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Magnetism in the Hubbard model: An effective spin Hamiltonian approach
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We present an approach to the magnetic properties of the half-filled Hubbard model, based on an approxi-
mate mapping of its low-energy transverse spin excitations on to those of an effective underlying Heisenberg
model, but with effective spin interactions which are self-consistently determined and not confined solely to
nearest-neighbor couplings. The mapping is exact in strong-coupling and is found to be accurate over a very
wide range of interaction strengths, down to weak coupling. At zero temperature, it permits ready evaluation at
finite U of the one-loop effects of zero-point spin fluctuations on, e.g., the sublattice magnetization. At finite
temperatures, thermodynamic properties of the system in the thermal paramagnet are studied via a physically
transparent Onsager reaction field approach, which amounts to a self-consistent treatment of paramagnetic spin
correlations. This is central not only in recovering the correct dimensionality dependence of antiferromagnetic
long-ranged order, but also for the=3 case of primary interest here yields adNéemperature in close
agreement with known strong- and weak-coupling limits. Spin correlation functions and magnetic susceptibili-
ties also show very good agreement with quantum Monte Carlo calculations over an appreciable temperature
range in which the low-lying transverse spin excitations are thermally dominant.

[. INTRODUCTION properties of the paramagnetic phase in particular. However,
while successful in some respects, they cannot provide a
For several decades, the Hubbard model has provided gualitatively correct description of the finité/t thermody-
continuous and intense focus for understanding itineranmamics, since all yield the pure molecular field result for the

electron magnetism. It is specified by the Hamiltonian NN Heisenberg model ag/t—oo, i.e., TMF:thlu, with
Z=2d the lattice coordination number. th= 3, this value is
considerably in excess of the accepted=3.83%/U ob-

H=—t >, ciTchUwLUZi NNy, (1.1) y pteg

tained from high-temperature series expansiSrand since
_ _ . ) the molecular field asymptote is insensitive to dimensional-
with a nearest-neighbofNN) hopping matrix element, i for g<2 they fail to predict the absence of AFLRO re-
electrqn mte@chons embodied in th'e repulswe Huerd quired by the Mermin-Wagner theoréhfor T>0.
and with the(ij) sum here over NN sites ondadimensional We pursue here an entirely different approach to the half-
hypercubic Iattu_:e. Among__the relat_lvely few exact resultsfiied Hubbard model, based on an approximate mapping of
known ford>1 is the familiar mapp'”é’at half-filling and  he |ow-energy transverse spin excitations at fiklté on to
in _th‘f strong-coupling interaction limi)/t—, on to the  hose of an effective Heisenberg model, tét-dependent
spin-; antiferromagneti¢AF) Heisenberg model effective exchange couplings of which are self-consistently
1 determined and not confined solely to NN interactions. To
HHeiSZE > JiS-S, (1.2  understand why such a procedure is likely to be viable, we
i refer first to recent work on the Hubbard modelTat 0. As
shown by several groups'3for d=2, a good description of
with S a spins operator and purely NN exchange couplingsthe ground state of the model and its collective excitations is
given by JijEJx=4t2/U. The quantum AF Heisenberg obtained by linearizing particle-hole excitations about a
model is likewise far from understood, but much is knownstable, broken symmetry unrestricted Hartree-FOJKIF)
about its ground state and thermodynamic properties, botground state via a random phase approximatRRA). For
analytically and via Monte Carlo calculatiofsee, e.g., Ref. the strong-coupling limit in particular, it is found that the
2). Naturally, however, magnetic properties of the Hubbardresults of linear spin wave theoiy.SW) for the pure AF
model at finiteU/t, where both charge and spin degrees ofHeisenberg model are thereby fully recovered, and it has
freedom are coupled by the interaction term in Bigl), are  been argued that UHFRPA, together with zero-point spin
considerably less well understood. fluctuations, is able to account for the physics of the half-
In understanding finite-temperature properties of the Hubfilled Hubbard model aT =0.
bard model, progress has been made over many years by LSW for the pure spirs AF Heisenberg model has itself
functional integral techniques, usually based on a Hubbarderoven highly successfélas exemplified by the one-loop
Stratonovich transformation or variants thereof, and genererder effects of quantum zero-point fluctuations in reducing
ally formulated within the static approximation; see, e.g.,the sublattice magnetizatian from its Neel value of unity.
Refs. 3—9 and references therein. A principal aim of suchin d=1, where quantum fluctuations are at their most acute,
theories has been a determination of theMNemperature for the algebraically divergent spin wave amplitude as frequency
loss of AF long-ranged ordé AFLRO), and thermodynamic w—0 naturally leads to a divergent reduction in at

(ij).o

(j#1)
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dominate the low-temperature thermodynamics of the Hub-
bard model, in terms of an effective underlying Heisenberg
model.
In Sec. I, we derive such an effective Hamiltonian, based
on comparison of the site-resolved RPA equations for the
Hubbard model with the LSW equations of an arbitrary
Heisenberg model. The resultatt,.{U), which reduces in
SPIN WAVE' “STONER’ the strong-coupling limitU/t—« to the pure nearest-
neighbor AF Heisenberg model, E(..2), is shown in Sec.
Il to reproduce quantitatively the lowebt-RPA excitations
A of the Hubbard model, down to weak-coupling interaction
strengthsU/t=2-3; and in Sec. Il théJ/t dependence of
the effective exchange couplings is briefly discussed.
One advantage of an effective spin Hamiltonian is that it
provides us with a potentially straightforward route to ther-

spectrum for the half-filled Hubbard model. The single-particlem'“jdyna_mIC prop_ertles of the Hubbard mOd?' Ina tempera-
band gapA=U|x|, with |x| the UHF local moment magnitude. ture regime dominated by the low-energy spin-wave-like ex-

(The relative intensity of the spin-wave-like band is greatly exag-citations: We do not expect the accuracy of the effective
gerated: See text. exchange couplings to be sensitive to their extraction by

comparison of linearized theories, so that thermodynamics of
the model can be examined without explicit reference to, or

NTRPA( W )

Ul U W —-

FIG. 1. Schematic illustration of the full RPA transverse spin

T=0, reflecting the well-known absence of AFLRO in the R —_ T
exact solution. But fod=2 the Nel state is robust, and the 1€ limitations of, the original RPA approximation.

