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We consider a magnetic impurity which interacts by hybridization with a system of weakly correlated
electrons and determine the energy of the ground state by means of a 1/Nf expansion. The correlations among
the conduction electrons are described by a Hubbard Hamiltonian and are treated to the lowest order in the
interaction strength. We find that their effect on the Kondo temperature,TK , in the Kondo limit is twofold:
first, the position of the impurity level is shifted due to the reduction of charge fluctuations, which reduces
TK . Secondly, the bare Kondo exchange coupling is enhanced as spin fluctuations are enlarged. In total,TK
increases. Both corrections require intermediate states beyond the standard Varma-Yafet ansatz. This shows
that the Hubbard interaction does not just provide quasiparticles, which hybridize with the impurity, but also
renormalizes the Kondo coupling.

I. INTRODUCTION

Recently, heavy-fermion behavior has been observed in
the electron-doped cuprate Nd22xCexCuO4 (0.1&x&0.2).1

Below 0.3 K a linear specific heatCv5gT is observed with
a large Sommerfeld coefficientg.4 J/( mole Nd K2). In
the same temperature regime, the spin susceptibility is found
to be independent of the temperature and the Sommerfeld-
Wilson ratio is of order unity. These are characteristic fea-
tures of heavy-fermion excitations.2 However, the character-
istic low-energy scale of the order of 1 K which is associated
with this behavior cannot be explained by applying the usual
theory of the Kondo effect which assumes that the conduc-
tion carriers behave as free particles.3 This is not too surpris-
ing because undoped Nd2CuO4 is an antiferromagnetic
charge-transfer insulator instead of a metal,4,5 despite one
hole per unit cell. Upon doping the Nd ions are therefore
coupling to a system of strongly correlated electrons6,7 rather
than to weakly or uncorrelated ones.

Hamiltonian and Scaling.In order to explain this new
type of heavy-fermion behavior, it has therefore been pro-
posed to include the correlations among the conduction elec-
trons by including an on-site repulsion.3,8 Thus, the total
Hamiltonian

H5Hc1Hf1Hcf ~1.1!

goes beyond that of the single-site Anderson impurity
model.9 Hc is a Hubbard Hamiltonian describing the conduc-
tion electrons

Hc5Ht1HU ,

Ht5(
k,s

e~k!cks
† cks ,

~1.2!

HU5
Ũ

2Ns
(

kk8q,sÞs8
:ck1ds

† cksck82ds8
† ck8s8:.

cks
† creates an electron with spins and momentumk, Ns is
the number of lattice sites. The noninteracting dispersion is
given bye(k). :•••: denotes normal ordering with respect to

the Fermi seau FS& where all states below the Fermi momen-
tum, kF , are occupied. The magnetic impurity is assumed to
contain one orbital~e.g., 4f !, which is either empty or singly
occupied. Double occupancies are excluded because of the
strong repulsion of electrons in that orbital. The energy of the
f orbital is then given by

Hf5e f (
s

f̂ s
† f̂ s , ~1.3!

wheref̂ s
†5us&^0u are Hubbard operators forbidding a double

occupancy of the impurity site ande f,0. The two sub-
systems are coupled by a local hybridization

Hcf5
Ṽ

ANs
(
k,s

~ f̂ s
†cks1cks

† f̂ s!. ~1.4!

Taking a twofold degeneracy of thef orbital (s51,2),
the model defined in Eqs.~1.1–1.4! corresponds3 to the situ-
ation found in Nd22xCexCuO4 since the crystal-field ground
state of Nd is a doublet.10 In order to perform a systematic
expansion we sets51•••Nf and consider largeNf . This
generalization deserves some comment: If the conduction
electrons are uncorrelated (Ũ50), this corresponds to treat-
ing anNf-fold degenerate impurity which hybridizes with an
s-wave conduction band. This is seen by expanding the
conduction-electron states in partial waves about the impur-
tity site and, assuming a spherically symmetric hybridization,
only conduction electrons with the same total angular mo-
mentum are coupled to the impurity, while the others play a
passive role and can be dropped.11

Due to the interactions among the conduction electrons
this change of basis does not simplify the Hamiltonian~1.1!.
Nevertheless, we will consider the Hamiltonian in Eqs.~1.1–
1.4! for s51•••Nf , which could be viewed as an SU(Nf)
generalization of the original model which has SU~2! sym-
metry. We thereby create an artificial model, which no longer
corresponds to the physical situation of anNf-fold degener-
ate impurity hybridizing with a correlateds band. The ad-
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antage in doing so is, however, that a controlled approxima-
tion becomes possible for this model, namely an expansion
in 1/Nf .

