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We present an approach to the magnetic properties of the half-filled Hubbard model, based on an approxi-
mate mapping of its low-energy transverse spin excitations on to those of an effective underlying Heisenberg
model, but with effective spin interactions which are self-consistently determined and not confined solely to
nearest-neighbor couplings. The mapping is exact in strong-coupling and is found to be accurate over a very
wide range of interaction strengths, down to weak coupling. At zero temperature, it permits ready evaluation at
finite U of the one-loop effects of zero-point spin fluctuations on, e.g., the sublattice magnetization. At finite
temperatures, thermodynamic properties of the system in the thermal paramagnet are studied via a physically
transparent Onsager reaction field approach, which amounts to a self-consistent treatment of paramagnetic spin
correlations. This is central not only in recovering the correct dimensionality dependence of antiferromagnetic
long-ranged order, but also for thed53 case of primary interest here yields a Ne´el temperature in close
agreement with known strong- and weak-coupling limits. Spin correlation functions and magnetic susceptibili-
ties also show very good agreement with quantum Monte Carlo calculations over an appreciable temperature
range in which the low-lying transverse spin excitations are thermally dominant.

I. INTRODUCTION

For several decades, the Hubbard model has provided a
continuous and intense focus for understanding itinerant
electron magnetism. It is specified by the Hamiltonian

H52t (
^ i j &,s

cis
† cjs1U(

i
ni↑ni↓ , ~1.1!

with a nearest-neighbor~NN! hopping matrix elementt,
electron interactions embodied in the repulsive HubbardU,
and with thê i j & sum here over NN sites on ad-dimensional
hypercubic lattice. Among the relatively few exact results
known for d.1 is the familiar mapping,1 at half-filling and
in the strong-coupling interaction limitU/t→`, on to the
spin-12 antiferromagnetic~AF! Heisenberg model

HHeis5
1

2 (
i , j

~ jÞ i !

Ji jSi•Sj , ~1.2!

with Si a spin-
1
2 operator and purely NN exchange couplings

given by Ji j[J`54t2/U. The quantum AF Heisenberg
model is likewise far from understood, but much is known
about its ground state and thermodynamic properties, both
analytically and via Monte Carlo calculations~see, e.g., Ref.
2!. Naturally, however, magnetic properties of the Hubbard
model at finiteU/t, where both charge and spin degrees of
freedom are coupled by the interaction term in Eq.~1.1!, are
considerably less well understood.

In understanding finite-temperature properties of the Hub-
bard model, progress has been made over many years by
functional integral techniques, usually based on a Hubbard-
Stratonovich transformation or variants thereof, and gener-
ally formulated within the static approximation; see, e.g.,
Refs. 3–9 and references therein. A principal aim of such
theories has been a determination of the Ne´el temperature for
loss of AF long-ranged order~AFLRO!, and thermodynamic

properties of the paramagnetic phase in particular. However,
while successful in some respects, they cannot provide a
qualitatively correct description of the finite-U/t thermody-
namics, since all yield the pure molecular field result for the
NN Heisenberg model asU/t→`, i.e., TN

MF5Zt2/U, with
Z52d the lattice coordination number. Ind53, this value is
considerably in excess of the acceptedTN.3.83t2/U ob-
tained from high-temperature series expansions,10 and since
the molecular field asymptote is insensitive to dimensional-
ity, for d<2 they fail to predict the absence of AFLRO re-
quired by the Mermin-Wagner theorem11 for T.0.

We pursue here an entirely different approach to the half-
filled Hubbard model, based on an approximate mapping of
the low-energy transverse spin excitations at finiteU/t on to
those of an effective Heisenberg model, theU/t-dependent
effective exchange couplings of which are self-consistently
determined and not confined solely to NN interactions. To
understand why such a procedure is likely to be viable, we
refer first to recent work on the Hubbard model atT50. As
shown by several groups12,13 for d>2, a good description of
the ground state of the model and its collective excitations is
obtained by linearizing particle-hole excitations about a
stable, broken symmetry unrestricted Hartree-Fock~UHF!
ground state via a random phase approximation~RPA!. For
the strong-coupling limit in particular, it is found that the
results of linear spin wave theory~LSW! for the pure AF
Heisenberg model are thereby fully recovered, and it has
been argued that UHF1RPA, together with zero-point spin
fluctuations, is able to account for the physics of the half-
filled Hubbard model atT50.

LSW for the pure spin-12 AF Heisenberg model has itself
proven highly successful,2 as exemplified by the one-loop
order effects of quantum zero-point fluctuations in reducing
the sublattice magnetizationm from its Néel value of unity.
In d51, where quantum fluctuations are at their most acute,
the algebraically divergent spin wave amplitude as frequency
v→0 naturally leads to a divergent reduction inm at
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T50, reflecting the well-known absence of AFLRO in the
exact solution. But ford>2 the Néel state is robust, and the
T50 sublattice magnetization remains nonzero, commensu-
rate with the widely held belief that the ground state of the
spin-12 Heisenberg model has AFLRO;2 for d52, the one-
loop sublattice magnetization ism50.607, rising to
m50.844 for d53 as spin fluctuation effects become less
significant.14 Most significantly, LSW results for the sublat-
tice magnetization, spin wave velocity, and ground-state en-
ergy are in close agreement with quantum Monte Carlo
~QMC! calculations for the pure AF Heisenberg model in
d52 ~see, e.g., Ref. 2!. Further, the logarithmic divergence
of the spin wave amplitude ford52 leads at anyT.0 to a
divergent magnetization reduction, consistent with the
Mermin-Wagner theorem,11 while for d53, AFLRO is stable
to thermal population of the spin waves up to the nonvanish-
ing Néel temperature.

The fundamental collective excitations about the Ne´el
state of the Heisenberg model are of course theN pure spin
waves~with N the number of sites!. For the finite-U/t Hub-
bard model, in contrast, there areN2 collective particle-hole
excitations, the nature and spectral density of which for both
pure and site-disordered Hubbard models at half-filling in
d53 have recently been studied in detail at RPA level.15

Figure 1 shows a schematic illustration of the resultant RPA
excitation spectrum at moderate couplingU/t. This consists
of two essential features. First, and our primary focus below,
is a prominent low-energy spin-wave-like band, which ex-
tends tov50 and is gapless. Second, and separated from the
top of the spin-wave-like component, is a band of weakly
renormalized Stoner-like excitations. The gap to these rela-
tively high-energy excitations is on the order of the gapD in
the single-particle UHF spectrum@which for half-filled bi-
partite lattices is nonzero for allU.0 ~Ref. 16!#, and their
maximum spectral density typically occurs forv;U. Most
importantly, it is found~see Sec. III! that the excitations
comprising the low-v band are, to a very good approxima-
tion, spin waves over a very wide range of interaction
strengthsU/t. This suggests that it should be possible to
describe these excitations, which will govern the effect of
zero-point fluctuations on the mean field ground state and

dominate the low-temperature thermodynamics of the Hub-
bard model, in terms of an effective underlying Heisenberg
model.

In Sec. II, we derive such an effective Hamiltonian, based
on comparison of the site-resolved RPA equations for the
Hubbard model with the LSW equations of an arbitrary
Heisenberg model. The resultantHHeis(U), which reduces in
the strong-coupling limitU/t→` to the pure nearest-
neighbor AF Heisenberg model, Eq.~1.2!, is shown in Sec.
III to reproduce quantitatively the lowest-N RPA excitations
of the Hubbard model, down to weak-coupling interaction
strengthsU/t.2–3; and in Sec. III theU/t dependence of
the effective exchange couplings is briefly discussed.

