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The melting curves of CsI, KCl, and KBr were measured in a diamond-anvil cell to temperatures of 3500 K
and pressures up to 370 kbar. Theoretical calculations for CsI, made by directly integrating the Clapeyron
equation, are in good agreement with the measurements and predict a crossing of the CsI and Xe melting
curves near 410 kbar and 4280 K.

I. INTRODUCTION

Of the known first-order phase transitions, melting covers
the widest range of pressures and temperatures. Conse-
quently, melting data provides a potentially rich source of
information regarding the role played by interatomic forces
in determining pressure and temperature-induced changes in
solids and liquids. Recent advances, particularly the devel-
opment of high-temperature diamond-anvil cell techniques,
have led to an order of magnitude increase in the pressure
range accessible for study.1 Much of this effort has been
motivated by a need for melting data of oxides and silicates
for the purpose of understanding the structure and dynamics
of the Earth’s interior. These systems are mixtures of ions for
which the interatomic forces are the sum of a long-range
Coulomb interaction and a short-range potential which is of-
ten covalent and directional. As a result the melting curves of
such systems have proven difficult to predict reliably. In the
case of the rare-gas solids, the interatomic forces are short-
ranged and nondirectional, or spherical. For these systems
theoretical calculations have been made and measurements
of melting curves have played an important role in validating
their accuracy and for judging the usefulness of simpler
models. One step up in complexity from the rare-gases are
alkali halides, which are the subject of this paper. These are
binary systems which combine long-ranged Coulomb forces
with the same type of short-range potentials characteristic of
inert gas atoms. Despite their relative simplicity, the compli-
cation of both long-range and short-range potentials have left
the theory of alkali-halide melting in poor shape.

In Sec. II of this paper we report measurements of the
melting curves of CsI, KCl, and KBr to temperatures up to
3500 K and pressures to 370 kbar. These are the highest
temperature melting data measured statically for an alkali
halide and extend the pressure range by more than an order
of magnitude over previous measurements. Calculations of
the melting curve were made for CsI by a direct integration
of the Clausius-Clapeyron equation and are reported in Sec.
III. Section IV presents the calculation of a xenon melting
curve with a comparison to CsI. The results of the paper are
discussed in Sec. V.

A reason for choosing CsI as the object of the present
calculations was to examine the possible convergence of the

melting curves of CsI and Xe at very high pressure. These
materials are isoelectronic. Cs1 and I2 both have Xe-like
closed-shell electronic configurations. At 1 bar pressure the
stable structures of CsI and Xe are, respectively, the CsCl
and fcc structures. However with increasing density it is the
strong repulsive forces between the Cs1 and I2 ion cores
that mainly determine the pressure and crystal structure. As a
result solid Xe and CsI have virtually identical isotherms
above 10 kbar,2 and both are found to transform to hcp or
hcp-like structures. Xe transforms continuously from fcc to
hcp over the pressure range 75 to 140 kbar~Ref. 3! and CsI,
which is initially in a CsCl structure, begins its transforma-
tion at 400 kbar. Both materials also undergo metallization
transitions by band overlap at comparable pressures. CsI
metallizes near 1.1 Mbar~Ref. 4! and Xe near 1.32 Mbar.4,5

Since both materials are isoelectronic and have very similar
properties at high pressure we decided to investigate the pos-
sibility that the melting curves of the two might also con-
verge. The melting curve of Xe was obtained by correspond-
ing states theory and compared with CsI.

Recently, it was brought to our attention that Kofke6,7 had
used the method of Clapeyron integration to calculate phase
coexistence along the liquid-vapor saturation line. Although
Kofke’s particular numerical method is more appropriate to
the compressible system he studied, his reported experience
and insight were very helpful.