12

In taking the limitNf→`, we keep the density of con-
duction electrons per spin constant, so that the kinetic energy
increases}Nf . To have a proper limitNf→`, the hybrid-
ization coupling constantṼ has to be scaled according to
Ṽ5V/ANf .

11 As regards the Hubbard interaction, we set
Ũ/25U/(2Nf) as was suggested in Ref. 13. With this scal-
ing, the correction to the ground-state energy of the Hubbard
model~1.2! is of orderNf

0 , both in second-order perturbation
theory inU and when summing the diagrams of the random-
phase approximation~RPA!, which is one order less than the
U50 energy.

A straightforward variational ansatz.In case the conduc-
tion electrons are uncorrelated (U50) Varma and Yafet14

proposed the following variational ansatz for the ground-
state wave function of~1.1!

uC0&5S 11(
qs

aqf̂ s
†cqsD uFS&. ~1.5!

uFS& denotes the filled Fermi sea with emptyf level. Via
Hcf , it couples to the statesf s

†cqsu FS&. Each of them de-
scribes a singlet formed between thef level and the free
electron state with momentumq, whereq is restricted to
occupied states (uqu<kF). Minimizing ^C0uH2ESuC0&
with respect toaq yields an approximate ground-state energy
ES . Compared to the energyEM of the multipletf s

† uFS&, this
collective singlet formation gives rise to a gain in kinetic
energy. With this energy gain a characteristic temperature
scale TK , the Kondo temperature, is associated. In the
Kondo limit (u«u!D!ue f u, 2D5 bandwidth! one finds14 ~in
units of the bandwidth!

TK5n expS e f2m

rV2 D . ~1.6!

Here we assumed a constant density of statesr51/(2D) of
the conduction electrons.m is the chemical potential of the
conduction electrons andn5(D1m)r denotes the filling per
spin. Subsequently, it has been shown that in an expansion in
the inverse degeneracy of the magnetic impurity, the ansatz
~1.5! yields the ground-state energy to order (1/Nf)

0.15

In the caseUÞ0, it is, therefore, tempting to generalize
the ansatz~1.5! by replacing the noninteracting ground state
uFS& by the~unknown! one of the Hubbard model,ug&.16 The
expectation values with respect toug& which arise in a varia-
tional calculation are given by the moments of the spectral
function of the Hubbard model, which can be taken from,
e.g., applying the projection technique.16 If we assume
Fermi-liquid behavior for the Hubbard model, the result of
this generalized ansatz is obvious. We introduce quasiparti-
cles c̃† via cqs

† 5AZc̃qs
† 1•••, whereZ denotes their renor-

malization factor. These quasiparticles hybridize with the im-
purity site rather than bare electrons, the effective
hybridization being, however, renormalized byAZ. There-
fore, we expect a Kondo temperature

TK}expS e f
rQPZV

2D , ~1.7!

whererQP is the quasiparticle density of states at the chemi-
cal potential. Noting thatr5ZrQP is the many-particle den-
sity of states we see that the correlations enter only viar. In
particular,TK is not modified for smallU. This is in contrast
to Ref. 17 where it has been shown for the Kondo model by
a mean-field decoupling that due to polarization effects the
Kondo temperature increases, even to lowest order inU. In
the strongly correlated case Eq.~1.7! cannot be correct as
well since the Kondo exchange coupling should beV2/U
rather thanV2/e f .

8

To clarify the quality of the variational approach, we will
restrict ourselves to the weakly correlated case in this paper
and perform a 1/Nf expansion to lowest order inU. The
theoretical framework, the Brillouin-Wigner perturbation se-
ries, is introduced in the next section. In particular, we will
show that to order 1/Nf additional contribution arise from the
Hubbard interaction in the singlet channel which do not oc-
cur in the multiplet channel~Sec. III! and conclude that these
contributions modify the Kondo temperature. They are esti-
mated in Sec. IV and the results are discussed in Sec. V.

