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Monte Carlo simulations on a two-dimensional lattice of magnetic dipoles have been performed to investi-
gate the magnetic reversal by thermal activation in rare-earth–transition-metal~RE-TM! alloys. Three mecha-
nisms of magnetization reversal were observed: nucleation dominated growth, nucleation followed by the
growth of magnetic domains containing no seeds of unreversed magnetization, and nucleation followed by
dendritic domain growth by successive branching in the motion of the domain walls. The domain structures are
not fractal; however, the fractal dimension of the domain wall was found to be a good measure of the
jaggedness of the domain boundary surface during the growth process. The effects of the demagnetizing field
on the hysteretic and time-dependent properties of the thin films were studied and some limitations in the
application of the Fatuzzo model on magneto-optic media are identified.

I. INTRODUCTION

The magnetization reversal process in amorphous rare-
earth–transition-metal~RE-TM! alloys1 is of considerable
practical interest in thermomagnetic recording. Thermal ac-
tivation is one of the factors that determines the stability of
the thermomagnetically grown magnetic domains against
collapse or irregularity and is, therefore, of practical rel-
evance in defining the signal-to-noise ratio.2

The magnetization reversal in amorphous magneto-optic
media occurs in general by a process of nucleation followed
by domain growth. The observation of a finite domain-wall
coercivity can be interpreted by postulating the existence of
nanoscale structural and magnetic inhomogeneities that act
as pinning centers.3 It is possible to study the origin of the
coercivity by computer simulations that employ the dynamic
Landau-Lifshitz-Gilbert equation of motion for the magneti-
zation in the absence of thermal fluctuations.3 Such studies
have demonstrated that it is important to distinguish the
nucleation coercivityHn , which is determined primarily by
fluctuations in the perpendicular anisotropy constantKu ,
from the wall-motion coercivityHw that depends on fluctua-
tions in the exchange stiffness constant and the dispersion in
easy axes.3 These findings are consistent with the experimen-
tal observation that the nucleation coercivity can be substan-
tially larger than the wall-motion coercivity in RE-TM al-
loys, resulting in rectangular hysteresis loops.4

When the external field is close to but less than the nucle-
ation coercivityHn , magnetization reversal is still possible
by thermal activation over the local energy barriers. Thermo-
activated reversal has been observed in a variety of amor-
phous RE-TM alloys such as Tb-Fe,5–10 Tb-Fe-Co,11–13

Gd-Fe,14–16Gd-Tb-Fe,15,16and Tb~Co!-based alloys.16 There
is a substantial body of evidence for the presence of a ther-
mal magnetic aftereffect:~1! the observation that the
domain-wall motion is not a continuous process but consists
of discrete Barkhausen jumps of small sections of the wall.8

~2! the slow decay of the magnetization under constant ex-
ternal field conditions,5 and ~3! the exponential dependence

of the domain-wall velocity on the external applied
field.6,14,15

The precise form of the time dependence of the magneti-
zationM (t) in a constant field depends on the relative bal-
ance of the nucleation and wall-motion processes during
magnetic reversal. A theory by Fatuzzo17 assumes that the
nucleated domains are circular with initial radiir c that grow
at a constant velocityv, while the rate of nucleationR re-
mains constant. The theory predicts that the shape of the
time-dependence curvesM (t) depends on a single parameter
k5v/Rrc . From the shape of the experimental curvesM (t),
approximate values ofk can be determined.16 Fatuzzo’s
theory, however, does not account for the presence of a dis-
persion in energy barriers that may arise, for example, from
local fluctuations of the exchange stiffness constant and the
uniaxial anisotropyKu or alternatively from the spatial and
temporal variations of the demagnetizing field. A dispersion
in energy barriers is necessary to account for the common
observation that the nucleated domains are frequently irregu-
lar in shape18,19 and their subsequent growth may be den-
dritic, forming a fractal structure.6,8,10

The stability of the domain shape of cylindrical domains
in homogeneous thin films with perpendicular anisotropy but
low domain-wall coercivity depends on the wall stiffness,20

which is determined by the competition between the domain
wall and demagnetizing energy.21 When the demagnetizing
energy is relatively large, the stiffness of the domain wall is
low and the domain shape is more susceptible to local defor-
mation by pinning sites. Dendritic growth occurs when the
stiffness of the wall is sufficiently low so that the growth of
the reverse magnetization is dominated by the geometry of
the pinning sites.10 The computation10 or measurement18 of
the fractal dimension of the boundary surface of the mag-
netic domains have been suggested as useful methods of
characterization of the jaggedness of the domain boundary.

The simulation of thermoactivated magnetic reversal un-
der constant external field conditions can best be carried out
using a Monte Carlo algorithm22 that simulates accurately
the kinetic process as in Ref. 23 Kirbyet al.24 applied the
algorithm on thin films for magneto-optic recording and ob-
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served two distinct reversal mechanisms in their simulations
dependent on the competition between the demagnetizing
and domain-wall energy. In the case when the demagnetizing
forces are dominant, the reversal occurred by continuous
nucleation; otherwise, if the wall energy is relatively large,
the reversal occurred by slow nucleation followed by rapid
domain growth. The simulation of dendritic domain growth,
however, using that model is not possible~as some trial runs
have confirmed! because of the imposed condition of the
dominance of the wall energy for the observation of domain
growth, whereas dendritic growth arises primarily from the
local inhomogeneities in the demagnetizing field.8,10

