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In-plane electronic transport in ultrathin metallic magnetic structures composed of two ferromagnetic films
separated by a nonmagnetic metallic spacer is analyzed theoretically, with particular attention paid to the role
of quantum size phenomena and interface roughness in the giant magnetoresistance~GMR! effect. Within the
one-band model we predict oscillations in the resistivity and GMR as a function of the spacer thickness. In
general, two different oscillation periods are found. It is also shown that the spin-dependent scattering due to
interface roughness can enhance or reduce the GMR effect generated by the spin-dependent scattering on
impurities or other defects inside the films. Long-range in-plane structural correlations of the interface rough-
ness reduce its role in the GMR effect.

I. INTRODUCTION

The current-in-plane ~CIP! giant magnetoresistance
~GMR! effect in magnetic multilayers consists in a large
change of the in-plane electrical resistance as the magnetiza-
tions of neighboring magnetic films rotate from the antipar-
allel to parallel alignment.1,2 The effect has been observed in
many structures which include transition-metal magnetic
films.3 Antiparallel alignment can easily be obtained if there
is an antiferromagnetic-type exchange coupling between the
magnetic films. However, the existence of an interlayer cou-
pling is not a necessary condition for the GMR to occur, and
antiparallel alignment can also be obtained by other
methods.4

In most cases investigated experimentally there was a
drop in the resistance as the film magnetizations rotated from
antiparallel to parallel alignment~normal effect!, but an in-
crease of the resistance~inverse effect! was also observed.5

The effect is usually described quantitatively by the ratio
Dr/rP, whereDr5rAP2rP, whereasrAP andrP are the re-
sistivities, respectively, in the antiparallel and parallel con-
figurations. The normal~inverse! effect corresponds then to a
positive~negative! value ofDr/rP. From the point of view of
the conventional definition of magnetoresistance, the normal
and inverse GMR effects correspond, respectively, to a nega-
tive and positive magnetoresistance.

The largest relative resistance change due to the magneti-
zation rotation was found in@Fe~4.5!/Cr~12!#50 superlattices,
where Dr/rP52.2 at 1.5 K.6 We use here the notation
[A(x)/B(y)] n , wherex and y are the thicknesses, respec-
tively, of the materialA andB ~measured in angstroms! and
n is the number of bilayers.

The most important characteristics of the GMR effect are
~i! the temperature dependence,~ii ! the dependence on the
number of films in a multilayer, and~iii ! the dependence on
the thickness of magnetic and nonmagnetic sublayers. The
GMR effect decreases with increasing temperature, but the
rate of the decrease depends on the composition and type of
the structure. In the case of Fe/Cr multilayers, the GMR ef-
fect decreases rather fast with increasing temperature. In
@Fe~4.5!/Cr~12!#50 superlattices

6 Dr/rP50.42 at 300 K, while
Dr/rP52.2 at 1.5 K. In Co/Cu multilayers, however,Dr/rP

decreases less fast with increasing temperature, and so in the
@Co~10!/Cu~10!#100multilayersDr/rP50.8 at 300 K,7 which,
to our knowledge, is the highest value reported up to now at
room temperature. The GMR effect also decreases with in-
creasing spacer thicknessd0 and disappears whend0 is sig-
nificantly larger than the bulk electron mean free path in the
spacer material. The dependence on the thicknessdm of the
magnetic films is more complex. The GMR disappears in the
two opposite limits, i.e., fordm→0, and also for sufficiently
thick magnetic films. At a certain value ofdm , smaller than
the corresponding electron mean free paths, the GMR
reaches a maximum. When the sublayer thicknesses are
much smaller than the electron mean free paths, then the
GMR effect considerably increases with increasing number
of films in a multilayer.

The GMR effect can be explained qualitatively and de-
scribed quantitatively by taking into account a spin asymme-
try of the parameters describing transport properties of the
two spin channels for electronic conduction.4,8,9At low tem-
peratures the channels can be considered as independent. At
higher temperatures, however, one has to take into account
interchannel transitions, particularly those which almost con-
serve the electron momentum.10

Two factors contribute to the spin asymmetry of the two
channels: the spin dependence of the scattering probabili-
ties and the spin dependence of the electronic structure of a
defect-free system. However, those two factors are not inde-
pendent because the spin-dependent electronic structure con-
tributes also to the spin dependence of the scattering prob-
abilities. This is due to the fact that the spin asymmetry in
scattering rates results not only from the spin dependence of
the scattering potentials, but also from the spin asymmetry of
the density of electron states at the Fermi level. In general,
one can distinguish between two types of the scattering po-
tential: the so-called bulk scattering potential, which origi-
nates from impurities and defects located inside the ferro-
magnetic and nonmagnetic films, and the interface scattering
potential due to a geometrical interface roughness or due to
intermixing effects. The scattering potential itself, particu-
larly that of a rough interface, also depends on the electronic
band structure. In the diffuse limit the contributions from the
spin-dependent scattering rates and spin-dependent band
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structure are not separable. In systems which are free of scat-
tering defects~limit of ballistic transport!, the situation can
change and the GMR effect can be entirely due to the spin
dependence of the electronic band structure.11

