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We use a semiclassical model to calculate the angle-dependent magnetoresistance oscillations~AMROs! in
quasi-one-dimensional~q1D! organic conductors. A number of contrasting models have been proposed to
explain this effect, mainly in the context of the~TMTSF!2X ~where TMTSF is tetramethyltetraselenafulvalene
andX5ClO4 or PF6! family; some of the models concentrate on the role of electron-electron interactions while
others postulate Fermi-surface hotspots or even field-dependent hopping renormalization. Instead, we have
used a more intuitive semiclassical approach to calculate the angle-dependent magnetoresistance oscillations
for a completely general class of q1D Fermi surfaces. The model demonstrates how the details of the Fermi
surface corrugation give particular features in the experimental data and illustrates the important roles played
by both open and closed orbits. The AMRO observed in~TMTSF!2ClO4 when the magnetic field is rotated
close to thea axis are discussed in this context. The results are particularly applied to the organic charge
transfer salt~ET!2KHg~SCN!4 @where ET is bis~ethylenedithio!tetrathiafulvalene#; this material is interesting
because the Fermi surface undergoes a transition from predominantly q1D to quasi-two-dimensional~q2D!
character at;22 T, a result which has been primarily established on the basis of AMRO experiments. Higher
order Fourier components in the corrugation of the Fermi sheet are shown to be essential to explain the
observed AMROs and the size of the magnetoresistance in this material. The absence of q1D AMROs in most
organic metals with q1D Fermi surfaces is explained, illustrating in particular why q1D AMROs are absent
above 22 T in~ET!2KHg~SCN!4 even though the Fermi surface contains q1D sections. We discuss the failure
of previous models to explain the AMRO effect in this salt and demonstrate the advantages of adopting a
semiclassical approach.

I. INTRODUCTION

In the last 40 years, magnetoresistance~MR! experiments
have been particularly useful in determining the shape of the
Fermi surface~FS! of metals.1 The presence of open and
closed orbits can be easily distinguished by the field depen-
dence of the MR while the area of the FS pockets can be
measured by the frequency of Shubnikov–de Haas oscilla-
tions ~SdHOs!.2 Recently, these techniques have been ap-
plied to organic metals.3 SdHOs can be used to determine
information concerning the FS geometry because the fre-
quency of each series of oscillations is proportional to the
area of anextremal orbitof the FS.2 The orbits which are not
extremal do not contribute to this oscillatory signal but give
rise to the non-oscillatory background MR. However, this
background MR can depend quite dramatically on thedirec-
tion of the applied magnetic field, and in some cases
very large angle-dependent magnetoresistance oscillations
~AMROs! at constant field can be found.

Experimentally, AMROs are measured by rotating a
sample in a fixed magnetic field while monitoring the resis-
tivity of the sample. AMROs can be observed at much higher
temperatures and in much lower applied fields than SdHOs.3

SdHOs arise from the movement of well-resolved Landau
levels through the Fermi energy and therefore require that
the temperature is low enough for the FS to be sharply de-
fined; this restriction does not apply so stringently to
AMROs since they do not originate from the motion of en-
ergy levels through the FS. The information obtained from

AMROs can therefore be complementary to SdHOs since the
effect is due to all electrons on the FS, not just those per-
forming extremal orbits.

For example, AMRO studies have provided additional
shape information about the warping of cylindrical sections
of the quasi two-dimensional~q2D! FS in organic conductors
due to the behavior of electrons in closed orbits around these
cylinders.4,5 In a number of other ‘‘quasi-one-dimensional’’
~q1D! conductors, the FS is dominated by q1D sheets across
which electrons may also perform open orbits. In these ma-
terials, a different type of AMROs is observed which must
have an origin quite distinct from that responsible for
AMROs in metals with a q2D FS.

First studied in this context were the q1D AMRO in the
organic conductors~TMTSF! 2X ~where TMTSF is tetra-
methyltetraselenafulvalene andX5ClO4 or PF6!. These ma-
terials are of enormous interest because they can exhibit su-
perconductivity, a cascade of field-induced spin density
waves, and even the quantum Hall effect, under different
conditions of pressure, field, and temperature.6–8 The
TMTSF salts are highly anisotropic and consist of stacks of
TMTSF molecules along the highly conducting direction
~along a!; the stacks are assembled into sheets which are
themselves separated by the anionX layers along the least
conducting direction~i.e., alongc!. The bandwidths are typi-
cally in the ratiota :tb :tc51:0.1:0.003 eV. Sharp AMROs
have been observed, consisting of resistance dips at particu-
lar ‘‘magic angles’’ of the applied magnetic field to the crys-
tal axes of these materials.9–11 When the magnetic field di-
rection is at a magic angle, the electron motion in the q1D
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planes becomes periodic in the reduced zone scheme; away
from these magic angles, the electron orbits sweep out the
entire Brillouin zone ergodically. It is this principle which is
at the basis of most explanations of the effect, but theoretical
treatments sometimes additionally stress the role of electron-
electron interactions, FS hotspots, or non-Fermi liquid be-
havior. 12–20

Q1D AMROs have also been studied21,22,25,26in the low
temperature phase of~ET!2KHg~SCN!4, which is a charge
transfer salt of the organic molecule ET~where ET is bis-
~ethylenedithio!tetrathiafulvalene, known also as BEDT-
TTF!. This salt consists of alternating sheets24 of ET mol-
ecules and the anion KHg~SCN! 4 . For reasons which we
discuss later, the AMROs in this particular material may be
easier to understand than those in TMTSF salts.