T=0 sublattice magnetization remains nonzero, commensy: 11iS IS considered in Sec. V, where an Onsager reaction
field* (ORF approach to the paramagnetic phase ofulie

rate with the widely held belief that the ground state of the : : 7 X > ;

spin< Heisenberg model has AFLROfor d=2, the one- dependent Heis(_U) is outll_n_ed _brleﬂy. This pr_owdes in ef-

loop sublattice magnetization isn=0.607, rising to f_ect a self-con_5|stent m0d|f|cat!0n of conventional n_10|ecu|ar

m=0.844 ford=3 as spin fluctuation effects become lessfield theory to include the crucial effects of local spin corre-
lations in the paramagnet. It is very simple, but physically

significant}* Most significantly, LSW results for the sublat- q 4 oui v th
tice magnetization, spin wave velocity, and ground-state ent’@"sParent, and appears to transcend quite successfully the

ergy are in close agreement with quantum Monte Carl(pasic limitations of a crude molecular field approach, while

(QMC) calculations for the pure AF Heisenberg model in femaining mean field in spirit. It is also rather_rich. For ex-
d=2 (see, e.g., Ref.)2 Further, the logarithmic divergence ample, Ty(U) is reduced to zero fod<2, consistent with

of the spin wave amplitude fat=2 leads at anyr>0 to a the Mermin-Wagner theorem, while fat=3 the resultant

divergent magnetization reduction, consistent with thel\€€! temperature as a function of/t interpolates well be-

Mermin-Wagner theorertt,while for d=3, AFLRO is stable tween weak- anq strong-C(_)upIing interaction strengths,_ yield-

to thermal population of the spin waves up to the nonvanishing strong-coupling behavior very close to the best estimates

ing Neel temperature. of Ty obtained from high-temperature series expanstfns.
The fundamental collective excitations about théeNe  1N€ success of the approach is further demonstrated by

; ; i ith quantum Monte Carlo calculations on the
state of the Heisenberg model are of courseNhgure spin ~ comparison wit v : )
waves(with N the number of sitds For the finite/t Hub- ~ 9=3 half-filled Hubbard modef*? including the Nel
bard model, in contrast, there ax& collective particle-hole  'n(U) (Sec. VO, and the temperature dependence of inter-

excitations, the nature and spectral density of which for botf$it€ SPin correlation functions and static susceptibilitgsc.
pure and site-disordered Hubbard models at half-filling inV.D)- The separation of energy scales alluded to above and

d=3 have recently been studied in detail at RPA Ié¥el, discussed in Sec. Il —between low-energy spin-wave-like
Figure 1 shows a schematic illustration of the resultant RPAXCitations and higher-energy Stoner-like processes— trans-
excitation spectrum at moderate coupliddt. This consists 'ates thermally into the occurrence of an appreciable tem-
of two essential features. First, and our primary focus belowP€rature interval over which thermodynamic properties of
is a prominent low-energy spin-wave-like band, which eX_’the paramagnetic phase of the Hubbard modgl are domln;_ated
tends tow=0 and is gapless. Second, and separated from thgy the spin degrees of freedom captured in the effective
top of the spin-wave-like component, is a band of weaklyH HQ_is(U_)' an_d are only weakly affec_ted by the hlgher-energ_y
renormalized Stoner-like excitations. The gap to these rela€XCitations; in this temperature regime good agreement with
tively high-energy excitations is on the order of the gam QMC results s found. The res“'t.s .ShOW clearly t.he impor-
the single-particle UHF spectrupwhich for half-filled bi- tance of providing a sound despnpuon Of. local spin correla-
partite lattices is nonzero for all >0 (Ref. 1], and their t|on§ in the par.amagnet, _for which we pel_|eve an ORF theory
maximum spectral density typically occurs fer-U. Most provides po_ss_lbly the simplest, qualitatively correct treat-
importantly, it is found(see Sec. I) that the excitations ment. A preliminary account of the work has been given in a

comprising the loww band are, to a very good approxima- recent papef.
tion, spin waves over a very wide range of interaction
strengthsU/t. This suggests that it should be possible to
describe these excitations, which will govern the effect of We describe here a mapping of the low-energy transverse
zero-point fluctuations on the mean field ground state andpin excitations of the half-filled Hubbard model for finite

II. MAPPING TO AN EFFECTIVE HEISENBERG MODEL
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U/t on to those of an effective Heisenberg model, 8g2), Collective excitations about the UHF ground state are ob-
with no constraint to nearest-neighb@®N) exchange cou- tained within the RPA by linearizing the equations of motion
plings J;; . This mapping is of course exact in the strong-for particle-hole pairs created and destroyed in the UHF
coupling limit U/t—c, and is found in practice to be accu- vacuum. With UHF state creation and destruction operators
rate whenever there exists a discernible spin-wave-like bandefined via

in the transverse excitation spectrum. As discussed in Sec.

[Il, this is the case over a very widd/t range extending to_ oAt _ .

down to weak interaction strengths for the pure Hubbard C“"_Z fiaoCisi  Cao Z FiaoCio 24
model. This feature is found also to persist for the “dirty”

but magnetically ordered phases of site-disordered Hubbard c@nonical transformation to particles and holes is made:

models. Thus, although we focus here on the periodic sys- Con=0(a—F)a,,+ 6(F—a)b! (2.59
tem, we adopt a site-space representation appropriate more “7 “ @ '
generally to disordered Hubbard models, in which context ¢l =6(a—F)al +6(F—a)b,, . (2.5h

the mapping will be considered in a forthcoming paJane
do, however, retain a two-sublattice basis appropriate to theinearization of the equations of motion given via the com-
nondisordered case, both to make contact with familiar LSWnutators H,QO], where the particle-holép-h) pair creation
and for notational convenience. or destruction operatorOe{aL,b;U, Dgs8,,), leads
We begin by treating the interaction term in Ed.1) at  straightforwardly to the generalized RPA equations; see, e.g.,
the mean-field level of unrestricted HF, such thatmay be  Ref. 23. Alternatively, and equivalently, an effective qua-
rewritten as dratic boson Hamiltonian may be introducéske, e.g., Ref.
L 24) for which the equations of motion for the operat@s
40 within the quasiboson approximation, are precisely the RPA
H=H"+ EUgr MigONi— g (2. equations. This Hamiltonian is readily shown to be given by

1
where HRPA=§§TH_1(0)§, (2.6

HO=2 eni,—t > clci,+U> E(ni>ni—2<sﬁ).sﬁ]_ where the N2-dimensional vector {=(a}b}, ...,
o (i) 12 bga,, ...) with a>F> g; the o-index is temporarily sup-
(2.2) pressed for notational convenientB.w) is the particle-hole
In Eq. (2.2, (---) denotes an expectation over the Sehc_cqm'ponent of the ti_me—qrdered 'polgrization propagator
consistent UHF ground stategn;,=n;,—(n;,), and within the RPA approximation, and is given by
c-number terms are omitted.

Solution of the mean-field UHF problem is straightfor- Haﬁ;w(“’):ij dteiwt<0&7C2(t)ca(t)c’{cﬂ|o>
ward for the half-filled pure Hubbard model on a bipartite
IaFtlcé —where any interaction strengt/'t>0 leads to an <0|c;§ca|n)<n|clcﬂ|0>
Ising-like two-sublattice Nel AF— but is in general rather E E—o
more complex. In particular, a rich phase diagram at zero =0 | (En=Eo)mw—iy
temperature for the Gaussian site-disordered Hubbard model olcte [nVnlctc o
has been obtained,where the dominant magnetic phase in (0lexc,nnl B _“| >], 2.7
the disorder-interaction plane is a dirty AF. As shown in Ref. (En—Eg)tw—in

22, however, the UHF ground states for this model are alsqynere |0) and |n) are, respectively, the RPA ground and
Ising-like at half-filling (a property we expect to be generic gxcited states, and with Greek subscripts denoting UHF
to purely site-disordered Hubbard modelwith local mag-  states in the particle-hole subspaeen>F>pgu and
netic moments lying along a commomz axis and ,\<F<gu. II(w) is obtained most conveniently in terms

(S)==i(S;,)=0. This is the only property of the mean- of the corresponding UHF propagator
field ground state of which we shall make use here, so that

this additional class of disordered Hubbard models can be 0 0(a—F)O0(F—B)
encompassed by assuming a UHF magnetic ground state Mapnu(@)=6ar0p, (€,—€g5)—w—I

