PHYSICAL REVIEW B VOLUME 53, NUMBER 9 1 MARCH 1996-I

Model of thermally activated magnetization reversal in thin films
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Monte Carlo simulations on a two-dimensional lattice of magnetic dipoles have been performed to investi-
gate the magnetic reversal by thermal activation in rare-earth—transition-{R&alM) alloys. Three mecha-
nisms of magnetization reversal were observed: nucleation dominated growth, nucleation followed by the
growth of magnetic domains containing no seeds of unreversed magnetization, and nucleation followed by
dendritic domain growth by successive branching in the motion of the domain walls. The domain structures are
not fractal; however, the fractal dimension of the domain wall was found to be a good measure of the
jaggedness of the domain boundary surface during the growth process. The effects of the demagnetizing field
on the hysteretic and time-dependent properties of the thin films were studied and some limitations in the
application of the Fatuzzo model on magneto-optic media are identified.

I. INTRODUCTION of the domain-wall velocity on the external applied
field 1415
The magnetization reversal process in amorphous rare- The precise form of the time dependence of the magneti-
earth—transition-metalRE-TM) alloys' is of considerable zationM(t) in a constant field depends on the relative bal-
practical interest in thermomagnetic recording. Thermal acance of the nucleation and wall-motion processes during
tivation is one of the factors that determines the stability ofagnetic reversal. A theory by Fatuz?@ssumes that the
the thermomagnetically grown magnetic domains againsr@ucleated domains are circular with initial radii that grow

collapse or irregularity and is, therefore, of practical rel-&t @ constant velocity, while the rate of nucleatioR re-
evance in defining the signal-to-noise ratio. mains constant. The theory predicts that the shape of the

The magnetization reversal in amorphous magneto—optiEme'der’endence curves(t) depends on a single parameter

media occurs in general by a process of nucleation followe a:Uri) zir%éféo\rgrgsssgipigl tg‘z eé(gteerr'm;gtgl E:f{g‘tggs

by domain growth. The observation of a finite domain-wall PP : .
- : . . eory, however, does not account for the presence of a dis-

coercivity can be interpreted by postulating the existence o

le structural and tic inh ties that ersion in energy barriers that may arise, for example, from
nanoscalé structural and magnetic innomogeneities that afd. o, g ctyations of the exchange stiffness constant and the
as pinning center$lt is possible to study the origin of the

o i ) . Uniaxial anisotropyK, or alternatively from the spatial and
coercivity by computer simulations that employ the dynamiciemnoral variations of the demagnetizing field. A dispersion

Lar_ldaq—Lifshitz—GiIbert equation of motion for the mag_neti— in energy barriers is necessary to account for the common
zation in the absence of thermal fluctuatirSuch studies gpservation that the nucleated domains are frequently irregu-
have demonstrated that it is important to distinguish thggr in shapé&®'® and their subsequent growth may be den-
nucleation coercivityd,,, which is determined primarily by  dritic, forming a fractal structur&®°
fluctuations in the perpendicular anisotropy const&pt, The stability of the domain shape of cylindrical domains
from the wall-motion coercivityH,, that depends on fluctua- in homogeneous thin films with perpendicular anisotropy but
tions in the exchange stiffness constant and the dispersion low domain-wall coercivity depends on the wall stiffnéSs,
easy axes These findings are consistent with the experimenwhich is determined by the competition between the domain
tal observation that the nucleation coercivity can be substarwall and demagnetizing energyWhen the demagnetizing
tially larger than the wall-motion coercivity in RE-TM al- energy is relatively large, the stiffness of the domain wall is
loys, resulting in rectangular hysteresis lo8ps. low and the domain shape is more susceptible to local defor-
When the external field is close to but less than the nuclemation by pinning sites. Dendritic growth occurs when the
ation coercivityH,,, magnetization reversal is still possible stiffness of the wall is sufficiently low so that the growth of
by thermal activation over the local energy barriers. Thermothe reverse magnetization is dominated by the geometry of
activated reversal has been observed in a variety of amothe pinning sites® The computatiot? or measuremettt of
phous RE-TM alloys such as Tb-Fe!® Th-Fe-Co!'™'® the fractal dimension of the boundary surface of the mag-
Gd-Fel*~1*Gd-Tb-Fe'>®and THCo)-based alloy$® There  netic domains have been suggested as useful methods of
is a substantial body of evidence for the presence of a thecharacterization of the jaggedness of the domain boundary.
mal magnetic aftereffect:(1) the observation that the The simulation of thermoactivated magnetic reversal un-
domain-wall motion is not a continuous process but consistsler constant external field conditions can best be carried out
of discrete Barkhausen jumps of small sections of the #vall.using a Monte Carlo algorith?h that simulates accurately
(2) the slow decay of the magnetization under constant exthe kinetic process as in Ref. 23 Kirtst al?* applied the
ternal field conditions,and (3) the exponential dependence algorithm on thin films for magneto-optic recording and ob-
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assumed to be pinned at the boundary between the cells,
which serves to describe the geometry of the “defects.” The
separation of neighbor celt is assumed to be much larger
d than the domain-wall thickness so that any nanoscale fea-

tures in the domain-wall motion are ignored. This assump-
tion is justified by the experimental observation that the do-
mains walls undergo, by thermal activation, irreversible
jumps over a distance-0.5 um,” whereas the domain-wall
thickness is much smaller, for example, of the orgd0 nm,