II. BRILLOUIN-WIGNER PERTURBATION THEORY

The 1/Nf expansion for the ground-state energy can be
derived with the help of Brillouin-Wigner perturbation
theory:15,18,19 We decomposeH from Eq. ~1.1! into
H01H1 and chooseH15HU1Hcf as perturbation. In order
to obtain the singlet ground-state energy we take as unper-
turbed ground state the filled Fermi seauFS&. The energy
ES of the ground state ofH ~relative to the energy of
u FS&) is given by20

ES5^FSuH1 (
n50

` S Q

ES2H̃
H1D nuFS&. ~2.1!

Here,Q512uFS&^FSu and H̃5Lt1Hf , where the Liouvil-
lean Lt is defined byLtA5@Ht ,A#2 . Equation ~2.1! is
equivalent to the zero-temperature limit of the equation for
the lowest lying pole of the emptyf -state propagator that
appears in the partition function~see, e.g., Ref. 19!.

Diagrams.The individual terms of the series~2.1! can be
visualized by diagrams: InH1 , eachHcf changes the occu-
pation of the impurity level from 0~wiggled line! to 1
~dashed line! destroying an conduction electron~solid line!,
since no double occupancy is allowed~and vice versa!. This
vertex carries a factorV/ANfNs. The impurity line changing
always between occupied and unoccupiedf level constitutes
the backbone of a diagram.H1 containsHU as well. The
vertexHU has two incoming and two outgoing conduction-
electron lines. It yields a factorU/(NfNs) and ad function
ensuring momentum conservation. Taking the expectation
value with respect touFS& we connect the conduction-
electron lines in all possible ways. The resolvent
Q/(«2H̃) yields the energy of the intermediate states and,
because of the LiouvilleanLt only the energy difference with
respect to the filled Fermi sea enters. Conduction-electron
lines pointing to the right correspond to particlelike excita-
tions ~with a momentum denoted by a capital letter,
uQu.kF) while those pointing to the left are holelike~de-
noted by uqu<kF). Without Hubbard interactionHU these
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rules correspond to the standard ones11,19 for the self-energy
of the propagator of the empty state in the partition function
at zero temperature.

For an expansion in 1/Nf we note that each closed loop of
fermions yields a summation over spin and, hence, a factor
Nf , whereas eachV vertex is}1/ANf . To lowest order in
1/Nf , the application ofHU does not change the order of a
diagram: If we connect two conduction-electron lines of a
closed loop by the four-point interactionHU we create two
loops with the only restrictionsÞs8, which is of higher
order in 1/Nf .

Multiplet energy.Similarly to Eq. ~2.1!, we obtain the
energyEM for the multiplet ground state by taking the ex-
pectation values with respect to the multiplet statef s

† uFS&.
The resulting equation corresponds to the lowest pole of the
propagator of the occupiedf state. The important energy for
the low-temperature thermodynamics is given by the energy
difference of singlet and multiplet ground state,
EM2m2ES , which is related to the Kondo temperature.21

Note that the multiplet has one electron more than the singlet
in our definition.

Renormalization of the bare propagators.Already to or-
der (1/Nf)

0 the bare emptyf level ~single wiggle line, 1/z)
has to be renormalized@double wiggle line,G0(z)#. This
renormalization arises from a partial summation in Eq.~2.1!
shown in Fig. 1:

G0~z!5
1

z
1
1

z
I ~0!~z!G0~z!5

1

z2I ~0!~z!
. ~2.2!

The self-energyI (0)(z) @see also Fig. 2~a!# evaluates to

I ~0!~z!5
V2

Ns
(
q

1

z1eq2e f
. ~2.3!

The propagator of the occupiedf state,G1(z), is not renor-
malized to this order,

G1~z!5
1

z2e f
. ~2.4!

III. GROUND-STATE ENERGIES TO ORDER 1/ NF

Diagrams for the singlet energy.To order (1/Nf)
0 only

the diagram shown in Fig. 2~a! occurs. It was already evalu-
ated in Eq.~2.3!

I ~0!~z!5
V2

Ns
(
q

G1~z1eq!. ~3.1!

There are no diagrams}U to this order. To order 1/Nf we
first find the diagram shown in Fig. 2~b!:

I ~1!~z!5
V4

NfNs
2 (

qQ
@G1~z1eq!#

2G0~z1eq2eQ!.