II. EXPERIMENT

The melting experiments were carried out in a laser-
heated diamond-anvil cell. The alkali halides of pure quality
~99.999%! were loaded in the pressure cell~see Fig. 1! to-
gether with a strip of flattened tungsten wire and several ruby
chips. Prior to pressurizing, the high-pressure cell was dried
in a vacuum at 120 °C and subsequently flushed with dry
argon. Pressures and pressure gradients were measured using
the ruby scale. The tungsten strip was heated with a 25 W
yttrium-lithium-fluoride ~YLF! laser (l51.05 mm!. Below
the melting temperature samples neither absorb this radiation
nor emit incandescent light. The defocused laser beam cre-
ated a hot spot on the tungsten strip of about 20–30mm in
diameter. Temperatures were measured from the central re-
gion of this hot spot from an area with 1mm in diameter in
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the special range 550–800 nm using a CCD~charge coupled
device!-detector technique and by fitting the emission spectra
to a Planck radiation function. Details of this measurement
are described elsewhere.8 When the surface temperature of
the tungsten strip reached the melting temperature of the
sample, a large increase in temperature was observed due to
a strong increase in the absorption~and emission! of the
sample. The nature of this change in absorption is unknown.
The melting temperatures were measured by slowly increas-
ing the laser power while recording temperatures in rapid
sequence, and the melting temperatures reported here are the
last recording before the large discontinuous change in tem-
perature. The reproducibility of this method in most cases
was within 100 K except for the highest pressures of this
study where the solid-liquid transition was less sharp due to
an increase in absorption of the solid. The surface of the
tungsten strip did not show any sign of chemical reaction
subsequent to melting.

Figure 2 shows the melting measurements for CsI, KBr,
and KCl. The data are in Table I. The average errors bars are

about 3 kbar in pressure and 45 K in temperature. They are
due mainly to uncertainties in the pressure gradients and the
thermal pressure and represent the temperature variation of at
least five different measurements of melting using the
method described above. A striking feature of the data in Fig.
2 is the similarity of the three curves. This suggests that all
the materials undergo the same pressure-induced changes.

Our melting data on KCl and KBr are in excellent agree-
ment with those measured by Pistorious9 in a piston-cylinder
apparatus to 41 kbar. There are no previous static melting
data of CsI at high pressure. Also plotted in Fig. 2 are melt-
ing points of these three compounds that were reported by
researchers using shock wave techniques.10–12 These data
tend to be at temperatures slightly higher than ours. We be-
lieve that this discrepancy is consistent with the recent ob-
servations of Boness and Brown13 that melting of KCl and
KBr on the Hugoniot exhibits superheating ‘‘of several hun-
dred Kelvin.’’ The overall agreement of the present diamond-
anvil measurements with both precise low-pressure measure-
ments and those of shock wave experiments confirms the

FIG. 1. Schematic cross section through a diamond-anvil cell
assembly.

FIG. 2. Melting curves of CsI (d), KBr ~L!, and KCl (h)
plotted as temperature versus pressure. Included are the measured
shock melting points of these compounds as indicated by the same
symbols with a bar.

TABLE I. Melting temperatures of CsI, KBr, and KCl at high
pressures.

P ~kbar! Tm ~K!

CsI
0 899
16 1653613
47 2090630
50 1900650
72 2290630
92 248363
104 2660676
146 291763
150 3085615
194 3150665
265 34666134

KBr
0 1007
66 2120620
87 2280620
97 2480620
100 2600650
136 2570650
160 3000650
205 3149639
263 3220650
348 3450660
357 3447673

KCl
0 1043

174 3040640
228 3220680
300 3410650
370 3540690
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reliability of this relatively new advance, at least for this
class of materials.

III. THEORETICAL

A. Thermodynamic integration of the Clapeyron equation

In this section we present a computer simulation method
to determine the melting curve of a solid. The two funda-
mental expressions that govern phase equilibria are the
equality of the Gibbs free energy of the coexisting phases
and the Clausius-Clapeyron equation. For any two phases in
equilibrium the temperature, pressure, and Gibbs free ener-
gies must be equal:

G~T,P! l5G~T,P!s . ~1!

The Clausius-Clapeyron equation follows directly from the
Gibbs equality14 and is written as

dT/dP5~TDV/DH !, ~2!

whereDV andDH are, respectively, the difference in molar
volume (Vl2Vs) and enthalpy (Hl2Hs) of the coexisting
phases. The equation does not determine the location of the
melt line but it predicts the slope of the line separating the
coexisting phases starting from a known reference point. In
this paper we chose the reference as the 1 bar melting point
and integrate the Clapeyron equation to obtain the full melt-
ing curve.