FIG. 1. Aschematic illustration of the planar hexagonal array ofin Tb-Fe-Co films! At the start of the simulation, the mag-

cells used in the Monte Carlo model. netization in each cell is in the z direction perpendicular to

the plane of the film and is allowed to switch to thez

served two distinct reversal mechanisms in their simulationgiréction along an external applied fietl,. We can, there-
dependent on the competition between the demagnetizinfQ® €xpress the magnetizatioh; at any sitei as
and domain-wall energy. In the case when the demagnetizinlfli = €M sk, wheree==1 andk is the unit vector normal to
forces are dominant, the reversal occurred by continuou8'® plane of the film. o

nucleation; otherwise, if the wall energy is relatively large, 1he energy density at a local site is given by the sum
the reversal occurred by slow nucleation followed by rapid®f the anisotropy, Zeeman, demagnetizing, and domain-wall
domain growth. The simulation of dendritic domain growth, €Nergy densities.

however, using that model is not possikés some trial runs
have confirmefl because of the imposed condition of the
dominance of the wall energy for the observation of domain
growth, whereas dendritic growth arises primarily from the
local inhomogeneities in the demagnetizing figld.

A numerical model of the dendritic growth of the reverse
magnetization was reported by Sayktball® This model
considered the growth of one domain only and did not con-
sider the possibility of other nucleation events. Our objective
is to show that to simulate the nucleation process and den-
dritic domain growth, it is necessary to consider the differ-whereH, is positive along the direction,D;; are the scalar
ence in the intrinsic energy barriers for nucleation and wallcomponents of the demagnetization matnix;6 is the num-
motion. For amorphous RE-TM alloys, this approach is conber of neighbor cellsE,, is the wall energy in the interface
sistent with the difference observed between the coercivitiebetween two cells, an¥l is the volume of a cell. Note that
of nucleation and domain-wall motion. The numerical modelthe uniaxial anisotropy energy density including the self-
of thermal activation adopted in our work is described indemagnetizing term K /M 2)|kxXM|?*—(1/2D;M 2 in Eq.
Sec. Il and the Monte Carlo algorithm in Sec. Ill. A modifi- (1) is a constant term, since the magnetization is confined at
cation of the standard algorithm that allows the simulation ofequilibrium along the easy axls. Ultimately, we are inter-
the dynamic response of the system during an hysteresissted in thermal activation over intrinsic energy barriers to
cycle is also presented. In Sec. IV, it is shown that the modelvhich the local anisotropy makes an important contribution.
simulates all the magnetic reversal mechanisms observed in The local fieldH, ; on theith cell that is effective during
practice. It is also shown that the domain structures may béhe thermal activation is given from
porous but are not strictly fractal, since the basic property of
scale invarianc@ is not satisfied, i.e., the domain structures AU
do not look the same as the domain size increases. The as- Hii=— AM,’ 2
sumption that dendritic growth results in fractal domain
structure¥’ does not appear, therefore, to be justified. Thewhere AM; is the net change of the magnetization arising
perimeter of the domains, however, is shown to be a fractarom the thermoactivated reversal. The local field, as defined
curve, and its fractal dimension turns out to be a useful figureéy Eq. (2), is different from the effective fieldHqy;=
of merit of the irregularity of the domain growth. An analysis —gU/M; used in micromagnetic computations that also in-
of the numerical data on the hysteretic and time-dependerjorporates a contribution from the local anisotropy. Using
properties of the films in relation to the Fatuzzo theory isgq. (1), the local field is given by
also carried out to determine the effects of the demagnetizing
forces in the magnetic reversal. E
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Il. DESCRIPTION OF THE MODEL
The amorphous thin film was modeled by a 5&12 The activation energies of nucleatid, , and wall mo-
planar hexagonal array of cells that is schematically showrjjOn Ebw @ré assumed to be linearly dependent on the local
in Fig. 1. The geometry of the system is essentially similar tdield.
the model of Kirbyet al,?* although the detailed treatment o
of thermoactivated reversal is different. The domain wall is Ebni=EpntVacMi-Hij, (4)
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Epwi= Eg wtVaeMi-Hi i, (5)  from the exponential dependencewgR on the fieldH, for
o ’ ’ GdFe and GdTbFe alloys leads essentially to the same
conclusion'®
The activation energies for both nucleation and wall
Eropagation at a local siteare obtained by substitution of
g. (3) into Egs.(4) and(5):

whereV . is the activation voluméassuming strong domain
wall pinning andEj ,,E{ , are the intrinsic energy barriers
that are related, and have similar origin, to the coercivities o
nucleationH,, and wall-motionH,, , respectively. The activa-

tion energy of a cell is evaluated using E4) if none of the
neighbor cells has reversed magnetically; otherwise (Bq. Epnwi= Epnwt VacMi- | Hat 2 DijM;
is employed. 171
The field dependence of the energy barrier is dependent E, n
on the detailed activation mechanism and is not known in + 2 Mj). (6)
detail. For films of relatively square hysteresis, the change in 2VMs =1

