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We study the influence of structural disorder on the magnetic properties of nanocrystalline nickel, in par-
ticular theS13 andS5 special grain boundaries and the extreme case of a purely amorphous sample, for which
experimental results are controversial. The configurations were minimized using molecular-dynamics simula-
tions with embedded-atom method potentials. The electronic-structure calculations are performed using the
tight-binding linear muffin-tin orbital atomic-sphere-approximation approach. Our calculations reveal that the
magnetic moment is rather insensitive to the amount of disorder present in the structure, varying by at most
20% at the special grain boundaries. These results correlate extremely well with recent observations in elec-
troplated nickel that the magnetic moment depends very little on grain size, down to about 10 nm, i.e., is not
critically determined by the amount of matter in the grain boundaries. Even in the limit where all the volume
belongs to interfaces and is amorphous, the average magnetic moment is reduced by only about 15%. The local
moments in amorphous nickel vary between 0.4mB and 0.6mB , and a weak correlation between the magnitude
of the local moment and the average nearest-neighbor distance is observed.

I. INTRODUCTION

In recent years, enormous experimental progress has been
made in the development of new magnetic materials. How-
ever, up to now, most of the theoretical calculations have
neglected the details of the real atomic structure of
materials—and in particular the effect of defects such as
grain boundaries—on the magnetic properties. These ‘‘local’’
contributions are most probably negligible in materials with
large grains, since the volume of a grain boundary is only a
small fraction of the total volume, but in the recently devel-
oped nanocrystalline materials, the percentage of atoms at
grain boundaries can be as high as 50%.1,2 For these materi-
als, the effect of structural disorder at interfaces can no
longer be neglected. In the present work, we will describe the
effect of the structural disorder at grain boundaries on the
local magnetic moment, and concurrently calculate the mag-
netic properties of the amorphous phase in nickel. These re-
sults will then be used to assess the magnetic properties of
nanocrystalline nickel.

Nanocrystalline materials are among the most intriguing
new developments in the field of materials synthesis. Struc-
turally, these materials can be classified as a transitional state
between normal crystalline and amorphous materials. How-
ever, their properties are quite unique and not intermediate to
their amorphous or normal crystalline counterparts. Over the
past 15 years, these properties have stimulated considerable
interest in the areas of production, characterization and po-
tential applications. Numerous synthesis techniques have
been developed including inert gas condensation, sol-gel
processing, reactive sputtering, electroplating, etc.1

The magnetic properties of any polycrystalline ferromag-
netic material strongly depend on microstructural parameters
such as crystallographic texture, internal stress, grain shape
anisotropy, grain size distribution, etc.3,4 For nanocrystalline
materials in which the grain size approaches the dimensions
of the domain wall thickness, considerable changes in the
magnetic behavior are expected. For example, it has been
shown that the grain size in devitrified amorphous
Fe73.5Si13.5B9Nb3Cu alloys has a strong effect on the soft
magnetic behavior.5–7 In these materials, the size of
a–Fe-Si grains~of the order of 10 nm! is controlled in the
nanocrystalline range by Cu and Nb additions, which act as
nucleation agent and grain growth inhibitor, respectively.
The best soft magnetic properties were observed for grain
sizes below 20 nm.7 Similar results were reported for Fe-
Zr-B alloys with grain sizes in the 10–20 nm range.8

In a recent review, Gleiter1 reported a reduction in the
saturation magnetization by 40% for iron with 6 nm grain
size compared to only 2% for metallic iron glasses. It was
proposed1 that the magnetic microstructure of nanocrystal-
line iron differs from that of conventional polycrystalline
iron in that every crystallite is a single ferromagnetic do-
main. More recently, Wagneret al.9 studied the magnetic mi-
crostructure of nanocrystalline iron~7 nm grain size! by
small angle neutron scattering. They proposed that the mate-
rial consists of ferromagnetic grains separated by a nonmag-
netic or weakly magnetic interface component with a density
of about 40% of that of the crystallites. Furthermore, they
concluded that, even in the absence of an external magnetic
field, the magnetic correlations are not confined to individual
crystallites but extend across the interface and therefore af-
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fect the magnetization of several hundred grains.
A transition from multidomain to single domain grains