The enthalpy and volume of the coexisting phases were
calculated at a series of temperatures and pressures using a
constant pressure molecular-dynamics simulation program.
After completing a sizable number of calculations it became
apparent that the ratio (DV/DH) is almost independent of
temperature, at constant pressure, over the pressure range of
our interest. The reason is that dense fluids and solids have
very similar thermal expansions and heat capacities. As a
result at constant pressure, changes in volume or energy with
temperature of the coexisting phases are in the same direc-
tion and largely cancel. This is illustrated in Fig. 3 which

shows the calculated solid and liquid volumes versus tem-
perature at 100 kbar. Since the Clapeyron equation considers
only the ratioDV/DH, changes inDV andDH with tem-
perature will be in the same direction and partially canceled.
Therefore at fixed pressure,DV/DH can be considered inde-
pendent of temperature and the Clapeyron equation can be
integrated as

ln~T/T0!5E ~DV/DH !dP. ~3!

Integration requires a reference melting pressure (P0) and
temperature (T0) which are chosen as the experimental val-
ues for CsI at 1 bar and 903 K. Any inconsistency between
the predicted melting temperature and the one at which
DV/DH was calculated is easily corrected by an iterative
procedure. The nice features of Clapeyron integration is that
it avoids a direct determination of free energies and requires
only differences in volume and enthalpy which are easily and
accurately computed by constant pressure molecular dynam-
ics.

Other methods used to calculate melting curves using mo-
lecular dynamics are direct simulation and free-energy inte-
gration. Direct simulation approaches attempt to determine
melting by observing the change in ordering of a solid going
into the liquid. This method does not insure the presence of a
reversible path and transformation typically takes place when
the solid becomes mechanically unstable. The actual phase
transition is bracketed by a region of hysteresis.15 This is
illustrated in Fig. 3 where the metastable points are in the
solid above the melting point at 2670 K and in the liquid
below this temperature. Ironically, this feature of metastabil-
ity in computer simulations simplifies the calculation of
DV/DH for integrating the Clapeyron equation.

In order to locate the phase transition precisely one needs
accurate free energies of both phases. For the case of simple

FIG. 3. Temperature~K! versus volume (Å3/atom! at 100 kbar
calculated for solid and liquid CsI.

FIG. 4. Pressure-volume CsI solid isotherm at 300 K. Black
circles are calculated by molecular dynamics in this paper. Squares
are x-ray data and solid curve is a fit to x-ray data~Ref. 3!.
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systems, such as rare gases and many monatomic metals,
theoretical models are available for obtaining accurate ther-
modynamic data for the liquid and solid.16 In the case of
systems where accurate models are not available a useful
approach has been to use a series of simulations to calculate
differences of free energy from some idealized state in which
the free energy is known exactly. For example, Hoover and
Ree17 obtained the free energy of the hard-sphere and hard
disk solids starting from a lattice gas with one atom per
lattice cell. The Helmholtz free energy of the solid is then
obtained by integrating

Asolid~V1!5Alattice gas~V0!2E P~V!dV, ~4!

where P(V) is obtained by computer simulation. Hoover
et al.18 have also shown that the low-temperature harmonic
solid provides a convenient reference system for studying the
equation of state of inverse power potentials. Hard-sphere
and inverse power potentials have the nice feature that their
entire equation of state can be determined by computing a
single isotherm expressed in reduced units of the potential
parameters. This allows the equation of state to be scaled to
arbitrary temperatures. This is not the case for real materials
for which many isotherms and melting points are required to
determine an equation of state.

The similarity between the Clapeyron and free-energy in-
tegration methods becomes apparent when examining the
derivation of the Clapeyron equation. Equation~1! deter-
mines the state of equilibrium between the two phases in
terms of the equality of the Gibbs energy. At a slightly dif-
ferent temperature and pressure the Gibbs free energy of the
solid ~or liquid! is written as

Gs~P1 ,T1!5Gs~P0 ,T0!1VsdP2SsdT. ~5!