A numerical model of the dendritic growth of the reverse
magnetization was reported by Saykoet al.10 This model
considered the growth of one domain only and did not con-
sider the possibility of other nucleation events. Our objective
is to show that to simulate the nucleation process and den-
dritic domain growth, it is necessary to consider the differ-
ence in the intrinsic energy barriers for nucleation and wall
motion. For amorphous RE-TM alloys, this approach is con-
sistent with the difference observed between the coercivities
of nucleation and domain-wall motion. The numerical model
of thermal activation adopted in our work is described in
Sec. II and the Monte Carlo algorithm in Sec. III. A modifi-
cation of the standard algorithm that allows the simulation of
the dynamic response of the system during an hysteresis
cycle is also presented. In Sec. IV, it is shown that the model
simulates all the magnetic reversal mechanisms observed in
practice. It is also shown that the domain structures may be
porous but are not strictly fractal, since the basic property of
scale invariance25 is not satisfied, i.e., the domain structures
do not look the same as the domain size increases. The as-
sumption that dendritic growth results in fractal domain
structures10 does not appear, therefore, to be justified. The
perimeter of the domains, however, is shown to be a fractal
curve, and its fractal dimension turns out to be a useful figure
of merit of the irregularity of the domain growth. An analysis
of the numerical data on the hysteretic and time-dependent
properties of the films in relation to the Fatuzzo theory is
also carried out to determine the effects of the demagnetizing
forces in the magnetic reversal.

II. DESCRIPTION OF THE MODEL

The amorphous thin film was modeled by a 5123512
planar hexagonal array of cells that is schematically shown
in Fig. 1. The geometry of the system is essentially similar to
the model of Kirbyet al.,24 although the detailed treatment
of thermoactivated reversal is different. The domain wall is

assumed to be pinned at the boundary between the cells,
which serves to describe the geometry of the ‘‘defects.’’ The
separation of neighbor cellsd is assumed to be much larger
than the domain-wall thickness so that any nanoscale fea-
tures in the domain-wall motion are ignored. This assump-
tion is justified by the experimental observation that the do-
mains walls undergo, by thermal activation, irreversible
jumps over a distance'0.5 mm,7 whereas the domain-wall
thickness is much smaller, for example, of the order'10 nm,
in Tb-Fe-Co films.4 At the start of the simulation, the mag-
netization in each cell is in the1z direction perpendicular to
the plane of the film and is allowed to switch to the2z
direction along an external applied fieldHa . We can, there-
fore, express the magnetizationM i at any site i as
M i5e iMsk̂, wheree561 andk̂ is the unit vector normal to
the plane of the film.

The energy densityU at a local sitei is given by the sum
of the anisotropy, Zeeman, demagnetizing, and domain-wall
energy densities.

U5Ua1Uz1Ud1Uw5
Ku

Ms
2 uk̂3M u22M i•Ha

2M i S (
jÞ i

Di jM j1
1
2DiiM i D

1
1

2 S n2
M i•( j51

n M j

Ms
2 D Ew

V
, ~1!

whereHa is positive along thez direction,Di j are the scalar
components of the demagnetization matrix,n56 is the num-
ber of neighbor cells,Ew is the wall energy in the interface
between two cells, andV is the volume of a cell. Note that
the uniaxial anisotropy energy density including the self-
demagnetizing term (Ku/M s

2) uk̂3M u22~1/2!DiiM s
2 in Eq.

~1! is a constant term, since the magnetization is confined at
equilibrium along the easy axisk̂. Ultimately, we are inter-
ested in thermal activation over intrinsic energy barriers to
which the local anisotropy makes an important contribution.

The local fieldH l ,i on thei th cell that is effective during
the thermal activation is given from

H l ,i52
DU

DM i
, ~2!

whereDM i is the net change of the magnetization arising
from the thermoactivated reversal. The local field, as defined
by Eq. ~2!, is different from the effective fieldHeff,i5
2]U/M i used in micromagnetic computations that also in-
corporates a contribution from the local anisotropy. Using
Eq. ~1!, the local field is given by

H l ,i5Ha1(
jÞ i

Di jM j1
Ew

2VMs
2 (
j51

n

M j . ~3!

The activation energies of nucleationEb,n and wall mo-
tion Eb,w are assumed to be linearly dependent on the local
field.

Eb,n,i5Eb,n
0 1VactM i•H l ,i , ~4!

FIG. 1. A schematic illustration of the planar hexagonal array of
cells used in the Monte Carlo model.
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Eb,w,i5Eb,w
0 1VactM i•H l ,i , ~5!

whereVact is the activation volume~assuming strong domain
wall pinning! andEb,n

0 ,Eb,w
0 are the intrinsic energy barriers

that are related, and have similar origin, to the coercivities of
nucleationHn and wall-motionHw , respectively. The activa-
tion energy of a cell is evaluated using Eq.~4! if none of the
neighbor cells has reversed magnetically; otherwise Eq.~5!
is employed.

The field dependence of the energy barrier is dependent
on the detailed activation mechanism and is not known in
detail. For films of relatively square hysteresis, the change in
field during magnetic reversal is small so the linear approxi-
mation adopted in Eqs.~4! and ~5! appears to be plausible.
The assumption of a linear dependence of the energy barriers
on the external field is supported by direct experimental
evidence7 in the case of thermoactivated domain-wall mo-
tion. It is also supported from the observation that both the
rate of nucleationR and the domain wall velocityv are
exponentially dependent on the external fieldHa ~Refs. 7, 8,
15, 16, 26, and 27!. The fluctuation fieldHf5kT/(]Eb/]Ha)
is also found to remain essentially constant during the mag-
netization process13 and to be independent of the applied
field.13,28 For films of sheared hysteresis, the field depen-
dence of the energy barrier may be nonlinear; however, the
linear approximation does not invoke an error in the study of
the domain structures but only on the time scale of magnetic
reversal.

