an antiferromagnetic
charge-transfer insulator instead of a métaklespite one
hole per unit cell. Upon doping the Nd ions are therefore H..=
coupling to a system of strongly correlated electPdmather of N
than to weakly or uncorrelated ones.

Hamiltonian and Scalingln order to explain this new

type of heavy-fermion behavior, it has therefore been pro- Taking a twofold degeneracy of the orbital (o=1,2),

posed to include the correlations among the conduction eledhe model defined in Eq$1.1—1_.4 correspono‘°$tc_> the situ-
trons by including an on-site repulsidfi. Thus, the total ation found in N¢,Ce,GuO; since the crystal-field ground
Hamiltonian ' state of Nd is a doubléf In order to perform a systematic

expansion we setr=1...N; and consider largé\;. This
H=H.+H;+H (1.1 generalization deserves some comment: If the conduction
. . . . electrons are uncorrelatetd €0), this corresponds to treat-
goes gl)oeyo_nd that of the single-site Anderson impurityj,, anN.—fold degenerate impurity which hybridizes with an
model. H. is a Hubbard Hamiltonian describing the conduc- ¢\ ave conduction band. This is seen by expanding the
tion electrons conduction-electron states in partial waves about the impur-
tity site and, assuming a spherically symmetric hybridization,

> (Flegtel, o). (1.4

k,o

2l<

S

He=H+Hy, only conduction electrons with the same total angular mo-
mentum are coupled to the impurity, while the others play a
thz e(k)clgckg, passive role and can be dropped.
k.o Due to the interactions among the conduction electrons
. (1.2  this change of basis does not simplify the Hamiltoniari).
U 4 N _ Nevertheless, we will consider the Hamiltonian in Eds1—
HUZZNS kk,qE# , Gkt 00CkoCir — 561 Ck o7+ 1.4) for o=1...Ns, which could be viewed as an SNY{)

generalization of the original model which has @Usym-
cl,, creates an electron with spinand momentunk, Ngis  metry. We thereby create an artificial model, which no longer
the number of lattice sites. The noninteracting dispersion igorresponds to the physical situation of l[dp-fold degener-
given bye(k). :- - -: denotes normal ordering with respect to ate impurity hybridizing with a correlated band. The ad-

0163-1829/96/5(®)/56267)/$10.00 53 5626 © 1996 The American Physical Society



53 MAGNETIC IMPURITY COUPLED TO INTERACTING . .. 5627

antage in doing so is, however, that a controlled approximawherepqp is the quasiparticle density of states at the chemi-
tion becomes possible for this model, namely an expansiooal potential. Noting thap=Zpqp is the many-particle den-
in 1/N; .12 sity of states we see that the correlations enter onlypyvibm

In taking the limitN;—o, we keep the density of con- particular, Tk is not modified for smalU. This is in contrast
duction electrons per spin constant, so that the kinetic energip Ref. 17 where it has been shown for the Kondo model by
increases<N;. To have a proper limilN;—c, the hybrid- a mean-field decoupling that due to polarization effects the
ization coupling constanV has to be scaled according to Kondo temperature increases, even to lowest ordef.irin
V=V/\N;. As regards the Hubbard interaction, we setthe strongly correlated case E..7) cannot be correct as
U/2=U/(2N;) as was suggested in Ref. 13. With this scal-Well since tr;e Kgndo exchange coupling should \6&U
ing, the correction to the ground-state energy of the Hubbar#ather tharv=/e; .

model(1.2) is of orderN?, both in second-order perturbation 10 clarify the quality of the variational approach, we will

theory inU and when summing the diagrams of the random-estrict ourselves to the weakly correlated case in this paper

phase approximatiofRPA), which is one order less than the 21d perform a M expansion to lowest order i. The
U=0 energy. theoretical framework, the Brillouin-Wigner perturbation se-

