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Quick development of synchrotron radiation facilities and prospective applications of photon beams of a
variable energy in spectroscopy of solids and interfaces prompts further studies of photoemission induced by
polarized soft x rays. One of the most important characteristics in surface sensitive spectroscopies is the mean
escape depth of signal electrons leaving a sample without being scattered inelastically. In this article a simple
analytical expression for the average escape depth of photoelectrons ejected by polarized x rays is found by
means of the depth distribution function obtained by solving the transport equation. The dependence of the
escape depth on the type and the degree of photon polarization is predicted. This effect is due to the anisotropy
of the initial angular distribution of photoelectrons and elastic scattering they suffer on their way out of the
target. The variation of the mean escape depth with the type and the degree of polarization as well as with the
emission direction from the target is quite well pronounced and may reach up to 100% with respect to the value
determined by the inelastic mean free path in the usual x-ray photoelectron spectroscopy formalism. The
dependence of the escape depth on the azimuthal and polar emission angles is studied in detail. In the special
case of unpolarized x rays the expression for the average escape depth reduces to the result found earlier.

I. INTRODUCTION

The widely used surface sensitive techniques such as Au-
ger ~AES! and x-ray photoelectron~XPS! spectroscopies are
based on measuring energy distributions of secondary elec-
trons in the vicinity of the characteristic peaks corresponding
to signal electrons carrying direct information about the el-
emental composition of top monolayers. The majority quan-
tity characterizing the surface sensitivity is the mean escape
depthD defined as the average emission depth pertaining to
the depth distribution function in the problem considered.1,2

The depth distribution function describes the probability for
an electron generated at a certain depth to be emitted from a
sample in a certain direction. In the usual AES/XPS formal-
ism it has been believed that elastic scattering of signal elec-
trons on their way out of the target can be neglected and that
the escape probability obeys a simple exponential law.3 Un-
der this assumption the mean escape depth is determined by
a simple product of the inelastic mean free pathli and the
cosine of the emission anglea, D5l i cosa. Recent
studies4–6 indicate, however, that elastic scattering may sig-
nificantly modify the quantityD and thereby influence the
surface sensitivity. It was found, in particular, that the mean
escape depth of photoelectrons ejected from solids by unpo-
larized radiation is strongly anisotropic even in the case of
amorphous or polycrystalline targets where no noticeable dy-
namical diffraction effects are expected.4,5 The latter effect is
due to a mutual interference of anisotropy of the differential
atomic photoelectric cross section and photoelectron elastic
collisions.

Meanwhile rapid development of synchrotron radiation
facilities makes possible the usage of polarized x rays in
surface analysis.7,8 Especially promising in this respect is the
scanning XPS as a nondestructive method for three-
dimensional microprobing.9,10 In this connection the gener-
alization of the results found in Ref. 4 for unpolarized radia-

tion to the case of polarized x rays seems highly desirable.
In the present article the analytical expression for the

mean escape depth of signal photoelectrons emitted from a
sample irradiated by polarized x rays has been derived on the
basis of the kinetic equation approach. An effect—the depen-
dence of the mean escape depth on the type and the degree of
polarization of incident photons—is predicted and analyzed
in detail. Such an optical orientation transfer to the escape
probability seems to have few analogies in literature.

II. PHOTON POLARIZATION AND INITIAL ANGULAR
DISTRIBUTION OF PHOTOELECTRONS

Consider a broad beam of x rays incident at the angleqg
at a flat semi-infinite target. We choose the coordinate system
with the Z axis directed towards the bulk of the target and
the XY plane coinciding with the surface. TheX axis is
assumed to be parallel while theY axis is normal to the plane
of incidence containing the x-ray propagation direction and
the surface normal~see Fig. 1!. In addition, we introduce a
rotated coordinate systemxyzwith thez axis along the pho-
ton propagation direction and they axis coinciding with the
Y axis of the laboratory systemXYZ. To characterize the
polarization state of incident photons we also introduce a
degree of polarizationp and the unit polarization vector

«̂5e1 exp~2 ig!cosS h2
1

4
p D1e2 exp~ ig!sinS h2

1

4
p D ,

~1!