One advantage of an effective spin Hamiltonian is that it
provides us with a potentially straightforward route to ther-
modynamic properties of the Hubbard model in a tempera-
ture regime dominated by the low-energy spin-wave-like ex-
citations: We do not expect the accuracy of the effective
exchange couplings to be sensitive to their extraction by
comparison of linearized theories, so that thermodynamics of
the model can be examined without explicit reference to, or
the limitations of, the original RPA approximation.

This is considered in Sec. V, where an Onsager reaction
field17 ~ORF! approach to the paramagnetic phase of theU/t-
dependentHHeis(U) is outlined briefly. This provides in ef-
fect a self-consistent modification of conventional molecular
field theory to include the crucial effects of local spin corre-
lations in the paramagnet. It is very simple, but physically
transparent, and appears to transcend quite successfully the
basic limitations of a crude molecular field approach, while
remaining mean field in spirit. It is also rather rich. For ex-
ample,TN(U) is reduced to zero ford<2, consistent with
the Mermin-Wagner theorem, while ford53 the resultant
Néel temperature as a function ofU/t interpolates well be-
tween weak- and strong-coupling interaction strengths, yield-
ing strong-coupling behavior very close to the best estimates
of TN obtained from high-temperature series expansions.10

The success of the approach is further demonstrated by
comparison with quantum Monte Carlo calculations on the
d53 half-filled Hubbard model,18,19 including the Ne´el
TN(U) ~Sec. V C!, and the temperature dependence of inter-
site spin correlation functions and static susceptibilities~Sec.
V D!. The separation of energy scales alluded to above and
discussed in Sec. II —between low-energy spin-wave-like
excitations and higher-energy Stoner-like processes— trans-
lates thermally into the occurrence of an appreciable tem-
perature interval over which thermodynamic properties of
the paramagnetic phase of the Hubbard model are dominated
by the spin degrees of freedom captured in the effective
HHeis(U), and are only weakly affected by the higher-energy
excitations; in this temperature regime good agreement with
QMC results is found. The results show clearly the impor-
tance of providing a sound description of local spin correla-
tions in the paramagnet, for which we believe an ORF theory
provides possibly the simplest, qualitatively correct treat-
ment. A preliminary account of the work has been given in a
recent paper.21

II. MAPPING TO AN EFFECTIVE HEISENBERG MODEL

We describe here a mapping of the low-energy transverse
spin excitations of the half-filled Hubbard model for finite

FIG. 1. Schematic illustration of the full RPA transverse spin
spectrum for the half-filled Hubbard model. The single-particle
band gapD5Uumu, with umu the UHF local moment magnitude.
~The relative intensity of the spin-wave-like band is greatly exag-
gerated: See text.!
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U/t on to those of an effective Heisenberg model, Eq.~1.2!,
with no constraint to nearest-neighbor~NN! exchange cou-
plings Ji j . This mapping is of course exact in the strong-
coupling limitU/t→`, and is found in practice to be accu-
rate whenever there exists a discernible spin-wave-like band
in the transverse excitation spectrum. As discussed in Sec.
III, this is the case over a very wideU/t range extending
down to weak interaction strengths for the pure Hubbard
model. This feature is found also to persist for the ‘‘dirty’’
but magnetically ordered phases of site-disordered Hubbard
models. Thus, although we focus here on the periodic sys-
tem, we adopt a site-space representation appropriate more
generally to disordered Hubbard models, in which context
the mapping will be considered in a forthcoming paper.20We
do, however, retain a two-sublattice basis appropriate to the
nondisordered case, both to make contact with familiar LSW
and for notational convenience.

We begin by treating the interaction term in Eq.~1.1! at
the mean-field level of unrestricted HF, such thatH may be
rewritten as

H5H01
1

2
U(

i ,s
dnisdni2s , ~2.1!

where

H05(
i ,s

e inis2t (
^ i j &,s

cis
† cjs1U(

i
H 12 ^ni&ni22^Si&•Si J .

~2.2!

In Eq. ~2.2!, ^•••& denotes an expectation over the self-
consistent UHF ground state,dnis5nis2^nis&, and
c-number terms are omitted.

Solution of the mean-field UHF problem is straightfor-
ward for the half-filled pure Hubbard model on a bipartite
lattice16—where any interaction strengthU/t.0 leads to an
Ising-like two-sublattice Ne´el AF— but is in general rather
more complex. In particular, a rich phase diagram at zero
temperature for the Gaussian site-disordered Hubbard model
has been obtained,22 where the dominant magnetic phase in
the disorder-interaction plane is a dirty AF. As shown in Ref.
22, however, the UHF ground states for this model are also
Ising-like at half-filling ~a property we expect to be generic
to purely site-disordered Hubbard models!, with local mag-
netic moments lying along a commonz axis and
^Sz

tot&5( i^Siz&50. This is the only property of the mean-
field ground state of which we shall make use here, so that
this additional class of disordered Hubbard models can be
encompassed by assuming a UHF magnetic ground state
characterized by a set of self-consistently determined local
moments$m i% with m i[2^Siz&. For Ising-like ground states,
the UHF single-particle wave functions are pure spin orbit-
als, given viauCas&5( i f iasuf is& in a site basis, with asso-
ciated eigenvalues$eas% and pure real eigenvector coeffi-
cients $ f ias%. The mean-field local moments are obtained
from the UHF self-consistency condition

m i5 (
as,F

su f iasu2, ~2.3!

with F the Fermi level.

Collective excitations about the UHF ground state are ob-
tained within the RPA by linearizing the equations of motion
for particle-hole pairs created and destroyed in the UHF
vacuum. With UHF state creation and destruction operators
defined via

cas
† 5(

i
f iascis

† ; cas5(
i
f iascis , ~2.4!

a canonical transformation to particles and holes is made:

cas5u~a2F !aas1u~F2a!bas
† , ~2.5a!

cas
† 5u~a2F !aas

† 1u~F2a!bas . ~2.5b!

Linearization of the equations of motion given via the com-
mutators [H,O], where the particle-hole~p-h! pair creation
or destruction operatorOP$aas

† bbs8
† ,bbs8aas%, leads

straightforwardly to the generalized RPA equations; see, e.g.,
Ref. 23. Alternatively, and equivalently, an effective qua-
dratic boson Hamiltonian may be introduced~see, e.g., Ref.
24! for which the equations of motion for the operatorsO,
within the quasiboson approximation, are precisely the RPA
equations. This Hamiltonian is readily shown to be given by

HRPA5
1

2
z†P21~0!z, ~2.6!

where the 2N2-dimensional vector z5(aa
†bb

† , . . . ,
bbaa , . . . ) with a.F.b; thes-index is temporarily sup-
pressed for notational convenience.P(v) is the particle-hole
component of the time-ordered polarization propagator
within the RPA approximation, and is given by

Pab;lm~v!5 i E dteivt^0uT cb
†~ t !ca~ t !cl

†cmu0&

5 (
n.0

H ^0ucb
†caun&^nucl

†cmu0&

~En2E0!2v2 ih

1
^0ucl

†cmun&^nucb
†cau0&

~En2E0!1v2 ih J , ~2.7!

where u0& and un& are, respectively, the RPA ground and
excited states, and with Greek subscripts denoting UHF
states in the particle-hole subspaceal.F.bm and
al,F,bm. P(v) is obtained most conveniently in terms
of the corresponding UHF propagator

0Pab;lm~v!5daldbmH u~a2F !u~F2b!