~3.2!

As mentioned previously, applyingHU does not change
the order of a diagram to lowest order in 1/Nf . Therefore,
I (1) can be regarded as parent diagram in which we insert
vertices of the interaction,HU . Thereby we restrict ourselves
to first order inU, i.e., we applyHU only once in the series
~2.1!. We then find the diagrams shown in Fig. 2~c!. As the
diagrams are time ordered,I A

(1) differs from I B
(1) , etc. Also,

applyingHU over a doubly wiggled line deserves some com-
ment ~see, e.g.,I B

(1)): Such a diagram would not be unam-
biguous since it is not clear whetherHU acts while thef
level is empty or occupied, when we expand the renormal-
ized empty f propagator as in Fig. 1. For that reason we
define thatHU acts while the~bare! f level is empty. The
other case yields a different diagram~here,I C

(1)). The contri-
butions of the diagrams of Fig. 2~b! are given by

FIG. 1. Renormalization of the empty state propagator to order
(1/Nf)

0.

FIG. 2. Diagrams for the singlet ground-state energy.~a! Order
U0 and (1/Nf)

0, I (0)(z). ~b! Order U0 and (1/Nf)
1, I (1)(z). ~c!

OrderU1 and (1/Nf)
1, I i

(1)(z)( i5A, . . . ,E).
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I A
~1!~z!52

2UV4

NfNs
3 (

qrr 8R
G1~z1eq!G1~z1e r1e r 82eR!G0~z1e r2eR!G1~z1e r !d r 82q,R2r ,

I B
~1!~z!5

UV4

NfNs
3 (
qrQR

G1~z1e r !G0~z1e r2eR!G0~z1eq2eQ!G1~z1eq!dq2Q,r2R ,

I C
~1!~z!5

UV6

NfNs
4 (
qrr 8QR

G1~z1e r !G0~z1e r2eR!G1~z1e r1e r 82eR!G1~z1eq1e r 82eQ!G0~z1eq2eQ!

3G1~z1eq!dq2Q,r2R ,

I D
~1!~z!5

2UV4

NfNs
3 (

qrQR
G0~z1eq1e r2eQ2eR!G1~z1eq1e r2eR!G0~z1e r2eR!G1~z1e r !dQ2q,r2R ,

I E
~1!~z!5

2UV6

NfNs
4 (

qrr 8QR
G1~z1e r 8!G1~z1eq1e r1e r 82eQ2eR!G0~z1eq1e r2eQ2eR!G1~z1eq1e r2eQ!

3G0~z1eq2eQ!G1~z1eq!dQ2q,r2R . ~3.3!

According to Eq.~2.1!, the ground-state energy~relative to
EFS) is given by the smallest solution of

ES5I ~0!~ES!1I ~1!~ES!1(
i5A

E

I i
~1!~ES!. ~3.4!

There is no contribution}UV0 in this expression for the
ground-state energy since we introduced the Hubbard inter-
action in normal ordered form in Eq.~1.2! and restricted to
first order inU. Hence the Hubbard interaction enters only
via the hybridizationV in the ground-state energy. Expand-
ing Eq. ~3.4! in 1/Nf we obtain

ES5ES
~0!1

1

Nf
ES

~1!1o~1/Nf !
2,

ES
~0!5I ~0!~ES

~0!!,

ES
~1!5

I ~1!~ES
~0!!1( i5A

E I i
~1!~ES

~0!!

12]I ~0!~ES
~0!!/]ES

. ~3.5!

Diagrams for the multiplet.We now turn to the ground-
state energy of a multiplet state. To order (1/Nf)

0 it is given
by EM5e f ~relative toE FS). There is only one diagram con-
tributing to order 1/Nf , which is shown in Fig. 3. It is

J~1!~z!5
V2

NfNs
(
Q

R0~z2eQ!, ~3.6!

and we find therefore

EM5e f1J~1!~e f !1o~1/Nf !
2. ~3.7!

Kondo temperature.We associate the Kondo temperature,
TK , with the difference between singlet and multiplet
ground-state energy21 ~in units of the bandwidth!

TK5~EM2m2ES!r. ~3.8!

With this definition we find from Eqs.~3.5! and~3.7! to order
(1/Nf)

0

TK
~0!5~e f2m!r2I ~0!~e f2m2TK

~0!/r!. ~3.9!