wheree6 are the unit vectors in the coordinate systemxyz
and pertain to the positive and negative helicity states,
respectively.11 The polarization vector being equal toe6 is
interpreted as a right~1! or left ~2! circular polarization.
Thus expression~1! represents the expansion of the polariza-
tion vector in the complete basis$e1,e2%. The parametersh
andg specify the type and the azimuthal orientation of po-
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larization and vary from2p/2 to 1p/2 and from 0 top,
respectively. Namely, in the general case of the elliptical po-
larization, the quantityg equals the angle the principal axis
of the polarization ellipse is rotated by, with respect to thex
axis. The parameterh determines the amounts of right and
left circular polarization in a pure polarization state. In par-
ticular, the caseh50 corresponds to the linear polarization
when the amplitude of the electric-field vector is at the angle
g to thex axis. Similarly,h56p/2 denotes the linear polar-
ization with the electric-field amplitude oriented along the
direction making the angleg ~1! or p2g ~2! with the y
axis. The electric-field vector precesses according to the sign
of the parameterh. The positive values ofh.0 correspond
to the anticlockwise rotation, while the negative ones corre-
spond to the clockwise precession of the electric field. The
most general polarization state can be regarded as a mixture
of completely polarized and unpolarized states and is de-
scribed by the density matrix11,12

r5
1

2 S 11p sin2h 2p exp~22ig!cos2h

2p exp~2ig!cos2h 12p sin2h D .
~2!

Note that in the casep51 density matrix~2! describes a
completely polarized photon beam.

The initial angular distribution of photoelectrons is deter-
mined by the differential photoelectric cross section which in
the coordinate systemxyz is given by11

dsph/dV5sphf ~Q,F!, ~3!

f ~Q,F!5~1/4p!$12~b/2!@P2~cosQ!1~3/2!

3~S1 cos2F1S2 sin2F!sin2Q#%, ~4!

wheresph is the total photoelectric cross section,b is the
asymmetry parameter,P2(x) is the Legendre polynomial of
the second order,Q andF are the polar and azimuthal angles

specifying the photoelectron momentum in the system of co-
ordinatesxyz ~see Fig. 2!, while S1 andS2 are the Stokes
parameters13–15

S152p cos2h cos2g, ~5!

S252p cos2h sin2g. ~6!

For further consideration it is advisable to rewrite the differ-
ential photoelectric cross section in terms of the polar angle
q and the azimuthal anglew describing the photoelectron
direction of motion in the system of coordinatesXYZ. This
is achieved by replacing the normalized differential photo-
electric cross sectionf (Q,F) in formula ~3! by the function
f (q,w) of the form

f ~q,w!5~1/4p!$12~b/4!@3z0~q,w!13S1z1~q,w!

13S2z2~q,w!21#%. ~7!

In the latter expression the functionsz1~q,w! ~i50,1,2) are
defined by the relationships

z0~q,w!5~cosqg cosq1sinqg sinq cosw!2, ~8!

z1~q,w!5cos2qg sin
2q cos2w2cosqg sinqg sin2q cosw

1sin2qg~cos2q2sin2q sin2w!, ~9!

z2~q,w!5cosqg sin
2q sin2w2sinqg sin2q sinw.

~10!

Formula~7! follows immediately from expression~4! if one
takes into account that the coordinate systemxyz is obtained
from the systemXYZ by a rotation with the Euler angles
~0,qg ,0!. In the case of unpolarized radiation~p50! formula
~7! reduces to the well-known result of Reilman.16

FIG. 1. Schematic representation of the typical XPS geometrical
configuration. A beam of x rays is incident at the polar angleqg on
a target. The photoelectron emission direction is described by the
polar anglea and the azimuthal anglef.

FIG. 2. Disposition of the coordinate systemsxyz and XYZ
used in angular distribution formulas. Also shown is the polariza-
tion ellipse rotated at the angleg with respect to thex axis in thexy
plane. The electric-field vectorE precesses anticlockwise~right po-
larization!.
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Since the transport mean free path and the attenuation
length of x rays are large compared with the effective escape
depth of signal photoelectrons the photoelectron source func-
tionQ may be considered as independent of depth. Thus, we
have for the initial distribution of electrons in the target

Q~V0!5MFsphf ~V0 ,Vg!, ~11!

whereM is the atomic bulk density andF is the initial flux
of incident photons, the unit vectorsV05V0~q,w! and
Vg5Vg~qg ,0! refer to the photoelectron initial direction of
motion and that of x-ray propagation.