has been proposed to be responsible for the maximum coer-
civity observed in Co-W alloys for grain sizes in the 10–40
nm range.10 Strong effects of particle size on saturation mag-
netization and coercivity have also been observed in the
study of ultrafine particles.11–13 For example, for ultrafine
particles ~50–10 nm! of Ni, Co, and Fe, Gonget al.12 re-
ported maxima in coercivity which, according to their calcu-
lations, correspond to a critical particle size at which the
transition to single-domain particles occurs. The decrease in
coercivity below the critical size was attributed to the ferro-
magnetic to superparamagnetic transition. A similar transi-
tion to superparamagnetic behavior for ultrafine Fe and Ni
particles ~5–20 nm range! was also reported by Gango-
padhyayet al.11

Further, particle size dependence of magnetic behavior is
observed in ultrafine granular films14 or nanocomposites15

where small ferroelectric particles are embedded in nonmag-
netic matrices such as SiO2 . Transitions from ferromagnetic
to superparamagnetic or paramagnetic behavior are typically
found when the grain size of the isolated particles decreases
below a certain value.

In contrast to the results reported for ultrafine
particles,11,13 we have recently shown that the saturation
magnetization of nanocrystalline Ni produced by electroplat-
ing is not strongly dependent on grain size.16 A decrease in
grain size from conventional material~grain size;100
mm! to nanocrystals (;10 nm! resulted in a reduction of the
saturation magnetization by less than 10%. These results are
shown in Fig. 1 which also contains the data reported by
Gonget al.12 for ultrafine Ni particles produced by inert gas
condensation. The strong decrease in the saturation magneti-
zation observed by Gonget al.12 is probably due to the oxide
layers which form on the individual crystallites of their Ni
powder. In fully dense electroplated material, on the other
hand, oxidation effects are negligible and, therefore, almost
constant saturation magnetization is observed over the entire
grain size range.

Mössbauer spectroscopy experiments on nanocrystalline
iron17 at low temperatures reveal the existence of two con-
tributions to the total spectrum: from the nanocrystals them-

selves at small values of the hyperfine field, and from the
interfaces for larger values of hyperfine field. While the in-
terfacial component decreases rapidly with increasing tem-
perature, becoming almost negligible at room temperature,
the crystalline component is much less sensitive to tempera-
ture variations. This suggests a strong dependence of the
magnetization saturation of nanocrystals as low temperatures
are approached, in contradiction with the recent
observation18 that the saturation magnetization in nanocrys-
talline and crystalline nickel behave in essentially the same
manner at the low temperature~albeit it is smaller in the
latter than in the former!.

There exist several theoretical calculations of the mag-
netic moments of pure amorphous transition metals. Earlier
calculations19 indicated that structural disorder tends to
‘‘smear out’’ the density of states, leading to a reduction of
the density of states at the Fermi energy and a concomitant
significant decrease of the local magnetic moment. More re-
cent calculations20 show, indeed, that the average moment of
amorphous iron (2.0mB) decreases due to an effective broad-
ening of the bands in comparison to the bcc-crystalline phase
~arising from a larger coordination in the amorphous state!.
The local moments are broadly distributed (0.5mB standard
deviation! and the average moment depends strongly on the
density. Other recent calculations21 show that at low densi-
ties, the average moment in amorphous iron and cobalt is
only slightly larger than for its crystalline counterpart, with a
narrow distribution of the local moments around its mean
value and equals correspondingly 2.3mB and 1.64mB . First-
principles calculations with self-consistency obtained for
crystalline iron22 lead, in the amorphous phase, to a large
average moment (2.46mB) with a wide distribution of local
moments ~between 1.5mB and 4.0mB). In a very recent
paper,23 however, it has been found that, at the equilibrium
density for bcc iron, the ferromagnetic state isnot the state of
lowest energy~average moment 2.4mB). For amorphous co-
balt and nickel~at the density of the corresponding equilib-
rium crystal!, in contrast, it is found that the ferromagnetic
state is the state of lowest energy, and the average magnetic
moment is larger than that of the crystal, namely 1.65mB for
cobalt and 0.64mB for nickel, with a standard deviation of
about 0.05mB . In those calculations,23 however, the number
of atoms in the supercell was small~16! and the same struc-
tural model was used to study the influence of chemical ef-
fects.