A straightforward variational ansatan case the conduc- ries, is introduced in the next section. In particular, we will
tion electrons are uncorrelated) €0) Varma and Yaféf show that to order N; additional contribution arise from the

proposed the following variational ansatz for the grOund_Hubbard interaction in the singlet channel which do not oc-
state wave function of1.1) cur in the multiplet channdfSec. Ill) and conclude that these
contributions modify the Kondo temperature. They are esti-

vy mated in Sec. |V and the results are discussed in Sec. V.
o=

1+, aqff,cq[,>||:s>. (1.5
qo
|[FS denotes the filled Fermi sea with emptylevel. Via Il BRILLOUIN-WIGNER PERTURBATION THEORY
Hcs, it couples to the statefsf,cq(,l FS. Each of them de- The 1N; expansion for the ground-state energy can be
scribes a singlet formed between thdevel and the free derived with the help of Brillouin-Wigner perturbation
electron state with momentum, whereq is restricted to  theory!>*®1® We decomposeH from Eg. (1.1) into
occupied states |§|<kg). Minimizing (¥,|H—Eg¥,  HotH; and chooséd;=Hy+H; as perturbation. In order
with respect tax,, yields an approximate ground-state energyto obtain the singlet ground-state energy we take as unper-
Es. Compared to the enerdsy, of the multipletf|FS), this  turbed ground state the filled Fermi sgiS). The energy
collective singlet formation gives rise to a gain in kinetic Es of the ground state oH (relative to the energy of
energy. With this energy gain a characteristic temperaturéFS)) is given by°
scale T, the Kondo temperature, is associated. In the

Kondo limit (|e|<D<|e;|, 2D= bandwidth one find$* (in ” n
units of the bandwidth Es=(F9H; > ~H,| [FS. (2.1
n=0 ES_ H
Es— U ~ . .
Tg=n ex ) (1.0 Here,Q=1—|FS(FY andH=L+H;, where the Liouvil-

V
P lean L; is defined byL;A=[H;,A]_. Equation (2.1 is

Here we assumed a constant density of stated/(2D) of  equivalent to the zero-temperature limit of the equation for
the conduction electrong: is the chemical potential of the the lowest lying pole of the empty-state propagator that
conduction electrons ant= (D + u) p denotes the filling per appears in the partition functioisee, e.g., Ref. 29
spin. Subsequently, it has been shown that in an expansion in Diagrams.The individual terms of the seri¢2.1) can be
the inverse degeneracy of the magnetic impurity, the ansatzisualized by diagrams: Ikl;, eachH.; changes the occu-
(1.5) yields the ground-state energy to orderNdP.*° pation of the impurity level from O(wiggled line to 1
In the caseU #0, it is, therefore, tempting to generalize (dashed ling destroying an conduction electrgsolid line),
the ansat£1.5) by replacing the noninteracting ground state since no double occupancy is allowéhd vice verspa This
|FS) by the(unknown one of the Hubbard moddlg).** The  vertex carries a factov/ N¢Ns. The impurity line changing
expectation values with respect|) which arise in a varia- always between occupied and unoccupiddvel constitutes
tional calculation are given by the moments of the spectrathe backbone of a diagrani, containsH, as well. The
function of the Hubbard model, which can be taken from,vertexH , has two incoming and two outgoing conduction-
e.g., applying the projection technigtfe.lf we assume electron lines. It yields a factdd/(N¢Ng) and aé function
Fermi-liquid behavior for the Hubbard model, the result of ensuring momentum conservation. Taking the expectation
this generalized ansatz is obvious. We introduce quasipartizalue with respect tofFS) we connect the conduction-
cles¢’ via CZWZ \/ZECTWL ---, whereZ denotes their renor- electron lines in all possible ways. The resolvent
malization factor. These quasiparticles hybridize with the im—Q/(g—H) yields the energy of the intermediate states and,
purity site rather than bare electrons, the effectivebecause of the Liouvilleab, only the energy difference with
hybridization being, however, renormalized k{Z. There- respect to the filled Fermi sea enters. Conduction-electron
fore, we expect a Kondo temperature lines pointing to the right correspond to particlelike excita-
tions (with a momentum denoted by a capital letter,
- ocexp< i ) 1.7 |Q|>kg) while those pointing to the left are holelikgle-
K prZV2 ' ' noted by|g|<kg). Without Hubbard interactiod, these
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ANz = N+ (a)
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FIG. 1. Renormalization of the empty state propagator to order
(1Ng)°.

rules correspond to the standard ofésfor the self-energy
of the propagator of the empty state in the partition function
at zero temperature.

For an expansion in N; we note that each closed loop of
fermions yields a summation over spin and, hence, a factor
N;, whereas eacN vertex isocll\/N_f. To lowest order in
1/N¢, the application oH does not change the order of a
diagram: If we connect two conduction-electron lines of a
closed loop by the four-point interactid, we create two
loops with the only restrictionsr# ¢, which is of higher
order in 1Ns.