The activation volumeVact, for strong or weak domain-
wall pinning in one dimension, is the volume associated with
the change in magnetization between the maximum and
minimum energy positions of the domain wall.29 This vol-
ume is smaller but not simply related to the volume between
the pinning centers, i.e., between two minimum-energy posi-
tions. In the case of thermoactivated nucleation and motion
of nonplanar walls, the energy surface may be more com-
plex; however, the physical meaning of the activation vol-
ume is probably similar, provided the maximum is replaced
by a saddle point.30 The nucleation of magnetization reversal
may therefore start in a small region within a cell at which
point the saddle point in the energy surface is reached. This
is then followed by the irreversible expansion of the original
nucleus to fill the entire cell. The activation volume is, there-
fore, expected to be smaller than the size of the hexagonal
cells that defines the separation between the pinning centers
in our model~Vact,V!. Measurements carried out on ultra-
thin ferromagnetic films for magneto-optic recording31 con-
firm thatVact is smaller than the volumeV between the pin-
ning centers.

Here, it is assumed that the activation volumes for ther-
moactivated nucleation and wall motion are identical, al-
though there is no clear physical reason that this should be
the case. The simplification is carried out, since there is ex-
perimental evidence16 from time-dependence measurements
in GdFe and GdTbFe alloys that the activation volumes for
nucleation and wall propagation are not substantially differ-
ent. The evidence is manifested indirectly in the invariance
in the shape of theM (t) curves when measured at different
fields. The shape of the curves depends on Fatuzzo’s param-
eterk5v/Rrc , which is related to the difference in the ac-
tivation volumes. Direct evaluation of the activation volumes

from the exponential dependence ofv,R on the fieldHa for
GdFe and GdTbFe alloys leads essentially to the same
conclusion.16

The activation energies for both nucleation and wall
propagation at a local sitei are obtained by substitution of
Eq. ~3! into Eqs.~4! and ~5!:

Eb,nw,i5Eb,nw
0 1VactM i•SHa1(

jÞ i
Di jM j

1
Ew

2VMs
2 (
j51

n

M j D . ~6!

The elements of the demagnetization matrix were evaluated
using a dipole approximationDi j52V/r i j

3 for a 636 array
of neighbor cells, using periodic boundary conditions to ex-
tend the Monte Carlo array and a mean-field approximation
for the contribution of more distant cells. The separationr i j
of the cellsi , j can be expressed in terms of the coordinates
( l ,m) with respect to the hexagonal Bravais lattice:

r i j5dA~ l i2 l j !
21~mi2mj !

21~ l i2 l j !~mi2mj !. ~7!

The dipole approximation overestimates the demagnetiz-
ing energy, and the error is largest for nearest-neighbor in-
teractions~for instance it was estimated as 17% for a cubic
lattice32!. This error can be tolerated here, since we are in-
terested only in a qualitative description of the results of the
simulations.

III. THE MONTE CARLO ALGORITHM

At the saturation remanence the mean demagnetizing field
is of the orderHd52NsMr ,s ,

20 whereNs is the sheet de-
magnetization factor. The demagnetizing field is assumed to
be of insufficient strength to initiate a nucleation process.
Since the magnetization in the model is confined along the
normal to the film surface, no reversible magnetization
changes can be considered, and the squareness ratio`
Mr ,s/Ms51. Irreversible, thermally activated transitions,
therefore, only occur when the applied field has a direction
opposite to the direction of the magnetization. For this rea-
son, the probabilityr i per unit time of thermal activation at a
local sitei has been taken as

r i5 H f 0e2Eb,i /kT, if M i•Ha,0
0, if M i•Ha.0, ~8!

i.e., the probability of activation against the applied field is
ignored. f 0 is a frequency factor of the order 1029–10212

sec21.33,34 The rate for the entire system to evolve is
R5S i r i . The probability that no change of state has oc-
curred at timet is

p~ t !5e2Rt. ~9!

In the case when magnetic reversal is dominated by
domain-wall motion, we expect thatr i,r5max(r i) for most
cells i . It is, therefore, of advantage to employ the following
Monte Carlo algorithm.22

~1! Initialize the timet50.
~2! We considert as a random variable, which is generated

according to the distributionp(t) above, for example, by
settingt52lnj/R, where 0,j,1 is a random number.
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~3! A cell n is selected with probabilityr n/R and is allowed
to reverse magnetically. The selection can be carried out
by evaluating the sumSn5S i51

n r i /R for increasingn
until Sn.j, where 0,j,1 is a random number.

This algorithm assumes that the rateR remains constant
until a change of state occurs. This assumption is valid pro-
vided that the external field is constant in magnitude. When
simulating an hysteresis loop, however, the external fieldHa
is linearly dependent on time,

Ha~ t !5Ha~0!2
dHa

dt
t. ~10!

During the course of an average time stepDt51/R that
elapses until the first change of state occurs, the rateR will
have changed in magnitude so that the use of the initial value
R05R(t50) will involve an error. Using Eqs.~4!, ~5!, and
~10!, the rater i in Eq. ~8! for those moments that have not
switched yet along the direction of the applied field can be
expressed as

r i5r 0,ie
bt, ~11!

where

r 0,i5 f 0e
2Eb,i ~ t50!/kT, ~12!

b5
MsVact

kT

dHa

dt
. ~13!

The total rateR also increases exponentially with time.

R5(
i
r i5(

i
r 0,ie

bt5R0e
bt. ~14!

The probability that no change has occurred at timet is

p~ t !5expS 2E
0

t

R~ t !dtD ,
5expS 2

R0

b
@ebt21# D . ~15!

The simulation of kinetic effects during an hysteresis
cycle can be carried out using the algorithm that was de-
scribed above; however, on the second step of that algorithm
the timet is now generated at random from the distribution
given by Eq.~15!, using the following expression:

t5
1

b
lnS 12

b ln~j!