In view of such conflicting reports, we have initiated a
detailed study of the effect of structural disorder introduced
by grain boundaries and the amorphous state on the magnetic
properties of nanocrystalline metals. In the following sec-
tions we will report some results of these calculations.

II. STRUCTURAL DISORDER IN NANOCRYSTALLINE
MATERIALS

Over the past three decades, a central goal of research
conducted in the field of grain boundaries in conventional
polycrystalline materials has been to understand the relation-
ship between grain boundary structure and physical proper-
ties. Today it is known that there are basically two types of
grain boundaries in a material: random and special
boundaries.24 Kronberg and Wilson25 indicated the impor-

FIG. 1. Saturation magnetization of Ni as a function of grain
size ~from Ref. 16!.
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tance of the concept of a coincidence site lattice~CSL!,
whereby, at certain crystallographic misorientations, a three-
dimensional lattice could be constructed with lattice points
common to both crystals. The CSL is thus considered the
smallest common sublattice of the adjoining grains. The vol-
ume ratio of the unit cell of the CSL to that of the crystal is
described by the parameterS which can also be considered
the reciprocal density of coincident sites. All grain bound-
aries can be represented by an appropriate CSL description if
S is allowed to approach infinite values.

Ranganathan26 presented a general procedure for obtain-
ing CSL relationships about general rotation axes. Although
all grain boundaries can be represented by an exact CSL
relationship,S may achieve very high values of questionable
physical significance. Only boundaries which have lowS
values are usually considered special boundaries.

In nanocrystalline materials, the grain boundary density,
and therefore the volume fraction of atoms located at grain
boundary sites, can achieve very high values.1 For example,
for a grain size of 10 nm, about 30% of all atoms are at the
boundary, assuming a grain boundary thickness of 1 nm.2

Therefore, the properties of such materials are strongly con-
trolled by the structural disorder introduced by grain bound-
aries.

In a previous publication,27 we have examined the special
high-angle grain boundary that introduces the least structural
disorder, namely theS3 boundary, whose structure can be
generated by a series of stacking faults in the perfect crystal.
As expected, the local moments do not vary much, ranging
between 0.58 and 0.59mB from site to site with the average
value 0.59mB . We have also studied theS5 grain boundary,
generated by a 36.9° twist about@100# axis, where the sen-
sitivity of the local moments on the structural disorder was
found to be larger.27 In order to obtain the relaxed structure
of theS5 grain boundary, the Monte Carlo method was used
to minimize the total energy of the system, using the poten-
tial of Dagens28 to represent the interactions between the
atoms.

In the present work, we obtain the relaxed structure using
the technique of molecular dynamics~MD!. In the
molecular-dynamics method,29 the Newtonian equations of
motion of an ensemble of particles interacting via some
specified potential are solved numerically, so that not only
the static quantities~like in Monte Carlo! but also the dy-
namic properties of the system can be studied. The ‘‘technol-
ogy’’ of potentials has evolved rapidly in recent years and, in
particular, the semiempirical embedded-atom-method~EAM!
potentials30 ~which are based on the quantum-mechanical
density-functional theory! have proved extremely successful
in describing several properties of transition metals. In the
present molecular-dynamics simulations of nickel, we use
the EAM potential developed by Foiles, Baskes, and Daw.31

We find that this approach leads, for theS55 grain bound-
ary at zero temperature, to results similar to those discussed
in our previous paper,27 using the Dagens potential and the
zero-temperature Monte Carlo technique. In the present
work, the structures~grain boundaries and amorphous state!
were relaxed at nonzero temperature~100 K!, so as to be able
to escape from local minima. The MD simulations were per-
formed under constant pressure, and the ‘‘Nose´ thermostat’’
method32 was used to control the temperature.

In order to study the effect of local structural disorder on
the magnetic moment associated with various types of grain
boundaries, the following approach was used. First, we ex-
amined special high-angle grain boundaries. In order to un-
cover trends in the magnetic properties, we studied grain
boundaries with significantly different twist angles, namely
the highly-symmetricS5, a 36.9° twist about@100#, and for
comparison theS13, a 22.6° twist about@100#. At the other
end of the spectrum, we consider the general high-angle
~‘‘random’’ ! grain boundary, which is more difficult to model
because its structure is poorly understood. For the purpose of
the present study, we assume that random grain boundaries
are amorphous. It should be noted that random grain bound-
aries are generally not amorphous; the amorphous state,
however, can be considered the worst possible case of struc-
tural disorder introduced by grain boundaries. Thus, the grain
boundary structures that are present in real nanocrystalline
materials can be expected to fall within the range which is
limited by the best possible case—aS3 boundary, which
affects magnetic properties in a negligible way27—and the
worst possible case of a simulated amorphous grain bound-
ary.