field during magnetic reversal is small so the linear approxi-The elements of the demagnetization matrix were evaluated
mation adopted in Eqg¢4) and (5) appears to be plausible. using a dipole approximatioB;; = —V/rﬁ for a 6x6 array
The assumption of a linear dependence of the energy barrieeg neighbor cells, using periodic boundary conditions to ex-
on the external field is supported by direct experimentatend the Monte Carlo array and a mean-field approximation
evidencé in the case of thermoactivated domain-wall mo-for the contribution of more distant cells. The separatign
tion. It is also supported from the observation that both theof the cellsi,j can be expressed in terms of the coordinates
rate of nucleationR and the domain wall velocity are  (I,m) with respect to the hexagonal Bravais lattice:
exponentially dependent on the external field (Refs. 7, 8,
15, 16, 26, and 27 The fluctuation fieldH;=kT/(9E,/dH ) rip=dV(=1)%+(m=m)+ (= Ipm—-my). (7)

s glso_found to réegmain essenti_ally constant during the Mag- The dipole approximation overestimates the demagnetiz-
nefization process and to be independent of the applied ing energy, and the error is largest for nearest-neighbor in-

iald 13,28 : ; ; |
field. For films of Sheamd hystere3|§, the_ field depenteractions(for instance it was estimated as 17% for a cubic
dence of the energy barrier may be nonlinear; however, th

linear approximation does not invoke an error in the study o attice”). This error can be tolerated here, since we are in-
PP . Y Olerested only in a qualitative description of the results of the
the domain structures but only on the time scale of magneti

Simulations.
reversal.

Thg a_ctivation voI.ume/E.lct, fqr strong or weak dpmain—_ IIl. THE MONTE CARLO ALGORITHM
wall pinning in one dimension, is the volume associated with
the change in magnetization between the maximum and At the saturation remanence the mean demagnetizing field
minimum energy positions of the domain w&lIThis vol-  is of the orderH,=—NM, ¢,%° whereN; is the sheet de-
ume is smaller but not simply related to the volume betweerinagnetization factor. The demagnetizing field is assumed to
the pinning centers, i.e., between two minimum-energy posibe of insufficient strength to initiate a nucleation process.
tions. In the case of thermoactivated nucleation and motio®ince the magnetization in the model is confined along the
of nonplanar walls, the energy surface may be more comnormal to the film surface, no reversible magnetization
plex; however, the physical meaning of the activation vol-changes can be considered, and the squareness ratio
ume is probably similar, provided the maximum is replacedM, J/Mg¢=1. Irreversible, thermally activated transitions,
by a saddle point® The nucleation of magnetization reversal therefore, only occur when the applied field has a direction
may therefore start in a small region within a cell at which opposite to the direction of the magnetization. For this rea-
point the saddle point in the energy surface is reached. Thigon, the probability; per unit time of thermal activation at a
is then followed by the irreversible expansion of the originallocal sitei has been taken as
nucleus to fill the entire cell. The activation volume is, there- f e Eni/kT i M..H.<0
fore, expected to be smaller than the size of the hexagonal r= 0 o, (8)
cells that defines the separation between the pinning centers 0, if Mi-Ha>0,
in our model(V,<V). Measurements carried out on ultra- i.e., the probability of activation against the applied field is
thin ferromagnetic films for magneto-optic recordihgon- ignored. f, is a frequency factor of the order 19-10 12
firm that V. is smaller than the volum¥ between the pin- sec13%3* The rate for the entire system to evolve is
ning centers. R=23,r;. The probability that no change of state has oc-
Here, it is assumed that the activation volumes for thercurred at timet is
moactivated nucleation and wall motion are identical, al- Rt
though there is no clear physical reason that this should be p(t)y=e ™. (C)
the case. The simplification is carried out, since there is ex-
perimental evidencé from time-depender_]ce ‘measurementsy o main-wall motion, we expect that<r =max(r;) for most
in GdFe and GdTbFe alloys that the activation volumes fot.q)g; |t is, therefore, of advantage to employ the following
nucleation and wall propagation are not substantially differy;qnte carlo algorithn??
ent. The evidence is manifested indirectly in the invariance
in the shape of th&(t) curves when measured at different (1) Initialize the timet=0.
fields. The shape of the curves depends on Fatuzzo’s pararf2) We considett as a random variable, which is generated
eter k=v/Rr,, which is related to the difference in the ac- according to the distributiop(t) above, for example, by
tivation volumes. Direct evaluation of the activation volumes  settingt=—In&R, where 6<¢<1 is a random number.

In the case when magnetic reversal is dominated by
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(3) Acell vis selected with probability /R and is allowed 1 B
to reverse magnetically. The selection can be carried out (ty= B In( I+ = 17
by evaluating the suns,=3{_;r;/R for increasingv 0
until S,>¢&, where 8<£<1 is a random number. The time dependence of the energy barrier of nucleation is

given by

This algorithm assumes that the r&eremains constant
until a change of state occurs. This assumption is valid pro- a
vided that the external field is constant in magnitude. When Ebn(t)=Epn(0)— MSVaCtW t=Epn(0)—kTAL.
simulating an hysteresis loop, however, the external field (18)
is linearly dependent on time,

Using Ry=Nf, exp[—E}, ,(0)/kT], whereN is the total
number of nucleation siten our model the number of hex-
agonal cells and assuming thaB/R,>1, the expectation

. . value of the energy barrier when the first nucleation occurs is
During the course of an average time st&p=1/R that  given by

elapses until the first change of state occurs, the Ratell

have changed in magnitude so that the use of the initial value Ep.n({t)) Eg,n B Nfo