R0
D , ~16!

where 0,j,1 is a random number. An advantage in using
Eq. ~16! is that the time interval and associated external field
when the first nucleation occurs can be evaluated in one step.
The alternative method of approximating the continuous
variation of the external field by a sequence of small steps is
not as computationally efficient.

An analytic expression for the expectation value of the
nucleation coercivity of the thin film can be obtained by
replacing2ln~j! by the average value 1 in Eq.~16!. The
mean time that elapses when the first nucleation occurs is

^t&5
1

b
lnS 11

b

R0
D . ~17!

The time dependence of the energy barrier of nucleation is
given by

Eb,n~ t !5Eb,n~0!2MsVact

dHa

dt
t5Eb,n~0!2kTbt.

~18!

UsingR05Nf0 exp[2Eb,n(0)/kT], whereN is the total
number of nucleation sites~in our model the number of hex-
agonal cells! and assuming thatb/R0@1, the expectation
value of the energy barrier when the first nucleation occurs is
given by

Eb,n~^t&!

kT
5
Eb,n
0

kT
2 lnS b

R0
D5 lnSNf0b D , ~19!

which is valid forNf0/b.1. The expectation value of the
nucleation fieldHn at a given temperature can be obtained
from Eqs.~3!, ~4!, and~19!,

Hn~T!5Hn~0!2Hf lnSNf0b D , ~20!

whereHf5kT/~MsVact! is the fluctuation field. The nucle-
ation coercivity is linearly dependent on the logarithm of the
rate of change of the applied field and of the numberN of
nucleation sites but does not depend on the initial value of
the applied field.

The results of the Monte Carlo simulations are dependent
on b5d(Ha/Hf)/dt and on the dimensionless parameters
w5VactEw/(2VkT)5Ew/(2MsVHf), z5VactVM s

2/(kTd3)
5Hdip/Hf , and k5exp[(Eb,n

0 2Eb,w
0 )/kT], where

Hdip5MsV/d
3 is the strength of the dipole field at neighbor

sites. For constantk, the precise choice of the intrinsic en-
ergy barrierEb,n

0 ~or Eb,w
0 ! does not change the shape of the

curvesM (t) but results only in the scaling of the time ac-
cording to the relation M (Eb,n

0 ,t)5M (Eb,n80 ,t exp@(Eb,n
0

2Eb,n80 )/kT#). A valueb52 sec21 was used in the simulations
of hysteresis. This value is consistent, for example, with a
fluctuation fieldHf'100 Oe, as observed in TbFeCo alloys13

and the reduction of the applied field from a saturating value
Hs55 to 25 kOe in 50 sec.

IV. RESULTS

Following a presentation of the domain structures and
hysteresis loops observed in the simulations, the theory of
fractals is employed to characterize the regularity of domain
growth and a study of the time dependence of the magneti-
zation under a constant external field is carried out. The con-
ditions that are necessary for the observation of different
types of magnetic reversal were first determined. An example
of the domain structures that are observed in the simulations
is shown in Fig. 2~a!. These were obtained using a valuez52
for the constantz, which is a measure of the strength of the
demagnetizing field and a range of values for the parameters
k,w. The magnetic reversal occurs, in general, by a process
of nucleation followed by domain growth; however, the ex-
treme cases of nucleation-dominated and wall-motion

5496 53A. LYBERATOS, J. EARL, AND R. W. CHANTRELL



dominated reversal are also observed. The domain boundary
is, in general, jagged, and dendritic domain growth is also
observed by the branching in the domain-wall motion and
the formation of regions of unreversed magnetization in the
interior of the domain.

The magnetic reversal is dominated by continuous nucle-
ation when the intrinsic energy barrier of nucleationEb,n

0 is
not larger that the barrier of wall motionEb,w

0 , i.e., when the
conditionk<1 is satisfied. An additional condition is that the
demagnetizing strengthz is large in comparison to the wall
energyw. In any other case, the magnetic reversal is deter-
mined primarily from the domain-wall motion. These results
are consistent with the theory of Fatuzzo.17 According to
Fatuzzo’s theory, the balance of thermoactivated nucleation
and wall motion is determined by a single parameter
k5v/(Rrc)}exp[(Eb,n2Eb,w)/kT], which is proportional
to the parameterk5exp[(Eb,n

0 2Eb,w
0 )/kT] in our model. An

increase in the value ofk results in the reduction of the
number of nucleated domains, as is shown in Fig. 2~a!. In the
case whenk51 ~that was also considered in Ref. 24!, rever-
sal dominated by wall motion is still possible whenw is
large@Fig. 2~a!#. The reason is that the energy barrier of wall
motionEb,w is lowered in the vicinity of a nucleated domain

by the contribution of the wall energy to the activation pro-
cess@described by the local-field approximation in Eq.~6!#,
and the conditionk.1 in Fatuzzo’s theory is satisfied. The
demagnetizing energy instead results in a local enhancement
of the barrierEb,w ~since the demagnetizing field is smaller
than the mean value at the boundary surface of a nucleated
domain! and promotes reversal dominated by continuous
nucleation.

Figure 2~b! shows domain structures for different demag-
netizing strengthz. When the demagnetizing strength is suf-
ficiently low, the domain boundary becomes smooth; how-
ever, the domains are not cylindrical, and their shape is
determined by the hexagonal geometry assumed for the dis-
tribution of pinning sites.