Assuming a constant density of states we have

I ~0!~z!5rV2E
2D

m

de
1

z1e2e f

5rV2lnU ~e f2m!2z

~D1m!1~e f2m!2zU, ~3.10!

and hence

TK
~0!5~e f2m!r2~rV!2ln

TK
~0!

n1TK
~0! , ~3.11!

where n5(D1m)r denotes the filling per spin. This is
solved for smallJK52V2/(e f2m) by

TK
~0!5n expS 2

1

rJK
D , ~3.12!

cf. Eq. ~1.6!. To order 1/Nf , we find from Eqs.~3.5!, ~3.7!,
and ~3.8!

TK
~1!5rFJ~1!~e f !2

I ~1!~ES
~0!!1( i5A

E I i
~1!~ES

~0!!

12]I ~0!~ES
~0!!/]ES

G .
~3.13!FIG. 3. Diagram for the multiplet ground-state energy,J(1)(z).
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Connection to variational approach.To find the result
~3.13! variationally the following states, which occur as in-
termediate states in the diagrams, have to be included in the
trial state for the singlet ground state

f̂ s
†cqs ;cQs

† cqs ;cQs
† cqs f̂ s8

† cq8s8uFS&, ~3.14!

cQs
† cqscQ8s8

† cq8s8;cQs
† cqscQ8s8

† cq8s8 f̂ s9
† cq9s9uFS&.

~3.15!

The variational coefficients are determined up to first order
in U and to leading order in 1/Nf .

16 In the free case
(U50) the first state corresponds to the ansatz of Varma and
Yafet, cf. Eq.~1.5!, which gives the result correctly to order
(1/Nf)

0. The next two yield the 1/Nf corrections, while the
last two are of order (1/Nf)

2.

IV. ESTIMATING THE KONDO TEMPERATURE

In this section, we estimate the effect of the diagrams
}1/Nf on the Kondo temperature. We scale the energies by
r and study the dependence onTK

(0) rather than onES
(0) as

TK
(0) is the small quantity. The transformed propagators read

i ~x!52
1

rV2 I
~0!~ES

~0!2x/r!5 lnS x1n1TK
~0!

x1TK
~0! D ,

g1~x!52
1

r
G1„ES

~0!2~x/r2m!…5
1

TK
~0!1x

,

g0~x!52rV2G0~ES
~0!2x/r!

5
r2V2

x1TK
~0!2r~e f2m!2r2V2i ~x!

~4.1!

and depend implicitly onTK
(0) andn. The empty-state propa-

gator,g0(x) diverges}TK
(0)/x for x→0. @This corresponds

to the spin-fluctuation peak atz5ES
(0) in G0(z).# This sin-

gularity yields contributions}TK
(0)( lnTK

(0))n to I (1), I i
(1) , and

J(1), which we neglect against terms which remain constant
asTK

(0)→0. For largerx however,g0(x) drops slower than
1/x resulting in finite contributions. In this intermediatex
range (TK

(0)!x!n), we may safely approximate

g0~x!;rJK ~4.2!

for smallTK
(0) . The validity of this replacement for the whole

x range in the diagrams has been checked numerically.
Diagrams of order U0. We begin with the contributions

}U0 in Eq. ~3.13!

I ~1!~ES
~0!!52

rV2

Nf
E
0

n

duE
0

12n

dx g1
2~u!g0~u1x!,

~4.3!

J~1!~e f !52
1

rNf
E
0

12n

dx g0~x2TK
~0!!, ~4.4!

where we again assumed a constant density of states. Insert-
ing ~4.2! we find for the multiplet energy

J~1!~e f !52
JK
Nf

~12n!, ~4.5!

where the corrections are of higher order in 1/(e f2m)r. For
the singlet energy we use the same approximation forg0 to
obtain

I ~1!~ES
~0!!5

~rV!2JK
Nf

~12n!S 1

n1TK
~0! 2

1

TK
~0!D . ~4.6!

Together with the denominator in Eq.~3.13!

12
]I ~0!~ES

~0!!

]ES
512~rV!2S 1

n1TK
~0! 2

1

TK
~0!D ~4.7!

and neglecting the 1, we find that both contributions}U0

cancel.~Loosely speaking, these terms describe the energy
gain due to hybridization with unoccupied states which is the
same for multiplet and singlet state.!