Ro,=R(t=0) will involve an error. Using Eqs4), (5), and T KT —In( :In(7), (19

(20), the rater; in Eq. (8) for those moments that have not

switched yet along the direction of the applied field can bewhich is valid for Nfy/8>1. The expectation value of the

expressed as nucleation fieldH, at a given temperature can be obtained
from Egs.(3), (4), and(19),

dH,
Ha(D)=Hq(0)~ " t. (10

Ro

ri=ro;e?, (11 ¢
N
where Hny(T)=Hn(0)—Hs In 7") (20
L —Ep j(t=0)/KT i i .
Foj=foe = ' (12) whereH;=kT/(MyV,) is the fluctuation field. The nucle-
X o . S_ aci
ation coercivity is linearly dependent on the logarithm of the
_ MV dH,

_ (13) rate of change of the applied field and of the humieof
kT dt nucleation sites but does not depend on the initial value of
the applied field.

The results of the Monte Carlo simulations are dependent
on B=d(H,/H;)/dt and on the dimensionless parameters

The total rateR also increases exponentially with time.

R=2, ri=2, ro;ef'=Rpe. (14  w=V EW/(2VKT)=E,/(2MVH(), z=V,VM2Z/(kTd)
! ! =Hg/Hs, and k=exp[(E),—Epw)/kT],  where
The probability that no change has occurred at tinie Hgp=MsV/d? is the strength of the dipole field at neighbor
sites. For constarit, the precise choice of the intrinsic en-
t ergy barrierk g,n (or ESVW) does not change the shape of the
D(I)ZGXP( - fOR(t)dt), curvesM(t) but results only in the scaling of the time ac-

cording to the relation M(EJ ,,t)=M(E;%,t exd(ED,
Ro at —Ek’,%)/k'l']). A value =2 sec ! was used in the simulations
=ex _E[e —1]]. (15 of hysteresis. This value is consistent, for example, with a
fluctuation fieldH;~100 Oe, as observed in TbFeCo allbys
The simulation of kinetic effects during an hysteresisand the reduction of the applied field from a saturating value
cycle can be carried out using the algorithm that was deHs=5 to —5 kOe in 50 sec.
scribed above; however, on the second step of that algorithm
the timet is now generated at random from the distribution IV. RESULTS

given by Eq.(15), using the following expression: ) _ )
Following a presentation of the domain structures and

1 B In(¢) hysteresis loops observed in the simulations, the theory of
t= B In( 1- R ) (16)  fractals is employed to characterize the regularity of domain
0 growth and a study of the time dependence of the magneti-
where 0<¢<1 is a random number. An advantage in usingzation under a constant external field is carried out. The con-
Eq. (16) is that the time interval and associated external fieldditions that are necessary for the observation of different
when the first nucleation occurs can be evaluated in one stefypes of magnetic reversal were first determined. An example
The alternative method of approximating the continuousof the domain structures that are observed in the simulations
variation of the external field by a sequence of small steps its shown in Fig. 23). These were obtained using a valte2
not as computationally efficient. for the constank, which is a measure of the strength of the
An analytic expression for the expectation value of thedemagnetizing field and a range of values for the parameters
nucleation coercivity of the thin film can be obtained by k,w. The magnetic reversal occurs, in general, by a process
replacing —In(¢) by the average value 1 in Egl6). The of nucleation followed by domain growth; however, the ex-
mean time that elapses when the first nucleation occurs is treme cases of nucleation-dominated and wall-motion
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In(k) =10 In(k) = 30

FIG. 2. (8) Domain structures
at an early stage during the rever-
sal procesg§M/M;=0.9) obtained
using a value=2 for the constant
that is a measure of the strength of
the demagnetizing field. (b) Do-
main structures for different
strengthsz of the demagnetizing
field: In(k)=30, andw=2.

(b) =2z=0.5 z=3 z=10
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dominated reversal are also observed. The domain boundaby the contribution of the wall energy to the activation pro-
is, in general, jagged, and dendritic domain growth is alsaess[described by the local-field approximation in E&)],
observed by the branching in the domain-wall motion andand the conditionk>1 in Fatuzzo’s theory is satisfied. The
the formation of regions of unreversed magnetization in thelemagnetizing energy instead results in a local enhancement
interior of the domain. of the barrierEy, ,, (since the demagnetizing field is smaller
The magnetic reversal is dominated by continuous nuclethan the mean value at the boundary surface of a nucleated
ation when the intrinsic energy barrier of nucleatix‘aﬁ'n is domain and promotes reversal dominated by continuous
not larger that the barrier of wall motidag ,, i.e., when the  nucleation.
conditionk=1 is satisfied. An additional condition is that the ~ Figure Zb) shows domain structures for different demag-
demagnetizing strengthis large in comparison to the wall netizing strengttz. When the demagnetizing strength is suf-
energyw. In any other case, the magnetic reversal is deterficiently low, the domain boundary becomes smooth; how-
mined primarily from the domain-wall motion. These resultsever, the domains are not cylindrical, and their shape is
are consistent with the theory of FatuZZoAccording to  determined by the hexagonal geometry assumed for the dis-
Fatuzzo's theory, the balance of thermoactivated nucleatiotribution of pinning sites.
and wall motion is determined by a single parameter We next consider the information on the magnetic rever-
K:U/(ch)ixexp[(Eb’n_E%’W)/kT], which is proportional sal that can be provided from the hysteresis loops of the
to the parametek=exp[(E b,n_Eg,w)/kT] in our model. An  system. The transition of the magnetization as the reverse
increase in the value ok results in the reduction of the field is increased is shown in Figs(a and 3b) and is ob-
number of nucleated domains, as is shown in F{g).2n the  tained using Ink) =0,30, respectively. When the strength of
case wherk=1 (that was also considered in Ref.)2dever-  the demagnetizing forces is enhanced by increasing the value
sal dominated by wall motion is still possible whenis  of z, the nucleation coercivity, as expected, is reduced in
large[Fig. 2(@)]. The reason is that the energy barrier of wall magnitude. By comparison of the hysteresis loops with do-
motion Ey, , is lowered in the vicinity of a nucleated domain main images, it is possible to determine that the magnetiza-
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FIG. 3. The hysteretic behavior obtained using (@ w=4,