~ea2eb!2v2 ih

1
u~b2F !u~F2a!

~eb2ea!1v2 ih J ~2.8!

by solving a Bethe-Salpeter equation with interaction kernel

Vab;lm~v!52^amuVulb&1^mauVulb&, ~2.9!

whereV5H2H0 , i.e.,^amuVulb&5U( i f ia f ib f il f im . This
leads23 to the simple expressionP21(v)50P21(v)2V.
Taking matrix elements of the set of commutators
@HRPA,z# between RPA ground and excited states, and en-
forcing the quasiboson commutation relation
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@aa
†bb

† ,bgad#.^@aa
†bb

† ,bgad#&5daddbg ~2.10!

then leads directly to the RPA equations. As implied by Eq.
~2.7!, the eigenvalues ofHRPA thus correspond to the poles of
P(v), i.e., the RPA collective particle-hole excitation ener-
gies.

For an Ising-like UHF ground state, the susceptibility ma-
trix P(v) —with linear dimension 2N2— block diagonal-
izes into a transverse spin sector and a mixed charge-
longitudinal spin sector (PLC), each of dimensionN2. The
transverse susceptibility matrix further decouples into two
N2/2-dimensional blocks denoted byP21(v) and
P12(v), where

Pab;lm
21 ~v!5 i E dteivt^0uT cb↓

† ~ t !ca↑~ t !cl↑
† cm↓u0&,

~2.11a!

with the spin indices now restored, and

Pab;lm
21 ~v!5Pml;ba

12 ~2v!. ~2.11b!

The transverse sectorsP21(v) andP12(v) contain low-
energy excitations extending down to zero frequency, as im-
plied by the existence of Goldstone modes in the transverse
spin spectrum. In contrast,PLC(v) consists of weakly renor-
malized HF excitations across the band gapD5Uumu in the
single-particle UHF spectrum, with a corresponding spectral
density which is thus nonzero only forv*D. The decou-
pling of theP matrix implies thatHRPA is itself separable,
viz.,

HRPA5HRPA
211HRPA

121HRPA
LC , ~2.12!

where each component has the form of Eq.~2.6!, with
P21(0) appropriate to the particular sector. The lowest-
energy excitations clearly occur in the transverse sectors
HRPA

21 andHRPA
12 . These spin-flip excitations are expected to

be dominant for all but the lowest interaction strengths and
up to temperatures on the order of the single-particle gap; we
therefore focus on them below.

As a prerequisite to establishing a connection to linear
spin wave theory, our aim now is to transformHRPA from the
UHF state basis to a site basis. To this end we first extend
formally the Hilbert space to include particle-particle~p-p!
and hole-hole~h-h! excitations. These are not of course in-
cluded within RPA, and in the UHF state representation fully
decouple from particle-hole excitations@since the interaction
kernel, Eq.~2.9!, couples only p-h excitations#. In Eq. ~2.6!,
therefore,z is formally extended to include terms of form
aa
†al (al.F) andbbbm

† (bm,F), while these excitations
are simultaneously suppressed by associating with them an
arbitrarily large energy. The extended RPA Hamiltonian ma-
trix is block diagonal, with linear dimension 4N2, consisting
of a 2N2-dimensional p-h component, and a
2N2-dimensional, diagonal block with infinite diagonal ele-
ments corresponding to p-p and h-h excitations. We also ex-
tend the quasiboson approximation@Eq. ~2.10!# to describe
the additional processes by requiring that all p-p and h-h
operators commute with p-h operators

@aa
†al ,ag

†bb
† #.^@aa

†al ,ag
†bb

† #&50, etc. ~alg.F.b!,
~2.13!

whence the resultant states thus decouple into disjoint p-h
and p-p/h-h sets. Since extension of the Hilbert space is
purely a formal device, the equations of motion for the p-h
operatorsOP$aas

† bbs8
† ,bbs8aas%, obtained from the en-

largedHRPA using the quasiboson approximation, again lead
directly to the RPA equations.

We now consider the site resolution ofP21(v), and
henceHRPA

21 . A matrix P(v), with elementsPi j ;kl(v) and
linear dimension 2(N2/2), is defined via the orthogonal
transformation

P~v!5TTP21~v!T, ~2.14!

where

Tab; i j5Ti j ;ab
T 5 f ia↑ f jb↓ ~2.15!

andP21(v) is given by Eq.~2.11a!, with no restrictions on
the UHF state indices. From Eqs.~2.15! and ~2.11a!, the
matrix elements ofP(v) may be written in the form

Pi j ;kl~v!5(
n

H ^0ucj↓
† ci↑un&^nuck↑

† cl↓u0&

~En2E0!2v2 ih

1
^0uck↑

† cl↓un&^nucj↓
† ci↑u0&

~En2E0!1v2 ih J , ~2.16!

where theN2 states$un&% span the enlarged Hilbert space of
two-fermion excitations and fully decouple into p-h and p-p/
h-h sets. However, since states belonging to the latter set are
associated with arbitrarily large eigenvalues (En2E0), the
elementsPi j ;kl(v) receive nonvanishing contributionsonly
from the particle-hole sector.P(v) is thus precisely the site-
resolved particle-hole RPA susceptibility: The formal exten-
sion of the Hilbert space naturally has no effect on the RPA
collective excitation spectrum.

Application of the above transformation toHRPA
21 yields

HRPA
215

1

2
~ z†T!P21~0!~TTz!. ~2.17!

Extraction of the particle-hole sector ofHRPA
21 in a site repre-

sentation is in general complex, but ready progress may be
made by introducing the central approximation of the present
theory, whose accuracy can be verified explicitly as detailed
in Sec. III. This is to posit for finiteU/t that theN lowest-
frequency transverse spin excitations are largely spin-wave-
like, which implies@see~2.16!# that the associatedN lowest-
energy statesun& are connected to the ground stateu0& by
excitations with weight almost exclusively in theon-site
spin-flip subspace; i.e., forjÞ i ,

^0uci↑
† ci↓un&@^0uci↑

† cj↓un&.0;

and, conversely, that the remainingN2/22N excitations in
the p-h sector have virtually no weight in the on-site spin-flip
subspace; i.e., for at least somejÞ i ,

^0uci↑
† cj↓un8&@^0uci↑

† ci↓un8&.0.

If the above conditions are satisfied, then from the Leh-
mann representation@Eq. ~2.16!# for P(v) it is clear that
elements such asPii ; jk(v).0 for jÞk; i.e., P(v) is ap-
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proximately block diagonal, with anN3N block containing
elementsPii ; j j (v)[x i j (v) which are thus dominated by the
low-energy spin-wave-like excitations. In contrast, the sec-
ond block inP(v) is dominated by the remainingN2/22N
transverse p-h excitations which, akin to those ofPLC(v),
are high-energy Stoner-like excitations with nonvanishing
spectral weight only forv*D5Uumu. The approximation
described is clearly exact in strong-couplingU/t→`, where
Pi j ;kl(v)5d i jdklPii ;kk(v) and only the low-energy sector
survives. TheN23N2 matrix P(0) then hasN nonzero ei-
genvalues associated withN spin wave excitations, and
N22N zero eigenvalues, of whichN2/2 are trivially associ-
ated with the suppressed p-p/h-h excitations, while the re-
mainingN2/22N zero eigenvalues likewise reflect the infi-
nite energy associated with the Stoner-like processes as
U/t→`.