We next consider the information on the magnetic rever-
sal that can be provided from the hysteresis loops of the
system. The transition of the magnetization as the reverse
field is increased is shown in Figs. 3~a! and 3~b! and is ob-
tained using ln(k)50,30, respectively. When the strength of
the demagnetizing forces is enhanced by increasing the value
of z, the nucleation coercivity, as expected, is reduced in
magnitude. By comparison of the hysteresis loops with do-
main images, it is possible to determine that the magnetiza-

FIG. 2. ~a! Domain structures
at an early stage during the rever-
sal process~M /Ms50.9! obtained
using a valuez52 for the constant
that is a measure of the strength of
the demagnetizing field. ~b! Do-
main structures for different
strengthsz of the demagnetizing
field: ln(k)530, andw52.
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tion reversal in all cases consists of some or all of the fol-
lowing stages.

~1! A spontaneous magnetization jump, arises when the first
nucleation is followed by rapid thermoactivated domain
growth. The jump is observed when there is a finite dif-
ference in the energy barriersEb,n ,Eb,w , for instance,
for low values ofz and large values ofk. In the case
when no branching is observed in the domain growth,
the hysteresis loops are perfectly rectangular, for in-
stance, whenz52 in Fig. 3~b!. Since the wall energy has
the effect of reducing the barrierEb,w gradually during
the reversal process, it is clear that any shearing, in the
absence of a dispersion in the intrinsic barriers
Eb,n

0 ,Eb,w
0 , in our model must necessarily be attributed

to demagnetization forces, as is discussed below.
~2! A linear shearing of a gradient of the order 1/Ns may

occur as a result of the mean demagnetizing field
Hd52NsM , whereNs'4p is of the order of the sheet
demagnetization factor but is also dependent on the pres-
ence of the domain walls. An approximately linear shear-
ing is observed, for example, in the case of continuous
nucleation in Fig. 3~a! but also in the initial stage of
magnetic reversal whenz510 in Fig. 3~b!. The numeri-
cal data are consistent with the model of Kooy and
Enz,35 which predicts that the inclusion of the domain
structure in the demagnetizing energy leads to steeper
hysteresis loops. The model of Kooy and Enz35 assumes

zero domain-wall coercivity and remanence, so the con-
sideration of finite distinct coercivities for nucleation and
domain-wall pinning does not appear to modify the ef-
fect of the demagnetizing forces on the shape of the hys-
teresis loop substantially. An approximate expression for
the magnitude of the magnetization jumpDM /Ms before
the shearing occurs can be obtained as follows. First, the
energy barriers are expressed to first order as a function
of the mean demagnetizing field:

Eb,n5Eb,n
0 1MsVact~Ha2DsM !, ~21!

Eb,w5Eb,w
0 1MsVact~Ha2DsM !. ~22!

The first nucleation process occurs whenM5Ms , and
the expectation value of the ratioEb,n/kT5ln~Nf0/b!
@Eq. ~19!#. The reduction of the mean demagnetizing
field throughout the entire growth process does not
modify in this approximation the balance between the
rate of nucleation and domain-wall motion~i.e.,
Eb,n2Eb,w! but reduces the probability of domain-wall
motion ~i.e., Eb,w!. It is reasonable to assume that the
thermoactivated domain-wall motion is terminated under
a similar condition, i.e., whenEb,w/kT'ln~Nf0/b!, and
subtracting Eq.~22! from Eq. ~21! results in an expres-
sion for the magnetization jump of the form

DM

Ms
5
Eb,n
0 2Eb,w

0

DsMs
2Vact

5
Hn2Hw

Hd,s
}
ln~k!

z
. ~23!

Hn ,Hw are here defined as the coercive fields of nucle-
ation and domain-wall motion~for a fixed value of the
magnetization! that make the respective energy barriers
vanish, andHd,s5NdMs is the mean demagnetizing field
at saturation. In the case of continuous nucleation
(Eb,n

0 5Eb,w
0 ), ln(k)50, and there is no jump, so that the

hysteresis loop is sheared during the entire reversal pro-
cess. The limitations of the model restrict, in practice,
the usefulness of Eq.~23!; for example, it cannot be
applied to systems characterized by a dispersion in en-
ergy barriers, i.e., a dispersion in coercivities of nucle-
ation and domain-wall motion. Furthermore, if the jump
size predicted by Eq.~23! is large, it is likely that the
shearing of the hysteresis occurs by a different mecha-
nism, as is discussed below.

~3! When no more space is available for domain expansion
in any direction, i.e., beyond the stage when the domains
appear to coalesce, the reversal process is impeded by a
substantial reduction in the mean demagnetizing field
and the associated enhancement of the barrier of wall
motion resulting in shearing of the hysteresis loop. The
local magnetic environment at the domain boundary sur-
face that determines the rate of thermoactivated growth
is nontrivially modified. The onset of this type of shear-
ing occurs, for instance, in Fig. 3~b!, whenM /Ms50.1
for z54 andM /Ms50.5 for z510. The size of the re-
gions of unreversed magnetization in the maze-type do-
main structure increases with demagnetizing strengthz
@Fig. 2~b!#, and consequently the onset of this type of
shearing occurs~for largez! at larger values of the mag-
netization.

Similar sheared hysteresis loops have been observed in

FIG. 3. The hysteretic behavior obtained using in~a! w54,
ln(k)50 and in~b! ln(k)530 and a range of valuesz50,2,4,6,8,10
for the constant of demagnetizing strength.
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Tb/Fe ~Ref. 36! and Pt/Co~Ref. 37! multilayers. The shear-
ing is only observed for films of relatively large thicknessh,
where the demagnetizing field strengthz}h/d is strong. For
Pt/Co multilayers of large thickness, an enhancement of the
shearing close to the coercive point has been reported, and
direct domain observations in this case indicate that the do-
main growth is irregular with no evidence of uniform expan-
sion. It was suggested that the non-uniform expansion may
be controlled by defects,37 i.e., the physical microstructure of
the Co/Pt films of different thickness may be different. The
Monte Carlo simulations indicate that this type of shearing
can occur as a result of the dendritic growth of the magneti-
zation, by simply increasing the demagnetizing strength~not
the distribution of defects!. Since there is no evidence that
the defect structures are dependent on the thickness of the
films,38 the irregular domain growth in thick films should be
attributed not only on the presence of defects but also on
micromagnetic considerations.