In(k) =0 and in(b) In(k) =30 and a range of values=0,2,4,6,8,10

for

the constant of demagnetizing strength.

tion reversal in all cases consists of some or all of the fol-
lowing stages.

D

(2

A spontaneous magnetization jump, arises when the first
nucleation is followed by rapid thermoactivated domain
growth. The jump is observed when there is a finite dif-
ference in the energy barriets, ,,E; ,,, for instance,

for low values ofz and large values ok. In the case
when no branching is observed in the domain growth,
the hysteresis loops are perfectly rectangular, for in-
stance, whez=2 in Fig. 3b). Since the wall energy has 3)
the effect of reducing the barrid, ,, gradually during

the reversal process, it is clear that any shearing, in the
absence of a dispersion in the intrinsic barriers
ED n,Efw, in our model must necessarily be attributed
to demagnetization forces, as is discussed below.

A linear shearing of a gradient of the ordemMNl/may
occur as a result of the mean demagnetizing field
Hq=—NM, whereNs~47 is of the order of the sheet
demagnetization factor but is also dependent on the pres-
ence of the domain walls. An approximately linear shear-
ing is observed, for example, in the case of continuous
nucleation in Fig. 8) but also in the initial stage of
magnetic reversal wher=10 in Fig. 3b). The numeri-

cal data are consistent with the model of Kooy and
Enz2® which predicts that the inclusion of the domain
structure in the demagnetizing energy leads to steeper
hysteresis loops. The model of Kooy and Brassumes
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zero domain-wall coercivity and remanence, so the con-
sideration of finite distinct coercivities for nucleation and
domain-wall pinning does not appear to modify the ef-
fect of the demagnetizing forces on the shape of the hys-
teresis loop substantially. An approximate expression for
the magnitude of the magnetization juy/M ¢ before
the shearing occurs can be obtained as follows. First, the
energy barriers are expressed to first order as a function
of the mean demagnetizing field:
Eon=Epn*MVac(Ha—=DsM), (21)
Eow=Epw T MVac( Ha= DsM). (22

The first nucleation process occurs whigh=Mg, and
the expectation value of the rati, ,/kT=In(Nfy/B)
[Eg. (19)]. The reduction of the mean demagnetizing
field throughout the entire growth process does not
modify in this approximation the balance between the
rate of nucleation and domain-wall motiofi.e.,
Ep n—Ep,w) but reduces the probability of domain-wall
motion (i.e., Ey, ). It is reasonable to assume that the
thermoactivated domain-wall motion is terminated under
a similar condition, i.e., whei, ,/kT~In(Nfy/g), and
subtracting Eq(22) from Eq. (21) results in an expres-
sion for the magnetization jump of the form

AM  E),—E), H,—H, In(k)

RS— = oC

Ms DsMgvact Hd,s .
H,,H,, are here defined as the coercive fields of nucle-
ation and domain-wall motiofor a fixed value of the
magnetization that make the respective energy barriers
vanish, andH, ;= Ny3Mg is the mean demagnetizing field
at saturation. In the case of continuous nucleation
(ES.=ED.), In(k)=0, and there is no jump, so that the
hysteresis loop is sheared during the entire reversal pro-
cess. The limitations of the model restrict, in practice,
the usefulness of Eq23); for example, it cannot be
applied to systems characterized by a dispersion in en-
ergy barriers, i.e., a dispersion in coercivities of nucle-
ation and domain-wall motion. Furthermore, if the jump
size predicted by Eq23) is large, it is likely that the
shearing of the hysteresis occurs by a different mecha-
nism, as is discussed below.
When no more space is available for domain expansion
in any direction, i.e., beyond the stage when the domains
appear to coalesce, the reversal process is impeded by a
substantial reduction in the mean demagnetizing field
and the associated enhancement of the barrier of wall
motion resulting in shearing of the hysteresis loop. The
local magnetic environment at the domain boundary sur-
face that determines the rate of thermoactivated growth
is nontrivially modified. The onset of this type of shear-
ing occurs, for instance, in Fig(®, whenM/M¢=0.1
for z=4 andM/M4=0.5 for z=10. The size of the re-
gions of unreversed magnetization in the maze-type do-
main structure increases with demagnetizing strergth
[Fig. 2(b)], and consequently the onset of this type of
shearing occuréfor largez) at larger values of the mag-
netization.