Diagrams of order U. We continue with the estimation of
the diagrams}U. The numerical evaluation of the sums
I A
(1) , . . . ,I E

(1) is difficult because of thed functions, which
ensure momentum conservation in the Hubbard interaction.
Since we are interested only in the qualitative behavior, we
may neglect them. This implies that the interactionU acts
only at the lattice site 0 with which the impurity hybridizes
and corresponds to taking the limit of infinite dimensions.22

Then the sums}U in Eq. ~3.3! read

I A
~1!~ES

~0!!5
2UV2r2

Nf
lnS TK

~0!

n1TK
~0!D E

0

n

duE
0

12n

dx g1~u!g0~u1x!i ~u1x!,

I B
~1!~ES

~0!!5
U

Nf
F E

0

n

duE
0

12n

dx g1~u!g0~u1x!G2,
I C

~1!~ES
~0!!52

UV2r2

Nf
E
0

n

du dvE
0

12n

dx dy g1~u!g0~u1x!g1~v !g0~v1y!
i ~u1x!2 i ~v1y!

u1x2~v1y!
,

I D
~1!~ES

~0!!5
2U

Nf
E
0

n

du dvE
0

12n

dx dy g1~u!g0~u1x!g1~u1v1x!g0~u1v1x1y!,

I E
~1!~ES

~0!!52
2UV2r2

Nf
E
0

n

du dvE
0

12n

dx dy g1~u!g0~u1x!g1~u1v1x!g0~u1v1x1y!
i ~u1v1x1y!2 i ~0!

u1v1x1y
. ~4.8!
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For the integralsI A
(1) , I B

(1) , and I D
(1) it proves numerically

sufficient to replaceg0(x) as in Eq. ~4.2! in the limit
TK
(0)→0. Then the following leading behavior forTK

(0)→0
can be calculated analytically

I A
~1!~ES

~0!!5
UV2r2C~n!

Nf
lnS TK~0!

n D ,
I B

~1!~ES
~0!!5

U

Nf
~12n!2,

I D
~1!~ES

~0!!52
UC~n!

Nf
~12n!

1

lnTK
~0!→0 ~4.9!

with C(n)522@n lnn1(12n)ln(12n)#.0. The integral
I E
(1) simplifies since one integration can be performed

I E
~1!~ES

~0!!52
2UV2r2

Nf
E
0

n

du dvE
0

12n

dx g1~u!

3
1

i ~u1x!2 i ~0!
g1~u1v1x!

3 lnS u1v1x112n

u1v1x D . ~4.10!

By numerical evaluation, one finds thatI C
(1) and I E

(1) remain
finite as TK

(0)→0. They are, however, small compared to
I B
(1) as they have an additional prefactorr2V2. Keeping only
diagramsI A

(1) and I B
(1) in Eq. ~3.13!, which corresponds to

considering only the states~3.14! in a variational calculation,
we obtain in the limit of smallTK

(0)

TK
~1!52

TK
~0!

Nf
S rUC~n!lnS TK~0!

n D 1
U

rV2 ~12n!2D
5
TK

~0!

Nf
S UJK C~n!2

U

rV2 ~12n!2D . ~4.11!

The first contribution toTK
(1) is positive and, therefore, en-

hances the Kondo temperature. Since it depends onU/JK it
is related to spin degrees of freedom. A similar contribution
was found in Ref. 17 and it was attributed to the enhance-
ment of spin fluctuations that result from the reduction of
charge degrees of freedom when turning onU. The second
contribution in Eq.~4.11! depends onrV2 rather thanJK . It
is related to charge degrees of freedom. A similar effect has
been found in Ref. 8 and has been interpreted as the increase
in energy of the virtual state in the spin-exchange process
because in the virtual state a conduction site is doubly occu-
pied. It decreases the Kondo temperature. However, in the
limit rue f2mu@1 that we considered throughout, the first
term dominates: Overall we find an increase of the Kondo
temperature.

This interpretation can be put onto more solid grounds by
the following observation: If we would not scale the Hub-
bard interaction among the conduction electrons by 1/Nf ,
the corrections due toU, I i

(1)(z), would be of the same order
as I (0). Then the integralI B

(1)(z), which remains constant as
z→0, would effectively shift the position of thef level to

e f* , whereasI A
(1)(z); lnz would renormalize the exchange

couplingV2/e f* @cf. Eqs.~3.9! and ~3.11!#. However, with-
out scaling there would be contributions of higher order inU
which diverge asNf→`.