In this paper, we describe a purely semiclassical approach
to AMROs in q1D metals. The orbits of all electrons on the
FS are calculated by considering the Lorentz force
2ev(k)3B, and the conductivity is then calculated by using
the Boltzmann transport equation. Thus electron-electron in-
teractions are entirely neglected and ak-independent scatter-
ing time is assumed~i.e., no FS hotspots!. Thus the conduc-
tivity is straightforward to calculate and a comparison with
experimental data can be made. This is useful not least be-
cause a proper examination of the consequences of a semi-
classical modelmay lead to a recognition of its failure to
describe certain real systems; this could then provide a le-
gitimate motivation for the use of more exotic mechanisms.

The use of a semiclassical method to understand AMROs
in TMTSF salts was pioneered by Osadaet al.18 Recently,
similar techniques were ingeniously used to explain newly
discovered resonances in~TMTSF! 2ClO4 when the mag-
netic field direction was rotated close to thea axis.23 Here
we aim to relate the geometric structure of the FS, as param-
etrized by the Fourier components of the FS corrugation,
directly to features in the angle-dependent conductivity. We
also attempt to classify the types of FS orbits induced by the
magnetic field and apply our results to~ET! 2KHg~SCN! 4 .

This paper is organized as follows: some general consid-
erations and the method of calculation are presented in Sec.
II; this method is applied first to a simplified model consist-
ing of a FS with a weak corrugation in Sec. III, the general
case being considered in Sec. IV; the results are discussed in
Sec. V in the context of recent experiments.

II. THEORY

Consider the linearized q1D FS described by the follow-
ing energy dispersion relation:

E~k!/\5vF~ ukxu2kF!2 f ~ky ,kz!. ~1!

The FS@defined byE(k)50# consists of two flat sheets at
kx56kF which are slightly warped in a manner described
by the function f ~we assume throughout that
u f (ky ,kz)u!kFvF so that the two sheets do not touch!. The
velocity v(k) of each electron as a function of momentum
k can then be calculated using

v~k!5\21@dE~k!/dk#56vF î2¹ki
f , ~2!

where¹ki
[(0,]/]ky ,]/]kz) and î is a unit vector in thekx

direction.~In what follows, we will consider only one sheet
for which kx;1kF without loss of generality.! The velocity
will be time dependent since the electron’s momentumk
varies with time according to the equation of motion

\ k̇52ev3B ~3!

with the magnetic fieldB given by

B5B' î1Bi . ~4!

This equation of motion implies thatk̇ remains perpendicular
to v; this condition ensures that the electron remains on the
FS. For this reason, we need only calculate the equation of
motion forki5(0,ky ,kz) since thekx component can always
be calculated usingkx5kF1 f (ky ,kz)/vF . Therefore we find
that the equation of motion@Eq. ~3!# can be written as

k̇i5
e

\
w3 î, ~5!

where the vector fieldw also lies in the plane of the sheet
and is given by

w5vFBi1B'¹ki
f . ~6!

The vector fieldk̇i is solenoidal (¹• k̇i 5¹ki
• k̇i50) so that

k̇i is an area-preserving flow;27 the vector fieldw is conser-
vative (¹3w5¹ki

3w50) so that we can define a scalar

functionF such thatw5¹F where

F5vFBi•ki1B' f ~7!

so that the electron motion is along contour lines of constant
F @see Fig. 1~a!#. In the simple case where the magnetic field
lies in the plane of the sheets (B'50), the vector field
w5vFBi is constant so that electrons appear to travel in
straight lines across the Fermi sheet in a direction perpen-
dicular toB5Bi when viewed alongkx .

FIG. 1. ~a! Schematic showing electron trajec-
tories in the ky-kz plane. The vectors
k̇i5(e/\)w3 î and w5vFBi1B'¹ki

f are also
shown. The electron motion is along contour
lines of constantF. ~b! Types of FS orbits on the
Brillouin zone~represented by a torus!. OrbitC is
contractible and corresponds to a closed orbit.
OrbitsA andB correspond to open orbits.
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Because of the periodicity of the Brillouin zone, we can
identify the state (ky ,kz) with states at (ky1mp/
b,kz1np/c) ~wherem andn are integers! and so the elec-
tron dynamics across the Fermi sheet can be understood by
considering the vector fieldsk̇ andw defined on a torusT2

~the scalar functionF is, however, multiple-valued onT2).
Using the fact that the Euler-Poincare´ characteristic of a
torusx(T2) is zero, then if the vector fields have only iso-
lated singular points, then it may be shown that the number
of maxima plus the number of minima minus the number of
saddle points inF is equal tox(T2)50.

Different types of FS orbits are possible. Orbits can be
represented as loops on the torus and can be topologically
characterized by twowinding numbers28 ~we will denote
thesehy andhz ; they describe the number of times the loop
winds around the torus in theky and kz directions, respec-
tively!. Three such orbits are shown in Fig. 1~b!: the loopC
is contractible to a point~it hashy5hz50) and corresponds
to a closed orbit; in contrast, the loopsA and B are not
contractible~they both have one unit winding number: forA
hy51, hz50, for B hy50, hz51) and correspond to open
orbits. Further open orbits are also possible which can wind
round the torus many times in either~or both! directions.