III. SOLUTION OF TRANSPORT PROBLEM

Calculation of the mean escape depth of photoelectrons
requires knowledge of the escape probability as a function of
depth of originF~z,V! ~herez is the emission depth and the
vectorV characterizes the direction at which a photoelectron
leaves a target!. This function is often referred to as the depth
distribution function~DDF!.1 The DDF is shown to be pro-
portional to the outgoing flux density of particles times the
cosine of the emission angle.17 Thus, to find the DDF it is
necessary to solve a transport equation with a source func-
tion corresponding to a point source of electrons located at a
certain depthz. The obtained solution is to satisfy the bound-
ary condition implying that no secondary electrons enter the
sample.

The boundary-value problem involving a linearized
Boltzmann-type kinetic equation can be solved most effec-
tively in the transport approximation4,17 under the condition
that the angular distribution of particles is a slowly varying
function of emission angles.18 This requirement is perfectly
met in the case of Auger and photoelectron emission@cf.
formula ~7!#. In the transport approximation the exact differ-
ential elastic-scattering cross section in the collision integral
is replaced by an isotropic one equal to the corresponding
momentum transfer~or transport! cross section. Therefore, in
this approach, the only quantities characterizing electron-
solid interaction are the inelastic~li! and the transport~ltr!
mean free paths. Such a replacement is justified by funda-
mental properties of the transport equation. Namely, this ap-
proximation satisfies the so-called generalized radiative field
similarity principle18,19 and provides similarity between the
exact and the approximate solutions in the limiting cases of
weak ~li@ltr! and strong~li<ltr! absorption.

The accuracy of the transport approximation has been
checked recently by comparison with Monte Carlo simula-
tion results based on a realistic Mott differential elastic-
scattering cross section.4,17–22It was found that the transport

approximation predictions for different emission characteris-
tics were astonishingly accurate, even in the intermediate
case of scattering parameters,li;ltr , which is of the most
relevance for XPS. The discrepancies between the Monte
Carlo and analytical results, as a rule, do not exceed several
percent as regards the angular and energy spectrum of emit-
ted electrons,19,20 the emission depth and the traveled path-
length distributions,17,21 the mean escape depth,4 the total
photoelectron yield,22 and so on. In view of this it seems
appropriate to apply the transport approximation to the prob-
lem of signal photoelectron emission by polarized x rays.

For the sake of brevity we do not present a mathematical
formulation of the secondary emission problem in full. This
formulation is discussed in detail in recent publicat-
ions.4,18–22 The depth distribution functionF~V,z! can be
expressed through the surface value of the Green’s function
of the transport equation

F~V,z!5my0E G~0,Vuz,V0! f ~V0 ,Vg!dV0 . ~12!

HereV5V~a,f! is the unit vector along the emission direc-
tion from the solid,

y05MFsph ~13!

is the normalization prefactor, andm5cosa is the cosine of
the emission polar angle~see Fig. 1!. In the transport ap-
proximation the Green’s functionG(z,Vuz0 ,V0! obeys the
equation

j
]G

]t
52G1

1

4pE G~t,V8ut0 ,V0!dV81d~V2V0!

~14!

with the boundary condition

G~0,Vut0 ,V0!50, for j5~ez•V!.0, ~15!

whereez is the unit vector along theZ axis,t is the dimen-
sionless depth

t5z/l, ~16!

andl is the total mean free path in the transport approxima-
tion

l5l il tr~l i1l tr!
21. ~17!