Focusing therefore on the low-energy spin-wave-like con-
tributions toHRPA

21 @Eq. ~2.17!# andHRPA
12 , by retaining only

the on-site componentsPii ; j j[x i j in P(0), leads directly to
an approximate spin wave Hamiltonian

HSW5
1

2(i , j @x21~0!# i j $Si
1Sj

21Si
2Sj

1%, ~2.18!

where the second term follows from analogous consideration
of P12(v) and henceHRPA

12 . Note that the operators in Eq.
~2.18! are not full spin-12 operators; rather, they obey the
quasiboson commutation relation

@Si
1 ,Sj

2#5m id i j5^@Si
1 ,Sj

2#&, ~2.19!

as may be verified explicitly by transformation of Eq.~2.19!
back to a UHF state basis and application of Eqs.~2.10! and
~2.13!.

Proceeding analogously to LSW, we now divide the sys-
tem into two sublatticesA andB, such that the mean-field
^Siz&5t i um i u/2 with t i51(2) for sites belonging to sublat-
ticeA (B), and with spin raising-lowering operators given by

Si
15Aum i u H di : iPA,

di
† : iPB,

Si
25Aum i u H di† : iPA,

di : iPB,
~2.20!

in terms of the Bose operatorsdi /di
†
„such that the Bose

commutation @di ,dj
†#5d i j yields correctly Eq. ~2.19!….

Equation~2.18! for H SW then becomes

HSW5
1

2 (
i , j

t i5t j

Ci j ~di
†dj1didj

†!1
1

2 (
i , j

t iÞt j

Ci j ~didj1di
†dj

†!,

~2.21a!

with

Ci j5Aum im j u@x21~0!# i j . ~2.21b!

We now show thatHSW is precisely the LSW Hamiltonian
corresponding to the effective Heisenberg model

HHeis~U !5 (
i , j

~ jÞ i !

@ x21~0!# i j S̃i•S̃j , ~2.22!

where S̃i5um i uSi and Si is a spin-12 operator, such that
^S̃iz&5( t i /2)um i u yields correctly the UHF mean field local
moment for any site. The linear Holstein-Primakoff transfor-
mation for HHeis corresponds toS̃iz5

1
2m i2t idi

†di and S̃i
6

given by Eq.~2.20! in terms of the Bose operatorsdi /di
† .

Applied to Eq. ~2.22! ~and droppingc-number terms! this
yields precisely Eq.~2.21a! with

Ci j52t id i j H (
k

~Þ i !

@x21~0!# iktkumkuJ
1~12d i j !Aum im j u@x21~0!# i j ~2.23a!

5Aum im j u@x21~0!# i j . ~2.23b!

Equation ~2.23b! reflects the existence of two~zero-
frequency! Goldstone modes in the spectrum ofHSW, corre-
sponding to global rotations of the UHF mean field spins, as
required by the Ising-like nature of the UHF state for all
U/t.0; this is embodied formally in

(
k

@x21~0!# ikmk50 ~2.24!

~for all i !, from which follows directly the equality of Eqs.
~2.23a! and ~2.23b!.

Finally, we rewrite Eq.~2.22! in terms of the spin-12 op-
erators as

HHeis~U !5
1

2 (
i , j

~ jÞ i !

Ji j ~U !Si•Sj , ~2.25a!

with exchange couplings given by

Ji j52um im j u@x21~0!# i j : jÞ i . ~2.25b!

This is the effective Heisenberg model we seek. Further, the
Bethe-Salpeter equation for the RPAx(v) in a site represen-
tation is given by the familiar form

x21~v!50x21~v!2U1, ~2.26!

~where@1# i j5d i j ) in terms of its UHF counterpart0x ~see,
e.g., Ref. 25!, from which it follows that, for jÞ i ,
@ x21(0)# i j[@0x21(0)# i j . Knowledge of the UHF suscepti-
bility matrix 0x(v)[0x21(v) with elements given by

0x i j
21~v!5 (

a.F.b
H f ia↑ f ja↑ f ib↓ f jb↓

~ea↑2eb↓!2v2 ih

1
f ia↓ f ja↓ f ib↑ f jb↑

~ea↓2eb↑!1v2 ih J ~2.27!

in terms of the UHF eigenvalues and eigenvector coeffi-
cients, together with the mean field local moments$um i u%,
thus enables a direct determination of the effective exchange
couplings$Ji j %.

Before proceeding with a quantitative investigation of the
accuracy of the above mapping at finiteU/t, it is worth
noting that the relation between the effective exchange cou-
plings and the inverse of the static RPA susceptibility, Eq.
~2.25b!, is exact for the spin-12 Heisenberg model, to which
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the Hubbard model reduces exactly in strong coupling. The
RPA x21(0) appropriate to this model is readily shown to
have matrix elements

@x21~0!# i j52
1

2
d i j t i(

j
Ji j t j1

1

2
Ji j . ~2.28!

Use of Eq.~2.28! in Eq. ~2.21! ~with um i u51; i as appropri-
ate for U/t→`), followed by Fourier transformation and
diagonalization, then leads directly to the familiar LSW dis-
persion given, for NNJi j[J` , by

vq56dJ`A12gq
2, ~2.29!

wheregq5d21(a51
d cos(qaa) with d the lattice dimensional-

ity anda the lattice constant.

III. ACCURACY OF THE MAPPING

We have thus constructed an approximate mapping of the
low-energy transverse spin excitations of the half-filled Hub-
bard model for finiteU/t, on to those of an effective Heisen-
berg model whose exchange couplings@Eq. ~2.25b!# are de-
rived from the static RPA spin susceptibility of the original
model ~and are not therefore confined solely to nearest-
neighbor interactions!. Before discussing the resultant
Ji j (U)’s, however, we first ascertain the accuracy of the
mapping, and its range of validity inU/t.

The basic idea for any givenU/t.0 is thus to compare
directly the full RPA transverse spin spectrum of the Hub-
bard model with the linear spin wave spectrum of the effec-
tive HHeis(U), Eq. ~2.25!. The former is denoted by
NT
RPA(v), the latter byNT

LSW(v), with NT(v)5NT(2v) in
each case.NT

LSW(v)5(qd(v2vq) is obtained directly from
the eigenvalues$vq% of HSW, Eq. ~2.21!, by a conventional
Bogoliubov transformation; in the strong-coupling limit
U/t→`, vq reduces to Eq.~2.29! with J`54t2/U. The full
RPA transverse spin spectrumNT

RPA(v)5(nd(v2vn) is ob-
tained most efficiently from thev poles$vn% of the trans-
verse susceptibility matricesx21(v) @Eqs. ~2.26!, ~2.27!#
andx12(v). Sincex21(v)5 x12(2v) @see Eq.~2.11b!#,
the full NT

RPA(v) may be derived from the poles of
x(v)[ x21(v) alone. The latter are readily obtained by
noting that, because the same unitary transformation diago-
nalizes bothx and 0x, the matrix elements of the RPA sus-
ceptibility may be written in terms of the eigenvalues$lg%
and associated eigenvectors$Vg% of 0x:

x i j ~v!5(
g

Vig~v!
lg~v!

12Ulg~v!
Vjg~v!. ~3.1!

The poles$vn% of x(v) are therefore given by

12Ulg~vn!50. ~3.2!

Thus,NT
RPA(v) may be obtained by examining thev depen-

dence of the eigenvalues of the UHF0x(v).15 Further,
analysis of the behavior of anylg(vn) near l(v)51/U
shows15 that the on-site spin-flip or spin wave character of
the corresponding RPA excitation is given by

V~vn!5FU2U]l

]vU
vn

G21

5u~vn!(
i

u^0uSi
2un&u2

1u~2vn!(
i

u^0uSi
1un&u2 ~3.3!