Having characterized the shape of the FS orbits for a par-
ticular orientation of the magnetic field, the conductivity can
be calculated using the Boltzmann transport equation:

s i j5
e2

4p3E
FS
dk3F2

] f 0~k!

]E~k! Gv i~k,0!E
2`

0

v j~k,t !e
t/tdt.

~8!

This is an integral~over all states at the FS! of the velocity-
velocity correlation function for each FS orbit. This can
change dramatically as the direction of the magnetic field is
changed, because this alters the paths of all the FS orbits.

We can also express a general q1D FS by expressing the
function f (ky ,kz) in Fourier components:

E~k!5\vF~ ukxu2kF!2(
m,n

@ tmn
even cos~mbky1nckz!

1tmn
odd sin~mbky1nckz!#, ~9!

where the parameterstmn
even and tmn

odd are the even and odd
Fourier components of the corrugation of the Fermi sheets.
As will be described later, in certain situations the ‘‘geomet-
ric structure’’ of the orbits can have little bearing on the
magnetoresistance. When the magnetic field is in the plane of
the q1D sheets, then in some ‘‘resonant’’ field directions the
orbits may be periodic on the reduced Brillouin zone, while
at a ‘‘general’’ direction they will instead ergodically fill the
whole Brillouin zone. The contribution of such a resonant
orbit is governed by a particulartmn and will produce no
conductivity resonance iftmn50. We stress that it is thege-
ometryof the Fermi sheet, parametrized by the Fourier com-
ponentstmn of the corrugation which entirely controls the
AMROs with this field direction. However, with other field
directions, the geometric structure of the orbit can play a
major role.

Before considering the general FS of Eq.~9!, in the fol-
lowing section we study in detail a special case.

III. WEAKLY MODULATED FERMI SHEETS

A special case of Eq.~9! can be obtained if the only
nonzero Fourier components of the corrugation are
t10
even52tb and t01

even52tc . This model has been extensively
used to study the~TMTSF! 2X family of organic conductors
in which the two sheets are only weakly modulated by a
single Fourier component in each of they andz directions.
The amplitude of the modulation is determined by the tight
binding transfer integralstb and tc , where in TMTSF salts
their ratio is typically given bytb /tc;30. Using our nota-
tion, we will therefore now consider the energy dispersion
relation in Eq.~1! with the functionf given by

\ f ~ky ,kz!52tbcos~bky!12tccos~ckz! ~10!

with tb /tc.1. The shape of this FS is sketched in Fig. 2~a! @a
more general and more highly corrugated FS is shown in Fig.
2~b! for comparison#. The parameterstb and tc are transfer
integrals along theb andc axes.7

A. Classification of orbits

With the magnetic field perpendicular to the sheets
(Bi50) a combination of open orbits and closed orbits is
allowed. The fraction of closed orbits can be easily calcu-
lated as

FIG. 2. ~a! The FS of Eq.~10!. ~b! A more general FS.
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2c

p2E
0

p/c

dkzcos
21S 12

tc
tb

~11coskzc! D;
8

p2~ tb /tc!
1/2

for tb@tc ~11!

~see Fig. 3! so that the fraction of closed orbits decreases as
tb /tc increases. This fraction is independent of the strength
of the applied magnetic fielduBu. The inset to Fig. 3 shows
the orbits for tb /tc53 ~the orbits are contours of constant
F); the closed orbits have zero winding number, the open
orbits have unit winding number.

As the magnetic field is rotated into the plane, the fraction
of closed orbits decreases. When the parallel component of
the magnetic field is sufficiently large in comparison with the
perpendicular component, all the orbits are open. We will
consider the case whenBi5(0,0,Bi). All the orbits then be-
come open when

Bi

B'

>
2ctc
\vF

~12!

~when tb /tc.1). This behavior is shown in Fig. 4: the inset
shows the orbits for a particular choice oftb /tc and
Bi /B' .

As the fraction of the open orbits increases, the character
of these orbits changes in a very marked way. When the
magnetic field is out of the plane, they lie along thekz di-
rection~see the inset to Fig. 3! so that their winding numbers
arehy50 andhz51. However, as soon as the field acquires
a nonzero component along thez direction, a transition im-
mediately occurs andhy51, hz50. However, although the
orbits are therefore now extended along theky direction, they
still exhibit a large degree of movement in thekz direction as
illustrated in Fig. 5~a!. The open orbits must navigate around
isolated islands of closed orbits and each open orbit has an
amplitude in thekz direction which can be measured by the
number of isolated closed-orbit islands which are crossed.

Considering Fig. 5~a!, we can therefore say that orbitsA and
C each have an amplitude of 1 since they navigate around
isolated islands of closed orbits inadjacentBrillouin zones
in the kz direction; orbitB has an amplitude of 2 since it
travels across a further Brillouin zone in thekz direction. We
denote this amplitude byzz and note that it is necessarily an
integer.

In general, orbits of amplitudezz and zz11 coexist. We
find thatzz decreases as the in-plane magnetic field compo-
nent increases. We plot the maximum of the two amplitudes
zz
max (5zz

min11) for various values oftb /tc andBi in Fig.
5~b!. This figure shows thatzz

max decreases at particular tran-
sition points which depend on the ratiotb /tc . In the limit
that the applied field is entirely in plane along thez direction,
the orbits are all straight lines along theky direction.