. . . a B n
characterized by a set of self-consistently determined local
moments| u;} with u;=2(S;,). For Ising-like ground states, 6(B—F)O(F—a)
the UHF single-particle wave functions are pure spin orbit- + (eg—€x)tw—iny 28

als, given via|¥ ) ==f;,,| ¢i,) in a site basis, with asso- , _ o .
ciated eigenvaluege,,} and pure real eigenvector coeffi- Py Solving a Bethe-Salpeter equation with interaction kernel

cients {f; ,}. The mean-field local moments are obtained
iaol Vegru( @)= —(@ulVINBY+(nalVINB), (2.9

from the UHF self-consistency condition
whereV=H—Hy, i.e.,(au|VINB)=UZf; fisfi,\fi,. This
B 5 lead$® to the simple expressiodl *(w)="T"(w)—V.
'“i_MZF 7lfiaol”, 23 Taking matrix elements of the set of commutators
[Hrea,£] between RPA ground and excited states, and en-
with F the Fermi level. forcing the quasiboson commutation relation
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[alb* ,byag]:qazb;,bya&]):5a55B7 (2.10  whence the resultant states thus decouple into disjoint p-h
] . o and p-p/h-h sets. Since extension of the Hilbert space is
then leads directly to the RPA equations. As implied by Eq.purely a formal device, the equations of motion for the p-h
(2.7), the eigenvalues dfigps thus correspond to the poles of operatorsO e{alob;g—’ bgpr8,,}, Obtained from the en-

H.(“’)' i.e., the RPA collective particle-hole excitation ener- largedH rp USing the quasiboson approximation, again lead
gles. - . directly to the RPA equations.
For an Ising-like UHF ground state, the susceptibility ma- We now consider the site resolution & * (), and

. . . . . 2 . _
trix II(w) —with linear dimension Rl“— block diagonal henceH=zh. A matrix P(w), with elementsP ,(w) and

izes into a transverse spin sector and a mixed charge: i . 5 . ' .
longitudinal spin sector [I-), each of dimensioMN?. The ‘?tlrr;enz;()?r;]rr;igilon 2°/2), is defined via the orthogonal

transverse susceptibility matrix further decouples into two
N2/2-dimensional blocks denoted byll *(») and P(0)=TT *(w)T, (2.14
II" (w), where

where

H;g—;)\,u,(w):if dteiwt<O|'{/~C21(t)caT(t)CITCﬂl|0>’ Taﬁ;ij:T?};aB:fian]ﬁl (213

(2.113 andIl” " (w) is given by Eq.(2.113, with no restrictions on
with the spin indices now restored, and the UHF state indices. From Eq&.15 and (2.113, the
matrix elements oP(w) may be written in the form

g () =11 (— ). (2.11b et o Inyenlct-cu 01
c!iCi+[n)¥{n|c.c
The transverse sectol~ *(w) andII* ~(w) contain low- Pij;k|(w)=2 ilCin ki
energy excitations extending down to zero frequency, as im- n (En—Eo)—w—iy

plied by the existence of Goldstone modes in the transverse <0|cT c |n><n|c_f c:|0)
spin spectrum. In contradil““(w) consists of weakly renor- k=1l il
malized HF excitations across the band gapU|u| in the (En—Eo)tw—in ]’
single-particle UHF spectrum, with a corresponding spectral,pare then?
density which is thus nonzero only fas=A. The decou-
pling of the IT matrix implies thatHzpa is itself separable,
viz.,

(2.19

states{|n)} span the enlarged Hilbert space of
two-fermion excitations and fully decouple into p-h and p-p/
h-h sets. However, since states belonging to the latter set are
associated with arbitrarily large eigenvaluds, ¢ Ey), the
gt +- LC elementsP;;.,(w) receive nonvanishing contributiormly

Hrea=Hreat Hreat Hipa, 212 fom the pzajfticle-hole sectoP(w) is thus precisely the site-
where each component has the form of Hf.6), with resolved particle-hole RPA susceptibility: The formal exten-
I1"1(0) appropriate to the particular sector. The lowest-sion of the Hilbert space naturally has no effect on the RPA
energy excitations clearly occur in the transverse sectorgollective excitation spectrum.
Hre andHiaa. These spin-flip excitations are expected to  Application of the above transformation kgp, yields
be dominant for all but the lowest interaction strengths and 1
up to temperatures on the order of the single-particle gap; we —+_ Tt -1 T
thperefore Ff)ocus on them below. s P HRPA_Z( EDHPTHOIT Y. (217

As a prerequisite to establishing a connection to linear . . ¥ :
spin wave theory, our aim now is to transfokiae, from the Extrac.t|on.of_the particle-hole sector Bifzp, in a site repre-
UHF state basis to a site basis. To this end we first extengeNtation is in general complex, but ready progress may be
formally the Hilbert space to include particle-particie-p) made by introducing the central approximation of the present
and hole-holeh-h) excitations. These are not of course in- theory, whose accuracy can be verified explicitly as detailed

cluded within RPA, and in the UHF state representation fuIIy-

in Sec. Ill. This is to posit for finitedJ/t that theN lowest-
decouple from particle-hole excitatiofsince the interaction [[€dUENCY transverse spin excitations are largely spin-wave-
kernel, Eq.(2.9), couples only p-h excitationsIn Eq. (2.6),

like, which implies[see(2.16)] that the associated lowest-
therefore, is formally extended to include terms of form

energy statesn) are connected to the ground std@ by
azax (aN>F) and bﬁbL (Bu<F), while these excitations

excitations with weight almost exclusively in than-site
are simultaneously suppressed by associating with them aSer_ﬂ'p subspace; i.e., fgr#i,

arbitrarily large energy. The extended RPA Hamiltonian ma-

trix is block diagonal, with linear dimensionN#, consisting
of a 2N2dimensional p-h component, and a and, conversely, that the remainitNf/2—N excitations in
2N2-dimensional, diagonal block with infinite diagonal ele- the p-h sector have virtually no weight in the on-site spin-flip
ments corresponding to p-p and h-h excitations. We also exsubspace; i.e., for at least sonei,

tend the quasiboson approximatifieq. (2.10] to describe

the additional processes by requiring that all p-p and h-h <O|c;}c”|n’)><0|ciﬂcil|n’)=0.

operators commute with p-h operators

<O|CiTTCi1| n>><O|CiTTCjL| n)=0;

If the above conditions are satisfied, then from the Leh-
[aZax,a“;b};]zQaLa}\,a;bg]>=0, etc. (ahy>F>p), mann representatiofEq. (2.16] for P(w) it is clear that
(2.13 elements such aB;.j(w)=0 for j#k; i.e., P(w) is ap-
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proximately block diagonal, with aNx N block containing  where S=|x;|S and S is a spin} operator, such that
elementsP;;.j; (») = x;j(w) which are thus dominated by the (S,)=( 7,/2)|w| yields correctly the UHF mean field local
low-energy spin-wave-like excitations. In contrast, the secmoment for any site. The linear Holstein-Primakoff transfor-
ond block inP(w) is dominated by the remaining%2—N  mation for H ieis COrresponds td, = 2u;— rdid; and éii
transverse p-h excitations which, akin to thosdBf°(w), given by Eq.(2.20 in terms of the Bose operatocb/d-*.
are high-energy Stoner-like excitations with nonvanishingApp"ed to Eq.(2.22 (and droppingc-number term)stf;is

spectral weight only forw_ZA:U|,u|. The approximation yields precisely Eq(2.21a with
described is clearly exact in strong-couplidgt— <<, where

Pij.ki(w) = 8ij 6k Pii.i(w) and only the low-energy sector .

survives. TheN?x N2 matrix P(0) then hasN nonzero ei- Cij=—ri 5ij[ > Ix (0)]ika|Mk|]
genvalues associated witN spin wave excitations, and (L)

N2—N zero eigenvalues, of whicN%/2 are trivially associ-

ated with the suppressed p-p/h-h excitations, while the re- + (1= &)V mimi | DX (0)]; (2239
maining N2/2—N zero eigenvalues likewise reflect the infi- .

nite energy associated with the Stoner-like processes as = Vlmimil[x (0)jj. (2.23b
U/t—co.