The solution to Eq.~14! with boundary condition~15! can be
found by Case’s method of eigenfunctions.23 Particularly, the
surface value of the Green’s function reads24

G~0,Vut,V0!5~2p!21SH~m,v!„vn0~n0
221!$2~n02m!~n02m0!@11n0

2~v21!#H~n0 ,v!%21 exp~2t/n0!…

1E
0

1

wn~m!wn~m0!g~n,v!@nH~n,v!#21 exp~2t/n!dn2m21
•d~m2m0!exp~2t/m! D

1m21
•d~V2V0!exp~2t/m!. ~18!
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In formula ~18! v is the single scattering albedo

v5l/l tr . ~19!

H(m,v) is theH function of Chandrasekhar25 for an isotro-
pically scattering medium,wn~m! is the eigenfunction of the
homogeneous transport equation pertaining to the continuous
eigenvalue set 0<n<1,17,23 the quantityn0 is the root of the
characteristic equation

15~vn0 /2!• ln@~n011!/~n021!#, ~20!

and the functiong~n,v! is given by the expression

g~n,v!5$~pvn/2!2

1@12~vn/2!• ln@~11n!/~12n!##2%21. ~21!

Expressions~12! and ~18! along with the source function
defined by Eqs.~7! and~11! determine completely the escape
probability as a function of the depth of origin.

IV. MEAN ESCAPE DEPTH

The mean escape depthD can be calculated by means of
the formula

D5lS E
0

`

tF~t,V!dt D S E
0

`

F~t,V!dt D 21

, ~22!

where the depth distribution functionF is conveniently ex-
pressed in terms of the reduced deptht. Substitution of the
explicit expression for the DDF into the right-hand side of
Eq. ~22! yields the ratio of two multiple integrals. The inte-
gration is performed over all photoelectron emission depths
and initial directions of motion. In addition there are inte-
grals over the eigenvalues of the continuum set. The integra-
tion over t does not pose any problem as it follows from
formula ~18!. Calculation of the integrals overn can be car-
ried out by means of the residue theorem.6 Making use of
identifies involving theH function of Chandrasekhar25 it is
possible to present the final expression for the mean escape
depth in the form

D5
l il tr

l i1l tr
~cosa1W!. ~23!

Here the quantityW depends on the geometrical configura-
tion and scattering properties of the target. It is defined by
the ratio

W5W1 /W2 ~24!

so that

W15~12v!21/2x2V1 , ~25!

W25~12v!21/22
b

4H~cosa,v!

3@3 cos2c2113S1z1~a,f!13S2z2~a,f!#1V2 .

~26!

In formulas~25! and~26! c is the angle between the photon
propagation direction and that of the photoelectron emission,
while x, V1 andV2 are the integrals given by the expressions

x5~v/2!~12v!21/2E
0

1

mH~m,v!dm, ~27!

V15
vb

16
@3mg

22113S1~12mg
2!#

3E
0

1 ~x21x cosa!H~x,v!~3x221!dx

~x1cosa!
, ~28!

V25
vb

16
@3mg

22113S1~12mg
2!#E

0

1xH~x,v!~3x221!dx

~x1cosa!
.

~29!

When deriving expressions~25! and ~26! and ~28! and ~29!
we setmg5cosqg and made the interchange

q5p2a, j52cosa. ~30!

In accordance with~30! the functionsz1~a,f! and z2~a,f!
read

z1~a,f!5cos2qg sin
2a cos2f1cosqg sinqg sin2a cosf

1sin2qg~cos2a2sin2a cos2f! ~31!

z2~a,f!5cosqg sin
2a sin2f1sinqg sin2a sinf.

~32!

In the limiting case of weak scattering~ltr→`! single
scattering albedov tends to zero and the quantityW1 be-
comes small compared withW2 . Thus, in the absence of
elastic-scattering formula~23! reduces to the well-known re-
sult of the usual XPS formalism,D5l icosa. The opposite
limiting case~ltr!li! corresponds to intensive elastic scat-
tering against the background of weak absorption. The lead-
ing term in the round brackets of the right-hand side of ex-
pression~23! becomes proportional to the square root of the
ratio li /ltr@1. As a result the mean escape depth is almost
independent of the emission direction,D;(l iltr!

1/2. Hence
we see that in the case of intensive scattering the escape
depth is determined by the average displacement from the
point of origin or by the diffusion length. That obviously
corresponds to a diffusionlike picture of the particle trans-
port.