FIG. 3. The fraction of closed orbits as a function oftb /tc . Also
shown is an approximation to the exact result which is valid for
large tb /tc . Inset: the orbits fortb /tc53 ~which are contours of
constantF). The region of closed orbits are shaded.

FIG. 4. The fraction of closed orbits as a function of the direc-
tion of the applied magnetic field for different values oftb /tc . We
have chosenBi5Bik̂. All the orbits become open when
Bi /B'>2ctc /\vF . Inset: the orbits for tb /tc53 and
Bi\vF /(2ctcB')50.25. The regions of closed orbits are shaded.

FIG. 5. ~a! If the field acquires a nonzero component along the
z direction, the orbits are extended along theky direction and ex-
hibit a large degree of movement in thekz direction. Each open
orbit has an amplitude in thekz direction which can be measured by
the number of isolated closed-orbit islands which are crossed. Or-
bitsA andC each have an amplitude of 1; orbitB has an amplitude
of 2 ~see text!. ~b! The maximum of amplitudes of open orbits for
various values oftb /tc andBi .
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B. Conductivity: Danner-Wang-Chaikin oscillations

The transitions between different types of orbits which we
have considered in the previous section are related to
changes in the conductivity. These transitions are manifested
in two particular ways.

First, we expect a larger resistance when there are closed
orbits present since these are more efficient in averaging the
velocity. Consequently, the resistance should change when
the condition in Eq.~12! is satisfied and all orbits become
open.

Second, we expect an enhancement of the velocity aver-
aging~peaks in the resistance! associated with the transitions
between the different open orbits considered in the previous
section. Those transitions were based purely upon the geo-
metrical structure of the orbits; however we now wish to find
the orbits which maximise the velocity averaging. Crudely,
this will occur whenever the amplitude of the open orbit in
thekz direction equals an integer times 2p/c. This condition
can be written

F~ky ,kz!5F~ky1p/b,kz12np/c! ~13!

because electron trajectories are on curves of constantF,
and this reduces toBz /Bx52tbc/\vFpn wheren is an inte-
ger. A more exact treatment23 shows that

Bz /Bx52tbc/\vFp~n21/4! ~14!

whenBz /Bx@2tcc/\vF , i.e., when the condition for the de-
struction of closed orbits is substantially exceeded.

These features are illustrated in Fig. 6 which shows simu-
lated resistivity for this FS ~with parameters
evFtbB/\520 and 2tbc/\vF50.3) for three values of
tb /tc as indicated. The existence of closed orbits is possible
whenBz /Bx,2tc /\vF and is accompanied by an increase in
resistance in this region which is related to the fraction of
closed orbits possible~compare with the behavior in Fig. 4!.

Resistance peaks are indeed observed when Eq.~14! is
satisfied for integern. However, the positions of the peaks
for tb /tc55 do not agree well with this prediction because,
in this case, 2tc /\vF is too large and thus the condition
Bz /Bx@2tcc/\vF is not well satisfied. Asn increases, the
heights of successive resistance peaks decrease; eventually
the effect is swamped by the extremely efficient averaging
provided by the presence of the closed orbits.

The strength of the magnetic fielduBu serves only to in-
crease the intensity of all of these features, but does not alter
their individual positions. This is typical of AMROs in that
the observed structure in the resistivity always depends on
the orientation of the field but not on its magnitudeuBu. The
strength of the magnetic field affects only the resolution of
the structure.

AMROs which are very similar to those shown in Fig. 6
have been experimentally observed in~TMTSF! 2ClO4 by
Danner, Wang, and Chaikin by rotating the magnetic field
close to thea axis.23 Their work was the first to show that
AMROs could occur by this mechanism in such a simple FS.

If the magnetic field lies in the plane of the sheets
@B5(0,B sinu,B cosu)#, the result of the argument outlined
in the next section@Eq. ~29# can be used to show that

rzz~B!2rzz~0!

rzz~0!
5S BB0

D 2, ~15!

whereB05\/(etvFcsinu). Therefore, as the magnetic field
is rotated in the plane of the sheets, this model predicts no
fine structure and the resistance only changes smoothly. If
the FS defined in Eq.~10! is believed to be a reasonable
representation of the FS in most TMTSF salts, then one
would therefore conclude that a semiclassical model could
not account for the sharp features and dramatic AMRO be-
havior which have been observed in these materials.9,11

However, there is some evidence that the simple picture
of TMTSF salts described by Eq.~10! may be an
oversimplification,29,30 so the applicability of this model to

FIG. 6. Simulated resistivity for the weakly modulated FS with
parametersevFtbB/\520 and 2tbc/\vF50.3 for three values of
tb /tc as shown in the legend. In each case, closed orbits exist only
when Bz /Bx,2tc /\vF as indicated by the arrows. Resistance
peaks occur when Bz /Bx52tbc/\vFp(n21/4) when
Bz /Bx@2tcc/\vF and these points are indicated by the vertical
lines at the top of the figure. The horizontal dotted line isrzz

5rzz(B5Bz).

FIG. 7. ~a! If magnetic field lies in the plane of the q1D sheets all orbits become straight lines when projected on to theky-kz plane. For
a given Fourier component of the corrugation, the velocity is more effectively averaged when electrons~b! are not traveling along the axis
of the corrugation than~c! when they are.
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the resistivity observed in these materials is very much an
open question. We will return to this point in Sec. V.