Two approaches have been developed for the theoretical
description of the CIP transport phenomena in magnetic mul-
tilayers: the quasiclassical one based on the Boltzmann ki-
netic equation4,8,12–14and the quantum-mechanical Kubo for-
malism in real15–18 and reciprocal9 spaces. All those
approaches are based on the one-band free-electron-like ap-
proximation for conduction electrons. Another theoretical ap-
proach developed recently is based on the one-band tight-
binding model.19–21

Since the GMR effect is not of a quantum origin, the
quasiclassical approach gives rather satisfactory results, ex-
cept in the limit of very clean sublayers, when the bulk elec-
tron mean free paths are much longer than the sublayer thick-
nesses. In that limit the quasiclassical approach breaks down
and one has to apply a quantum-mechanical formalism,
which explicitly takes into account the wave nature of elec-
trons. This, in turn, leads to quantum size effects in the re-
sistivity and magnetoresistance. Those effects give rise to
oscillations in the dependence of the resistivity of a single
metallic film on the film thickness.22,23 They also lead to
similar oscillations in the GMR effect in magnetic sandwich
structures.15,18

Without counting the role of interfaces in the breakdown
of the quasiclassical approach in the limit of infinite bulk
mean free paths, the role of the interfacial roughness itself in
the GMR effect is still not clear. Much experimental work
has been done24–27 to clarify the role of interface roughness,
but it is still not clear which scattering processes, bulk or
interface, contribute dominantly to the observed GMR effect.
Apparently, both contributions are important and their rela-
tive role depends on such factors like the quality of the in-
terfaces, distribution of bulk scattering centers, composition
of the multilayers, and possibly other factors.

In this paper we consider a sandwich structure with two
ferromagnetic films separated by a nonmagnetic spacer.
Electronic transport properties are described within the two-
current Mott model,28 with particular attention paid to the
role of interface roughness and quantum size effects in the
GMR effect.29 We consider the case when the Fermi level is
adjusted so that the numberNel of conduction electrons per
unit area of the structure varies with the sublayer thicknesses
asNel5(anada , wherena are the bulk electron concentra-
tions andda are the sublayer thicknesses~the indexa distin-
guishes here between different sublayers,a50,1,2, with
a50 corresponding to the spacer anda51,2 to the two mag-
netic films!. We show that the size effects lead to oscillations
in the dependence of the resistivity and GMR effect on the
spacer thickness with two different oscillation periods, in
general. One of them is related to the Fermi wave vector and
was already found before.15,18 The other one occurs in the
presence of interface roughness and is related to the depth of
the quantum well in the spacer. We also show that the spin-
dependent scattering by a small interface roughness can ei-
ther enhance or reduce the GMR effect generated by the
spin-dependent bulk scattering.

In Sec. II we describe briefly the model used for the theo-
retical description of the transport properties of magnetic

multilayers. In Sec. III the appropriate formula for the elec-
tronic conductivity is derived. Numerical results are pre-
sented and discussed in Sec. IV, whereas some general con-
clusions are given in Sec. V.

II. DESCRIPTION OF THE MODEL

The structure under consideration consists of two ferro-
magnetic layers of thicknessesd1 and d2, which are sepa-
rated by a nonmagnetic film of thicknessd0. Let the axisz
be normal to the structure andRW be the two-dimensional
in-plane position vector (rW[[RW ,z]). The two interfaces~in-
dexed in the following withb, b51,2! are assumed to be
located atz5zb(RW ), with

zb~RW !5zb1 f b~RW !. ~1!

Herez15d1 , z25d11d0 , and the functionf b(RW ) describes
deviation of thebth interface from the perfectly flat plane
z5zb , with

^ f b~RW !&5
1

S E f b~RW !dRW 50, ~2!

by definition, whereS is the sample area and^A& denotes the
average value of the quantityA.

In real structures the functionsf b(RW ) taken at two differ-
ent points of the same or different interfaces are usually cor-
related. In this paper, however, we will consider the case of
no correlation between the roughness of different interfaces
~no cross correlations!. Moreover, we assume that both inter-
faces are described by the same autocorrelation function
G(R/j),

^ f b~RW 8! f b8~R
W 81RW !&5

1

S E f b~RW 8! f b8~R
W 81RW !dRW 8

5dbb8hb
2G~R/jb!, ~3!

wherehb is the amplitude of the interface roughness,

hb5^ f b
2~RW !&1/25F1S E f b

2~RW !dRW G1/2, ~4!

andjb is the lateral correlation length. We assume the same
form of the autocorrelation functionG(R/j) for both inter-
faces, but the roughness amplitudehb and the correlation
lengthjb can be different for different interfaces,h1Þh2 and
j1Þj2, in general. In the following we will assume the ex-
ponential model for the autocorrelation function,

G~R/j!5exp~2R/j!. ~5!

For simplicity, we assume perfect outer surfaces which
are located, respectively, atz50 and z5d11d01d2[L,
with L being the total thickness of the structure.