Multiplet energy.Similarly to Eg. (2.1), we obtain the
energyE,, for the multiplet ground state by taking the ex-
pectation values with respect to the multiplet stta;ﬂaFS).

The resulting equation corresponds to the lowest pole of the
propagator of the occupiefdstate. The important energy for
the low-temperature thermodynamics is given by the energy
difference of singlet and multiplet ground state,
Em— u—Esg, which is related to the Kondo temperatdte.
Note that the multiplet has one electron more than the singlet
in our definition.

Renormalization of the bare propagatoislready to or-
der (1N;)° the bare emptyf level (single wiggle line, 12)
has to be renormalizefdouble wiggle line,Gy(z)]. This
renormalization arises from a partial summation in Eql) g
shown in Fig. 1:

FIG. 2. Diagrams for the singlet ground-state enefgyOrder

1 1
Go(Z):E+E|(O)(Z)Go(Z): 2.2

z—109(2)"
The self-energy(®)(z) [see also Fig. @)] evaluates to
V2 1

10(2)= - 2

Ns G zt+eq— €’ @23

The propagator of the occupiddstate,G,(z), is not renor-
malized to this order,

Gi(2)=

e (2.9

Ill. GROUND-STATE ENERGIES TO ORDER 1/ Ng

Diagrams for the singlet energ§lo order (1N;)° only

the diagram shown in Fig.(@) occurs. It was already evalu-

ated in Eq.(2.3
2

10(z)= \N/— > Gi(z+ey). (3.
s q

There are no diagramsU to this order. To order N; we
first find the diagram shown in Fig(13):

U°% and (1N)°, 19(2). (b) Order U° and (1Nf)%, 10(2). (c)
OrderUt and (1N;)%, 110(2)(i=A, ... E).

V4
1D(z)= N2 qEQ [G1(z+ €9)12Go(z+ €4— €q).-
(3.2

As mentioned previously, applying, does not change
the order of a diagram to lowest order inNL/ Therefore,
M) can be regarded as parent diagram in which we insert
vertices of the interactior |, . Thereby we restrict ourselves
to first order inU, i.e., we applyH only once in the series
(2.1). We then find the diagrams shown in FigcR As the
diagrams are time orderetf!) differs from 1}, etc. Also,
applyingH, over a doubly wiggled line deserves some com-
ment (see, e.g.ng)): Such a diagram would not be unam-
biguous since it is not clear whethét, acts while thef
level is empty or occupied, when we expand the renormal-
ized emptyf propagator as in Fig. 1. For that reason we
define thatH, acts while the(bare f level is empty. The
other case yields a different diagrdtrere,| &1)). The contri-
butions of the diagrams of Fig. (® are given by
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" 2UVv*
Ix'(z)=— N.N3 2 Gl(z+fq)Gl(Z+€r+er’_ER)GO(Z+er_eR)Gl(Z+Er)5r’fq,Rfrv
fNs qrr’'R
4
1) uv
157 (2)= 3 > G1(z+€)Go(z+ €, — €r)Go(Z+ €4~ €0)G1(Z2+ €4) 5.1 —Rr»
N¢N5 drQR
6
1P(2)= oV > G - - - -
c = 1(Z+€r)Go(Z+Er €R)Gl(z+€r+6rr GR)Gl(Z+Eq+Err EQ)Go(Z+éq EQ)

2
NN qrr’QR

X Gy(z+ €g) 8q-q.r-Rr:
1, 2uV*
1(2)=——5 X Go(z+eq+ €~ €o— €r)G1(Z+ €q+ € — €r)Go(Z+ €, — €r) G1(Z+ &) S qr -k
Nst qrQR
2UV8
I (2)=

N 7 Z Gl(Z+er’)Gl(Z+Eq+6r+6r'_eQ_GR)GO(Z+€q+er_eQ_eR)Gl(Z+6q+Er_eQ)
f'Ns qrr’QR
><Go(z+ Eq_ﬁQ)Gl(Z+ Gq)gq_q’r_R. (33)
|
According to Eqg.(2.1), the ground-state enerdyelative to Kondo temperaturd/Ve associate the Kondo temperature,
Erg) is given by the smallest solution of Tk, with the difference between singlet and multiplet
ground-state enerd¥ (in units of the bandwidth
E
Es=19(Eg+1M(Eg+ D, 1IV(Eg). 3.4
S ( S) ( S) iZA i ( S) ( ) TK:(EM_M_ES)P- (38)