III. RESULTS AND DISCUSSION

A. Measures of disorder

Before analyzing our MD results, we introduce several
quantities which we will use to characterize disorder and
which will provide a quantitative measure of the deviation of
the disordered system from the ideal reference structure, here
the fcc crystal at 0 K.

First we define two parameters characterizing local disor-
der: the local average distance,d( i )Z , and the average abso-
lute deviation from equilibrium,Dd( i )Z . d( i )Z is defined,
for a given sitei , as the average distance between the site
and its twelve (5Z) nearest neighbors~appropriate to the fcc
structure!:

d~ i !Z5
1

12(
NN

r i j . ~3.1!

Expressingr i j in terms of the fcc nearest-neighbor distance,
then, evidently,d( i )Z is equal to one for all sites in the ideal
fcc lattice.Dd( i )Z is defined as the average absolute devia-
tion for the above twelve nearest-neighbor distances:

Dd~ i !Z5
1

12(
NN

ur i j21u. ~3.2!

ThusDd( i )Z is zero for the ideal fcc lattice. These two pa-
rameters provide information about local disorder; we will
use these, in the course of our discussion, to establish corre-
lations between local disorder and local magnetic moments.

We also introduce a parameterL(r ) to provide a ‘‘global’’
measure of disorder within a sphere of radiusr . As is well
known, disorder in amorphous material depends on the
length scale. At short distances, some order is usually present
~because of hard-sphere exclusion, for instance!, which is
lost at large distances. Thus an amorphous material is char-
acterized by the presence of short-range order and the ab-
sence of long-range order. This is apparent, in particular, in
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the radial distribution function,r(r ), which shows structure
at short distances, and becomes flat at large distances. We
defineL(r ) as the average, over all atoms, of the absolute
deviation of the radial position of atoms from their corre-
sponding position in the reference crystal~in our case, the
ideal fcc lattice at zero temperature! within a sphere of radius
r :

L~r !5N21E
0

r

uZd~r 8!2Zc~r 8!udr8, ~3.3!

where

Z~r !5E
0

r

4pr 2r~r 8!dr8 ~3.4!

is the coordination number, i.e., the average number of
neighbors of an atom within a distancer . If rmax is chosen
large enough that the value of the integrated distribution
function for the disordered structure,Zd(rmax), is approxi-
mately equal to that of the idealized structure,
Zc(rmax)5Nmax, thenL(rmax) can be used as a global dis-
order parameter.

As an illustration, we consider, corresponding to the sim-
plest example of a disordered system, the case of crystalline
nickel at 1400 K, i.e., quite close to its melting point
(Tm

Ni51726 K!; the corresponding functionZd(r ) is shown
in Fig. 2. We find that thermal disorder is significant already
in the hot crystal, since in contrast to this,Zc(r ) increases
stepwise~i.e., discontinuously! at every new shell of neigh-
bors in the reference,T50, crystal. In the lower panel of Fig.
2, the quantityuZc(r )2Zd(r )u is displayed. The calculated
value ofL at this temperature is 0.049, in units of the fcc
lattice constant. The corresponding values at 300 and 600 K
are, respectively, 0.031 and 0.037.

B. Highly-disordered structures: General grain boundaries
and the amorphous state

As mentioned in Sec. II, general high-angle grain bound-
aries are difficult to model and, therefore, an amorphous
structure will be used to approximate the worse possible situ-
ation. In order to generate the amorphous structure, we use

the technique of molecular dynamics~MD! to first melt a
crystalline sample, then quench it to a disordered state.33 The
MD simulations were performed at constant pressure. The
temperature was initially raised by rescaling the velocities,
while the ‘‘Nosé thermostat’’ method32 was used to control
the temperature in the final stage of the runs.