The regularity of the domain growth has been character-
ized using the theory of fractals. Fractal patterns possess the
property of scale invariance.39 All physical systems, how-
ever, have a characteristic smallest length scale. In the
present model, the smallest length is imposed by the finite
size of the cells of the two-dimensional array. For this rea-
son, an appropriate fractal measure is the cluster or mass
fractal dimensionDm .

40 To define the mass dimension, we
consider connected cells that have reversed magnetically as
forming clusters and use the number-radius relation40

N~r !5N0S r

Rg
D Dm

f S r

Rg
D , ~24!

whereN0 is the total number of cells in a cluster andN(r ) is
the number of cells within a radiusr from the nucleation site.
The crossover functionf (x) is constant forx,1 and tends to
x2Dm for x.1 so thatN(r )→N0 for r@Rg . Rg is the ra-
dius of gyration defined from

Rg5A(
i

N0

r i
2YN0, ~25!

wherer i is the separation of thei th cell from the nucleation
site. The mass dimensionDm ~1<Dm<2! for a given domain
at some stage during the growth process is evaluated from
the slope of the straight line obtained by plotting ln[N(r )] as
a function of ln[r /Rg], as shown in Fig. 4~a!. A linear rela-
tionship is obtained forr /Rg,1, where the effect of the
crossover functionf (r /Rg) can be ignored. For those do-
mains that exhibit dendritic growth, the mass dimensionDm
increases during the growth process. The increase is shown
in Fig. 4~b!, whereDm averaged over an ensemble of do-
mains is shown as a function of the radius of gyrationRg for
different values ofz. The increase results from the finite
probability of magnetic reversal in the interior of the domain
during the growth process of regions that remained initially
unreversed. Fractal clusters must satisfy the number-radius
relation40

N5r~R/R0!
Dm ~26!

for a nonintegerDm . HereN is the number of monomers,
i.e., the cells, that constitute a cluster,R0 is the monomer

size, R is the radius of the smallest circle containing the
cluster, and the densityr depends on how the monomers are
packed. The number-radius relation given by@Eq. ~26!# is
clearly not satisfied for the domain clusters for a uniqueDm
during the growth process. The magnetic domains are, there-
fore, porous but are not strictly fractal, since the fundamental
property of scale invariance is not satisfied.

The dependence of the mass dimensionDm on the con-
stantz that is a measure of the strength of the demagnetizing
field is shown in more detail in Fig. 4~c!. When the demag-
netizing field is strong, the observed reduction of the mass
dimensionDm is consistent with previous simulations by
Saykoet al.10 The presence of a strong demagnetizing field
renders the dendritic growth energetically favorable.8 Here,
we present three curves obtained at different stages during
the growth process, i.e., different values of the radius of gy-
ration. The curvature can be convex or concave and is sen-
sitive to the precise choice ofRg . The dependence of the
dimensionDm on the wall energy constantw is shown in
Fig. 4~d!. A rather abrupt transition to the maximum value
Dm52 is observed. The sharpness of the transition is attrib-
uted on the absence of a dispersion in domain-wall coercivi-
ties in the model and the homogeneous magnetic environ-
ment of the pores in the interior of the domains. Figures 4~c!
and 4~d! represent an example of the competition of the de-
magnetizing and wall energy in controlling the domain regu-
larity. The variation in the domain structure as the wall en-
ergy is enhanced is shown in Fig. 2~a!. For example, when
ln~k!530 andw50.5, the regions of unreversed magnetiza-
tion are distributed uniformly within the entire area enclosed
by the domain boundary. The uniform distribution probably
arises as a result of the absence of a dispersion in intrinsic
energy barriers of wall motion in the model. When the wall
energy is enhanced~w52!, the fingers within the domain
boundary are thickened uniformly until at some stage~w54!
the entire area within the domain has reversed magnetically.
A similar behavior is observed when the parameterz is var-
ied @Fig. 2~b!#. The variation of domain structure with de-
magnetizing strength is in good agreement with experimental
observation in TbFe films,7,9 although the observation of a
small number of hard pinning sites in the interior of the
domains in Co/Pt multilayers37 and the nonuniform domain
collapse in TbFeCo films19 illustrates the importance of local
variations in the domain-wall coercivity.

The fractal dimension of the domain wallDw(1<Dw<2)
is a useful measure of the jaggedness of the domain bound-
ary. Bernacki and Mansuripur18measured the wall dimension
in TbFeCo thin films under static conditions using the ruler
method41 and found that repeatable values could be obtained
under the same magnification. An alternative method sug-
gested in Ref. 10 is to use the perimeter-area relation40

L1/Dw

AA
5c, ~27!

whereL is the length of the perimeter of a domain andA is
the area enclosed by its boundary surface. The constantc is
independent of the areaA and depends only on the shape of
the domain and the length of the ruler used to measure the
perimeter.40
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The perimeter-area relation@Eq. ~27!# is satisfied in our
model during the entire growth process, provided that the
domains do not coalesce, as the linear dependence of ln(L)
on ln(A) in Fig. 5~a! suggests.

A fractal geometry is usually observed when the laws that
determine the growth process are deterministic, but there is
disorder in material parameters.42 If the system is homoge-
neous, a fractal geometry may still be observed provided that
the growth process is stochastic. For instance, in diffusion-
limited aggregation,43 the growth process is controlled in ef-
fect by the geometry of space. In the present model, the
growth of the perimeter of the magnetic domains is a similar
example of stochastic growth in a film of homogeneous mag-
netic properties. In this respect, it is not surprising that the
domain boundary is fractal. The wall dimensionDw appears,
therefore to be a more useful fractal measure that the mass
dimensionDm for the characterization of the domain regu-
larity.