Equations~4! and ~5! are similar in the sense that the right-
hand side of both are written in terms of a reference free
energy and a ‘‘correction,’’ or perturbation term. By equating
the Gibbs free energies of the liquid and solid as in Eq.~1!,
theG(P0 ,T0) terms cancel and the correction terms leads to
the Clapeyron equation which give the changes in the melt-
ing curve. The reference properties we use for the Clapeyron
equation areP0 andT0 .

B. Intermolecular potential

The intermolecular potential for CsI was the same as that
employed in a previous high-pressure study.19 The assump-
tion is made that the interaction between the ions can be
approximated by a xenon-like exponential-six pair potential
between closed-shell cores plus a Coulomb interaction be-
tween the charges. The justification for this approximation
comes from the fact that CsI and xenon have virtually iden-
tical isotherms above 10 kbar and should have the same re-
pulsion at small interatomic separations. Therefore we write

f~r i j !5ZiZje
2/r i j1f exp6~r i j !, ~6!

where

f exp6~r i j !5«@6/~a26!exp$a~12r /r * !%

2a/~a26!~r * /r !6#. ~7!

The parameters in Eq.~7! are a513, r *54.47 A, and
«/k5235 K, wherek is the Boltzmann constant. Figure 4
shows a comparison of the calculated room temperature CsI
solid isotherm with the x-ray data of Maoet al.3 The excel-
lent agreement at the higher pressures reflects the bias of the
present potential to optimize the fit to high-pressure high-
temperature data. This led to some difficulty in determining
the correct low-pressure value of (DV/DH). Although this
potential predicts correctly that CsCl is the stable structure at
room temperature it predicts incorrectly that the solid melts
from a NaCl structure at 20 kbar and below. In addition since
the CsI liquid atP50 is 28.5% expanded from the solid,
accurate calculations of the liquid volume and enthalpy are
not possible. The failure to correctly predict the structure at
melting appears to result from the approximation in using the
same core-core repulsion for both ions or in effect assuming
both are the same size. It is known that although CsI, CsBr,
and CsCl are the only alkali halides to crystallize in a CsCl
lattice at room temperature and 1 bar, only CsCl undergoes a
transition to a NaCl structure prior to melting. Of the three
solids, it is the Cs1 and Cl2 ions which have most nearly
the same sized ions. The ratio of ionic radiiRCs1 /RCl2 being
0.93 as compared to 0.78 forRCs1 /RI2 .

The value ofDV/DH below 20 kbar was obtained by two
methods:~1! calculations made using the CsI potential of
Dixon and Sangster20 and ~2! fitting the experimental data.
The Dixon-Sangster potential employs a Tosi-Fumi-type
function which was fitted to low-pressure data but does not
correctly predict the high-pressure equation of state. There-
fore the value ofDV/DH at 20 kbar was adjusted to ensure
a smooth fit between the calculations made at higher pressure
and lower pressure. The final value ofDV/DH was an aver-
age of the two and corresponded to an adjustments of about
5% in each. In the alternative procedure the 1 bar value of
(DV/DH) was obtained by a fit to the experimental data. But
making accurate low-pressure measurements or calculations
is made difficult by the steepness of the melt curve below 20
kbar, so a precise value ofDV/DH at P51 bar is uncertain.
Nevertheless, both methods for determining the low-pressure
slope gave predictions of the melting curve that differ in
temperature only by 2%.

C. Molecular-dynamics simulations

The values ofH andV in the solid and liquid were ob-
tained by constant pressure molecular dynamics with vari-
able cell shape. In its simplest form molecular-dynamics
simulates atomic-scale phenomena by solving Newton’s
equations of motion of the trajectories of many particles con-
tained in a periodically reproduced computational cell. If a
solid phase is being simulated, the number of particles in the
cell must be commensurate with the translational symmetry
of the crystal. Recently, Parrinello and Rahman21 introduced
a technique in which the size and shape of the computational
cell can be allowed to vary in such a way as to keep the
pressure fixed at a predetermined value. This method is very
effective for studying the stability of solid structures, since
the system can spontaneously transform from one crystal
type to another through deformation of the computational
cell. Implementation of this method for the short-range po-
tential is by now standard22 and has been employed previ-
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ously by one of us.23 However, the long-range Coulomb part
of the potential used here requires that the algorithm for the
Ewald sum be generalized to arbitrary geometry.24 We have
done this, and the results presented here account for this
additional feature. All the simulations were made with 108
ions ~54 Cs1 and 54 I2) in a CsCl supercell, made up of
27(33333) unit cells of four ions in each. Runs were typi-
cally made for 200 to 300 ps with a time step of 10215 sec.
The liquid state was generated by restarting a completed
solid run withZi , j set to 0. This destabilized the lattice form-
ing a fluid after which theZ’s were reset and the ionic liquid
phase was run to equilibrium.