@with un& the RPA excited state corresponding to the pole at
vn5En2E0 in x(v); see Eq. ~2.16! for
x i j (v)[Pii ; j j (v)#. V(vn) measures the weight of the RPA
excitation in the subspace of on-site spin flips, such that ex-
citations which are pure spin waves haveV51,15 while ex-
citations with V!1 have significant off-site ‘‘charge-
transfer’’ character.

Figure 1 gives a schematic illustration of the full
NT
RPA(v) which results. This consists of two essential com-

ponents. First, a spin-wave-like band at lowv, containing
preciselyN excitations and extending down tov50, as im-
plied by the presence for allU/t.0 of a Goldstone mode
~see Sec. II!. Second, a band consisting of (N/2) (N22)
Stoner-like excitations —stemming largely from intersite or
charge-transfer spin-flip excitations, i.e., weakly renormal-
ized UHF transverse excitations across the single-particle
band gap. For the pure Hubbard model, the band gap
D5Uumu is given by the UHF local moment self-consistency
relation12

15
U

N (
qP MBZ

@ 1
4D

2 1e q
2 #2 1/2, ~3.4!

whereeq522dtgq are the tight-binding energies of the un-
perturbed (U50! bipartite lattice. D is nonzero for all
U.0,12 whence the Stoner-like band begins atv;D as in-
dicated in Fig. 1, and has maximum spectral weight typically
aroundv;U. In the strong-coupling limit the single-particle
gap D(U)→`, eliminating the Stoner-like band, leaving
solely theN-excitation spin wave component given by Eq.
~2.29!, as discussed above. At finiteU/t the Stoner-like band
mixes with the pure spin wave band but of central impor-
tance is the existence, over a very wide range of interaction
strengths, of a true gap separating the two bands, as illus-
trated in Fig. 1. Numerical studies using 215 q points indicate
that the spectral gap inNT

RPA(v) persists down to very-weak-
coupling strengths of aroundU/t.2, i.e., U around one-
sixth of the unperturbedd53 band widthB512t.

The occurrence of a spectral gap shows the persistent
separation of energy scales for the spin-wave-like and
Stoner-like excitations, extending down to weak-coupling in-
teraction strengths. To examine the accuracy with which the
former are reproduced by the effective Heisenberg model,
Fig. 2 shows the low-v portion of the transverse excitation
spectrumNT

RPA(v), containing the firstN excitations, ob-
tained directly via a pole search on Eq.~2.26! using 215 q
points and for interaction strengthsU/t520,12, and 6~the
spectra are normalized and have been smoothed convention-
ally using Lorentzians with half-widths on the order of the
local level spacing!. These are to be compared with
NT
LSW(v) for the corresponding effective Heisenberg model
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HHeis(U). In Fig. 2 explicit comparison ofNT
RPA(v) and

NT
LSW(v) is in fact shown only forU/t56, since for stronger

interactions the spectra are indistinguishable; forU/t56 it-
self the difference is barely discernible. Even for weak cou-
pling, e.g.,U/t53, the agreement is good, with the spectral
features ofNT

RPA(v) well reproduced byNT
LSW(v), save for a

slight net shift to lower energy, reflecting level repulsion
with the approaching upper Stoner-like band and similar
quality of comparison occurs forU/t52.

The degree to which thecharacterof the lowest-N RPA
excitations is reproduced byNT

LSW(v) may also be assessed
by examiningV(v), Eq. ~3.3!, as discussed above: A value
of V(v).1 for v in the lower band indicates the clear
dominance of spin-wave-like excitations, as assumed in con-
structing the effectiveHHeis(U). For givenU/t, V(v) is a
minimum for the highest of the firstN RPA excitations, since
the upper band edge therein is most influenced by the en-
croaching Stoner-like band. Specifically, we find
V(vmax)51.00 down toU/t.5, decreasing to 0.71 for
U/t53 and 0.39 forU/t52, although even here the majority
of low-v excitations haveV(v).1. Below this, however,
V(vmax) decreases rapidly: Its value is 0.02 forU/t51. The
low-v RPA transverse excitations of the finite-U/t Hubbard
model are thus indeed dominated by spin-wave-like excita-
tions for all but the lowestU/t.

The assumptions underlying the approximate mapping of
Sec. II are thus supported, yielding quantitatively accurate
results over a very wideU/t range encompassing strong-,
intermediate-, and weak-coupling strengths, down toU/t of
around 2–3. This is in contrast to recent attempts to gener-
alize linear spin wave theory to the Hubbard model. Pertur-
bative methods26,27 are correct only asU/t→`, i.e., as
J→0. For large coupling, only the low-v portion of the spin
wave spectrum is given correctly, so that while quantities
such as the spin wave velocity~and sublattice magnetization
in d52!, which are governed by the low-v portion of the
spectrum, are given correctly for largeU/t, the full spectrum
is not properly obtained, as reflected in, e.g., bulk suscepti-
bilities. A more successful approach28 considers the poles of
x(v), Eq.~2.26!, given by expanding the UHF susceptibility
0x in powers oft2/U2 about theU→` limit. However, as

commented in Ref. 28, convergence of this expansion is
slow, such that the approximation in practice remains limited
to a large coupling regime.

IV. EFFECTIVE EXCHANGE COUPLINGS

The resultant NN, 2NN, and 3NN exchange couplings
obtained from Eq.~2.25! have been shown as a function of
U/t for d53 in Fig. 1 of Ref. 21, to which the reader is
referred. Decomposing the bipartite simple cubic lattice into
two interpenetrating sublattices, the resultantJi j (U)’s are
found to be positive betweeni and j on different sublattices,
negative between sites on the same sublattice. Thus, AF or-
der is always reinforced, leading to the expectation~exam-
ined in Sec. V C! that the resultant Ne´el temperature will be
enhanced over that resulting solely from consideration of
nearest-neighborJi j ’s. JNN itself is found to be

21 a maximum
for U/t.9, after which it steadily approaches from below
the exact strong-coupling asymptote for the Hubbard model,
J`54t2/U. uJ2NNu andJ3NN are always an order of magni-
tude less thanJNN but play a significant role forU/t&15.
One example of this is shown by the upper band edgevmax

of NT
LSW ~Fig. 2! which, if NN couplings alone were suffi-

cient, would be given bydJNN . vmax is in fact found to lie
somewhat in excess of 3JNN , reflecting the role of 2NN and
3NN couplings. The effect is appreciable even forU/t512
and does not become insignificant untilU/t520 where~see
Fig. 1 of Ref. 21! JNN is close to the strong-coupling asymp-
tote J` . Couplings beyond 3NN do of course occur but are
found to play only a minor role in practice.

A further illustration of the roles of the various spin cou-
plings at finiteU/t is given by considering the effect of
zero-point transverse spin fluctuations on the ground state of
the effective Heisenberg model. For example, the sublattice
magnetizationm is obtained readily at a one-loop level~see,
e.g., Ref. 14!. The known strong-coupling LSW results dis-
cussed in Sec. I are correctly recovered, but the present ap-
proach permits a study of the effects of low-lying spin waves
in reducingm from its mean-field valuemHF5umu @Eq. ~3.4!#
as a function of interaction strength. Figure 3 thus compares

FIG. 2. NT
RPA(v) ~solid lines! andNT

LSW(v) ~dashed lines! vs
v/t for the half-filled Hubbard model, withU/t520 ~a!, 12 ~b!, and
6 ~c!.