The electronic properties of the structure under consider-
ation will be described within the one-band model, with the
conduction band of the ferromagnetic metal being spin split
due to an effective exchange field. No spin split is assumed
for the nonmagnetic spacer. We assume further that impuri-
ties with a spin-dependent scattering potential are distributed
uniformly inside the magnetic films. The scattering potential
of impurities located inside the nonmagnetic spacer is as-
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sumed to be independent of the electron spin orientation. For
simplicity, we will consider only configurations with strictly
parallel and antiparallel magnetizations and will neglect
spin-flip scattering processes. The two spin channels for
electronic transport can then be considered separately.

The electron states of a given spin orientations are de-
scribed by the total HamiltonianHs of the form

Hs5H0s~rW !1Vs~rW !, ~6!

whereH0s(rW) is the Hamiltonian of the defect-free system,

H0s~rW !52
\2

2m
¹21Us~z!, ~7!

with a steplike effective electron potential

Us~z!5H U1s , 0<z<d1 ,
U0s5U050, d1,z<d11d0,
U2s , d11d0,z<L,

~8!

whereU1s andU2s are constants, which depend on the elec-
tron spin, andU1s,U2s>U0 for simplicity. Infinite potential
walls are assumed at the outer surfaces, i.e., forz,0 and
z.L. The effective electron potential for both magnetization
orientations and for both spin directions is shown schemati-
cally in Fig. 1. According to our notation, the electron spin
projection onto the global quantization axis is denoted as
s5↑ for sz51/2 ands5↓ for sz521/2. The spin projection
on the local quantization axis~direction opposite to the local
magnetization! is denoted as1 for the spin-majority elec-
trons and2 for the spin-minority electrons. In Eq.~6!, Vs(rW)
is a scattering potential due to impurities and interface
roughness. Assuming the contact form of the impurity poten-
tial, we writeVs(rW) as

Vs~rW !5(
ia

vasd~rW2rW ia!2(
b

f b~RW !Vbs
eff d@z2zb

c ~RW !#,

~9!

with vas denoting the spin-dependent scattering potential of
an impurity located inside theath layer ~a50,1,2! and
zb
c (RW ) being the location center of the interface scattering

potential,zb
c (RW )5zb1(1/2)f b(RW ). For eacha the indexi in

the first term on the right-hand side runs over all impurities
distributed inside theath film. According to our assumption,
v0s is independent of the electron spin,v0s5v0 . The effec-
tive interface scattering potentialVbs

eff in Eq. ~9! consists of
two termsVbs

eff5Vbs1Ṽbs , whereṼbs describes effectively
thoses-d scattering processes which are induced by the in-
terface roughness andVbs is the potential step at thebth
interface,Vbs5Ubs2U0 . If Ṽbs50, then only s-s-type
scattering processes induced by the interface roughness are
taken into account. The interference effects due to electron
scattering by those two different terms inVbs

eff will be ne-
glected.

The HamiltonianH0s describes electrons in a quantum
well with perfect interfaces and surfaces and with the elec-
tron potential shown schematically in Fig. 1. For a given
configuration the eigenstates^rWumqW s& of H0s are of the form

^rWumqW s&5
1

AS
cms~z!eiqW •R

W
, ~10!

with the corresponding eigenvalues,

ems~qW !5ems1
\2q2

2m
. ~11!

The indexm distinguishes here different electron minibands,
qW is the in-plane wave vector,ems are the discrete energy
levels arising from the quantization of perpendicular motion,
and cms(z) are the corresponding normalized wave func-
tions. Equations forcms(z) andems are given in Appendix A.

III. CONDUCTIVITY

The electronic spectrum of the structure under consider-
ation consists of a set of two-dimensional minibands~or sub-
bands!. The scattering processes due to impurities and inter-
face roughness lead to intra- as well as interminiband
transitions, which gives rise to the electrical resistance. To
find the resistance we extend the method developed by
Calecki.23

Consider a particular magnetization configuration. The
stationary nonequilibrium distribution functionsfms(qW ) for
electrons with spins and in the stateqW of themth miniband
obey the following set of coupled Boltzmann equations:23

FIG. 1. Potential profiles for boths5↑ ands5↓ spin directions
in the parallel~P! and antiparallel~AP! configurations.
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2
e

\
EW •¹qW f ms~qW !5(

m8
(
qW 8

(
s8

$Wm8s8
ms

~qW 8,qW ! f m8s8~qW 8!

3@12 f ms~qW !#2Wms
m8s8~qW ,qW 8! f ms~qW !

3@12 f m8s8~qW 8!#%, ~12!

whereEW is the driving electric field applied in the film plane,

2e is the electron charge, andWms
m8s8(qW ,qW 8) is the probabil-

ity per unit time for an electron to pass from the stateumqW s&
to the stateum8qW 8s8&. In the following we will consider only
spin-conserving scattering processes, i.e.,

Wms
m8s8~qW ,qW 8!5Wms

m8s8~qW ,qW 8!dss8[Wmm8
s

~qW ,qW 8!dss8 .
~13!