IV. GENERAL Q1D FS

A. Introduction

When the magnetic field lies in the plane of the q1D
sheets@B'50 so that the magnetic fieldB is given by
B5(0,B sinu,B cosu)#, all orbits become straight lines when
projected on to theky–kz plane, all lying in a direction per-
pendicular to the magnetic field@see Fig. 7~a!#. This case is
particularly simple to analyze and analytic results can be
obtained for the conductivity~see below! for any general
q1D FS. The AMROs in this case arises from the fact that for
any Fourier component of corrugation, the velocity is more
effectively averaged when electrons are not traveling along
the axis of the corrugation@Fig. 7~b!# than when they are
@Fig. 7~c!#; thus sharp resistance minima are obtained when
the orbits run along a Fourier component of the corrugation.

TheB'50 case is simple because the electron orbits are
determined only by the field direction and not by the precise
shape of the FS~parametrized by thetmn). Thus the shape of
the FS only enters the calculation at the final stage, in calcu-
lating the conductivitygiven the electron orbits. WhenB'

Þ0, thetmn control both the orbitsand the resultant conduc-
tivity so that the situation is much more complicated.

The B'50 calculation was first performed in Ref. 18,
showing that there should be resistivity dips when
tanu5(m/n)3(b/c) wherem and n are nonzero integers.
This treatment therefore made three predictions: first, that
resistivity dips in tanu should be observed at fractional val-
ues ofb/c, as well as at integer values~whenn51!; second,
there should be a missing dip atm50; third, the oscillations
should be symmetric in tanu. Experimentally it is found that
for ~ET! 2KHg~SCN! 4 the dips occur at

tanu5am1b, ~16!

where a and b are constants, and
m5 . . . ,22,21,0,1,2,. . . . Therefore, fractional effects are
not observed, there is no missing dip atm50 and the sym-
metry in tanu is broken by an offset.21,22

These differences with prediction can be understood if the
Fourier components of the corrugation are defined on an ob-
lique lattice, rather than a rectangular one. The q1D FS in
Eq. ~9! should therefore be further generalized as

E~k!5\vF~ ukxu2kF!2(
m,n

@ tmn
evencos~Rmn•ki!

1tmn
oddsin~Rmn•ki!#, ~17!

whereRmn5(0,mb1nd,nc) are lattice vectors on this ob-
lique lattice ~see Fig. 8!. We sett00

even5t00
odd50 since these

terms only produce a shift in the Fermi energy.

B. Calculation of r for the case ofB'50

For the FS defined in Eq.~17!, the velocity v of each
electron as a function of momentumk can then be calculated
using v(k)5\21@dE(k)/dk# and will be time dependent
since the electron’s momentumk varies with time according

to the equation of motion\ k̇52ev3B. Thus, the in-plane
components of thek are given by

k̇y5eB\21vF sgn~kx!cosu, ~18!

k̇z52eBsinf\21vF sgn~kx!sinu. ~19!

Hence,

ky~ t !5ky~0!1eB\21vFt sgn~kx!cosu, ~20!

kz~ t !5kz~0!2eB\21vFt sgn~kx!sinu, ~21!

and the electrons move in straight lines~when projected on
to the ky–kz plane! along contours of constant
F5vFBi•ki . The electron velocityv(t) is given by

vx5vF sgn~kx!, ~22!

vy5\21(
m,n

~mb1nd!@ tmn
evensinamn~ t !2tmn

oddcosamn~ t !#,

~23!

vz5\21(
m,n

nc@ tmn
evensinamn~ t !2tmn

oddcosamn~ t !#, ~24!

where

amn~ t !5Rmn•ki~0!1GmnvFt sgn~kx! ~25!

and

Gmn5
eB

\
@~mb1nd!cosu2ncsinu#. ~26!

Substituting these equations into the Boltzmann transport
equation@Eq. ~8!# we find that

sxx5e2g~EF!vF
2t ~27!

andsxy5syx5sxz5szx50 but

FIG. 8. Each Fourier component of the corrugation can be as-
sociated with a vectorRmn defined on an oblique grid as shown.
This illustrates the definition ofb, c, andd.
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S syy syz

szy szzD 5
e2

4p3\2(
m,n

(
m8,n8

S ~m8b1n8d!~mb1nd! ~m8b1n8d!nc

~mb1nd!n8c n8nc2 D
3E

FS
d3k~0!F2

] f 0~k!

]E~k! G @ tmn
evensinamn~0!2tmn

oddcosamn~0!#

3E
2`

0

@ tm8n8
even sinam8n8~ t !2tm8n8

odd cosam8n8~ t !#e
t/tdt. ~28!

After some algebra, we arrive at

S syy syz

szy szzD 5
g~EF!e2t

\2 (
m,n

S ~mb1nd!2 ~mb1nd!nc

~mb1nd!nc ~nc!2 D tmn
2

11~GmntvF!2
, ~29!

wheretmn
2 5(tmn

even)21(tmn
odd)2. Theu dependence is contained

in Gmn and maxima in the conductivity are observed when-
everGmn50, i.e.,

tanu5
m

n
3
b

c
1
d

c
~30!

in agreement with the empirical result in Eq.~16! if the only
significanttmn occur whenn521,0,1. If this last condition
is not fulfilled, we would expect to see significant fractional
AMRO peaks~i.e., atm/n51/2,1/3,2/3,3/2,. . . , etc.!. We
will discuss the significance of this condition in the follow-
ing section.