FIG. 3. Sublattice magnetizationm vs U/t , obtained via one-
loop inclusion of zero-point transverse spin fluctuations. Also
shown is the UHF limit,m[umu ~dashed line!. The strong-coupling
limit m50.844 is indicated by an arrow.
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m to its HF valuemHF for the d53 simple cubic lattice. In
strong-coupling,m/mHF50.844, and quantum fluctuations
remain fairly significant for interaction strengths down to
;U/t56, wherem/mHF.0.91. Note, however, that with
NN couplings only, the fractional reduction inm depends
only on the lattice topology and is independent of the mag-
nitude of JNN , whencem/mHF would retain its strong-
coupling value if solely NN interactions were considered.
The decrease in the zero-point sublattice magnetization re-
duction asU/t is lowered thus reflects in part the expected
importance of effective exchange couplings beyond purely
NN interactions.

V. FINITE-TEMPERATURE MAGNETISM

We turn now to finite-temperature properties of the half-
filled Hubbard model, in particular the (U/t,T/t) phase dia-
gram, i.e., the Ne´el temperatureTN(U) for loss of antiferro-
magnetic long-ranged order~AFLRO!. Granted the mapping
on to an effective Heisenberg model, two potential options
arise. First, to study finite-T properties via thermal excitation
of the low-lying bosonic transverse spin excitations coming
from an ordered low-T phase, using familiar linear spin wave
theory. This is viable ford53 at temperatures sufficiently
deep in the ordered phase, but breaks down progressively
with increasingT and yields a poor estimate ofTN . And for
d52, the logarithmic divergence of the spin wave amplitude
leads at any nonzeroT to a divergent magnetization reduc-
tion, and hence solely a paramagnetic phase forT.0, con-
sistent with the Mermin-Wagner theorem.11

An alternative is to approach a possible low-T ordered
phase from the ‘‘high-T’’ paramagnet, using the effective
HHeis(U) ~whose exchange couplings are not expected to be
sensitive to their extraction by comparison of linearized
theories, RPA and LSW!. It is this route we take, although
something more than a molecular-field-type theory for
H Heis(U) is clearly required if justice is to be done to para-
magnetic spin correlations and the dictates of the Mermin-
Wagner theorem satisfied: This is provided by the Onsager
reaction field17 ~ORF! approach outlined in Sec. V B. First,
however, we comment briefly on the finite-T UHF mean-
field state, and anticipate thermal implications of the separa-
tion of energy scales for spin-wave-like and Stoner-like ex-
citations, as found in Sec. III.

A. UHF for T>0

Extension of UHF to finiteT is straightforward, consist-
ing simply of a variational minimization of the UHF free
energy functional.29,30 Our first point concerns the particle-
hole stability of the resultant self-consistent solutions which
is necessary in order that collective excitations about the
mean-field state be bounded.31 This is important, for it has
been argued~see, e.g., Ref. 30! that for finite T there will
exist 2N possible stable UHF states, each Ising-like and con-
structed essentially from the pure Ne´el state by flipping any
number of the mean-field local moments. However, from ex-
tensive numerical work on large finite-size systems, we have
found this not to be the case. That is, while many Ising-like
self-consistent solutions to the UHF equations may exist at a
given temperature, only the pure two-sublattice Ne´el state

~and its spin-flipped image! is properly stable against
particle-hole excitations —i.e., is a true minimum of the
UHF free energy surface. The temperature-dependent local
moment magnitude corresponding to this solution is given by
the finite-T analog of Eq.~3.4!, i.e.,

15
U

N (
qP MBZ

tanh@Eq~D!/2kT#

Eq~D!
, ~5.1!

whereEq(D)5@ 1
4D

21eq
2] 1/2 andD(T)5Uum(T)u. Equation

~5.1! has a nonzero solution forum(T)u below a critical tem-
peratureTHF(U), at which Stoner-like thermal excitations
across the single-particle gap destroy the UHF local mo-
ments.@Above THF(U), the sole solution to the UHF equa-
tions is the paramagnetic or restricted HF solution.# This
clearly occurs at a temperature scale on the order of the
single-particle gapD(0)5Uum(0)u; in fact, THF(U) from
Eq. ~5.1! goes asymptotically as14U, an asymptote closely
approached in practice forU/t*4 or so.

It is of course clear thatTHF(U) tells us essentially noth-
ing about the true Ne´el temperatureTN(U) for destruction of
AFLRO in d53, save for the weakest interaction strengths.
The energy scale for disordering of theorientationsof local
moments is set by the effective coupling constantsJi j (U)
and not the single-particle band gapD(0) of orderU. How-
ever, we can simply but readily include the first effects of
thermal excitations across the gap on the local momentmag-
nitudesby replacing the zero-temperatureum i u ’s entering Eq.
~2.25b! for the effective coupling constants by their self-
consistent, finite-T values given by Eq.~5.1!. This has a
non-negligible effect onTN(U) only for interaction strengths
U/t&4, but ensures a sensible interpolation between weak
and strong interaction limits.

THF(U) sets a natural upperT limit for the theory we
develop. However, save for the lowestU/t, THF is suffi-
ciently in excess ofTN(U) that there exists a wideT interval
—extending at least to several timesTN itself— over which
thermodynamic properties are dominated by the low-energy
spin scale captured in the effectiveH Heis(U), and are barely
affected by the high-energy Stoner-like processes. This will
be shown explicitly in Sec. V D.

B. Onsager reaction field theory

We now sketch an Onsager reaction field~ORF! treatment
of the effective Heisenberg model, Eq.~2.25!, with
U-dependent exchange couplings$Ji j (U)%. Full details are
given in a recent paper,40 to which the reader is referred.
ORF provides an essential modification of molecular field
~MF! theory by incorporating self-consistently the vital ef-
fects of short-ranged magnetic ordering in the paramagnetic
phase. Originally devised in the context of dielectric theory
by Onsager,17 it was first extended to magnetism by Brout
and Thomas32 and has since been applied successfully to eg
spin glasses33,34 and itinerant electron systems.35–38

ApproachingTN(U) from the paramagnetic phase, the re-
quired modification of MF theory stems from a recognition17

that the MF acting on a given spin,hi
MF5( j Ji j ^Sj& ~where

^•••& now denotes a thermal average!, is itself a sum of two
fields: the cavity fieldhi

CF, which is the field in the absence
of the given spin, and the reaction fieldhi

RF, arising due to
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polarization of its neighbors by the spin itself.hi
RF is given

by hi
RF5l^Si& with l(T)5( j Ji j ^Si•Sj&/S(S11) (S5 1

2

here!. But since the reaction field is parallel to the spin, it
cannot contribute to its own alignment. It must therefore be
removed from the MF, whence the cavity field
hi
CF5hi

MF2hi
RF—and not the MF— is the correct local field

to which the spin responds, and this must of necessity be
implemented self-consistently, since the ORF depends on the
local spin correlations, embodied inl(T).

The static susceptibilityx(q) is then obtained in direct
analogy to standard MF theory, and by imposing self-
consistently the fluctuation-dissipation theorem
^Si•Sj&53Tx i j one obtains40

TN
MF~U !

T
5N21(

q
@z2J~q!/J~p!#21[G~z!. ~5.2!