There is no contributior=UV® in this expression for the \ith this definition we find from Eq€3.5 and(3.7) to order
ground-state energy since we introduced the Hubbard intel(i/Nf)O
action in normal ordered form in Eq1.2) and restricted to
first order inU. Hence the Hubbard interaction enters only 0)_ ) 0)
via the hybridizationV in the ground-state energy. Expand- T’ =(er—p)p— 1" (&= n=Tilp). 3.9
ing EqQ. (3.4 in 1/N; we obtain

Assuming a constant density of states we have

1
Es=EQ +  ES’+0(INp)?, .
f 10 =pv? " dero—
-D €t
ES=1(ES),

(ei—p)—z |
— \/2
IDEP)+3E IVED) Py ln(D+M)+(ef—u)—Z|' (319
E(l): S i=Ali S (3 5)
S 1- 91 OED)/9E '
S S and hence

Diagrams for the multipletWe now turn to the ground- ©

state energy of a multiplet state. To orderN@P it is given K
T = (€~ mw)p—(pV)AIn——q; (3.1

by E\, = €; (relative toE 9. There is only one diagram con-

N+ TP’
tributing to order 1N;, which is shown in Fig. 3. It is

2 where n=(D+ u)p denotes the filling per spin. This is

JV(z)= v > Ry(z— €0), (3.6 solved for smalllx=—V?/(&— u) by
N¢Ns “Q
and we find therefore TO=n ex;{ _ p%) (3.12
K
Em=¢€r+JIV(€)+0(1N¢)2. (3.7
cf. Eq.(1.6). To order 1N;, we find from Eqgs(3.5), (3.7),
and (3.8
1y =) E (1) g0
J( TW=)p J(l)(ef)—l (Es")+ 2 ali(Es™)
K 1- 31 OED)/9E

FIG. 3. Diagram for the multiplet ground-state enerdfy)(z). (3.13
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Connection to variational approachlo find the result 9o(X)~ pJi 4.2
(3.13 variationally the following states, which occur as in- ©) . i
termediate states in the diagrams, have to be included in tH8r smallTi”. The validity of this replacement for the whole

trial state for the singlet ground state x range in the diagrams has been checked numerically.
R R Diagrams of order J. We begin with the contributions
f1Co 1 ChuCao i ChaCaol 1iCaror|FS), (3.14 =«U%in Eq.(3.13
t t o t ot V2 (n 1-n
CQUCqUCQ’g’Cq’U"CQO'quTCQ’a"Cq’O"fg-"cq”o'”|FS)' |(1)(E(SO))=_ p_ j duf dx gzl(u)go(u+x),
(3.15 Nt Jo Jo

. - . i 4.3
The variational coefficients are determined up to first order 4.3

in U and to leading order in W;.'® In the free case 1 (1-n

(U=0) the first state corresponds to the ansatz of Varma and IV(e)=~ N f dx go(x—Ti), (4.4

Yafet, cf. Eq.(1.5), which gives the result correctly to order PR Jo

(1/N;)°. The next two yield the N; corrections, while the where we again assumed a constant density of states. Insert-
last two are of order (Ny)?2. ing (4.2) we find for the multiplet energy

Jk
IV. ESTIMATING THE KONDO TEMPERATURE \](l)(ef): _ N_f(l_ n, (4.5)

In this section, we estimate the effect of the diagrams ) } )
«1/N; on the Kondo temperature. We scale the energies by/here the corrections are of higher order inel# w)p. For
p and study the dependence wﬁ’) rather than O,E(SO) as the singlet energy we use the same approximatiorg§oio

Tf<°) is the small quantity. The transformed propagators rea(fi)btaln

V)2

1 x+n+TY oy PVt 1) e

i(X):—Wl(O)(E(SO)—X/p):m X+—T(O)K s ( S ) Nf ( n) n+TE<O) TE(O) ( )
K

Together with the denominator in E(B.13
1 1
9:() == =G1(ES~ (X/p= )= 7o+ I1'(ES)
P ° T +x 1_8—ES=1_(’)V)2 1o 7o ‘4D
K K
9o(X)=— pV2Go(EL — X/ p) and neglecting the 1, we find that both contributions®