This approximation is reasonable for low temperatures.
Moreover, we restrict considerations to the elastic scattering
processes only. With this assumption one may write
Wmm8

s (qW ,qW 8) as

Wmm8
s

~qW ,qW 8!5Pmm8
s

~qW ,qW 8!d@ems~qW !2em8s~qW 8!#, ~14!

where, in the Born approximation,Pmm8
s (qW ,qW 8) is given by

Pmm8
s

~qW ,qW 8!5Pmm8
s

~ uqW 2qW 8u!5
2p

\
u^mqW suVsum8qW 8s&u2.

~15!

It has been assumed above that the electron scattering pro-
cesses are isotropic in the film plane; i.e.,Pmm8

s (qW ,qW 8) de-
pends only onuqW 2qW 8u.

To solve Eq. ~12! one writes the distribution function
fms(qW ) as a sum of the equilibrium Fermi-Dirac distribution
f 0[ em(qW )] and the deviation from the equilibrium,Fms(qW ),

f ms~qW !5 f ms
0 @ems~qW !#1Fms~qW !. ~16!

In a general case, the functionsFms(qW ) can be written in the
form

Fms~qW !52
e\

m
qW •EW

] f 0@ems~qW !#

]@ems~qW !#
gms@ems~qW !#. ~17!

On substituting~16! and~17! into Eq.~12!, one obtains a set
of equations for the functionsgms[ ems(qW )]. For a particular
energye, one can write the solution of this set of equations in
the matrix form as

gs~e!52Cs
21~e!Fs~e!, ~18!

where gs~e! is a column matrix with the matrix elements
@gs~e!#m5gms~e! andFs~e! is also a column matrix with the
mth element defined as

@Fs~e!#m5
m

\2 Nms~e!~e2ems!. ~19!

HereNms~e! is the density of electron states for spins in the
subbandm,

Nms~e!5
Sm

p\2 Q~e2ems!, ~20!

with Q(x)51 for x>0 andQ(x)50 for x,0. Finally, the
components of the matrixCs~e! in Eq. ~18! are of the form

@Cs~e!#mm85dmm8(
n

(
qW

(
qW 8

q2Pmn~ uqW 2qW 8u!d@e2ems~qW !#d@e2ens~qW 8!#

2(
qW

(
qW 8

~qW •qW 8!Pmm8~ uqW 2qW 8u!d@e2ems~qW !#d@e2em8s~qW 8!#. ~21!

The order of the matricesCs~e!, gs~e!, andFs~e! is determined by the number of discrete levels withems,e.
The averaged current density for spins is given by the formula

jWs52
e\

SL (
m

(
qW

qW

m
Fms~qW !. ~22!

Taking into account~17! and calculating the appropriate matrix elements for the transition probabilities, one arrives at the
following formula for the zero-temperature global in-plane conductivitygi :

gi5
e2Sm2

2p2\6L (
s

(
m51

Ns

(
m851

Ns

~EF2ems!~EF2em8s!@Cs
21~EF!#mm8 , ~23!

whereEF is the Fermi energy andNs is the number of occupied minibands for spins.
The impurity contribution to the matrixCs(EF), averaged over the impurity distribution, can be calculated rather easily.

Some problems arise when considering the contribution due to scattering by the rough interfaces. When calculating transition
probabilities between different states, one has to evaluate the average

Mbs
nm~qW ,qW 8!5E dRW E dRW 8 ei ~qW 2qW 8!•RW 8^ f b~RW ! f b~RW 1RW 8!cns@z5zb

c ~RW !#cms@z5zb
c ~RW !#cns@z5zb

c ~RW 1RW 8!#

3cms@z5zb
c ~RW 1RW 8!#&. ~24!
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To findM bs
nm(qW ,qW 8) we expand the wave functions in a power series off b(RW ), as

cns@z5zb
c ~RW !#'cns~zb!1 1

2 f b~RW !cns8 ~zb!1••• , ~25!

wherecns8 (zb) is the first derivative ofcns~zb!. In the following we will take into account only the first two terms. To find the
average in Eq.~24!, we will make use of the approximations

^ f b
3~RW ! f b~RW 1RW 8!&'hb

2^ f b~RW ! f b~RW 1RW 8!& ~26!

and

^ f b
2~RW ! f b

2~RW 1RW 8!&'hb
4. ~27!

Taking into account the above approximations, one finds the matrix elements@Cs(EF)#mm8 in the form

@Cs~EF!#mm85
Sm2

4p2\5 Fdmm8(
n51

Ns

Qms
2 S 2pn1

impv1s
2 K1s

mn12pn0
impv0s

2 K0s
mn12pn2

impv2s
2 K2s

mn

1~V1s
2 1Ṽ1s

2 !~h1j1!
2L1s

mnE
0

2p

du F~j1Qmns!1~V2s
2 1Ṽ2s

2 !~h2j2!
2L2s

mnE
0

2p

du F~j2Qmns!D
2QmsQm8sE

0

2p

du cosu@~V1s
2 1Ṽ1s

2 !~h1j1!
2L1s

mm8F~j1Qmm8s!