Here, TN
MF(U)51/4uJ(p)u is the molecular field (l50)

Néel temperature, withJ(q) the Fourier transform of
$Ji j (U)% andz5(T/TN

MF)1@l/J(p)#. Equation~5.2! deter-
minesz(T) @or equivalentlyl(T)# self-consistently, the tem-
perature scale being set byTN

MF(U). The x(q) then follow
directly from40 uJ(p)ux(q)5@z(T)2J(q)/J( p)#21, and
sincex(q) first diverges forq5 p at z(T)51, the ORF Ne´el
temperature is given by

TN~U !5TN
MF~U !/G~z511 !. ~5.3!

Spin correlation functions in the paramagnetic phase like-
wise follow from ^Si•Sj&/3T5Gi j (z)/uJ(p)u where

Gi j ~z!5N21(
q
eiq•Ri j @z2J~q!/J~p!#21. ~5.4!

Mathematically, theGi j (z)’s are formally equivalent to
the site Green functions for an arbitrary one-band tight-
binding Hamiltonian ind dimensions, withG(z)[Gii (z).
Therefore,G(z→11) diverges algebraically ind51 and
logarithmically ind52.39 This result is not confined solely
to NN coupling constants~and thus the strong-coupling
limit !, and implies the absence of AFLRO ind<2 for
T.0, consistent with the Mermin-Wagner theorem.11 Al-
though our main focus here is a determination ofTN(U) for
the Hubbard model ind53, note that the logarithmic diver-
gence ofG(z→11) for d52 leads directly asT→0 to an
exponentially divergent spin correlation lengthj(T), indica-
tive of the AFLRO characteristic of theT50 ground state. In
the strong-coupling limitU/t→`, this reduces asymptoti-
cally for T→0 to

j~T!5Cexp~pTN
MF/2T![Cexp~2prs /T!, ~5.5!

whereC is a T-independent constant, andrs5
1
4TN

MF5 1
4J`

(J`54t2/U) is also theT50 spin-stiffness constant ob-
tained from LSW about the AF-ordered Ne´el state of the
d52 pure nearest-neighbor Heisenberg model. The asymp-
totic form of Eq.~5.5! agrees with the two-loop order calcu-
lation by Chakravarty, Halperin, and Nelson41 on the quan-
tum nonlinears model in 211 dimensions, and the success
of an ORF approach ind52, compared to quantum Monte
Carlo and other analytical approaches, is detailed in Ref. 40.

C. Phase diagram ofd53 Hubbard model

For d53, numerical evaluation ofG(1) using theU/t-
dependent exchange couplings yields directlyTN(U) via Eq.
~5.3!. In Fig. 4 we show the (U/t,T/t) phase diagram ob-
tained from both MF and ORF methods. Clearly, the effects
of short-ranged spin correlations, self-consistently included
in the ORF treatment, are crucial in reducingTN(U) from its
MF value for all but the weakest interaction strengthsU/t. In
strong couplingU/t→`, MF theory yields the expected
TN
MF→6t2/U, while the ORF TN→3.96t2/U, which is

within 3% of the accepted value of 3.83t2/U obtained from
high-temperature series expansions~HTSE’s!,10 and in the
weak-coupling limitTN approaches the expected@3–9,18#
THF(U), so that the treatment interpolates sensibly between
weak- and strong-coupling regimes.

Figure 4 compares our results forTN with the Néel tem-
perature of thed53 Hubbard model inferred from QMC
calculations by Scalettaret al.;18 for U/t*6–8, these results
are significantly reduced from earlier QMC work by Hirsch19

on smaller lattices. Clearly, the QMC points are well repro-
duced by themolecular field TN

MF(U) over the entireU/t
range, our estimate being within the MC error bars for all but
two points (U/t510,12 although even here it is close!. Fur-
ther, byU/t520, the QMC results appear to be approaching
the MF asymptote and remain well above the HTSE limit.
These observations lend weight to Hasegawa’s argument7

that the extrapolation used to extractTN from the QMC data
yields a Weiss temperature~rather than the trueTN) —which
is precisely the quantity obtained by MF theory— and there-
fore overestimatesTN . In Fig. 4 therefore, we believe that
TN
MC should be compared withTN

MF rather than the ORF Ne´el
temperature. This does not, however, presage poor agreement
between QMC and the ORF approach, for a reliable determi-
nation of the Ne´el temperature from QMC calculations on
relatively small systems is clearly difficult; a more revealing
comparison is provided by theT dependence of, e.g., the
spin correlation functions, considered in the following sec-
tion.

Previous functional integral approaches mentioned in Sec.
I include the single-site spin fluctuation theory of Hubbard3

FIG. 4. Néel temperature vsU/t. ~A! Onsager reaction field
TN, ~B! molecular fieldTN

MF . Also shown are QMC results~Ref.
18! ~circles!, the strong-coupling asymptotesTN

MF→6t2/U and
TN→3.96t2/U from ORF theory,THF ~dashed line!, and the VF
~Refs. 42,43! result ~dot-dashed line!.
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and Hasegawa,4 the Gutzwiller-type variational approach of
Kakehashi, Fulde, and Samson,5 and a more recent treatment
by Hasegawa.7 Comparison of these with the present theory
has been given in a previous paper21 ~Fig. 3!; none repro-
duces the QMC results nearly as well as the simple

TN
MF(U) above. More significantly, however, these ap-

proaches share the common deficiency that all yield the mo-
lecular field asymptoteTN

MF(U) in strong coupling. We be-
lieve this to be a serious limitation even down to relatively
low U/t since, as shown by Fig. 4, the effects of spin corre-
lations included in the ORF treatment reduce significantly
TN(U) below its MF value over a wideU/t range.

A previous attempt to include such effects has been made
by Moriya and co-workers;42,43 their ‘‘vector field’’ ~VF!
method aims to include the dominant effects of short-ranged
magnetic order omitted by the above approaches. Unfortu-
nately, as shown by Fig. 4, the estimatedTN(U) appears
seriously awry over the entireU/t range, and the model con-
tains several unphysical properties.6 But we believe the
present results do support the necessity of including spin
correlations, and provide possibly the simplest, qualitatively
correct means of so doing.

Finally, it is interesting to note that our ORF results agree
rather well with Kakehasi and Hasegawa’s6 conjectured form
for the trueTN(U). Figure 5 shows the ORFTN(U), to-
gether with the analogous result obtained by constraining the
effective exchange couplings to be purely NN, and the pos-

FIG. 5. ORFTN ~solid line!, TN for solely NNJi j ’s ~dotted line!
and the postulated form for the trueTN from Ref. 6~dashed line!.

FIG. 6. Spin correlation functionsu^SizSjz&u vs T/t in the paramagnet forU/t512 ~A!, 10 ~B!, and 8~C!. The ORF Ne´el temperature
TN is indicated by an arrow.~a! Nearest neighbor,~b! 2NN, ~c! 3NN. Circles show QMC results~Ref. 19!.
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tulated form from Ref. 6. The agreement between the latter
and the NN curve is remarkably good. In addition, the effects
of couplings beyond NN in stabilizing the AF phase are par-
ticularly clear here, the full ORFTN(U) being significantly
enhanced over its pure NN counterpart, and giving much
better agreement with QMC results in the weak-coupling re-
gime.