It is known that pure nickel does not exist in stable amor-
phous form unless it is rapidly cooled from the melt on a
very low-temperature substrate.34 Following this logic, we
generated an amorphous nickel structure by first taking a
crystalline Ni structure to a temperature of 2000 K~which
causes it to melt!, equilibrating long enough that the system
completely loses memory of its original crystalline state
(L50.066 in equilibrium!, then cooling rapidly to 100 K
and equilibrating again. In Fig. 3 we show the configuration-
averaged pair distribution function for an amorphous nickel
sample which contains 108 atoms. It should be noted that the
volume of the amorphous nickel structure is, as expected,
larger~by 3.6% at 100 K! than the corresponding crystalline
sample. The calculated distribution function agrees well with
experimentally measured pair distribution functions.35 The
calculatedL of the amorphous structure is slightly smaller
than that of the liquid state and equals 0.064.

C. Structure of special grain boundaries

Special grain boundaries with lowS values have high
symmetry and consequently only a small unit cell is needed
to represent their structure, which will simplify the subse-
quent magnetic-moment calculations. The smallest unit cell
for @100# twist grain boundaries is provided by theS55
(36.9° twist! grain boundary. Here we investigate both the
S55 @100# and the@100# S513 (22.6° twist!, so as to
analyze the influence of the twist angle on the local mo-
ments. The relaxed structure of these grain boundaries were
obtained, again, using MD at a temperature of 100 K. Peri-
odic boundary conditions were used to eliminate the sur-
faces.

The relaxed structure of the grain boundaries are shown in
Fig. 4 and Fig. 5. The MD supercell contained 70 and 182
atoms for theS55 and S513 grain boundaries, respec-
tively. This means that the spacing between periodic images
of the grain boundaries is rather small~seven layers!. This is

FIG. 2. Integrated radial distribution function for nickel at 1400
K.

FIG. 3. Pair distribution function for the present model of amor-
phous nickel.
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beneficial in reducing the computer time for the subsequent
electronic-structure calculations. This, we have verified, has
little effect on the local magnetic moments.

As can be seen in Figs. 4 and 5, there is a significant
increase in the interlayer spacing near the grain boundary in

the direction perpendicular to it. However, not all atoms in
the layer which is closest to the grain boundary are shifted by
the same distance. Some of them, represented by large
circles in Fig. 4 and which we label Ni~1!, are shifted less
than the other ones in the layer, represented by intermediate
circles, and which we label Ni~2!. We note, in contrast, that
shifts in thex and y directions are small for all sites.@For
futher reference, we use the labels Ni~3! and Ni~4! for the
atoms in the second and subsequent layers, respectively.#

FIG. 5. Same as Fig. 4, but for theS13 grain boundary.

FIG. 6. Local density of states
per atom for the various sites~as
indicated; cf. Fig. 4! of the S5
grain boundary, for spin up and
down electrons, respectively.

FIG. 4. The relaxed structure of theS5 grain boundary pro-
jected along~a! ~001! and~b! ~010!. The large circles correspond to
Ni~1! sites and the medium-sized ones to Ni~2!. The sites in the
second and subsequent layers from grain boundary are labeled
Ni~3! and Ni~4!, respectively.
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D. TB-LMTO-ASA calculations of the magnetic moments
in special grain boundaries

The linear muffin-tin orbital~LMTO!, atomic-sphere ap-
proximation ~ASA! method, based on density-functional
theory in the local density approximation, is known to be a
good approximation for closely packed systems; it has been
successfully used for rare earth and transition metals.36–38 It
has been shown38 that this method leads to a simple first-
principles tight-binding~TB! method. The advantage of the
TB-LMTO-ASA method is that the transfer matrix factorizes
with canonical structure constants which are energy indepen-
dent. Therefore it needs to be calculated only once for a
given crystal structure and a given set of potential parameters
describing the atomic spheres. This feature of the method
makes self-consistent calculations less time consuming and
allows calculations for fairly complicated crystal structures
to be performed.

In the present calculations, we employ a valence basis set
of s, p, d electrons in the frozen-core approximation. An
argonlike core is used for nickel atoms. The Von-Barth-
Hedin local-spin-density approximation is used to describe
the exchange-correlation energy.39 In the self-consistency it-
erations, the spin-orbit coupling is neglected but all other
quasirelativistic effects are included.