. ) . Equation (2.23h reflects the existence of twdzero-

_Focusing thirefore on the Iow-en+ejgy spin-wave-like CONtrequency Goldstone modes in the spectrumibg,,, corre-
tributions toHgpa [Eq. (2.17] andHgpa, by retaining only  gponding to global rotations of the UHF mean field spins, as
the on-site componen®;;.;;= x;; in P(0), leads directly to  required by the Ising-like nature of the UHF state for all
an approximate spin wave Hamiltonian U/t>0; this is embodied formally in

1
HSW:ZEJ X H0)]{S'S +S'S/} (218 }k) [x 1(0)]iee=0 (2.24

where the second term follows from analogous consideratiogfor all i), from which follows directly the equality of Egs.
of IT" ~(w) and henceHps. Note that the operators in Eq. (2.233 and (2.23b.

(2.18 are not full spins operators; rather, they obey the  Finally, we rewrite Eq.(2.22 in terms of the spirk op-
guasiboson commutation relation erators as

[S".S 1=wisj=([S".S 1) (2.19

1
HhedU)=52 J5(U)S-S. (2258
as may be verified explicitly by transformation of £§.19 (20
back to a UHF state basis and application of Egsl0 and ) ) ,
(2.13. with exchange couplings given by
Proceeding analogously to LSW, we now divide the sys- _ 1 .

tem into two sublatticed\ and B, such that the mean-field i =2lpimlx O] . (2.25h
(Siz) = 7i| il /2 with 7=+ (—) for sites belonging to sublat- This is the effective Heisenberg model we seek. Further, the
tice A (B), and with spin raising-lowering operators given by Bethe-Salpeter equation for the RRAw) in a site represen-

tation is given by the familiar form
di i EA,
d' :ieB,

di ieA,
di e B,
(2.20 (where[1];;= &) in terms of its UHF counterpaty (see,
e.g., Ref. 25 from which it follows that, for j#i,

[ x 1(0)1;;=[°x"*(0)];; . Knowledge of the UHF suscepti-
bility matrix °x(w)="x""(w) with elements given by

S" =l S =lml

X Hw)="x""(w)-U1, (2.2

in terms of the Bose operatods;/dfr (such that the Bose
commutation [d; ,dJ-T]zéij yields correctly Eq.(2.19).
Equation(2.18 for H g\, then becomes

1 1 O ()= S [ fiaifiatfigifisl
HSWZZZJ cij(drdj+did{)+§i2j Cij(did;+dfdh), ] o Fop | (€a—€p)—0—i7
T =T Ti:/:Tj f f f f
(2.213 ialTjalTip1Tjp1

with
in terms of the UHF eigenvalues and eigenvector coeffi-
Ci= [—|MiMj|[X_l(o)]ij' (2.21y  cients, together with the mean field local momefiig;|},
thus enables a direct determination of the effective exchange
We now show thaH g is precisely the LSW Hamiltonian  couplings{J;;}.
corresponding to the effective Heisenberg model Before proceeding with a quantitative investigation of the
accuracy of the above mapping at finit#/'t, it is worth
4 ~ o~ noting that the relation between the effective exchange cou-
Hpeid U) = .E [x (0)];S-S, (2.29 plings and the inverse of the static RPA susceptibility, Eq.
(j;'ﬁji) (2.25h, is exact for the spin-Heisenberg model, to which
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the Hubbard model reduces exactly in strong coupling. The RE2) -1
RPA x 1(0) appropriate to this model is readily shown to Qwy)=| U Yo
have matrix elements wn

1 1 = 0(wy oIS [m)[?
[Xil(o)]ij:_zﬁijﬁzj: 5. (228 @ )Ei oIS Il

Use of Eq.(2.28 in Eq. (2.21) (with |u;|=1Vi as appropri- +6(—w,) X [(0|S][n)|2 3.3
ate for U/t—), followed by Fourier transformation and '

diagonalization, then leads directly to the familiar LSW dis- [with |n) the RPA excited state corresponding to the pole at

persion given, for NNJ;;=J.., by w,=E,—E, in x(w); see Eq. (2.1 for
. Xij(©)=Pj.jj(0)]. Q(w,) measures the weight of the RPA
wg=*+dJ.\V1- g, (229  excitation in the subspace of on-site spin flips, such that ex-

e _ o _ citations which are pure spin waves hae= 1,'° while ex-
whereyq=d~ "2, _,cos(,a) with d the lattice dimensional- cjtations with (<1 have significant off-site “charge-

ity and a the lattice constant. transfer” character.
Figure 1 gives a schematic illustration of the full
ll. ACCURACY OF THE MAPPING NRP(w) which results. This consists of two essential com-

, . ponents. First, a spin-wave-like band at lawy containing

We have thus constructed an approximate mapping of thgreciselyN excitations and extending down te=0, as im-
low-energy transverse spin excitations of the half-filled HUb'pIied by the presence for all/t>0 of a Goldstone mode
bard model for finitdJ/t, on to those of an effective Heisen- (see Sec. )| Second, a band consisting oR2) (N—2)
berg model whose exchange couplirgs). (2.25h] are de-  gioner.jike excitations —stemming largely from intersite or
rived from the static RPA spin susceptibility of the original oarqe-transfer spin-flip excitations, i.e., weakly renormal-
model (and are not therefore confined solely to nearest;,oq yHF transverse excitations across the single-particle
neighbor interactions Before discussing the resultant p,nq gap. For the pure Hubbard model, the band gap
Jij(U)’s, however, we first ascertain the accuracy of theA=U|,uL is given by the UHF local moment self-consistency

mapping, and its range of validity id/t. relationt
The basic idea for any gived/t>0 is thus to compare
directly the full RPA transverse spin spectrum of the Hub- U
bard model with the linear spin wave spectrum of the effec- 1== > [iA2+&]° 172 (3.9
tive HpedU), Eq. (2.25. The former is denoted by Nq<'Viez