(23

Similar sheared hysteresis loops have been observed in
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Tb/Fe (Ref. 36 and Pt/Co(Ref. 39 multilayers. The shear- size, R is the radius of the smallest circle containing the
ing is only observed for films of relatively large thickndss cluster, and the densifydepends on how the monomers are
where the demagnetizing field strengthh/d is strong. For  packed. The number-radius relation given [{5q. (26)] is
Pt/Co multilayers of large thickness, an enhancement of thelearly not satisfied for the domain clusters for a unigug
shearing close to the coercive point has been reported, arttiring the growth process. The magnetic domains are, there-
direct domain observations in this case indicate that the ddfore, porous but are not strictly fractal, since the fundamental
main growth is irregular with no evidence of uniform expan- property of scale invariance is not satisfied.
sion. It was suggested that the non-uniform expansion may The dependence of the mass dimendihp on the con-
be controlled by defect¥,i.e., the physical microstructure of stantz that is a measure of the strength of the demagnetizing
the Co/Pt films of different thickness may be different. Thefield is shown in more detail in Fig.(d). When the demag-
Monte Carlo simulations indicate that this type of shearingnetizing field is strong, the observed reduction of the mass
can occur as a result of the dendritic growth of the magnetidimensionD,,, is consistent with previous simulations by
zation, by simply increasing the demagnetizing strerigtt ~ Saykoet al.ldnThe presence of a strong demagnetizing field
the distribution of defecjs Since there is no evidence that renders the dendritic growth energetically favordbléere,
the defect structures are dependent on the thickness of tlvee present three curves obtained at different stages during
films 28 the irregular domain growth in thick films should be the growth process, i.e., different values of the radius of gy-
attributed not only on the presence of defects but also omation. The curvature can be convex or concave and is sen-
micromagnetic considerations. sitive to the precise choice d&®;. The dependence of the
The regularity of the domain growth has been characterdimensionD,, on the wall energy constant is shown in
ized using the theory of fractals. Fractal patterns possess thég. 4(d). A rather abrupt transition to the maximum value
property of scale invariancg.All physical systems, how- D=2 is observed. The sharpness of the transition is attrib-
ever, have a characteristic smallest length scale. In thated on the absence of a dispersion in domain-wall coercivi-
present model, the smallest length is imposed by the finitéies in the model and the homogeneous magnetic environ-
size of the cells of the two-dimensional array. For this rea-ment of the pores in the interior of the domains. Figures 4
son, an appropriate fractal measure is the cluster or masmnd 4d) represent an example of the competition of the de-
fractal dimensiorD,,.*° To define the mass dimension, we magnetizing and wall energy in controlling the domain regu-
consider connected cells that have reversed magnetically darity. The variation in the domain structure as the wall en-
forming clusters and use the number-radius rel4tion ergy is enhanced is shown in Fig@@ For example, when
5 In(k)=30 andw=0.5, the regions of unreversed magnetiza-
N()=N (L) mf(L) (24) tion are d|str|.buted uniformly W|th!n the e_ntlr_e area enclosed
0 Ry Ry’ by the domain boundary. The uniform distribution probably
. . ] arises as a result of the absence of a dispersion in intrinsic
whereN, is the total number of cells in a cluster aNdr) IS energy barriers of wall motion in the model. When the wall
the number of cells within a radiusfrom the nucleation site. energy is enhancedv=2), the fingers within the domain
The crossover functiofi(x) is constant fox<<1 anq tends to boundary are thickened uniformly until at some stage-4)
x~Pm for x>1 so thatN(r)—Ng for r>R;. Ry is the ra-  he entire area within the domain has reversed magnetically.

dius of gyration defined from A similar behavior is observed when the parametés var-
Ng ied [Fig. 2(b)]. The variation of domain structure with de-
R.— 2 2/ N (25) magnetizing strength is in good agreement with experimental
o- V<« i/ o observation in TbFe film&; although the observation of a

small number of hard pinning sites in the interior of the
wherer; is the separation of thith cell from the nucleation domains in Co/Pt multilayet$ and the nonuniform domain
site. The mass dimensiddy, (1<D,=<2) for a given domain  collapse in ThFeCo filns illustrates the importance of local
at some stage during the growth process is evaluated fromariations in the domain-wall coercivity.
the slope of the straight line obtained by plottingNiff )] as The fractal dimension of the domain wéll,(1<D,<2)
a function of Inf/Ry], as shown in Fig. &). A linear rela-  is a useful measure of the jaggedness of the domain bound-
tionship is obtained for/Ry<<1, where the effect of the ary. Bernacki and Mansuriptirmeasured the wall dimension
crossover functiorf(r/Ry) can be ignored. For those do- in ThFeCo thin films under static conditions using the ruler
mains that exhibit dendritic growth, the mass dimendilgn ~ method* and found that repeatable values could be obtained
increases during the growth process. The increase is showrhder the same magnification. An alternative method sug-
in Fig. 4(b), whereD, averaged over an ensemble of do- gested in Ref. 10 is to use the perimeter-area rel#tion
mains is shown as a function of the radius of gyratynfor
different values ofz. The increase results from the finite

probability of magnetic reversal in the interior of the domain LHOw _ 27)
during the growth process of regions that remained initially \/K =¢

unreversed. Fractal clusters must satisfy the number-radius

relatiorf®

wherelL is the length of the perimeter of a domain afvds
N=p(R/Rg)°m (26) f[he area enclosed by its boundary surface. The constant