The orbits corresponding to these ‘‘resonant’’ directions
are periodic on the reduced Brillouin zone~i.e., the torus
T2) with period n ~if m and n are relatively prime andn
Þ0). Orbits at a ‘‘general’’ direction ergodically fill the
whole Brillouin zone. However this fact has little bearing on
the resistance in this model since the contribution of such an
orbit is governed bytmn and will produce no resonance if
tmn50. Thus thegeometryof the Fermi sheet, parametrized
by the Fourier componentstmn of the corrugation, entirely
controls the AMROs in this case.

The termstmn
2 /@11(GmntvF)

2# in Eq. ~29! are most im-
portant in governing the appearance of the AMRO minima.
IncreasingB5uBu or t ~i.e., increasingGmnvFt}Bt) makes
each resonance sharper~as is observed experimentally22!; the
relative height of each peak is strongly influenced bytmn . As
noted above, the observed features depend only on the ori-
entation of the field and not on its magnitudeuBu, which
affects only the resolution of those features.

The total conductivity is a sum~appropriately weighted!
of terms associated with each Fourier component and is
therefore dominated by any large term. Therefore, as dis-
cussed above, each AMRO minimum can be associated
with a particular Fourier component of FS corrugation, the
velocity being more effectively averaged when electrons
are not traveling along the axis of this Fourier component
of corrugation than when they are@Figs. 7~b! and 7~c!#. It
is important to realize that a large number of Fourier
components may contribute to the same AMRO peak since
the terms with m5rM and n5rN resonate when

tanu5(M /N)3(b/c)1d/c for all values of the integerr .
For example, this means that we cannot determine then50
Fourier componentstm0 , but only the sum(m52`

` tm0
2 .

Considerable qualitative agreement with the form of the
experimental data in~ET! 2KHg~SCN! 4 ~see, e.g., Ref. 22!
can be obtained using Eq.~29!, as shown in Fig. 9. As is
discussed below, the component shown in Fig. 9 is the rel-
evant experimental quantity. Substantial changes in the shape
of the AMRO dips and AMRO background, together with the
character of the maxima, can be achieved by adjusting the
parameterstmn .

This model can also be used to make predictions about the
MR observed as a function of field for various orientations of
the applied field~see Fig. 10!. For small applied fields,rzz is
linear in B, but at higher fields it either rises asB2 at an
AMRO maximum or rises very much more slowly at an
AMRO minimum ~although at very high fields this will also
rise asB2). This is because the conditionGmnvFt@1 is
reached very much more quickly at an AMRO maximum
~where noGmn is small! than at an AMRO minimum in
which the conductivity is strongly dominated by a term for

FIG. 9. Simulated AMROs using parameters chosen to mimic
those fitted from experimental data in~ET!2KHg~SCN!4 for differ-
ent values of the magnetic field. We have usedb:c:d51.3:1:0.4,
the magnetic field isevFBt/\52.5,5,7.5,10. The only nonzero
Fourier components aret0151 and tm151/(11m2). The form of
the AMROs are relatively insensitive tot10 in this case.
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whichGmn50. This behavior is entirely consistent with the
‘‘sublinear’’ and ‘‘superlinear’’ MR observed at AMRO
minima and maxima well below the kink transition in
~ET! 2TlHg~SCN! 4 ,

31 which is expected to have a very simi-
lar FS to~ET! 2KHg~SCN! 4 .

C. Magnetic field out of the q1D planes

If the magnetic field acquires an out-of-plane component,
the calculation presented above cannot be so simply re-
peated. The electron orbits are no longer straight lines, but
follow contours of constantF5vFBi•ki1B' f . However,
we can neglect the last term in this expression if
Bi /B'@(b/\vF)(m,ntmn so that the magnetic field has a
significant in-plane component in comparison with the cor-
rugation. For a very weak corrugation, this will hold well
until the field is close to perpendicular to the Fermi sheet.
Therefore, in this case it is sufficient to use Eq.~29! with the
value of the magnetic field replaced by its in-plane compo-
nent.

In an AMRO experiment, resistance is recorded as a func-
tion of angleu at various azimuthal anglesf describing the
plane of rotation;f50° represents rotation aboutkx and
increasing values off represent angular displacement of the
rotation axis in thekx–ky plane towards theky axis; rotation
about theky axis then corresponds tof590°. Experiments
are usually performed by first settingf at a particular fixed
magnetic field and then rotating the sample~varying u! in
that magnetic field. Using the approximation described
above, we can then compute the AMROs for the same pa-
rameters used for Fig. 9 yielding the simulation in Fig. 11.
~This approximation is valid forufu sufficiently below 90°.!
The simulation bears a strong resemblance to experimental
data in ~ET! 2KHg~SCN! 4 .

22 It is also possible to numeri-
cally calculate these curves using the equations of motion
directly ~thus avoiding the necessity of invoking the approxi-
mation which fails asufu approaches 90°! but this is compu-
tationally much more demanding.

V. CONSEQUENCES FOR EXPERIMENTAL
OBSERVATIONS

A. TMTSF salts

In the last decade or so, there has been an intensive search
to find an adequate explantion for AMROs in TMTSF salts

and, by extension, for any q1D metal. It was first argued that
the periodic motion of the electrons at magic angles reduces
the effective dimensionality of the electron-electron
interactions.12,13 This ‘‘one-dimensionalization’’ provides a
strong increase in the electron-electron scattering, producing
resistance peaks at the magic angles.13,14 In experiments
however, resistancedips are observed, rather than peaks. It
has therefore been necessary to refine this model, consider-
ing an altered FS, to provide agreement with observation.15,16

Another recent explanation of the effect is based upon the
proposal that the magnetic field renormalizes the coherent
part of thec-axis hopping to zero;17 hopping parallel to the
magnetic field is unaffected, so that the dips are predicted
when the field points along a real space lattice vector.