We have observed that it is very difficult to obtain self-
consistency for individual sites. In order to resolve this dif-
ficulty, we have considered in the initial part of the calcula-
tion, all sites to be equivalent. After self-consistency of the
averagespin and charge density was reached, further itera-

tions were performed, now allowing nonequivalent sites to
be distinguished. The mixing parameter~for the charge and
spin densities! was set, in the first iteration, to 1.0, and
smaller values were used~0.005! in further iterations until
self-consistency was obtained in the local moments~to
within 0.001mB). ~We will discuss below, in the case of the
amorphous structure, the evolution of the local magnetic mo-
ment distribution between the first and the final iterations.!

The final calculations for theS5 grain boundary were
performed with a total of 64k points. In Fig. 6, the local
density of states for different sites is presented; the corre-
sponding local moments are listed in Table I. The results are

FIG. 7. Same as Fig. 6, but for
theS13 grain boundary.

TABLE I. Calculated local magnetic moments~in mB) ~sites are
labeled as indicated in the captions of Figs. 4 and 5!, local average
distances,d( i )Z , and corresponding average absolute deviations,
Dd( i )Z , for the relaxedS5 andS13 grain boundaries.

Grain boundary Site Magnetic momentd( i )Z Dd( i )Z

S55 Ni~1! 0.48 1.039 0.039
Ni~2! 0.53 1.051 0.072
Ni~3! 0.55 1.004 0.012
Ni~4! 0.57 1.001 0.006

S513 Ni~1! 0.56 1.031 0.027
Ni~2! 0.57 1.034 0.058
Ni~3! 0.58 1.004 0.015
Ni~4! 0.58 1.002 0.007
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rather similar to those for perfect fcc nickel atoms, except for
the Ni~1! site—which lies closest to the grain boundary—
where the sharp peak around the Fermi energy is lowered:
the local moment on the Ni~1! site is reduced to 0.48mB . The
local magnetic moment of the other sites, on the other hand,
is closer to the value for the fcc structure, namely 0.58mB .
Note, however, that even though the local moment on Ni~1!
is reduced by about 20%, the total moment associated with
this grain boundary is not significantly changed since Ni~1!
sites constitute only a small portion of the total number of
atoms.

For theS13 grain boundary, we used only 30k points,
which is sufficient in view of the large size of the cell. For
this grain boundary, the moment of Ni~1! atoms~i.e., near the
grain boundary!, 0.56mB , is changed less than corresponding
sites in theS5 case~Table I!. We also give, in Table I, the
d( i )Z andDd( i )Z values for those sites. One conclusion that
can be drawn from these data is that the amount of disorder
and the value of the local magnetic moment are not unam-
biguously correlated. Evidently,Dd( i )Z tends to decrease
when moving away from the grain boundary~i.e., order in-
creases, as expected!, and the magnetic moment increases
correspondingly, tending to the ideal bulk value of 0.58.
However, Ni~2! atoms have a larger magnetic moment than
Ni~1!, even though they are locally more disordered. This is
also true of the relation between the magnetic moment and
d( i )Z . In Fig. 7 we present the corresponding density of
states per atom for theS13 grain boundary; it does not show
much change from layer to layer except that due to the larger
structural disorder at the grain boundary we observe ‘‘smear
out’’ density of states for Ni~1! and Ni~2! . We see the char-
acteristic peak at the Fermi energy which is present in the
ideal fcc structure.

E. Amorphous nickel and general grain boundaries

We have also performed LMTO-ASA spin-polarized cal-
culations for a highly-disordered~amorphous! state in order
to investigate, as discussed earlier, if there could be a signifi-
cant reduction of the magnetization at a general, random,
grain boundary. An amorphous structure containing 108 at-
oms with periodic boundary conditions was thus constructed
using the procedure described earlier. It has been shown40,41

that modeling a liquid metal by a relatively small number of
atoms in a periodically-replicated supercell yields reliable
results for the electronic structure, in good agreement with
photoemission, x-ray diffraction and Auger electron spec-
troscopy. Since the unit cell used here is rather large~in the
sense of electronic-structure calculations!, and in order to
avoid artifacts resulting from the use of periodic boundary
conditions, the self-consistency iterations were performed
using only onek point, namelyG. The final density of states
shown in Fig. 8, however, was calculated with 27k points.
To eliminate the error of approximations when comparing
the magnetic properties of crystalline and amorphous nickel,
we concurrently performed calculations for a crystalline
sample also containing 108 atoms and using theG point only
for achieving the self-consistency. Similar to the amorphous
state, we present in Fig. 9 the density of states calculated for
27 k points.