Comparison to previous results.In Ref. 17, a Kondo
model (Nf52) with correlated conduction electrons has
been investigated to lowest order in the interaction strength
Ũ by a mean-field decoupling of the Kondo-exchange inter-
action. The following increase of the Kondo temperature has
been found

TK~Ũ !

TK~0!
5expS a

rJK~11a! D ~4.12!

with a5(3/2)rŨ ln 2. In contrast to our result~4.11!, the
increase of the Kondo temperature seems to depend expo-
nentially onŨ. Note, however, that in our treatment the in-
teraction had to be scaled by 1/Nf . ScalingŨ in Eq. ~4.12!
and expanding in 1/Nf yields the first term of our result
~4.11! ~with a factor ln2 forNf52 at half filling instead of
3/4 ln2).

The second term of Eq.~4.11!, which describes the effec-
tive shift of the f level, cannot be found in Ref. 17 because
there the Kondo model has been investigated, where the
charge degrees of freedom of the impurity have already been
projected out. Therefore,JK in ~4.12! is an effective coupling
constant which depends onU.8

Without scaling the Hubbard interaction, all integrals
would be of order (1/Nf)

0. As discussed above, the position
of the f level and the Kondo coupling constant are modified,
and these corrections occur in the exponent as in Eq.~4.12!.

V. CONCLUSION

The aim of this paper was to investigate the influence of
correlations among the conduction electrons on the Kondo
effect. Lead by the situation prevailing in Nd22xCexCuO4,
we proposed a model with a twofold degenerate impurity
(Nf52) which hybridizes with a correlateds band and
straightforwardly generalized it to arbitraryNf . As discussed
in the introduction, this generalization does not correspond to
the physical situation of anNf-fold degerate impurity hybrid-
izing with a correlateds band forNf.2, in contrast to the
uncorrelated case. Although artificial, we saw that this model
allows for systematically studying the effects of the correla-
tions on those diagrams which are usually considered in the
uncorrelated case.

In particular, we assumed that the correlations are weak
and calculated their effect on the Kondo temperature to low-
est order in 1/Nf . We found two competing effects: The first
contribution is related to charge fluctuations. Because the
energy of the virtual state in the spin-exchange process in-
creases, the Kondo temperature is reduced. This corresponds
effectively to a shift of the position of thef level. A similar
effect has been found in Ref. 8. The second contribution is
related to the enhancement of spin fluctuations of the con-
duction electrons. The Kondo exchange coupling is effec-
tively enhanced and the Kondo temperature increases. In the
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Kondo limit the second contribution dominates the first one,
so that we find in total an increase of the Kondo temperature
for smallU.

In our opinion, more interesting is that corrections to the
Kondo temperature occur already to lowest order in the Hub-
bard interactionU. To obtain them in a variational approach,
trial states are needed which in the uncorrelated case yield
corrections to the ground-state energy which are of order
1/Nf ~and higher!. Thus, our result cannot be obtained by an
ansatz of the Varma-Yafet type~1.5!. This shows that the
effect of the Hubbard correlations is more intricate than just
to provide quasiparticles with a modified density of states at
the Fermi surface which hybridize with thef orbital as it was
described by Varma and Yafet for the uncorrelated case,
U50.

If we wish to proceed to higher order inU, we note that
to order 1/Nf only RPA-type diagrams contribute since each
U vertex carries a factor 1/Nf , which has to be compensated
by a spin summation, i.e., a closed loop of conduction elec-

trons@in fact, the ground-state energy of the Hubbard model
~1.2! to order 1/Nf is given by summing the diagrams of RPA
type and neglecting thesÞs8 constraint#. Only few more
intermediate states will occur. This is, however, an artifact of
our scaling of the Hubbard interaction and one expects that
in a realistic model~without the restrictive scaling ofHU and
finite Nf) intermediate states with more and more excited
electron-hole pairs contribute, the number of which increases
with increasing order ofU. Therefore, it seems questionable
that a systematic 1/Nf treatment grasps the correct physics
for realistic models of interacting conduction electrons in the
limit of strong correlations.
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