independent of the are& and depends only on the shape of
for a nonintegeD,,. HereN is the number of monomers, the domain and the length of the ruler used to measure the
i.e., the cells, that constitute a clust&; is the monomer perimetef’
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FIG. 4. (a) The number of celldN belonging to a magnetic domain located within a radidi©om the nucleation site. The numerical data
were obtained for a domain of the resolved radius of gyrafight =13, whered is the separation of the hexagonal cells, using®, w=4,
In(k) =30. (b) The mass fractal dimensidd,,, (averaged over a statistically independent ensemble of 100 magnetic dpamms$unction
of the resolved radius of gyratidRy/d. Results are presented far=2 and different values for. (c) The mass fractal dimensidd,, as
a function of the constant of demagnetizing strengtiThe data were obtained usimg=2, In(k) =30, three different radii of gyration
averaging over an ensemble of 100 domain@) The mass fractal dimension as a function of the paramettitat is a measure of the
domain-wall energy. The data were obtained usirg@, Ry/d=12, and averaging over 100 magnetic domains.

The perimeter-area relatidieq. (27)] is satisfied in our etersz andw is shown in Figs. B) and 5c), respectively.
model during the entire growth process, provided that thélhe transition from a minimum valuB,=1 to the maxi-
domains do not coalesce, as the linear dependence lof In( mum valueD,,=2 when the demagnetizing strengtlis en-
on In(A) in Fig. 5@ suggests. hanced, shown in Fig.(B), indicates that the jaggedness of

A fractal geometry is usually observed when the laws thathe domain boundary increases and is consistent with the
determine the growth process are deterministic, but there isomputations in Ref. 10. The dependence on the wall energy
disorder in material paramete¥sif the system is homoge- w in Fig. 5(c) clearly has the opposite effect. The transitions
neous, a fractal geometry may still be observed provided thatbserved in the value dd,, in Figs. 5a) and 3b) are not
the growth process is stochastic. For instance, in diffusionsharp, since there is always some diversity in the local mag-
limited aggregatio® the growth process is controlled in ef- netic environment along the perimeter of a magnetic domain
fect by the geometry of space. In the present model, thef irregular shape.
growth of the perimeter of the magnetic domains is a similar Next we consider, the time dependence of the magnetiza-
example of stochastic growth in a film of homogeneous magtion M(t). The simplest treatment, based on Fatuzzo
netic properties. In this respect, it is not surprising that theheory!’ considers the nucleation at a rakeof circular do-
domain boundary is fractal. The wall dimensiDy, appears, mains of initial radiug ., growing at constant velocity and
therefore to be a more useful fractal measure that the masesults in a time dependence given by
dimensionD ,, for the characterization of the domain regu-
larity.

The dependence of the wall dimensiDy, on the param- M(7)=M(2e9"—1), (28
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FIG. 5. (a) The perimeter-area relation for a magnetic domain. The data were obtainedzesinw=2, and Ink) =30. The length of
the perimeter is shown in units of the sid&/3 of a hexagonal celithe length of the rulgr The areaA is similarly normalized by the area
v3d?/2 occupied by a celkb) The fractal dimension of the domain wall,, as a function of the demagnetizing field strengtiAn average
over 100 magnetic domains was taken usmg2 and Ink)=30. (c) The fractal dimension of the domain wall,, as a function of the
constantw that is a measure of the domain-wall energy. An average over 100 magnetic domains was taken kis#@0land different
values of demagnetizing strength

where r=Rt and the functiorg(7) is given by ing the Fatuzzo theorjEqgs.(28) and(29)], is shown in Fig.
6(a). For nucleation-dominated reversal at low values«pf
1 o . the absolute magnitude of the ratV/dt| exhibits a mono-
1-(r+&x )+ 5 (r+x )"—€ " (1=x7)  tonic reduction. Conversely, for reversal dominated by
domain-wall motion at large values &f a maximum value
1-7 in the rated M/dt| is observed that increases in magnitude at
W) (29) large values of k. The dependence of the resolved
rate d(M/Mg)/dt on M/Mg is shown in Fig. @). The
The shape of the time-dependence cuVs) is dependent dependence is linear for nucleation-dominated reversal,
on a single parameter=v/Rr,. In principle, it is possible to which is characterized by a single relaxation time
compare the experimentally determined curves with théVl=Mg(2e~"—1). A maximum value of the ratg M/dt|
theory’® and derive the value of that fits the data and pro- occurs wherd®M/dt*=0. Using Egs(28) and(29), it can be
vides a measure of the relative contribution of the nucleatiorshown that the following condition must be satisfied:
and wall motion in the magnetic reversal. An alternative
method Qf identifiqation of the mefchani.sm of magnetization 21+ (6" "= 1)(1— k )+ 0.5¢ 22+ (1— kL) -1
reversal is to consider the curves involving the rate of change
dM/dt. The variation ofd(M/M)/dr with 7, evaluated us- =0. (30

o(7)= -2+
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FIG. 6. (a) The time dependence of the rate of change of the magnetization according to the Fatuzzo model. Results are presented for
x=0.1,0.5,1,5. (b) The dependence of the rate of change of the magnetizatioM /g according to the Fatuzzo model. Results are
presented fok=0.1,0.5,1,5. (c) The resolved magnetizatidd/Mg when the rate of magnetization revergdfl/dt attains the maximum
value as a function ok according to the Fatuzzo model.