The calculated average moments per site are 0.61 and
0.50mB for crystalline and amorphous nickel, respectively.

The local moment for crystalline nickel within this approxi-
mation is slightly larger than the value of 0.58mB obtained
using 2197k points; the difference between the two values
provides a measure of the accuracy of our calculations. In the
case of amorphous nickel, we have reached self-consistency
in spin and charge density for the average atom only. We
present in Fig. 10 the distribution of local moments for 108
randomly chosen sites, after the average site has converged.
As mentioned earlier, it is difficult to obtain self-consistency
in charge and spin distribution when relaxing individual sites
independently, as small oscillations persist even after several
iterations; this problem was in fact also noted by other
authors,42 the local moments converging only to within
0.01mB . Figure 11 shows the distribution of local moments,

FIG. 8. Average density of states per site for amorphous nickel.

FIG. 9. Density of states for crystalline nickel.
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for the same 108 sites as above but after convergence of
0.001mB for the local magnetic moments has been obtained.
While the average moment does not change much in subse-
quent iterations, the distribution of local moments is narrow-
ing around its average value, as can be seen by comparing
Figs. 10 and 11: the standard deviation of the distribution is
equal to 0.064mB in the former case, and to 0.039mB in the
latter case, while the average moment is approximately con-
stant at 0.50mB . Our findings explain why, in previous first-
principles calculations where only average site density con-
vergence was imposed,22 a much wider distribution of local
moments was found, i.e., local self-consistency42 was not
reached. It is of interest to note from both Figs. 10 and 11
that the average local moment has a tendency to increase
when the average distance approaches that of the fcc crystal.

Our results for amorphous nickel are consistent with re-
cent calculations for Co and Fe which predict little or no
change in the magnetic moment when the structure changes
from crystalline to amorphous.20,42On the other hand, fairly
large changes in the saturation magnetization~up to 40%!
were observed experimentally34 when initially amorphous Ni
films were crystallized by annealing. These results,34 how-
ever, are difficult to interpret since the reduction in Curie
temperature was only 15% and no absolute magnetization
values were given. In addition the authors34 did not consider

in their interpretation other microstructural changes during
annealing which may account for the increased saturation
magnetization of their crystallized Ni. Such changes may
include an increase in the effective surface area of the crys-
tallized sample due to grain boundary grooving, island for-
mation, spheroidization, etc., which may be expected during
the annealing of thin polycrystalline films.

Our calculations demonstrate that the average magnetic
moment is rather insensitive to the amount of structural dis-
order present, whether at a grain boundary interface or over-
all throughout the structure, and we conclude that this is true
also of nanocrystalline materials. Even assuming thatall
grain boundaries in nanocrystalline nickel were of the amor-
phous kind discussed above which, we recall, is the worst
possible case of a general grain boundary, the average mag-
netic moment would not be reduced by more than 15% from
its crystalline counterpart; even smaller effects are expected
for materials containing special and regular~nonamorphous!
random grain boundaries. These results are fully consistent
with the observation, in fully dense nanocrystalline nickel
produced by electrodeposition16 of a remarkable constancy
of the saturation magnetization as a function of grain size,
down to about 10 nm.

In order to assess the overall effect of grain boundaries on
the saturation magnetization of nanocrystalline materials
with even smaller grain size, it then becomes important to
study two key parameters: first, the total interfacial volume
fraction, which increases rapidly with decreasing grain size2

and, second, the grain boundary character distribution in the
material. The latter is of importance because, evidently, the
average magnetic moment of the grain boundary component
will be determined by the relative frequencies of occurence
of different types of grain boundary structures.