1~V2s
2 1Ṽ2s

2 !~h2j2!
2L2s

mm8F~j2Qmm8s!#G , ~28!

whereQmm8s is defined as

Qmm8s5~Qms
2 1Qm8s

2
22QmsQm8scosu!1/2, ~29!

with Qms being the in-plane Fermi wave vector in the corre-
spondingmth miniband for spins. The first three terms in
Eq. ~28! originate from scattering on impurities with the
scattering potential vas and concentrationna

imp ~for
a50,1,2!. We assumed here a uniform distribution of the
impurities inside each sublayer. The factorsK as

mn are defined
as

Kas
mn5E

~da!
dz cms

2 ~z!cns
2 ~z!, ~30!

where the integration is overz ranging theath sublayer.
Explicit forms of K as

mn are given in Appendix B. The other
terms in Eq.~28! result from the scattering on both interfaces

with L1s
mm8 andL2s

mm8 defined as

L1s
mm85@cms~d1!cm8s~d1!1 1

4h1
2cms8 ~d1!cm8s

8 ~d1!#
2

~31!

and

L2s
mm85@cms~d11d0!cm8s~d11d0!

1 1
4h2

2cms8 ~d11d0!cm8s
8 ~d11d0!#

2. ~32!

Finally, F(jQ) in Eq. ~28! is the Fourier transform of the
autocorrelation function~5!,

F~jq!52p~11j2q2!23/2. ~33!

It is convenient to rewrite the expression for the conduc-
tivity in the form

gi5
e2\3

2m2L (
s

(
m51

Ns

(
m851

Ns

Qms
2 Qm8s

2
@C̃s

21~EF!#mm8 ,

~34!

whereC̃s is related to the matrixCs by the equation

C̃s5
4p2\5

Sm2
Cs . ~35!

Equations~28!, ~34!, and ~35! are our final results for the
electrical conductivity.

IV. NUMERICAL RESULTS

In the preceding section we derived the general formulas
for the electrical conductivity of a magnetic sandwich struc-
ture with both interface and bulk scattering included. To find
the ratioDr/rP, one has to calculate first the resistivity for
both parallel and antiparallel configurations. When consider-
ing the problem numerically, one has to take into account the
variation of the Fermi level with the sublayer thicknesses and
also a change of the level as the film magnetizations rotate
from antiparallel to parallel alignment. In each case the
Fermi level will be adjusted to keep the areal electron den-
sity Nel according to the formula

Nel5 (
a50,1,2

nada5 (
a50,1,2

~na11na2!da , ~36!

wherenas is the bulk electron concentration for spins in the
ath material. The electron density in the spacer material is
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independent of the spin orientation,n065n0/2. The bulk
electron concentrations are determined byma65m2Ua6 ,
wherem is the common chemical potential.

Consider now some numerical results, and let us start with
the simplest case, when the electron potential is uniform
across the structure.

A. Constant electron potential

We consider here the situation whenU165U05U2650.
In that case the interface roughness can influence the resis-
tance and also the magnetoresistance only in the case of non-
vanishing potentialsṼ16 and Ṽ26. Suppose first that the in-
terfaces are perfectly flat, i.e.,h15h250. The only
contribution to the resistance comes then from the electron
scattering on impurities distributed inside the films. If the
scattering potential of the impurities in the magnetic films is
spin dependent, then there is also a nonvanishing resistance
change due to the magnetization rotation. As basic param-
eters describing the bulk scattering, we will use in the fol-
lowing the electron mean free paths, which are determined
by the impurity potentials and impurity concentrations.

In Fig. 2 we show the resistivity in the parallel~rP! and
antiparallel ~rAP! configurations~a!, the resistivity change
Dr5rAP2rP ~b!, and the relative resistivity changeDr/rP
~c!. Both rP andrAP show well-defined oscillations with in-
creasing spacer thicknessd0, which originate from quantum
size effects due to external boundaries. The periodL of the
saw-shaped oscillations is determined by the Fermi wave-
lengthlF asL5lF/2. The oscillations inrP andrAP result in
a similar fine structure in the dependence of the resistivity
changeDr on the spacer thicknessd0, as is clearly evident in
part ~b!. However, the oscillations in the resistivityrP and in
the resistivity changeDr cancel each other, and so there is no
fine structure in the factorDr/rP. This factor decreases ex-
ponentiallylike with increasing spacer thickness.15 A similar
behavior can also be observed in the dependence of the re-
sistivity, resistivity change, and GMR on the thickness of one
of the magnetic films, say, ond2, as shown in Fig. 3 for
constantd1 andd0. The resistivitiesrP andrAP as well as the
resistivity changeDr oscillate with increasingd2. However,
the oscillations disappear in the factorD/rP. Contrary to the
d0 dependence@Fig. 2~c!#, Dr/rP increases now smoothly
with increasingd2 and then, after reaching a maximum at
some value ofd2, decreases with a further increase of the
thickness of the magnetic film.15,18