RP LSW, : _ :
N7™(w), thfs\l,?tter byN7" (), with Ny(w) =N+(~ w) in wheree,= —2dty, are the tight-binding energies of the un-
each 'caseNT () =246(w—wg) is obtained directly from perturbed U=0) bipartite lattice. A is nonzero for all
tge ellgebnvaltieﬁw(%} of '_:.SW' FTq' (tﬁﬂ),tby a conv:la_nt|or|1_al i U>0,"2 whence the Stoner-like band beginssat A as in-
ogoliubov: transtormation, inthe- strong-coupiing IMit gicated in Fig. 1, and has maximum spectral weight typically
U/t—c, wq reduces to EQ(-Z-ZQQ,AW'th Jo.=4t%/U. The full o roundw~U. Inthe strong-coupling limit the single-particle
RPA transverse spin Spectri} () = 2 d(w—w,) is ob- gap A(U)—x, eliminating the Stoner-like band, leaving
tained most efficiently from tﬁ?’ poles{wn} of the trans-  gojely theN-excitation spin wave component given by Eq.
verse +s_uscept|_blllty [n+atr|ce,$ +(_“’) [Egs. (2.26, (2.27] (229, as discussed above. At fini@/t the Stoner-like band
andy (“’)R-PAS'”CeX (0)=Xx" (- o) [see Eq(2.11B],  mixes with the pure spin wave band but of central impor-
the full Nr™(w) may be derived from the poles of tance is the existence, over a very wide range of interaction
x(®)= x""(w) alone. The latter are readily obtained by strengths, of a true gap separating the two bands, as illus-
noting that, because the same unitary transformation diagqrated in Fig. 1. Numerical studies usind®2| points indicate
nalizes bothy and %y, the matrix elements of the RPA sus- that the spectral gap IN?™(w) persists down to very-weak-
ceptibility may be written in terms of the eigenvalugs,}  coupling strengths of arountd/t=2, i.e., U around one-
and associated eigenvectdhs,} of “y: sixth of the unperturbed=3 band widthB=12t.
r(@) The occurrence of a spectral gap shows the persistent
_ A separation of energy scales for the spin-wave-like and
Xij(@)= 2;‘ Viy(@) 1-UN () Viyw). 3D stoner-like excitations, extending down to weak-coupling in-
teraction strengths. To examine the accuracy with which the

The poles{w,} of x(w) are therefore given by former are reproduced by the effective Heisenberg model,
Fig. 2 shows the lows portion of the transverse excitation
1-UN(0,)=0. 3.2 spectrumNR™(w), containing the firstN excitations, ob-

tained directly via a pole search on EQ.26 using 2° q
Thus,NR¥™(w) may be obtained by examining thedepen-  points and for interaction strengths/t=20,12, and Gthe
dence of the eigenvalues of the UHB(w).!® Further, spectra are normalized and have been smoothed convention-
analysis of the behavior of any,(w,) near\(w)=1/U ally using Lorentzians with half-widths on the order of the
shows® that the on-site spin-flip or spin wave character oflocal level spacing These are to be compared with
the corresponding RPA excitation is given by N#Sw(w) for the corresponding effective Heisenberg model
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FIG. 3. Sublattice magnetizatiom vs U/t , obtained via one-
loop inclusion of zero-point transverse spin fluctuations. Also
shown is the UHF limitm=|u| (dashed ling The strong-coupling
limit m=0.844 is indicated by an arrow.

FIG. 2. Nf™(w) (solid lines and Ny*"(w) (dashed linesvs
w/t for the half-filled Hubbard model, withl/t=20 (a), 12 (b), and
6 (c).

HueidU). In Fig. 2 explicit comparison oNf™(w) and
N5SW(w) is in fact shown only folJ/t=6, since for stronger commented in Ref. 28, convergence of this expansion is
interactions the spectra are indistinguishable;Wdt=6 it-  Slow, such that the approximation in practice remains limited
self the difference is barely discernible. Even for weak couf0 @ large coupling regime.
pling, e.g.,U/t=3, the agreement is good, with the spectral
features oNR™{(w) well reproduced bN:>"(w), save for a
slight net shift to lower energy, reflecting level repulsion
with the approaching upper Stoner-like band and similar The resultant NN, 2NN, and 3NN exchange couplings
quality of comparison occurs fdg/t=2. obtained from Eq(2.25 have been shown as a function of
The degree to which theharacterof the lowestN RPA U/t for d=3 in Fig. 1 of Ref. 21, to which the reader is
excitations is reproduced by:>"Y(w) may also be assessed referred. Decomposing the bipartite simple cubic lattice into
by examiningQ(w), Eq. (3.3, as discussed above: A value two interpenetrating sublattices, the resultdg)(U)’s are
of O(w)=1 for w in the lower band indicates the clear found to be positive betwednandj on different sublattices,
dominance of spin-wave-like excitations, as assumed in corpegative between sites on the same sublattice. Thus, AF or-
structing the effectiveH i U). For givenU/t, Q(w) is a  der is always reinforced, leading to the expectatieram-
minimum for the highest of the fird RPA excitations, since ined in Sec. V Q¢ that the resultant Ne temperature will be
the upper band edge therein is most influenced by the ergnhanced over that resulting solely from consideration of
croaching Stoner-like band. Specifically, we find nearest-neighbal;’s. Jyy itself is found to b&" a maximum
Q(wma) =1.00 down toU/t=5, decreasing to 0.71 for for U/t=9, after which it steadily approaches from below
U/t=3 and 0.39 fotlJ/t=2, although even here the majority the exact strong-coupling asymptote for the Hubbard model,
of low-w excitations have()(w)=1. Below this, however, J.=4t%/U. [Jox\ andJzyy are always an order of magni-
Q(wmay) decreases rapidly: Its value is 0.02 fott=1. The  tude less thardyy but play a significant role folJ/t=<15.
low-w RPA transverse excitations of the finit#4 Hubbard ~ One example of this is shown by the upper band edgg,
model are thus indeed dominated by spin-wave-like excitaof NLSW (Fig. 2) which, if NN couplings alone were suffi-
tions for all but the lowesu/t. cient, would be given bylJyy. omax iS in fact found to lie
The assumptions underlying the approximate mapping ofomewhat in excess ofJgy, reflecting the role of 2NN and
Sec. Il are thus supported, yielding quantitatively accurat8NN couplings. The effect is appreciable even fbit=12
results over a very widéJ/t range encompassing strong-, and does not become insignificant urilt=20 where(see
intermediate-, and weak-coupling strengths, dowttd of  Fig. 1 of Ref. 2} Jy is close to the strong-coupling asymp-
around 2-3. This is in contrast to recent attempts to genettote J... Couplings beyond 3NN do of course occur but are
alize linear spin wave theory to the Hubbard model. Perturfound to play only a minor role in practice.
bative method®2’ are correct only asU/t—ox, i.e., as A further illustration of the roles of the various spin cou-
J—0. For large coupling, only the low- portion of the spin  plings at finite U/t is given by considering the effect of
wave spectrum is given correctly, so that while quantitieszero-point transverse spin fluctuations on the ground state of
such as the spin wave velocitgnd sublattice magnetization the effective Heisenberg model. For example, the sublattice
in d=2), which are governed by the low-portion of the = magnetizatiorm is obtained readily at a one-loop levske,
spectrum, are given correctly for largt, the full spectrum e.g., Ref. 14 The known strong-coupling LSW results dis-
is not properly obtained, as reflected in, e.g., bulk susceptieussed in Sec. | are correctly recovered, but the present ap-
bilities. A more successful approa€rronsiders the poles of proach permits a study of the effects of low-lying spin waves
x(w), Eq.(2.26), given by expanding the UHF susceptibility in reducingm from its mean-field valuen,z=|u| [Eq. (3.4)]
%y in powers oft?/U? about theU—o limit. However, as  as a function of interaction strength. Figure 3 thus compares