In practical XPS applications, however, the most impor-
tant is the situation when the inelastic mean free path is of
the order of the transport mean free path,li;ltr . In the latter
case the quantityD is a complicated function of the photo-
electron emission direction, the type and degree of incident
photon polarization. Deviations of the mean escape depth
from the simple result of the usual XPS formalism are espe-
cially pronounced when the denominator in ratio~24! is
small compared with unity. This is associated with the
minima of the differential photoelectric cross section, per-
taining to the emission directions perpendicular to the domi-
nant direction of the electric-field vector oscillations. The
physical reason of this is quite obvious: the electric field
pushes a photoelectron out of an atom mainly in the direc-
tions parallel or antiparallel to the polarization vector. In the
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next section some typical examples of the mean escape depth
dependence on the major parameters are considered.

V. RESULTS AND DISCUSSION

In the dipole-approximation the initial angular distribution
of photoelectrons ejected from atoms by polarized x rays is a
function of the asymmetry parameterb and the three polar-
ization parameters~p, g, andh! and so is the mean escape
depth. This results in a considerable variation in the mean
escape depth as a function of emission angles and x-ray po-
larization. The main features of this dependence can be eas-
ily traced out by few examples. For the further analysis it is
convenient to introduce the normalized mean escape depth

d5D/~l i cosa!. ~33!

Note, that in the absence of elastic scattering the quantityd
is always unity,d51, in accordance with the usual XPS
formalism.

In Figs. 3~a! and 3~b! the dependences of the mean escape
depth d on the polarization degreep is shown for Al 2s
~b52.00! and Au 4s ~b51.82! photoelectrons emitted from a
sample in the plane of incidence~f50! in the directions
perpendicular to that of photon propagation~a1qg5p/2!,
correspondingly. In such a geometry only a minor influence
of the asymmetry parameterb on the shape of the angular
distribution is expected. The x rays are assumed to be lin-
early polarized along they axis ~g50, h590°! and their
energy is put equal to the photon energy of AlKa radiation
~1486.6 eV!. The inelastic and the transport mean free paths
calculated by the formula of Tanuma, Powell, and Penn26 and
that of Tilinin,27 respectively, are equal toli525.0 Å and
ltr5227 Å, in the case of aluminum and 10.4 and 17.2 Å for
gold. Thus the ratioli /ltr for aluminum is noticeably less
than that of gold, which points to a much more strongly
pronounced elastic-scattering effect for the gold target. From
Fig. 3 it follows that the increase in the degree of polariza-
tion p leads to increasing the ratioD/(l i cosa!. The less the
cosine of emission anglea is the more significant is the
difference between the values of the mean escape depth ob-
tained with and without taking into account elastic scattering
of electrons. In the case of unpolarized radiationp50 and
the emission directiona5p/22qg corresponds to a maxi-
mum of the initial angular distribution. As a result the nor-
malized mean escape depth reaches its minimum value.
Those minimum values, however, are significantly different
for Al and Au targets. Thus, due to a small ratioli /ltr;0.1
the normalized mean escape depth for Al is close to unity for
all emission angles considered, while for the Au target and
near normal emission the quantityD differs from the product
li cosa by almost 30%. The valuep51.0 pertains to a com-
pletely polarized photon beam with a polarization vector per-
pendicular to the photoelectron emission direction. In the
latter case the angular distribution of emitted electrons has a
minimum, while the mean escape depth reaches its maxi-
mum.

Figures 4~a! and 4~b! illustrate the azimuthal dependence
of the mean escape depth for the linearly polarized radiation
~p51.0). Theelectric-field vector in the incident wave os-
cillates along thex axis. The samples are irradiated at the
angleqg545° and the photoelectron current is collected at

the emission directionsa535, 45, 55, 65, and 75° which is
close to a typical geometrical configuration in commercially
available XPS setups. At relatively small emission angles
a50–45° the escape depth has a maximum in the plane of
incidence~f5180°!. This maximum splits in two off-plane
maxima with increasing the polar anglea. The positions of
these maxima are determined by the minima of the corre-
sponding initial angular distribution@cf. formula ~4!#. At the
emission anglea575° the quantityD exceeds considerably