Consider now the role of interface roughness. Since the
electron potential is uniform across the structure, the rough-
ness can play a significant role only for nonvanishing scat-
tering potentialsṼ16 and Ṽ26. If Ṽ16 and Ṽ26 are spin de-
pendent, then they also contribute to the magnetoresistance.
Figure 4 shows the dependence ofDr/rP on the spacer thick-
nessd0 in the case when the magnetoresistance is generated
entirely by the spin-dependent scattering potentialsṼ16 and
Ṽ26, i.e., when there is no spin asymmetry in the bulk scat-
tering processes. The fine oscillations inDr/rP are due to
quantum size effects and are quite significant, contrary to the
case when the magnetoresistance is generated only by the
bulk spin-dependent scattering@see Fig. 2~c!#.

B. Spin-independent quantum well in the spacer

Assume now that the electron potential in the magnetic
films is independent of the electron spin andU16,U26.U0
~U050!. This corresponds to a situation when there is a
quantum well in the spacer, which is the same for both elec-
tron spin orientations.

Consider first the case of no interface roughness. The only
contribution to the GMR effect is then due to the spin-
dependent bulk electron scattering. The dependence of the
resistivitiesrP andrAP on the spacer thicknessd0 and on the
thickness of the ferromagnetic films is similar to that in the
case of no quantum well in the spacer, i.e., similar to the
variations shown, respectively, in Figs. 2~a! and 3~a!. Also,
the magnetoresistance behaves in a similar way: i.e., it de-
creases smoothly with increasing spacer thicknessd0, as
shown in Fig. 5. Thus the existence of a quantum well does
not lead to new features in the dependence of the magnetore-
sistance on the thickness of magnetic and/or nonmagnetic
films.

FIG. 2. ~a! Electrical resistivitiesrP andrAP , ~b! the resistance
changeDr, and ~c! the GMR effect as a function of the spacer
thicknessd0 calculated ford15d2520 Å, U165U265U050,
m54 eV, l125l225200 Å, l115l215800 Å, l05400 Å, and
h15h250.
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The situation changes when the interfaces are not flat and
contribute to the electrical resistance. Consider the limit of
vanishing potentialsṼ16 and Ṽ26. The magnetoresistance
originates then from the spin-dependent bulk scattering.
However, the presence of interface roughness leads to addi-
tional oscillations in the resistivities and, consequently, to
oscillations in the dependence of the magnetoresistance on
the spacer thickness, as shown in Fig. 6 for two different
values of the quantum well depth. The amplitude of the os-
cillations as well as the oscillation period is related to the
depth of the quantum well in the spacer.

FIG. 3. ~a! Electrical resistivitiesrP andrAP , ~b! the resistance
change, and~c! the GMR effect as a function of the thicknessd2 of
the ferromagnetic film, calculated ford1520 Å, d0510 Å,
U165U265U050,m55 eV,l125l225200 Å,l115l21550 Å,
l05100 Å, andh15h250.

FIG. 4. Dependence of the GMR effect generated by the inter-
facial scattering potential on the spacer thickness ford15d2520 Å,
U165U265U050, Ṽ115Ṽ2150, Ṽ125Ṽ2252 eV, m54 eV,
l165l265l05400 Å, h15h252 Å, andj15j252 Å.

FIG. 5. GMR effect as a function of the spacer thicknessd0
calculated ford15d2520 Å, U165U2651 eV,U050, m54 eV,
l125l225200 Å, l115l215800 Å, l05400 Å, andh15h250.

FIG. 6. GMR as a function of the spacer thicknessd0 calculated
for d15d2520 Å, l125l225200 Å, l115l215800 Å, l05400
Å, h15h252 Å, j15j252 Å, m54 eV,U050, andṼ165Ṽ2650.
The other parameters areU165U2651 eV ~a! andU165U2652
eV ~b!.
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C. Spin-dependent quantum well in the spacer

Consider now the situation when the effective electron
potential inside the ferromagnetic films depends on the elec-
tron spin orientation, giving rise to spin-dependent electron
confinement inside the spacer~or ferromagnetic
films!.15,30–32Assume first the case of no interface roughness.
The dependence of the resistivity, resistivity change, and the
GMR effect on the spacer thickness is shown in Fig. 7. For
parallel alignment of the film magnetizations, there is a
phase shift between the oscillations in the contributions from
the two spin channels, which results in a double-peak struc-
ture in the dependence ofrP on d0. The phase shift is a
consequence of the spin-dependent miniband structure for
parallel configuration. For the antiparallel orientation the
miniband structure is independent of the electron spin orien-
tation ~the structure assumed is symmetrical!, and conse-
quently there is no phase shift between the contributions
from both spin channels. Another consequence of the spin-
dependent miniband structure is a phase shift between the

oscillations inrP and rAP, which gives rise to the peculiar
shape of the oscillations inDr @Fig. 7~b!#. This phase shift is
also responsible for the oscillations inDr/rP shown in Fig.
7~c!. Oscillations similar to those shown in Fig. 7 also occur
in the dependence of the resistivity, resistivity change, and
GMR effect on the thickness of the magnetic films.