IV. EFFECTIVE EXCHANGE COUPLINGS
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m to its HF valuemye for the d=3 simple cubic lattice. In (and its spin-flipped imageis properly stable against
strong-coupling,m/m,.=0.844, and quantum fluctuations particle-hole excitations —i.e., is a true minimum of the
remain fairly significant for interaction strengths down to UHF free energy surface. The temperature-dependent local
~U/t=6, wherem/my=0.91. Note, however, that with moment magnitude corresponding to this solution is given by
NN couplings only, the fractional reduction im depends the finiteT analog of Eq(3.4), i.e.,
only on the lattice topology and is independent of the mag-
nitude of Jyy, Whence m/my: would retain its strong- u tanf E4(A)/2kT]
coupling value if solely NN interactions were considered. 1= qu Wez  EqA)
The decrease in the zero-point sublattice magnetization re- d
duction asU/t is lowered thus reflects in part the expectedwhereEy(A)=[ A%+ €Z]*2 andA(T)=U]|u(T)|. Equation
importance of effective exchange couplings beyond purely5.1) has a nonzero solution for.(T)| below a critical tem-
NN interactions. peratureT(U), at which Stoner-like thermal excitations
across the single-particle gap destroy the UHF local mo-
ments.[Above T<(U), the sole solution to the UHF equa-
tions is the paramagnetic or restricted HF solufiohhis

We turn now to finite-temperature properties of the half-clearly occurs at a temperature scale on the order of the
filled Hubbard model, in particular théJ(t, T/t) phase dia- single-particle gapA(0)=U]|w(0)|; in fact, Ty(U) from
gram, i.e., the Nel temperaturd (U) for loss of antiferro-  Eq. (5.1) goes asymptotically a3U, an asymptote closely
magnetic long-ranged ord¢AFLRO). Granted the mapping approached in practice fdJ/t=4 or so.
on to an effective Heisenberg model, two potential options It is of course clear that(U) tells us essentially noth-
arise. First, to study finitd- properties via thermal excitation ing about the true Nal temperaturd(U) for destruction of
of the low-lying bosonic transverse spin excitations comingAFLRO in d=3, save for the weakest interaction strengths.
from an ordered lovif phase, using familiar linear spin wave The energy scale for disordering of tbéentationsof local
theory. This is viable fod=3 at temperatures sufficiently moments is set by the effective coupling constahf¢U)
deep in the ordered phase, but breaks down progressivend not the single-particle band gAi§0) of orderU. How-
with increasingT and yields a poor estimate @f,. And for  ever, we can simply but readily include the first effects of
d=2, the logarithmic divergence of the spin wave amplitudethermal excitations across the gap on the local momexy-
leads at any nonzer® to a divergent magnetization reduc- nitudesby replacing the zero-temperatyye;|'s entering Eq.
tion, and hence solely a paramagnetic phaseTfei0, con-  (2.250 for the effective coupling constants by their self-
sistent with the Mermin-Wagner theoré. consistent, finiteF values given by Eq(5.1). This has a

An alternative is to approach a possible Idwerdered non-negligible effect offy(U) only for interaction strengths
phase from the “highF” paramagnet, using the effective U/t<4, but ensures a sensible interpolation between weak
HueidU) (whose exchange couplings are not expected to band strong interaction limits.
sensitive to their extraction by comparison of linearized Tye(U) sets a natural upperf limit for the theory we
theories, RPA and LS It is this route we take, although develop. However, save for the lowestt, T, is suffi-
something more than a molecular-field-type theory forciently in excess of \(U) that there exists a wid€ interval
H heidU) is clearly required if justice is to be done to para- —extending at least to several tim&g itself— over which
magnetic spin correlations and the dictates of the Merminthermodynamic properties are dominated by the low-energy
Wagner theorem satisfied: This is provided by the Onsagespin scale captured in the effectitle,.;(U), and are barely
reaction field” (ORP approach outlined in Sec. V B. First, affected by the high-energy Stoner-like processes. This will
however, we comment briefly on the finfelUHF mean- be shown explicitly in Sec. V D.
field state, and anticipate thermal implications of the separa-
tion of energy scales for spin-wave-like and Stoner-like ex-
citations, as found in Sec. Ill.

(5.0

V. FINITE-TEMPERATURE MAGNETISM

B. Onsager reaction field theory

We now sketch an Onsager reaction figlRF) treatment
of the effective Heisenberg model, Eg2.25, with
A. UHF for T>0 U-dependent exchange coupling;(U)}. Full details are
Extension of UHF to finiteT is straightforward, consist- given in a recent papéf, to which the reader is referred.
ing simply of a variational minimization of the UHF free ORF provides an essential modification of molecular field
energy functiona?®® Our first point concerns the particle- (MF) theory by incorporating self-consistently the vital ef-
hole stability of the resultant self-consistent solutions whichf€cts of short-ranged magnetic ordering in the paramagnetic
is necessary in order that collective excitations about th@hase. Originally devised in the context of dielectric theory
mean-field state be bounddThis is important, for it has DY Onsaget! it was first extended to magnetism by Brout

been arguedsee, e.g., Ref. 30that for finite T there will ~ and Thoma%zsand has since been applied successfully to eg
exist 2V possible stable UHF states, each Ising-like and conSPIN glasse3§_* and itinerant electron syster_ﬁ%.
structed essentially from the pure ®lestate by flipping any ~ ApproachingT(U) from the paramagnetic phase, the re-

number of the mean-field local moments. However, from ex.duired modification of MF theory stems from a recognition
tensive numerical work on large finite-size systems, we havéhat the MF acting on a given spih\'"=3;J;(S)) (where
found this not to be the case. That is, while many Ising-like(- - -) now denotes a thermal averags itself a sum of two
self-consistent solutions to the UHF equations may exist at delds: the cavity fielch®", which is the field in the absence
given temperature, only the pure two-sublatticeeNstate  of the given spin, and the reaction fighff", arising due to
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polarization of its neighbors by the spin itseﬂf': is given
by hfF=\(S) with N(T)=3;3;(S-S)/S(S+1) (S=3
here. But since the reaction field is parallel to the spin, it

cannot contribute to its own alignment. It must therefore be

removed from the MF, whence the cavity field
hF=hMF—h*F —and not the MF— is the correct local field

to which the spin responds, and this must of necessity be +
implemented self-consistently, since the ORF depends on the

local spin correlations, embodied N(T).
The static susceptibility(q) is then obtained in direct

analogy to standard MF theory, and by imposing self-
theorem

consistently the fluctuation-dissipation
(S-S;)=3Ty;; one obtain®

TNF(U)
T

=N"1> [z-(q)/I(m] =G(2). (5.2
q

Here, TMF(U)=1/4|J(=)| is the molecular field X=0)
Neel temperature, withJ(q) the Fourier transform of
{3;;(U)} andz=(T/T\") +[\/I(m)]. Equation(5.2) deter-
minesz(T) [or equivalently\ (T)] self-consistently, the tem-
perature scale being set A}/ (U). The x(q) then follow
directly fronf® |3(m)|x(q)=[z(T)-JI(q)/I( m]"*, and
sincex(q) first diverges fog= 7 atz(T)=1, the ORF Nel
temperature is given by