There have been three approaches to explain the effect in
a purely semiclassical way. In the first, Osadaet al.18 have
considered a band structure consisting of weakly corrugated
q1D sheets across which electrons travel in open orbits in
which the higher order effective interchain transfer integrals
tmn are assumed to be significant. In the same way as shown
above, they find that at particular directions of the applied
magnetic field there are large resonances in the conductivity
when the condition for the existence of periodic orbits of
sufficiently small period is satisfied. A second approach19

considers only the first-order transfer integrals but assumes
that intersheet scattering is very high at paricular ‘‘hot spots’’
on the FS; the resistance is then determined by the rate at
which electrons find these spots; at a magic angle, the peri-
odic electron motion in the reduced zone scheme allows
some fraction of the electrons to miss the hot spot; at
unmagic angles, the electron trajectories are incommensurate
and ergodically sweep out the whole FS, all electrons scat-
tering strongly at the hot spots. A third model20 considers
only nearest neighbor transfer integrals but uses a nonlinear-
ized band model, so that the corrugations are included im-
plicitly. All three approaches predict resistance dips.

FIG. 10. Simulated MR using the same parameters as in Fig. 9
and considering the central main AMRO maximum~for which
u;210°, see Fig. 9! and them51 AMRO minimum ~for which
u;20°, again see Fig. 9!. Also shown as dotted lines are the func-
tional formsrzz}B andrzz}B

2.

FIG. 11. Azimuthal dependence of the AMROs using the same
parameters as in Fig. 9 and settingevFBt/\510.
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As shown in Sec. III, if one does not assume the existence
of higher order transfer integrals it is not possible to explain
the ‘‘in-plane’’ AMROs in TMTSF salts using our approach
or that of Osadaet al., although this can be done using the
method of Ref. 20. However, the current picture of the band
structure of TMTSF salts described by Eq.~10! is called into
question by a number of experimental observations, chiefly
the rapid oscillation phenomenon29,30and apparent cyclotron
resonance32 both of which imply the existence of closed FS
pockets. That a semiclassical description may be relevant in
these materials is supported by the observation and semiclas-
sical explanation of the ‘‘out-of-plane’’ AMROs discovered
by Danner, Wang, and Chaikin.23

B. „ET…2KHg „SCN…4

The case of~ET! 2KHg~SCN! 4 is rather different from
that of ~TMTSF! 2X. The predicted FS consists of a 2D
closed hole pocket and a pair of 1D planar sheets24,33 @Fig.
12~a!#. However, it appears that at low temperatures, below
the Néel temperatureTN , a spin density wave~SDW! nests
the FS so that only some small pockets and a q1D section of
the FS remains; this q1D section is thought to be inclined at
;21° to the crystallographicb* c plane @Fig. 12~b!#. The
nested FS shown in Fig. 12~b! may not be correct in every
detail but probably gives a good indication of the sort of
ground state that occurs. This reconstructed ground state can
be destroyed by temperature~aboveTN) or magnetic field
~above aboutBkink;22 T, at the so-called ‘‘kink’’ transition!
so that the FS reverts back to the form shown in Fig. 12~a!.35

This picture is supported by AMRO experiments: the ob-
served AMROs are found to be q1D in the nested region
(T,TN and B,Bkink) and q2D outside it (T.TN or
B.Bkink).

21,22,25

This salt consists of a sandwich structure of alternate lay-
ers~alongac planes! of ET molecules and KHg~SCN!4

2 an-
ions. The ET molecules are linked to each other in these
planes by overlap of their molecularp orbitals and they
stack alongside one another. They are separated in theb*
direction by sheets of the anion KHg~SCN!4

2
, to form a 2D

conductive network. The resistance is therefore much greater

with the current across the planes~parallel to theb* direc-
tion! than with it in theac plane. In a transport experiment
on this material, resistance is measured with voltage contacts
placed on bothac ~conducting plane! platelet faces.22 Since
theb* axis lies along the q1D FS produced by the nesting, it
is convenient to take this as thez axis and thusrzz is the
relevant experimental quantity that is of interest.

Figures 9 and 10 show that the presence of a strongly
warped q1D FS, produced by nesting, results in a large posi-
tive MR away from the AMRO minima. The large tempera-
ture dependent MR that are observed in ET salts with SDW
groundstates@for example, compare~ET! 2AuBr 2 ~Ref. 36!
and~ET! 2KHg~SCN! 4 ~Ref. 22! with ~ET! 2Cu~NCS! 2 ~Ref.
37# may be partly due to the highly corrugated FS which
results@and therefore reflects the temperature dependence of
the scattering timet strongly influencing the MR through the
termsGmntvF in Eq. ~29!#, but spin-disorder scattering is
also likely to be important.

Returning to the high field behavior, the AMROs clearly
sense a FS reconstruction in~ET! 2KHg~SCN! 4 as the kink
field is exceeded. Two serious problems with this interpreta-
tion can reasonably be posed.