FIG. 3. Dependence of the normalized mean escape depth,
D/l i cosa on the polarization degreep for the Al 2s ~a! and Au 4s
~b! electrons escaping from a sample in the plane of incidence at
different polar angles in the direction perpendicular to the propaga-
tion direction of x rays~a1qg590°!. Photons are polarized along
the y axis ~g50, h590°!. Calculations were done using formulas
~23! and~33!. Open squares representa510°, black triangles550°,
open circles570°, black circles580°.
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the value predicted by the usual XPS formalism. Thus we
haveD;2.8li cosa for aluminum andD;1.8li cosa in the
case of gold.

As a final example the mean escape depth dependence on
the polarization type is illustrated in Figs. 5~a! and 5~b! for
Al and Au targets. The angle of incidence of x rays is equal
to 45° and a beam is completely polarized~p51.0!. The
polarization vector is oriented along they axis ~g590°!. The
photoelectrons are collected in the plane of incidence~f50!
in the emission directionsa540, 60, 70, and 80°. The values

of the polarization type parameterh50 and 690° corre-
spond to x rays linearly polarized along they and x axes,
respectively. In the case of theh parameter belonging to the
intervals ~290°,0! and ~0,190°! there are left~h,0! and
right ~h.0! elliptically polarized photon beams. For the cho-
sen emission directions the relative number of recorded pho-
toelectrons is minimal ath50 as the plane of incidence is
perpendicular to the electric-field vector. On the contrary the

FIG. 4. Dependence of the normalized mean escape depth,
D/l i cosa, on the azimuthal emission anglef for Al 2s ~a! and Au
4s ~b! electrons ejected by a linearly polarized radiation~p51,
g50, h50!, and leaving a target at different polar emission angles
a. The photon energy and angle of incidence are equal to 1486.5 eV
and 45°, respectively. Triangles overturned representa535°,
triangles545°, diamonds555°, squares565°, and circles575°.

FIG. 5. Dependence of the normalized mean escape depth,
D/l i cosa, on the type of polarizationh for Al 2s ~a! and Au 4s ~b!
photoelectrons ejected from a sample by a completely polarized
x-ray beam incident on a sample at the angleqg50 ~p51, g590°!.
The photon energy is 1486.6 eV. Photoelectrons leave a solid at
different polar emission angles in the plane of incidence. Open tri-
angles overturned representa540°, black triangles560°, open
squares570°, and black circles580°. Calculations by formulas~23!
and ~33!.

552 53I. S. TILININ



angular distribution reaches maximum values forh5690°.
Therefore, the normalized escape depthd is the smallest
when the electric-field vector is parallel to the plane of inci-
dence.

From the analysis of expression~23! and the examples
presented above it follows that behavior of the mean escape
depth is strongly correlated with the initial angular distribu-
tion of photoelectrons inside the target. This correlation is
especially well seen in Fig. 6, where the quantityd along

with the initial distributionf (Q,F) of Au 4s photoelectrons
is displayed as a function of the azimuthal angle. The lin-
early polarized~g50, h50! x rays are incident on the sur-
face at the angleqg545°, while photoelectrons escape from
the target at the polar anglea580°. The correlation effect
can be understood upon examining closely the character of
the angular distribution of photoelectrons leaving the sample.
This distribution is proportional to the denominator of the
ratio in the right-hand side of formula~22! and is given by
the expression

Y~a,f!5~y0 cosa/4p!H ~12v!21/2H~cosa,v!2
b

4
@3 cos2c2113S1z1~a,f!13S2z2~a,f!#

1
vb

16
@3mg

22113S1~12mg
2!#E

0

1 xH~x,v!H~cosa,v!~3x221!dx

x1cosa J . ~34!