22 cancel.(Loosely speaking, these terms describe the energy
= P (4.1  9ain due to hybridization with unoccupied states which is the
X+ T = p(€r— ) — p?V2i(x) same for multiplet and singlet stake.
Diagrams of order U We continue with the estimation of
the diagramsxU. The numerical evaluation of the sums

and depend implicitly o> andn. The empty-state propa-
. (0) _ .
gator, go(x) divergese:Ti"/x for x—0. [This corresponds 1D, 18 s difficult because of thes functions, which

to th(_a sp!n-fluctuatlpn peak a(tj)E(SO) (')? GO(Z)l‘] T(T;S SIN" " ensure momentum conservation in the Hubbard interaction.
gularity yields contributions< T(INT)" to 1V, 1Y, and  gince we are interested only in the qualitative behavior, we
J®, which we neglect against terms which remain constantnay neglect them. This implies that the interactidnacts

as T("’—0. For largerx however,go(x) drops slower than only at the lattice site O with which the impurity hybridizes
1/x resulting in finite contributions. In this intermediate  and corresponds to taking the limit of infinite dimensidhs.

range T"’<x<n), we may safely approximate Then the sums<U in Eq. (3.3 read
2uv2p2 T=<0) n 1-n

(1) z(0)y — .

Ix’(Es”) N, n Nt T jodufo dx gi(u)go(u+x)i(u+x),

2

@y Y[ [
I (Es )—Nf 0du . dx gy (u)go(u+x)

2.2

V2p i(u+x)—i(v+y)

ut+x—(v+y) ’

n 1-n
|DED)= fodu dvfo dx dy G(UGe(U+X)g1(0)Go(v +Y)

2U (n 1-n
I(E})(Ego))=N—fJ0du dvfo dx dy g(u)go(u+x)g(u+v+X)go(U+v+x+Yy),

2U i(u+o+x+y)—i(0)

V2p2 n 1-n
N, Jodu dvfO dx dy g(u)ge(u+x)g(u+v+x)go(U+v +X+Y) IFoFxTy . (4.8

(B =~
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For the integrald §, 157, and 1§ it proves numerically ¢* | whereasi {)(z) ~Inz would renormalize the exchange

Sl(Jg‘;iCie”t to replacego(x) as in Eq.(4.2) in th‘?o)"mit couplingV?/€f [cf. Egs.(3.9) and(3.11)]. However, with-
Tk’—0. Then the following leading behavior fdr"—0 oyt scaling there would be contributions of higher ordedin

can be calculated analytically which diverge as\;— .

s 2 0) Comparison to previous resultdn Ref. 17, a Kondo
1O(EQ) = UV*p“C(n) |n(TL) model (N;=2) with correlated conduction electrons has
ARTS N; n /)’ been investigated to lowest order in the interaction strength

U by a mean-field decoupling of the Kondo-exchange inter-
|((EO) = i(l— n)2 action. The following increase of the Kondo temperature has
B =S N; ’ been found
UcC(n) -
IP(ED)=— N (1=n) =50 (4.9 Te(U) @
f InTy =exp ————— (4.12
Tk(0) pIk(1+a)

with C(n)=-—2[nInn+(1—n)In(1—n)]>0. The integral

I(El) simplifies since one integration can be performed . ~
with @=(3/2)pUIn 2. In contrast to our resul{4.11), the

2UV2p2 (n 1-n increase of the Kondo temperature seems to depend expo-
IE(ES) =~ N—f du dvf dx gi(u) nentially onU. Note, however, that in our treatment the in-
f ° ° teraction had to be scaled byNL/. ScalingU in Eq. (4.12
1 and expanding in N; yields the first term of our result
Xmgl(uﬂﬂrx) :(;};11?.)2(;Nith a factor In2 forN;=2 at half filling instead of
n2).