In Fig. 7 the magnetoresistance was due to the spin de-
pendence of the bulk electron mean free paths in the mag-
netic films. It is interesting to note that the magnetoresis-
tance, although small, still exists if there is no spin
asymmetry in the electron mean free paths. Moreover, the
magnetoresistance oscillates with the spacer thickness and
the oscillations are associated with a change of the sign of
the factorDr/rP, as shown in Fig. 8.

The interface roughness leads to effects which are similar
to those discussed in Sec. IV B, i.e., to additional oscillations
in resistivity and GMR.

D. Influence of the interface roughness

The interface roughness contributes to the GMR effect
when the corresponding scattering potential depends on the
electron spin orientation. This happens when either the elec-
tronic potential inside the magnetic films or the potential
Ṽb6 is spin dependent. Assume first the limit of vanishing
Ṽb6 for both interfaces. In Fig. 9 we show the GMR effect as
a function of the roughness amplitudeh ~h5h15h2! for sev-
eral values of the correlation lengthj ~j5j15j2! and for no
spin asymmetry in the bulk mean free paths. The GMR effect
results now from the spin dependence of the interfacial scat-
tering and increases with increasing amplitude of the rough-
ness. It is also evident that the roughness with small corre-
lation length j is more effective in generating the GMR
effect than the roughness of the same amplitude but with a
longer correlation length. A similar behavior of the magne-
toresistance is observed when it is generated by the spin-
dependent potentialsṼb6 , and the electronic potentials in-
side the magnetic films are independent of the electron spin.

In a general case, both bulk and interface spin-dependent
scattering processes contribute to the GMR effect. Assume,
for a while, perfect interfaces. The interface contribution to
the resistivity and also to the GMR effect vanishes then ex-
actly, and so the GMR is of bulk origin only. Consider now

FIG. 7. ~a! Electrical resistivitiesrP andrAP , ~b! the resistance
change, and~c! the GMR effect as a function of the spacer thickness
d0, calculated ford15d2520 Å, l125l225200 Å, l115l21

5800 Å, l05400 Å, h15h250, m55 eV, U115U215U0
50, andU125U2250.5 eV.

FIG. 8. GMR effect as a function of the spacer thickness, cal-
culated for d15d2520 Å, l165l265l05400 Å, m54 eV,
U115U215U050, U125U2250.5 eV, andh15h250.
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how a small interface roughness, with the corresponding
scattering potential being spin dependent, can influence the
GMR effect. What follows from numerical analysis is that a
small roughness can either enhance or reduce the GMR ef-
fect generated by the bulk scattering. The enhancement takes
place when the spin asymmetry for the interface and for bulk
scattering is of the same kind: i.e., in both cases, the higher
scattering rate is for electrons of the same spin orientation. If
this is not the case, then the interface roughness reduces the
GMR effect. This behavior is shown in Fig. 10, whereDr/rP
is plotted as a function of the roughness amplitude. To elimi-
nate the effects due to the spin-dependent electronic struc-
ture, a uniform electron potential across the structure was
assumed, and so the interfaces contribute to the magnetore-
sistance only by the spin-dependent scattering potentials
Ṽb6 . For vanishing amplitude of the roughness, the effect is
generated entirely by the bulk spin-dependent scattering.
Different curves correspond to different spin asymmetries in
the interfacial scattering potential. The curves denoted as~1!
and ~2! correspond to the situation when the minority elec-
trons are scattered more effectively by the impurities as well
as by the interface roughness. Consequently, the interface
roughness enhances the GMR effect. Curve~3! corresponds
to the interfacial scattering being independent of the spin
orientation. The GMR effect decreases with increasing am-
plitude of the roughness because the relative role of the spin-
dependent scattering decreases with increasing roughness.
Curves~4! and~5!, on the other hand, correspond to the case
when the impurities scatter more effectively the minority
electrons, whereas the interfaces scatter more strongly the
majority electrons. The interface roughness compensates
therefore a part of the GMR effect created by the scattering
on impurities and reduces the effect. The GMR effect reaches
a minimum at a point where both contributions almost cancel

FIG. 10. GMR effect as a function of the roughness amplitudeh
for d15d2520 Å, d0510 Å. The other parameters assumed here
are d15d2520 Å, d0510 Å, U165U265U050, m55 eV,
l115l215800 Å, l125l225200 Å, l05100 Å, andj53 Å. Dif-
ferent curves correspond to the following values ofṼb65Ṽ6 ~b
51,2!: ~1! Ṽ150, Ṽ252 eV; ~2! Ṽ150.5 eV, Ṽ251.5 eV; ~3!
Ṽ15Ṽ251.0 eV; ~4! Ṽ151.5 eV, Ṽ250.5 eV; ~5! Ṽ152 eV,
Ṽ250.