Formula~34! follows immediately from expressions~4! and
~12!. The quantityY~a,f!sinadadf represents the total
number of photoelectrons emitted by a unit area of the target
surface in an infinitesimally small solid angle sinadadf
along the direction~a,f!. The result of the straight line ap-
proximation is obtained from formula~34! by settingltr5`,
v50. In this case the differential photoelectron yieldY be-
comes proportional to the initial distribution of electrons in-
side the target. Analysis shows that, for typical values of the

ratio li /ltr;0.2–0.5, formula~34! approximately reproduces
the initial angular distribution. However, distribution~34! is
much smoother than that described by expression~4!.
Namely, the relative amount of electrons emitted from the
solid in the directions of maxima is decreased, while the
relative intensity of the photoelectron current in the direc-
tions of minima of the functionf (Q,F) is increased. The
smoothening effect of elastic collisions is illustrated by Fig.
7 where the normalized angular distribution

FIG. 6. The correlation between the normalized initial angular
distribution ~open circles! and the normalized mean escape depth
dependence on the azimuthal emission angle~solid line! for Au 4s
photoelectrons ejected by a linearly polarized radiation~1486.6 eV!
incident on the target at the angleqg545 ~b51.82, p51.0, g5h
50!. Calculations by formulas~23!, ~33!, ~34!, and~35!. The pho-
toelectron current is collected in the directiona580°.

FIG. 7. The normalized distributionY54pY/y0 cosa versus the
azimuthal angle for 4s photoelectrons ejected from a gold target at
different polar emission anglesa by linearly polarized x rays~p51,
g5h50) incident at the angleqg545°. Black circles represent
a520°, black triangles580° @calculations by formulas~34! and
~35!#. Open circles~a520°! and triangles~80°! correspond to the
straight-line approximation results~elastic scattering neglected!.
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Y~a,f!54pY~y0 cosa!21 ~35!

is displayed versus the azimuthal anglef for Au 4s photo-
electrons ejected by x rays linearly polarized along thex axis
~p51, g50, h50!. The depletion of the photoelectron cur-
rent in the most probable emission directions is caused by
scattering of the electrons coming from deeper depths. These
electrons are redistributed in such a way that they increase
the yield in the directions at which initially only a small
amount of particles move. As a result, the mean escape depth
is effectively increased in those directions and vice versa.

It should be stressed that the anisotropical behavior of the
mean escape depth is mostly pronounced for the intermediate
values of the scattering parameterx5li /ltr;1. In the limit-
ing case of largex@1 intensive elastic scattering sweeps the
escape probability of all anisotropic features. In the opposite
limiting case of strong absorptionx<1 the angular depen-
dence of the normalized mean escape depth is observed only
in narrow solid angles in the vicinity of deep minima of the
photoelectric cross section. Forx50 the quantityd51 ex-
cept for the emission directions corresponding to zeros of the
initial angular distribution where the normalized escape
depth is formally undefined.

The results obtained allow us to draw some general con-
clusions about the mean escape depth behavior of medium
energy electrons in other physical problems involving ini-
tially anisotropical angular distributions. One of them is Au-
ger and photoelectron diffraction.28–30In crystalline targets a
periodic arrangement of atoms gives rise to dynamical dif-
fraction effects or coherent scattering. A coherent field of

signal Auger or photoelectrons later on gets through a relax-
ation process caused by incoherent elastic and inelastic scat-
tering due to thermal displacements of atoms from their equi-
librium positions31,32 and interaction with weakly bound
electrons. Since the probability of coming back to a coherent
state for an electron suffered diffuse scattering is small,33,34

the coherent field may be regarded as a source for incoher-
ently scattered electrons. The angular distribution of coher-
ently scattered electrons is noticeably anisotropic with pecu-
liarities along the crystallographic axis directions. Thus, the
mean escape depth of medium energy electrons is expected
to be strongly anisotropic and to depend on the symmetry of
a particular crystalline lattice. Recent numerical studies of
photoemission from single crystals in the 1 keV energy
range35 supports this idea.

Another closely related phenomenon is spin-polarized
photoemission from solids irradiated by soft x rays.36–38The
developed approach can be generalized for the case of a spin-
resolved XPS theory. Preliminary results indicate that both
the angular distribution and the mean escape depth of pho-
toelectrons are strongly spin-dependent quantities. The latter
should be taken into account when applying the inelastic
background procedure to analyze the energy spectra of signal
electrons in the vicinity of the characteristic peaks in spin-
resolved photoemission experiments.39,40
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