The calculated and measured CsI melting curves are
shown in Fig. 5. Also shown is the melting point determined
from shock experiments.12 These data are in good agreement.
Included in the figure is the Xe melting curve predicted in
Sec. IV from corresponding states theory.

IV. THE XENON MELTING CURVE

The xenon melting curve has been measured to only 400
K and 7 kbar,25 but measurements of the melting curve for
He,26 Ne,27 and Ar ~Ref. 16! have been made to about 60
kbar. Theoretical calculations have shown that with accurate
models of the liquid and solid, and an exp-6 pair potential
@Eq. ~7!# with parameters fitted to the solid isotherm, it is
possible to predict these experimental results quite well. Cal-
culations have been extended to 3000 K.16,27Although com-
parable calculations have not been made specifically for Xe
it is a straightforward procedure to obtain such results by
scaling the calculated inert gas melting curves using the rule
of corresponding states.

The principle of corresponding states is that all systems
having the same functional form of the intermolecular poten-
tial and will have the same reduced form of the equation of
state.28 Theoretical studies have shown that the intermolecu-
lar potentials for rare-gas solids are well described by an

exponential-six potential with a stiffness parameter
a513.0–13.2. As a consequence, all the thermodynamic
properties of these elements may be scaled from a knowl-
edge of the position (r * ) and depth («) of the attractive
well. An exception is helium over the range in which quan-
tum effects are significant. Thus, given a set of potential
parameters for a given rare gas, its melting curve may be
predicted with reasonable accuracy.

The Xe melting curve was obtained by scaling from Ar
~or Ne! using the following expressions:

P~Xe!5P~Ne!•«/r * 3~Xe!/@«/r * 3~Ne!# ~8!

and temperature,

T~Xe!5T~Ne!•«/k~Xe!/@«/k~Ne!#, ~9!

with the Ar~Ne! potential parameters cited in Refs. 16 and 26
and for Xe we took those used in Eq.~7!. The results are
plotted in Fig. 5 and show that the Xe and CsI curves are
expected to cross near 410 kbar and 4280 K. This is beyond
the range of the present experiments.

V. DISCUSSION

The detailed atomistic information provided by computer
simulations are a valuable adjunct to experiment. In the
present study they provide detailed information regarding the
pressure-induced changes of atomic order and the thermody-
namics of melting. For example, Figs. 6, 7, and 8 show,
respectively, the values ofDV/V, DV/DH, andDH/Nk for
CsI calculated as a function of melting pressure. Below 100
kbar the volume change decreases rapidly with increasing
pressure, while the enthalpy sharply increases. Both changes
lead to the large drop inDV/DH which is responsible for the
continuous decrease of the melting slope~i.e., Figs. 2 and 5!.
These results can be understood in terms of the pressure-
induced structural changes of the fluid. Figures 9 and 10~a!
show the radial distribution functions of the unlike,
g12(r ), and like,g11(r ) and g22(r ), radial distribution

FIG. 5. Melting curves of CsI and Xe. Diamond-anvil measure-
ments of CsI (d) and calculations for CsI from integration of Cla-
peyron equation. The CsI shock melting point is indicated by the
bar. The Xe melting curve was obtained by corresponding states
theory as described in text.

FIG. 6. DV/V, volume fraction change on melting for CsI, plot-
ted against the melting pressure.
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functions at 0 and 100 kbar.g12(r ) is related to the prob-
ability of finding any positive and negative ion separated by
a distance,r . g11(r ) andg22(r ) are defined similarly for
like ions. Note that for the present potentialg11(r )
5g22(r ). Figure 10~b! shows the total radial distribution,
g(r )5@g12(r )1g11(r )#/2. g(r ) is related to the probabil-
ity of finding any ion, positive or negative, separated by a
distancer .