Our results indicate, on the other hand, that for conven-
tional polycrystalline materials~with grain sizes larger than 1
mm!, increasing the relative number of special grain bound-
aries by interface control processing24 is not likely to have a
strong effect on the saturation magnetization. This is because
the intercrystalline volume fraction~and therefore its contri-
bution to the overall magnetization! in such conventional
materials is negligible. However, the influence of the poros-
ity on the magnetic properties is still an open question. In
nanocrystalline materials prepared by compaction of nano-
crystalline powders, the porosity is generally larger than in
electroplated materials.16 In pure Ni, this would lead to an
effective increase of the distances between nickel atoms and
the narrowing of the band in analogy to the magnetism on Ni
surfaces,43 for which an increase of the local moments of up
to 20% has been reported. However, the opposite effect is
observed experimentally, a significant decrease in the mag-
netization in gas-condensed nanocrystalline material contain-
ing high levels of porosity. One possibility is that in porous
materials, the decrease in the magnetization saturation at
room temperature~compared to low temperature values! is
due to a reduction in the number of nearest neighbors at pore
surfaces, leading to a concomitant reduction of the effective
field and therefore a fast drop in the magnetization with
temperature.17 Further investigation of the magnetization
saturation at low temperature for gas-condensed material
would be very valuable to clear this point.

FIG. 10. Correlation between the local average nearest-neighbor
distance,d( i )Z , and the local magnetic moment calculated using
onek point and a cluster of 108 atoms with pair distribution func-
tion shown in Fig. 3. Self-consistency was obtained for the average
moment.

FIG. 11. Same as Fig. 10, but with the self-consistency obtained
for 108 individual sites, and in an average way for the remaining
sites, as discussed in the text.
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F. Influence of the foreign atoms on the magnetic properties
of nanocrystalline nickel

Another possibility is that a large difference in the grain
size dependence of the saturation magnetization between
electroplated Ni and Ni produced by inert gas condensation
and subsequent compaction is due to the presence of foreign
atoms such as oxygen. In fact, Gonget al.,12 Du et al.,13 and
Gangopadhyayet al.11 have attributed the reduction of satu-
ration magnetization (Ms) in their gas-condensed materials
to the presence of an antiferromagnetic nickel oxide layer.
We have recently studied the sensitivity of the magnetic mo-
ment to added impurities for the example of fully dense elec-
troplated nanocrystalline nickel containing various amounts
of phosphorus in solid solution.

Nickel is a band ferromagnet with magnetic moment con-
tribution coming mostly fromd electrons. According to our
TB-LMTO-ASA calculations using a large~2197! number of
k points in the Brillouin zone, the majority band is almost
filled, the difference between majority and minority band
filling being equal to 0.58 electrons. If we assume that twos
electrons and one unpairedp electron of the outer shell of
phosphorus would fill unoccupied states in the minority band
of nickel to make it nonmagnetic~according to the rigid-
band model! then we would expect that at a concentration of
16 at. % P, Ni-P becomes paramagnetic. Experimentally we
have observed that the saturation magnetization of Ni-P
gradually decreases with increasing phosphorus content.44

The transition to paramagnetic behavior was observed at
about 15% phosphorus.

On the other hand, the impurities of transition metals in
nickel have enhanced moments and this might help to in-
crease the saturation magnetization in nanocrystalline
nickel.45

We conclude that electroplated pure nanocrystalline
nickel has a larger saturation magnetization than gas con-
densed materials due to the presence of clean grain bound-

aries and the absence of the nickel oxide phase. Lower po-
rosity is another factor which leads to larger magnetization
per unit volume and, as a result, better quality magnetic ma-
terial.

IV. CONCLUDING REMARKS

The influence of structural disorder on the magnetic prop-
erties of nanocrystalline nickel has been studied. Various
grain-boundary configurations~theS13 andS5 special grain
boundaries and the extreme case of an amorphous structure!
were minimized using molecular-dynamics simulations. The
electronic-structure calculations were performed within the
framework of local-spin-density functional theory using the
TB-LMTO-ASA approach. Our calculations reveal that the
magnetic moment is rather insensitive to the amount of dis-
order present in the structure, varying by at most 20%. These
results correlate extremely well with the recent observation
in electroplated nickel by Auset al.16 that the magnetic mo-
ment depends very little on grain size, down to about 10 nm,
i.e., is not critically determined by the amount of matter in
the grain boundaries. Even in the limit where all the volume
belongs to interfaces, in the worse possible case that the
structure of these interfaces is fully disordered, the magnetic
moment is reduced by only about 15%. This further suggests
that the large variations observed in large-porosity, gas-
condensed material12,1,9must be due to the presence of im-
purity atoms~such as oxygen! in the nanocrystalline matrix.
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