The second term of Eq4.11), which describes the effec-
(410 tive shift of thef level, cannot be found in Ref. 17 because
there the Kondo model has been investigated, where the
By numerical evaluation, one finds tha}’ and1" remain  charge degrees of freedom of the impurity have already been
finite as T&O)—>0. They are, however, small compared to projected out. Therefordy in (4.12) is an effective coupling
I as they have an additional prefacjgiv2. Keeping only ~ constant which depends an.® _ _ _
diagramsl Y and I in Eq. (3.13, which corresponds to Without scaling the Hubbard interaction, all integrals

considering only the staté8.14) in a variational calculation, Would be of order (M)°. As discussed above, the position
we obtain in the limit of smalrl'ff) of the f level and the Kondo coupling constant are modified,

and these corrections occur in the exponent as in(£G2.

ut+v+x+1—n
u+ov+x

XIn

T T
(H—_ K _K
TK N, pUC(n)In =

e
_2 — n
pV V. CONCLUSION

_ @ EC n)— 1-n)2 4.1 The aim of this paper was to investigate the influence of
TNy \ Ik ( p_Vz( | ’ correlations among the conduction electrons on the Kondo
effect. Lead by the situation prevailing in Nd,Ce,CuQ,,
The first contribution toT) is positive and, therefore, en- e proposed a model with a twofold degenerate impurity
hances the Kondo temperature. Since it dependsliy it (N;=2) which hybridizes with a correlated band and
is related to spin degrees of freedom. A similar contributionstraightforward|y generalized it to arbitraN; . As discussed
was found in Ref. 17 and it was attributed to the enhancem the introduction, this generalization does not correspond to
ment of spin fluctuations that result from the reduction ofipe physical situation of aN¢-fold degerate impurity hybrid-
charge degrees of freedom when turningwnThe second  jzing with a correlateds band forN;>2, in contrast to the
contribution in Eq/(4.1) depends omV? rather thanJc. It yncorrelated case. Although artificial, we saw that this model
is related to charge degrees of freedom. A similar effect hagjiows for systematically studying the effects of the correla-
been found in Ref. 8 and has been interpreted as the increaggns on those diagrams which are usually considered in the
in energy of the virtual state in the spin-exchange procesgncorrelated case.
because in the virtual state a conduction site is doubly occu- | particular, we assumed that the correlations are weak
pied. It decreases the Kondo temperature. However, in thgng calculated their effect on the Kondo temperature to low-
limit p|e;—u|>1 that we considered throughout, the first est order in 1N, . We found two competing effects: The first
term dominates: Overall we find an increase of the Kondqontribution is related to charge fluctuations. Because the
temperature. . . energy of the virtual state in the spin-exchange process in-
This interpretation can be put onto more solid grounds byreases, the Kondo temperature is reduced. This corresponds
the following observation: If we would not scale the Hub- effectively to a shift of the position of the level. A similar
bard interaction among the conduction electrons BY;1/  effect has been found in Ref. 8. The second contribution is
the corrections due t9, 1{"(z), would be of the same order related to the enhancement of spin fluctuations of the con-
as!(©. Then the integral(Bl)(z), which remains constant as duction electrons. The Kondo exchange coupling is effec-
z—0, would effectively shift the position of thé level to tively enhanced and the Kondo temperature increases. In the
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Kondo limit the second contribution dominates the first onetrons[in fact, the ground-state energy of the Hubbard model
so that we find in total an increase of the Kondo temperatur¢l.2) to order 1N; is given by summing the diagrams of RPA
for small U. type and neglecting the# o’ constrainf. Only few more

In our opinion, more interesting is that corrections to theintermediate states will occur. This is, however, an artifact of
Kondo temperature occur already to lowest order in the Hubpyr scaling of the Hubbard interaction and one expects that
bard interactiorJ. To obtain them in a variational approach, in, 3 realistic mode({without the restrictive scaling dfi, and
trial states are needed which in the uncorrelated case yielghjte N,) intermediate states with more and more excited
corrections to the ground-state energy which are of ordegjectron-hole pairs contribute, the number of which increases
1/N¢ (and highey. Thus, our result cannot be obtained by anwth increasing order obl. Therefore, it seems questionable
ansatz of the Varma-Yafet typel.5). This shows that the that 3 systematic I treatment grasps the correct physics

effect of the Hubbard correlations is more intricate than jusfor realistic models of interacting conduction electrons in the
to provide quasiparticles with a modified density of states afimit of strong correlations.

the Fermi surface which hybridize with ttieorbital as it was
described by Varma and Yafet for the uncorrelated case,
U=0.
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