The dependence of the wall dimensionDw on the param-

etersz andw is shown in Figs. 5~b! and 5~c!, respectively.
The transition from a minimum valueDw51 to the maxi-
mum valueDw52 when the demagnetizing strengthz is en-
hanced, shown in Fig. 5~b!, indicates that the jaggedness of
the domain boundary increases and is consistent with the
computations in Ref. 10. The dependence on the wall energy
w in Fig. 5~c! clearly has the opposite effect. The transitions
observed in the value ofDw in Figs. 5~a! and 5~b! are not
sharp, since there is always some diversity in the local mag-
netic environment along the perimeter of a magnetic domain
of irregular shape.

Next we consider, the time dependence of the magnetiza-
tion M (t). The simplest treatment, based on Fatuzzo
theory,17 considers the nucleation at a rateR of circular do-
mains of initial radiusr c , growing at constant velocityv and
results in a time dependence given by

M ~t!5Ms~2e
g~t!21!, ~28!

FIG. 4. ~a! The number of cellsN belonging to a magnetic domain located within a radiusr from the nucleation site. The numerical data
were obtained for a domain of the resolved radius of gyrationRg/d513, whered is the separation of the hexagonal cells, usingz52,w54,
ln(k)530. ~b! The mass fractal dimensionDm ~averaged over a statistically independent ensemble of 100 magnetic domains! as a function
of the resolved radius of gyrationRg/d. Results are presented forw52 and different values forz. ~c! The mass fractal dimensionDm as
a function of the constant of demagnetizing strengthz. The data were obtained usingw52, ln(k)530, three different radii of gyration
averaging over an ensemble of 100 domains.~d! The mass fractal dimension as a function of the parameterw that is a measure of the
domain-wall energy. The data were obtained usingz53, Rg/d512, and averaging over 100 magnetic domains.
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wheret5Rt and the functiong~t! is given by

g~t!522k2S 12~t1k21!1
1

2
~t1k21!22e2t~12k21!

2
12t

2k2 D . ~29!

The shape of the time-dependence curvesM (t) is dependent
on a single parameterk5v/Rrc . In principle, it is possible to
compare the experimentally determined curves with the
theory16 and derive the value ofk that fits the data and pro-
vides a measure of the relative contribution of the nucleation
and wall motion in the magnetic reversal. An alternative
method of identification of the mechanism of magnetization
reversal is to consider the curves involving the rate of change
dM/dt. The variation ofd(M /Ms)/dt with t, evaluated us-

ing the Fatuzzo theory@Eqs.~28! and~29!#, is shown in Fig.
6~a!. For nucleation-dominated reversal at low values ofk,
the absolute magnitude of the rateudM/dtu exhibits a mono-
tonic reduction. Conversely, for reversal dominated by
domain-wall motion at large values ofk, a maximum value
in the rateudM/dtu is observed that increases in magnitude at
large values of k. The dependence of the resolved
rate d(M /Ms)/dt on M /Ms is shown in Fig. 6~b!. The
dependence is linear for nucleation-dominated reversal,
which is characterized by a single relaxation time
M5Ms(2e

2t/t21). A maximum value of the rateudM/dtu
occurs whend2M /dt250. Using Eqs.~28! and~29!, it can be
shown that the following condition must be satisfied:

2k2@t1~e2t21!~12k21!10.5k22#21~12k21!e2t21

50. ~30!

FIG. 5. ~a! The perimeter-area relation for a magnetic domain. The data were obtained usingz51, w52, and ln(k)530. The length of
the perimeter is shown in units of the sided/) of a hexagonal cell~the length of the ruler!. The areaA is similarly normalized by the area
)d2/2 occupied by a cell.~b! The fractal dimension of the domain wallDw as a function of the demagnetizing field strengthz. An average
over 100 magnetic domains was taken usingw52 and ln(k)530. ~c! The fractal dimension of the domain wallDw as a function of the
constantw that is a measure of the domain-wall energy. An average over 100 magnetic domains was taken using ln(k)530 and different
values of demagnetizing strengthz.
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A maximum value occurs fork.0.5 at some value of the
magnetization that is shown in Fig. 6~c! as a function ofk.
The peak is displaced to lower values of the magnetization as
k increases, and in the limitk→` it can be shown using
M (t)/Ms52 exp~2k2t3/3!21 ~Ref. 17! that the condition
d2M /dt250 is satisfied whenM /Ms52e22/321.

Fatuzzo’s theory does not consider the demagnetization
forces that result in the growth of fractal domain
structures. dM/dt vs M plots obtained using the Monte
Carlo model are shown in Fig. 7~a! for the case of continu-
ous nucleation and in Figs. 7~b! and 7~c! for the case of
reversal by wall motion. The monotonic reduction of the rate
dM/dt in Fig. 7~a!, the maximum of the rate in Figs. 7~b!

and 7~c!, and the enhancement of the maximum rate at large
k are all consistent with the Fatuzzo theory. There are some
important differences, however, that are attributed to the
presence of the demagnetizing field.

In the case of reversal by continuous nucleation@Fig.
7~a!#, the dependence of the ratedM/dt on M is nonlinear
and, in addition, the magnetization freezes before complete
reversal has been achieved. The demagnetizing field induces
an effective dispersion in relaxation times that is also respon-
sible for the shearing in the hysteresis loops@Fig. 3~a!#. A
gradual reduction of the gradientd(dM/dt)/dM is also evi-
dent in Figs. 7~b! and 7~c! and is in marked contrast@Fig.
6~b!# to the prediction of the Fatuzzo theory.