A maximum value occurs fok>0.5 at some value of the and 7c), and the enhancement of the maximum rate at large
magnetization that is shown in Fig(d as a function ofx. k are all consistent with the Fatuzzo theory. There are some
The peak is displaced to lower values of the magnetization agnportant differences, however, that are attributed to the
k increases, and in the limik—c it can be shown using presence of the demagnetizing field.
M(7)/M =2 exp(—«*713)—1 (Ref. 17 that the condition In the case of reversal by continuous nucleatj&iig.
d?M/dt?=0 is satisfied wheM /M =2e 231, 7(a)], the dependence of the ratié/dt on M is nonlinear
Fatuzzo’s theory does not consider the demagnetizatioand, in addition, the magnetization freezes before complete
forces that result in the growth of fractal domain reversal has been achieved. The demagnetizing field induces
structures. dM/dt vs M plots obtained using the Monte an effective dispersion in relaxation times that is also respon-
Carlo model are shown in Fig.(@ for the case of continu- sible for the shearing in the hysteresis logpsy. 3@)]. A
ous nucleation and in Figs.() and 7c) for the case of gradual reduction of the gradied{dM/dt)/dM is also evi-
reversal by wall motion. The monotonic reduction of the ratedent in Figs. T) and dc) and is in marked contrasfig.
dM/dt in Fig. 7(a), the maximum of the rate in Figs() 6(b)] to the prediction of the Fatuzzo theory.
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FIG. 7. The dependence of the rate of change of the magnetizatit/ bh, using the Monte Carlo model. The results were obtained
usingz=w=0.5, In(k) =0 (a), In(k)=5 (b), and Ink) =20 (c). The instantaneous reversal in Ef) was assumed to occur in 1®sec.

When the parametdy is allowed to increase, the peak in pend in general on two factors. First, in accordance with the
the ratedM/dt occurs at lower values d¥l, as expected by Fatuzzo theory, it is dependent on the difference in the in-
Fatuzzo theoryFig. 6(c)]; the shift, however, is small, and trinsic energy barriers of nucleation and domain-wall motion.
the valueM/M¢=2e ?*~1 is never reached. The demag- For example, if the coercivities of nucleation and domain-
netizing field, by enhancing the energy barrier of thermoacwall motion are of the same magnitude, the magnetic rever-
tivated wall motion, imposes a limitation on the rapid growth sa| occurs by continuous nucleation; otherwise the preferred
of the domains, during the initial stage that follows the mechanism is by thermoactivated domain-wall motion. Sec-
nucleation process. ond, it is also dependent on the relative balance of the de-

magnetizing and domain-wall energy, in agreement with pre-
V. CONCLUSIONS vious the_o_retical and experimental _ work. _\Nhen_ the
demagnetizing forces are enhanced in magnitude in the

A Monte Carlo model of the thermoactivated magneticsimulations, the domain growth becomes rather abruptly
reversal in thin films of RE-TM alloys has been developeddendritic by the formation of a maze-type pattern within the
that simulates the magnetic reversal mechanisms that are obemain boundary. The observed maze-type pattern is rather
served experimentally: reversal by continuous nucleationuniform in thickness throughout the area enclosed by the
nucleation followed by the growth of magnetic domains anddomain boundary. The model does not predict the intermedi-
dendritic growth by successive branching in the domain-walkte case of a small number of regions of unreversed magne-
motion. The magnetic reversal mechanism was found to deization in the interior of the domain, which is frequently
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observed experimentally. The main reason appears to be tmaximum value of the rateM/dt occurs always early in the
absence in the present model of a dispersion in intrinsic erreversal process. This result is in disagreement with the pre-
ergy barriers for domain-wall motion. diction of the Fatuzzo model. Since the Fatuzzo model is
The dendritic growth of the magnetic domains can beoften used to characterize the relative balance between ther-
characterized by calculation of the mass fractal dimensiomoactivated nucleation and domain-wall motion in magneto-
D, The domain structures are not strictly fractal, since theyptic media, further work is necessary to determine the limi-
dimensionD,, increases during the growth process, i.e., theations of that approach.
porosity of the magnetic domains is gradually reduced. In The Monte Carlo results describe satisfactorily the do-
contrast, the domain perimeter is a fractal curve, and thenain structures observed in magneto-optic recording media
fractal dimensionD,, that describes the jaggedness of thegther than RE-TM thin films, for example, amorphous mul-
domain wall is invariant during the growth process and contjlayers such as Co/RRef. 37 and Dy/Fe(Ref. 24. A de-
stitutes, therefore, a good fractal measure of the domaigajled study, however, should consider the magnetization re-
regularity. It does not constitute, however, a measure of thgersal of individual layers. The model may also be useful for
domain shape that is related to, but not determined by, thghe description of ultrathin ferromagnetic films such as Au/

ratio ¢ in Eq. (27). Co/Au sandwiche$§?®
The demagnetizing field may result in shearing of the hys-

teresis loop. The amount of shearing appears to be dependent
on the availability of space for domain expansion. The ef-
fects of the demagnetizing field on the time dependence of
the magnetization under constant external field conditions The authors acknowledge the financial support of the Sci-
were identified by comparison with the Fatuzzo theory,ence and Engineering Research Council. We are indebted to
which ignores such effects. The Monte Carlo simulations in-Dr. S. D. Brown, Dr. P. Haycock, Professor J. N. Chapman,
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