Tn(W)=THF(U)IG(z=1+). (5.3
Spin correlation functions in the paramagnetic phase li
wise follow from(S - §;)/3T=G;;(2)/|3(=)| where

Gij(2)=N"1Y dRi[z—J(q)/I(m] L. (5.4
q

Mathematically, theG;;(z)'s are formally equivalent to
the site Green functions for an arbitrary one-band tigh
binding Hamiltonian ind dimensions, withG(z)=G;;(z).
Therefore,G(z—1+) diverges algebraically il=1 and
logarithmically ind=2.3° This result is not confined solely
to NN coupling constant§and thus the strong-coupling
limit), and implies the absence of AFLRO it<2 for
T>0, consistent with the Mermin-Wagner theor&mAl-
though our main focus here is a determinationfU) for
the Hubbard model inl= 3, note that the logarithmic diver-
gence ofG(z—1+) for d=2 leads directly a3 —0 to an
exponentially divergent spin correlation lengi{ir), indica-
tive of the AFLRO characteristic of thE=0 ground state. In
the strong-coupling limitU/t—co, this reduces asymptoti-
cally for T—0 to

(5.9

where C is a T-independent constant, angd= 3TN =3J.,
(J..=4t%/U) is also theT=0 spin-stiffness constant ob-
tained from LSW about the AF-ordered &lestate of the

&(T)=Cexp(wTNT/2T)=Cexp(2mps/T),

ke
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FIG. 4. Neel temperature vdJ/t. (A) Onsager reaction field
Ty, (B) molecular fieldTY™ . Also shown are QMC resultéRef.
18) (circles, the strong-coupling asymptoteBy —6t%/U and
Tny—3.98%/U from ORF theory, Ty (dashed ling and the VF
(Refs. 42,43 result(dot-dashed ling

C. Phase diagram ofd=3 Hubbard model

For d= 3, numerical evaluation o6(1) using theU/t-
dependent exchange couplings yields direttyU) via Eq.
(5.3. In Fig. 4 we show the {/t,T/t) phase diagram ob-
tained from both MF and ORF methods. Clearly, the effects
of short-ranged spin correlations, self-consistently included
in the ORF treatment, are crucial in reducihg(U) from its
MF value for all but the weakest interaction strendths. In
strong couplingU/t—, MF theory yields the expected
TMF-6t%/U, while the ORF Ty—3.98%/U, which is
within 3% of the accepted value of 318BU obtained from
high-temperature series expansidiTSE’s),}? and in the
weak-coupling limitTy approaches the expect¢d-9,19
Tue(U), so that the treatment interpolates sensibly between
tweak- and strong-coupling regimes.

Figure 4 compares our results fdg, with the Neel tem-
perature of thed=3 Hubbard model inferred from QMC
calculations by Scalettast al;'® for U/t=6-8, these results
are significantly reduced from earlier QMC work by Hir&th
on smaller lattices. Clearly, the QMC points are well repro-
duced by themolecular field T/7(U) over the entireU/t
range, our estimate being within the MC error bars for all but
two points U/t=10,12 although even here it is clgs€ur-
ther, byU/t= 20, the QMC results appear to be approaching
the MF asymptote and remain well above the HTSE limit.
These observations lend weight to Hasegawa’s argument
that the extrapolation used to extrdg from the QMC data
yields a Weiss temperatufeather than the tru&y) —which
is precisely the quantity obtained by MF theory— and there-
fore overestimate3 . In Fig. 4 therefore, we believe that
TMC should be compared withy" rather than the ORF N
temperature. This does not, however, presage poor agreement
between QMC and the ORF approach, for a reliable determi-
nation of the Nel temperature from QMC calculations on

d=2 pure nearest-neighbor Heisenberg model. The asympelatively small systems is clearly difficult; a more revealing

totic form of Eq.(5.5) agrees with the two-loop order calcu-

lation by Chakravarty, Halperin, and Nelédron the quan-

comparison is provided by th& dependence of, e.g., the
spin correlation functions, considered in the following sec-

tum nonlinears model in 2+ 1 dimensions, and the success tion.

of an ORF approach id=2, compared to quantum Monte

Previous functional integral approaches mentioned in Sec.

Carlo and other analytical approaches, is detailed in Ref. 4Q.include the single-site spin fluctuation theory of HubBard
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FIG. 5. ORFTy, (solid line), Ty for solely NN J;;'s (dotted ling
and the postulated form for the trdg, from Ref. 6(dashed ling

and Hasegawhthe Gutzwiller-type variational approach of

TMF(U) above. More significantly, however, these ap-
proaches share the common deficiency that all yield the mo-
lecular field asymptoté"\N"F(U) in strong coupling. We be-
lieve this to be a serious limitation even down to relatively
low U/t since, as shown by Fig. 4, the effects of spin corre-
lations included in the ORF treatment reduce significantly
Tn(U) below its MF value over a wid@/t range.

A previous attempt to include such effects has been made
by Moriya and co-workeré?*® their “vector field” (VF)
method aims to include the dominant effects of short-ranged
magnetic order omitted by the above approaches. Unfortu-
nately, as shown by Fig. 4, the estimatég(U) appears
seriously awry over the entitd/t range, and the model con-
tains several unphysical propertfesBut we believe the
present results do support the necessity of including spin
correlations, and provide possibly the simplest, qualitatively
correct means of so doing.

Finally, it is interesting to note that our ORF results agree

Kakehashi, Fulde, and Samsdand a more recent treatment rather well with Kakehasi and Hasegawa®njectured form
by Hasegawd.Comparison of these with the present theoryfor the true Ty(U). Figure 5 shows the ORFy(U), to-

has been given in a previous pafefFig. 3); none repro-

gether with the analogous result obtained by constraining the

duces the QMC results nearly as well as the simpleeffective exchange couplings to be purely NN, and the pos-

KS:S)

(B)

(©)

FIG. 6. Spin correlation functiongS;,S;,)| vs T/t in the paramagnet fod/t=12 (A), 10 (B), and 8(C). The ORF Nel temperature
Ty is indicated by an arrow(@ Nearest neighbokp) 2NN, (c) 3NN. Circles show QMC resultRef. 19.
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FIG. 7. Staggered susceptibilify( ) vs T/t for U/t=8 (a) and 6(b). The ORF Nel temperaturdl is indicated by an arrow. Also
shown are QMC result&ircles from Ref. 19(a) and Ref. 18b).

tulated form from Ref. 6. The agreement between the lattemarked— the temperature interval over which the QMC spin
and the NN curve is remarkably good. In addition, the effectscorrelations seem well captured extends up-t8—4 times
of couplings beyond NN in stabilizing the AF phase are par-Ty itself and thus, while narrower on the hopping sdales
ticularly clear here, the full ORF\(U) being significantly — used in the figurg remains appreciable in real terni@ne
enhanced over its pure NN counterpart, and giving muctshould also bear in mind that with decreasldgt, system-

better agreement with QMC results in the weak-coupling resize effects in QMC are likely to become more significant.
gime. To illustrate the resultant static susceptibilities, Fig. 7

shows the ORF staggergd ) vs T/t for (@) U/t=8 and(b)
U/t=6. The former is compared to Hirsch’s QMC restilts
for the half-filled Hubbard model on &@attice, the latter to
Given the importance of a good description of short-Scalettaret all® on a & lattice. The agreement is rather
ranged order as stressed above, it is important to examirgood, even for the lower temperatures where system-size ef-
whether the present theory describes well the temperatufects in QMC have a not insignificant effefatee Fig. 1(b)
dependence of intersite spin correlation functic®EF'y in  of Ref. 19; although the ultimate higfi-asymptote of the
the paramagnetic phase. Within a molecular field approximaQMC susceptibilities must correctly be one-half the free-spin
tion these vanish by definition in the paramagnet, and so affurie law (as for the noninteracting limit whereas a pure
correlation stems from the nontrivial effects of the reactionCurie law naturally results for the effectivid pei(U). A
field. Figure 6 shows thd dependence ofS,S,) (=3 similar quality of comparison results for the uniforg{0).
(S-S)) for T=Ty(U), for three values of the interaction We also expect the agreement to improve with increasing
strengthU/t=12, 10, and 8. NN and 3NN spin correlations Y/t: but unfortunately QMC results fdd/t>8 do not ap-

are always negative and the 2NN SCF always positive, aRear to have been reported.