FIG. 6. ~a! The time dependence of the rate of change of the magnetization according to the Fatuzzo model. Results are presented for
k50.1,0.5,1,5. ~b! The dependence of the rate of change of the magnetization onM /Ms according to the Fatuzzo model. Results are
presented fork50.1,0.5,1,5. ~c! The resolved magnetizationM /Ms when the rate of magnetization reversaldM/dt attains the maximum
value as a function ofk according to the Fatuzzo model.
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When the parameterk is allowed to increase, the peak in
the ratedM/dt occurs at lower values ofM , as expected by
Fatuzzo theory@Fig. 6~c!#; the shift, however, is small, and
the valueM /Ms52e22/321 is never reached. The demag-
netizing field, by enhancing the energy barrier of thermoac-
tivated wall motion, imposes a limitation on the rapid growth
of the domains, during the initial stage that follows the
nucleation process.

V. CONCLUSIONS

A Monte Carlo model of the thermoactivated magnetic
reversal in thin films of RE-TM alloys has been developed
that simulates the magnetic reversal mechanisms that are ob-
served experimentally: reversal by continuous nucleation,
nucleation followed by the growth of magnetic domains and
dendritic growth by successive branching in the domain-wall
motion. The magnetic reversal mechanism was found to de-

pend in general on two factors. First, in accordance with the
Fatuzzo theory, it is dependent on the difference in the in-
trinsic energy barriers of nucleation and domain-wall motion.
For example, if the coercivities of nucleation and domain-
wall motion are of the same magnitude, the magnetic rever-
sal occurs by continuous nucleation; otherwise the preferred
mechanism is by thermoactivated domain-wall motion. Sec-
ond, it is also dependent on the relative balance of the de-
magnetizing and domain-wall energy, in agreement with pre-
vious theoretical and experimental work. When the
demagnetizing forces are enhanced in magnitude in the
simulations, the domain growth becomes rather abruptly
dendritic by the formation of a maze-type pattern within the
domain boundary. The observed maze-type pattern is rather
uniform in thickness throughout the area enclosed by the
domain boundary. The model does not predict the intermedi-
ate case of a small number of regions of unreversed magne-
tization in the interior of the domain, which is frequently

FIG. 7. The dependence of the rate of change of the magnetization onM /Ms using the Monte Carlo model. The results were obtained
usingz5w50.5, ln(k)50 ~a!, ln(k)55 ~b!, and ln(k)520 ~c!. The instantaneous reversal in Eq.~9! was assumed to occur in 1029 sec.
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observed experimentally. The main reason appears to be the
absence in the present model of a dispersion in intrinsic en-
ergy barriers for domain-wall motion.

The dendritic growth of the magnetic domains can be
characterized by calculation of the mass fractal dimension
Dm . The domain structures are not strictly fractal, since the
dimensionDm increases during the growth process, i.e., the
porosity of the magnetic domains is gradually reduced. In
contrast, the domain perimeter is a fractal curve, and the
fractal dimensionDw that describes the jaggedness of the
domain wall is invariant during the growth process and con-
stitutes, therefore, a good fractal measure of the domain
regularity. It does not constitute, however, a measure of the
domain shape that is related to, but not determined by, the
ratio c in Eq. ~27!.

The demagnetizing field may result in shearing of the hys-
teresis loop. The amount of shearing appears to be dependent
on the availability of space for domain expansion. The ef-
fects of the demagnetizing field on the time dependence of
the magnetization under constant external field conditions
were identified by comparison with the Fatuzzo theory,
which ignores such effects. The Monte Carlo simulations in-
dicate that in the presence of a finite demagnetizing field, the

maximum value of the ratedM/dt occurs always early in the
reversal process. This result is in disagreement with the pre-
diction of the Fatuzzo model. Since the Fatuzzo model is
often used to characterize the relative balance between ther-
moactivated nucleation and domain-wall motion in magneto-
optic media, further work is necessary to determine the limi-
tations of that approach.

The Monte Carlo results describe satisfactorily the do-
main structures observed in magneto-optic recording media
other than RE-TM thin films, for example, amorphous mul-
tilayers such as Co/Pt~Ref. 37! and Dy/Fe~Ref. 24!. A de-
tailed study, however, should consider the magnetization re-
versal of individual layers. The model may also be useful for
the description of ultrathin ferromagnetic films such as Au/
Co/Au sandwiches.27,28
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33L. Néel, Ann. Geophys.5, 99 ~1949!.
34P. Gaunt, J. Appl. Phys.48, 3470~1977!.
35C. Kooy and U. Enz, Philips Res. Rep.15, 7 ~1960!.
36T. Thomson, Ph.D. thesis, University of Wales, 1993.
37J. X. Shen, R. D. Kirby, K. Wierman, Z. S. Shan, D. J. Sellmyer,

and T. Suzuki, J. Appl. Phys.73, 6418~1993!.
38T. Suzuki, H. Notarys, D. C. Dobbertin, C.-J. Lin, D. Well, D. C.

Miller, and G. Gorman, IEEE Trans. Magn.MAG-28, 2754
~1992!.

39B. B. Mandelbrot,The Fractal Geometry of Nature~Freeman,
New York, 1983!.

40J. Feder,Fractals ~Ref. 25!.
41L. F. Richardson, Gen. Syst. Yearbook6, 139 ~1961!.
42J. D. Chen and D. Wilkinson, Phys. Rev. Lett.55, 1892~1985!.
43T. A. Witten and L. M. Sander, Phys. Rev. B27, 5686~1983!.

5504 53A. LYBERATOS, J. EARL, AND R. W. CHANTRELL