First, above the kink field, the FS probably contains q1D
sections as well as q2D sections@Fig. 12~a!#, while below the
kink field, q2D sections must occur for SdHOs to be
observed,22 in addition to the q1D sections which we believe
dominate the AMROs, and are indeed present in the nested
FS in Fig. 12~b!. If both types of FS occur above and below
the kink, why is a transition in the AMROs observed?

A second problem concerns the parameterstmn ; these
are often related to the transfer integrals associated with
the lattice vector Rmn .

18 Simulations of AMROs in
~ET! 2KHg~SCN! 4 require these to decay relatively slowly
with increasingm and n in order to model the data,26

whereas one might expect anything other than the nearest
neighbor and next-nearest neighbor overlaps to be negligibly
small.

The resolution of these problems is extremely instruc-
tive. The absence of ‘‘higher order overlaps’’~i.e., signifi-
cant tmn for largem and n! is precisely why no AMROs
due to q1D sections of the Fermi surface are generally
observed in many q1D metals, and in particular, why none
is observed above the kink transition in~ET!2KHg~SCN!4.
The salt a-ET2NH4Hg~SCN!4 is isostructural with
~ET!2KHg~SCN!4 and is believed to have a FS identical with
that in Fig. 12~a!.24 This salt undergoes no low field SDW
transition @and thus no consequent FS reconstruction! and
hence shows only q2D AMROs. Therefore, although q1D
sheets are present ina-ET2NH4Hg~SCN! 4 ~and also in
a-ET2KHg~SCN! 4 above the kink transition#, q1D AMROs
are not seen from them because they are insufficiently cor-
rugated. The AMRO is then dominated by the q2D sections.

However, below the kink ina-ET2KHg~SCN! 4 , the nest-
ing of the FS removes the weakly corrugated q1D sections of
FS and ‘‘cuts up and glues together’’ pieces of q2D FS. The
reconstructed FS then consists of a very highly and irregu-
larly corrugated Fermi sheet since it consists of a periodic
assembly of cylindrical sections@see Fig. 12~b!#; the corru-
gation thus has a very high harmonic content. In conse-
quence, thetmn should not be interpreted here as transfer
integrals so much as Fourier components of the corrugation.

FIG. 12. Candidate Fermi surfaces fora-ET2KHg~SCN!4: ~a!
Calculated Fermi surface~after Ref. 33! consisting of a 2D closed
hole pocket and a pair of 1D planar FS sheets. This is believed to be
probably valid aboveTN or in fields greater than; 22 T. ~b! Below
TN , the Fermi surface is thought to be nested by a SDW as shown
~nesting vectorQ) resulting in the destruction of the 1D planar FS
sheets and the formation of new inclined open sheets and small
closed pockets from the 2D closed pocket in the original FS~after
Ref. 34!.
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This fact has been pointed out in Ref. 18. Although some
q2D pockets are also formed in the reconstructed FS, these
do not contribute to the AMROs. This is perhaps because
they themselves are irregularly corrugated; the q2D AMRO
effect relies on cylindrical sections of FS with relatively
weak and regularcorrugation. Because the q1D Fermi sheet
is automatically much more irregularly corrugated in one
direction than in the other, this provides a natural explanation
for why the contributing Fourier components have all values
m but onlyn521,0,1, so that only integer, rather than frac-
tional AMROs, are observed. The obliqueness of the lattice
on which the corrugations are defined~see Fig. 8! reflects the
structure of the q1D Fermi sheet which is at an angle
(;21°) to the ~triclinic! crystallographic axes in
~ET! 2KHg~SCN! 4 ~specifically, theb* c plane!. It is impor-
tant to emphasize that the information obtained from AMRO
experiments about the vectorsRmn concerns the geometry of
the corrugations of the Fermi sheet~produced by the SDW
nesting!, and is not primarily related to the crystallographic
geometry.

VI. SUMMARY

We have described a semiclassical approach to calculate
the AMROs for a completely general class of q1D Fermi
surfaces. Higher order Fourier components in the corrugation
of the Fermi sheet are essential to explain the observed AM-
ROs and the size of the MR in~ET! 2KHg~SCN! 4 . Our ap-
proach stresses the geometrical structure of the corrugated
FS as parametrized by Fourier componentstmn ; these com-
ponents should oftennot be interpreted as overlap integrals.

AMROs observed in~TMTSF! 2ClO4 when the magnetic
field is rotated close to thea axis are of a different character
and reflect the evolution of particular types of open and
closed orbits. The q1D AMROs are absent in most organic
metals with q1D Fermi surfaces because they are not suffi-
ciently corrugated. Weakly corrugated q1D sheets will not
contribute significantly to the angle-dependent MR and will
not give rise to any sharp features. Because q1D AMROs
will therefore only be seen when the q1D sheets are highly
corrugated, lack of q1D AMROs cannot be taken as proof of
nesting of 1D parts of FS. The form of the corrugation of the
q1D sheets deduced from AMRO data in~ET!2KHg~SCN!4
is consistent with the model of the nested FS which has been
proposed to explain the low field, low temperature ground
state.

The results of AMRO experiments can therefore be ex-
tremely useful in trying to understand the electronic structure
of organic metals. Not only can they probe the warping of
2D sections of FS, but they can measure the Fourier compo-
nents of the corrugation of highly irregular sections of q1D
FS, such as are found in density wave ground states. In con-
trast to SdHo, the effect is due to all electrons on the Fermi
surface, not just those performing closed extremal orbits, and
can therefore give unique information.
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