. ) Finally, to illustrate the effect on thermodynamic proper-
expected, and sb(Siszz>| is shown; these are compared to .. ; : / L
Hirsch'st® QMC results for the half-filled Hubbard model on LS> of the scale separation between low-energy spin excita

a 4 lattice. It is clear in each case that appreciable s itions embodied in the effectivel(U) and the omitted
S . P P rhigher-energy Stoner-like excitations, Fig. 8 shows the ORF
correlations beyond NN. build up only for temperaf[uresemropys(.r) vs T/Ty(U) for U/t=10, as obtained from the
T/ts;, and agreement W.'th QMC is noticeably poorer it theintegrated specific heat. This is readily shown to be given by
effective exchange couplingd;;(U)} are constrained solely
TN(U)  \(T)

D. Paramagnetic phase

to nearest-neighbors. Faf/t=12, the ORF results of Fig.

6(a) agree well with QMC over a very wid& range above S(T)=S(Tyn)— 5[1— T(U) a7
the ORFTy(U)=0.29 (despite the aforementioned dispar- N
ity between the two estimates ®f,). For the NN(S;,S;,), 3 (T AT

the agreement becomes poorer only for temperatures ap- —gf (U)—Tz—dT: (5.9
proachingTye(U) =23t at which the UHF local moments are N
thermally destroyed. This is precisely as expected for, as digvith the ORFA(T) determined self-consistently for the cho-
cussed aboveT(U) represents a definite upper limit for senU/t as outlined in Sec. V B. The molecular field limit of
the theory, setting a thermal scale for the Stoner-like excitaEq. (5.6) is, trivially, A(T)=0 and Ty=TN", whence
tions neglected in the effectivél yei{U). For U/t=12, S(T)ES(TMF):RInZ throughout the paramagnetic phase.
Twe is an order of magnitude greater than theeNeempera- To estimateS(T,) at the ORF level, we impose the con-
ture. It diminishes with decreasirid/t (see Fig. 4, whence straintS(T ) =RIn2 with the T dependence dfu(T)| in-
the T interval over which good agreement with QMC is ob- cluded in the effective exchange couplingince from Eq.
tained naturally becomes narrowéfigs. @b), 6(c)]. How-  (2.25h the {J;;} are effectively “switched off” when the
ever, as seen from Fig. 6 —on which the OR{{U) is also  local moments vanish a— T ,(U) — ]. Alternatively, if the

T
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VI. CONCLUSION

The present work provides a physically transparent and
seemingly successful approach to low-energy spin excita-
tions in the half-filled Hubbard model and their thermody-
namic consequences.

A mapping of the low-energy transverse spin excitations
of the model onto those of an effective underlying Heisen-
berg model, which is of course exact in strong-coupling, is
,,,,,,,,, found to be quantitatively accurate over a very wide range of

............................... interaction strengths down to weak couplibgt of around
00 I — I I I 1 2-3, as judged by comparison with the full RPA transverse

o 15 20 25 30 35 40 spin spectrum for the antiferromagnetic broken symmetry
T/TY) state.

Physical properties of the system in the thermal paramag-

. e _ netic phase have been described via a simple Onsager reac-
netic phasesolid line), compared to the mean-field entrofy(T) . . . .
) e tion field approach, which demonstrates clearly the impor-
[Eg. (5.10, dotted lind, and the atomic limit entropyS, (T) S . . . .
(dashed ling tance of describing self-consistently spin correlations in the
paramagnet. This is central, in recovering, for example, the
T=0 |u(0)| is used, one demands th&T)—RIn2 as dictates of the Mermin-Wagner theorem fd=2 and for

T— . The two estimates of(Ty) differ negligibly for ~ d=3 (where resultant ORF exponents are sphefigat de-
U/t=10 (as also folU/t=8,6), as expected from the discus- scribing, for example, the phase boundary to AFLRO where,
sion of Sec. V A. The resultar(T) saturates in practical for strong coupling in particular, excellent agreement with
terms toRIn2 on aT scale of~2-3 timesTy(U), commen-  known high-temperature series expansion results is obtained.
surate with the behavior of the corresponding spin correlaFurther, the separation of energy scales between low-energy

o
T

S(T)/Rin2

o
T

FIG. 8. ORF entropy v§/Ty(U) for U/t=10 in the paramag-

tions, Fig. Gb). spin-wave-like excitations and higher-energy Stoner-like
For comparison, Fig. 8 shows the pure mean-field referprocesses, which is found to persist over a very wide range
ence entropysy(T) given by of interaction strengths down to weak coupliddt, is mani-
fest thermally in an appreciable temperature range above
_ _nl” Tn(U) over which physical properties appear dominated by
T)=-R ED(E){f(E)Inf(E N
So(T) ffocd (EXT(E)nf(E) the low-lying transverse spin excitations. As judged in par-

ticular by comparison with a range of quantum Monte Carlo

+[1-f(E)]In[1-f(E)]}, (5.7 results for the Hubbard model these are rather well described
whereD(E) is the UHF single-particle spectrurSo(T) in- by the present work, Which appears to represent a significant
cludes only excitations across the single-particle band gap ifnProvement over previous approaches.
D(E), and naturally fails to describe the low-energy trans- Finally, we note that neither the mapping on to an effec-
verse spin excitations, but its value gives (@venestimate five underlying Heisenberg model nor the subsequent ORF
of the residual contribution t&(T) arising from the Stoner- approach is confined to the pure Hubbard model on which
like excitations neglected in the effectie,e(U). As seen W€ haye concentrated here, but_can be adapted readily to
from the figure, these begin to become appreciable only on @agnetlcally ordered_ phases of dls_ord_ered Hubbard models,
T scale exceeding that at which the ORET) effectively ~ @S Will be discussed in a later publicatith.
reaches its free-spin value. It is also instructive to compare
S(T) to the exact atomic limitt(=0) entropy,S, (T) (Fig.

8), which starts from a value dRIn2 at T=0+ and, like ACKNOWLEDGMENTS
So(T), eventually reacheRIn4 at a temperature of ordér
where excitations across the single-particle ghppegin to Y.H.S. would like to thank Dr. M. J. Attenborough for

saturate. As seen from Fig. 8, however, the latter effect idelpful discussions. We thank the SERC, EPSRbn-
again not significant over the temperature regime on whicldensed Matter Physigsand the Royal Commission for the
we have focused. Exhibition of 1851 for financial support.
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