At 0 kbar the structure is determined by the balance of
long-range Coulomb forces and short-range inter-ion core-
core repulsions. The action of the Coulomb force is to sepa-
rate like charges into alternate shells with the result that each
liquid atom is surrounded by about five nearest neighbors of
opposite charge and a second or next-nearest shell of same
charge ions. As the pressure is increased the number of
nearest-neighbor ions increases. In the case of CsI evidence
for this process is observed even at 1 bar pressure~Fig. 9!.

There,g11(r ) shows a splitting of the second shell in which
some same charged ions are closer to the first shell. This
splitting grows with increasing pressure with the result that
more ions of the same charge in the second shell begin to fill
in the first shell. At 100 kbar@Fig. 10~a!# the peak of the
second-shell distribution function lies within the envelope of
the first shell. At this pressure the repulsive forces between
ion cores determine the atomic arrangement which, as shown
in Fig. 10~b!, is similar to that of an inert gas liquid except
that in an alkali halide a charge gradient is present. As a
result the changes in theDV level off to a relatively constant
value at higher pressures and approach values comparable to
those found for rare gases. These conclusions were also
reached by Ross and Rogers on the basis of hypernetted-
chain calculations.18

Similarly, changes in the enthalpy mirror those of the vol-
ume and liquid structure. At low pressure melting is accom-
panied by a change from the highly charge-ordered solid
arrangement to a less ordered liquid arrangement. Thus melt-
ing results in some increase in the Coulomb energy. As the
pressure is increased and more of the same charged ions
become nearest neighbors the liquid Coulomb energy in-
creases considerably. As more of the same charged ions enter
the nearest-neighbor shellDH continually increases up to
100 kbar. Above this pressure the liquid assumes an inert
gaslike structure in which repulsive forces determine the
atomic arrangement and the Coulomb terms roughly cancel.
As a result further changes inDH are small anddT/dP
becomes relatively constant.

Analogous pressure-induced changes occur in the solid. It
has been reported that solid CsI transforms continuously
from a bcc arrangement to a distorted hcp-like structure over
the pressure range 0.4 to 1.0 Mbar.2,3Atoms in the liquid are
less constrained and increasing the pressure and temperature
leads to more highly coordinated arrangements at lower pres-
sures than in the solid.

The calculated CsI and xenon melting curves are pre-
dicted to cross at 410 kbar and 4280 K. But, the CsI slope is
appreciably smaller and therefore the two curves do not con-

FIG. 7. DV/DH for CsI plotted against the melting pressure.

FIG. 8. DH/Nk, enthalpy change on melting or CsI plotted
against the melting pressure.

FIG. 9. Radial distribution functions,g12(r ) and g11(r ),
shown as solid and dashed curves respectively, for fluid CsI calcu-
lated near the normal melting point at 0 kbar and 903 K.
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verge. The reason is that, although liquid Xe and CsI have
similar atomic orderings, solid CsI retains a large Coulomb
energy. Consequently,DH of melting is much larger for CsI
and itsdT/dP is smaller. The value ofdT/dP calculated for
xenon at 4800 K by molecular dynamics is 6.1 K/kbar, in
good agreement with value of 6.2 K/kbar obtained from cor-
responding states theory. For CsI, the calculateddT/dP is

3.2 K/kbar. Only a CsI solid without ion-Coulomb energy
would lead to a melting slope the same as Xe. This could
occur above 1.4 Mbar where both are metallic.

Boness and Brown13 have suggested that metastability can
be the source of the superheating observed in shock experi-
ments. Our results appear to bear them out. Figure 11 shows
the radial distribution function of the solid near melting point
at 300 kbar, near the shock melting point at 320 kbar. It is
seen that the arrangement of ions in the solid differs signifi-
cantly from the liquid~i.e., Fig. 10!, unlike the situation for
most monatomic solids. This suggests that the solid is locked
in and cannot melt during the several nanosecond time scale
available in a shock experiment. This would lead to the ob-
served superheating.12

The results reported in this paper are, to our knowledge,
the highest temperature static melting measurements made
for alkali halides and a method for calculating melting curves
by direct integration of the Clapeyron equation.
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