D. Paramagnetic phase

Given the importance of a good description of short-
ranged order as stressed above, it is important to examine
whether the present theory describes well the temperature
dependence of intersite spin correlation functions~SCF’s! in
the paramagnetic phase. Within a molecular field approxima-
tion these vanish by definition in the paramagnet, and so all
correlation stems from the nontrivial effects of the reaction
field. Figure 6 shows theT dependence of̂SizSjz& (5 1

3

^Si•Sj&) for T>TN(U), for three values of the interaction
strengthU/t512, 10, and 8. NN and 3NN spin correlations
are always negative and the 2NN SCF always positive, as
expected, and sou^SizSjz&u is shown; these are compared to
Hirsch’s19 QMC results for the half-filled Hubbard model on
a 43 lattice. It is clear in each case that appreciable spin
correlations beyond NN build up only for temperatures
T/t&1, and agreement with QMC is noticeably poorer if the
effective exchange couplings$Ji j (U)% are constrained solely
to nearest-neighbors. ForU/t512, the ORF results of Fig.
6~a! agree well with QMC over a very wideT range above
the ORFTN(U).0.29t ~despite the aforementioned dispar-
ity between the two estimates ofTN). For the NN^SizSjz&,
the agreement becomes poorer only for temperatures ap-
proachingTHF(U).3t at which the UHF local moments are
thermally destroyed. This is precisely as expected for, as dis-
cussed above,THF(U) represents a definite upper limit for
the theory, setting a thermal scale for the Stoner-like excita-
tions neglected in the effectiveH Heis(U). For U/t512,
THF is an order of magnitude greater than the Ne´el tempera-
ture. It diminishes with decreasingU/t ~see Fig. 4!, whence
theT interval over which good agreement with QMC is ob-
tained naturally becomes narrower@Figs. 6~b!, 6~c!#. How-
ever, as seen from Fig. 6 —on which the ORFTN(U) is also

marked— the temperature interval over which the QMC spin
correlations seem well captured extends up to;3–4 times
TN itself and thus, while narrower on the hopping scalet ~as
used in the figure!, remains appreciable in real terms.~One
should also bear in mind that with decreasingU/t, system-
size effects in QMC are likely to become more significant.!

To illustrate the resultant static susceptibilities, Fig. 7
shows the ORF staggeredx(p) vsT/t for ~a! U/t58 and~b!
U/t56. The former is compared to Hirsch’s QMC results19

for the half-filled Hubbard model on a 63 lattice, the latter to
Scalettaret al.18 on a 83 lattice. The agreement is rather
good, even for the lower temperatures where system-size ef-
fects in QMC have a not insignificant effect@see Fig. 10~b!
of Ref. 19#; although the ultimate high-T asymptote of the
QMC susceptibilities must correctly be one-half the free-spin
Curie law ~as for the noninteracting limit!, whereas a pure
Curie law naturally results for the effectiveH Heis(U). A
similar quality of comparison results for the uniformx(0).
We also expect the agreement to improve with increasing
U/t, but unfortunately QMC results forU/t.8 do not ap-
pear to have been reported.

Finally, to illustrate the effect on thermodynamic proper-
ties of the scale separation between low-energy spin excita-
tions embodied in the effectiveHHeis(U) and the omitted
higher-energy Stoner-like excitations, Fig. 8 shows the ORF
entropyS(T) vsT/TN(U) for U/t510, as obtained from the
integrated specific heat. This is readily shown to be given by

S~T!5S~TN!2
3

2 F12
TN
MF~U !

TN~U !
1

l~T!

4T G
2
3

8 E
TN~U !

T l~T!

T2
dT, ~5.6!

with the ORFl(T) determined self-consistently for the cho-
senU/t as outlined in Sec. V B. The molecular field limit of
Eq. ~5.6! is, trivially, l(T)50 and TN[TN

MF , whence
S(T)[S(TN

MF)5Rln2 throughout the paramagnetic phase.
To estimateS(TN) at the ORF level, we impose the con-
straintS(T HF)5Rln2 with theT dependence ofum(T)u in-
cluded in the effective exchange couplings@since from Eq.
~2.25b! the $Ji j % are effectively ‘‘switched off’’ when the
local moments vanish asT→T HF(U)2#. Alternatively, if the

FIG. 7. Staggered susceptibilityx(p) vs T/t for U/t58 ~a! and 6~b!. The ORF Ne´el temperatureTN is indicated by an arrow. Also
shown are QMC results~circles! from Ref. 19~a! and Ref. 18~b!.
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T50 um(0)u is used, one demands thatS(T)→Rln2 as
T→`. The two estimates ofS(TN) differ negligibly for
U/t510 ~as also forU/t58,6), as expected from the discus-
sion of Sec. V A. The resultantS(T) saturates in practical
terms toRln2 on aT scale of;2–3 timesTN(U), commen-
surate with the behavior of the corresponding spin correla-
tions, Fig. 6~b!.

For comparison, Fig. 8 shows the pure mean-field refer-
ence entropyS0(T) given by

S0~T!52RE
2`

`

dED~E!$ f ~E!lnf ~E!

1@12 f ~E!# ln@12 f ~E!#%, ~5.7!

whereD(E) is the UHF single-particle spectrum.S0(T) in-
cludes only excitations across the single-particle band gap in
D(E), and naturally fails to describe the low-energy trans-
verse spin excitations, but its value gives an~over!estimate
of the residual contribution toS(T) arising from the Stoner-
like excitations neglected in the effectiveH Heis(U). As seen
from the figure, these begin to become appreciable only on a
T scale exceeding that at which the ORFS(T) effectively
reaches its free-spin value. It is also instructive to compare
S(T) to the exact atomic limit (t50) entropy,SAL(T) ~Fig.
8!, which starts from a value ofRln2 at T501 and, like
S0(T), eventually reachesRln4 at a temperature of orderU
where excitations across the single-particle gapU begin to
saturate. As seen from Fig. 8, however, the latter effect is
again not significant over the temperature regime on which
we have focused.

VI. CONCLUSION

The present work provides a physically transparent and
seemingly successful approach to low-energy spin excita-
tions in the half-filled Hubbard model and their thermody-
namic consequences.

A mapping of the low-energy transverse spin excitations
of the model onto those of an effective underlying Heisen-
berg model, which is of course exact in strong-coupling, is
found to be quantitatively accurate over a very wide range of
interaction strengths down to weak couplingU/t of around
2–3, as judged by comparison with the full RPA transverse
spin spectrum for the antiferromagnetic broken symmetry
state.

Physical properties of the system in the thermal paramag-
netic phase have been described via a simple Onsager reac-
tion field approach, which demonstrates clearly the impor-
tance of describing self-consistently spin correlations in the
paramagnet. This is central, in recovering, for example, the
dictates of the Mermin-Wagner theorem ford<2 and for
d53 ~where resultant ORF exponents are spherical40! in de-
scribing, for example, the phase boundary to AFLRO where,
for strong coupling in particular, excellent agreement with
known high-temperature series expansion results is obtained.
Further, the separation of energy scales between low-energy
spin-wave-like excitations and higher-energy Stoner-like
processes, which is found to persist over a very wide range
of interaction strengths down to weak couplingU/t, is mani-
fest thermally in an appreciable temperature range above
TN(U) over which physical properties appear dominated by
the low-lying transverse spin excitations. As judged in par-
ticular by comparison with a range of quantum Monte Carlo
results for the Hubbard model these are rather well described
by the present work, which appears to represent a significant
improvement over previous approaches.

Finally, we note that neither the mapping on to an effec-
tive underlying Heisenberg model nor the subsequent ORF
approach is confined to the pure Hubbard model on which
we have concentrated here, but can be adapted readily to
magnetically ordered phases of disordered Hubbard models,
as will be discussed in a later publication.20
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