FIG. 11. GMR effect as a function of the roughness amplitudeh
for d15d2520 Å, d0510 Å, U125U2251 eV,
U115U215U050, Ṽ165Ṽ2650, m55 eV, l05100 Å, and
~l111l12!/25~l211l22!/25550 Å with p5l11/l125l21/l22 as
indicated.

FIG. 9. GMR effect as a function of the roughness amplitudeh
for three values of the correlation lengthj. The other parameters
assumed here ared15d2520 Å, d0510 Å, U125U2251 eV,
U115U215U050, Ṽ165Ṽ2650, m55 eV, and l165l26

5l05500 Å.
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each other, and then the GMR increases again with a further
increase of the roughness amplitude.

A similar behavior is shown in Fig. 11 in the limit of
vanishingṼb6 , when the interfacial scattering is entirely due
to the spin-dependent potential stepsVb6 . Different curves
correspond to different values of the ratiop,
p5l11/l125l21/l22, with the average value of the electron
mean free path being the same for both magnetic films,
~l111l12!/25~l211l22!/2, and also the same for all
curves. Forp510 andp58/3, the bulk and interface contri-
butions to the GMR effect enhance each other. In the case of
p53/8 andp51/10, the increasing roughness leads to a de-
crease of the GMR effect. The minimum seen forp53/8 is
of the same origin as the minima in Fig. 10.

V. SUMMARY

We analyzed the role of quantum size effects and interface
roughness in the GMR effect in ultrathin magnetic sandwich
structures. Within the one-band model with a parabolic elec-
tron band~which is additionally spin split in the ferromag-
netic films!, we showed that quantum size effects lead to
oscillations in the dependence of the resistivity and GMR
effect on the spacer thickness and also on the thickness of the
magnetic films. The oscillation period is determined by the
Fermi wavelength. If there is a quantum well in the spacer,
then there is also an additional oscillation period which is
related to the depth of the quantum well.

The interfacial roughness can generate the GMR effect in
two different cases: ~i! when the electronic potential in the
magnetic films is spin dependent, which leads to spin-
dependent potential steps at the interfaces, and~ii ! when
there are additional spin-dependents-d scattering processes
at the interfaces. If, however, there is also a contribution due
to spin-dependent scattering on bulk defects, then the inter-
face roughness can enhance or reduce the effect. The en-
hancement occurs when the spin asymmetry for the bulk
scattering processes is of the same kind as that for the inter-
face scattering. Long-range in-plane structural correlations in
the interfacial roughness diminish its role in the GMR effect.
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APPENDIX A

In this appendix we give the general formulas for the
discrete energy levelsems and wave functionscms(z) intro-
duced in Eqs.~10! and ~11!. In the following the spin index
will be suppressed. For a given configuration of the sublayer
magnetizations and for a given spin orientation, the problem
reduces to solution of the Schro¨dinger equation for a spinless
particle in a one-dimensional quantum well with infinite po-
tential walls atz50 andz5L, and with the steplike poten-
tial,

U~z!5H U1 , 0<z<d1 ,
U050, d1,z<d11d0,
U2 , d11d0,z<L,

~A1!

whereU1 andU2 are constants andU1 ,U2>0.
Applying the standard method, one finds the following

dispersion equation for the discrete energy levels:

k0
2s1s0s22k0k2s1c0c22k0k1c1c0s22k1k2c1s0c250,

~A2!

whereka ~a50,1,2! is defined aska5[2m(Ua2E)/\2] 1/2

for E,Ua and ka5[2m(E2Ua)/\
2] 1/2 if E.Ua . The

other parameters in Eq.~A2! are defined as follows:

sa5sinh~kada!, ~A3a!

if E,Ua , and

sa5sin~kada!, ~A3b!

whenE.Ua . Similarly,

ca5cosh~kada!, ~A4a!

if E,Ua , and

ca5cos~kada!, ~A4b!

for E.Ua .
Equation~A2! is fulfilled for some discrete values of the

energyE, E5em , which are indexed in the following withm,
m51,2,3,... . The indexm will be also added to the corre-
sponding parameterska , sa , andca as well as to the appro-
priate wave functions.

The wave functioncm(z) corresponding to themth level is
of the following form:

~i! For 0<z<d1 ,

cm~z!5A1msinh~k1mz!, ~A5a!

whenem,U1, and

cm~z!5A1msin~k1mz!, ~A5b!

if em.U1.
~ii ! For d1<z<d11d0 ,

cm~z!5A0msin@k0m~z2d1!#1B0mcos@k0m~z2d1!#.
~A6!

~iii ! For d11d0<z<L,

cm~z!5A2msinh@k2m~z2L !#, ~A7a!

whenem,U2, and

cm~z!5A2msin@k2m~z2L !#, ~A7b!

for em.U2.
The constantsA1m, A0m, B0m, andA2m can be determined

from the following set of equations:

A1ms1m5B0m , ~A8a!

A0ms0m1B0mc0m52A2ms2m , ~A8b!

A1mk1mc1m5A0mk0m , ~A8c!
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A0mk0mc0m2B0mk0ms0m5A2mk2mc2m , ~A8d!

f 1mA1m
2 1 f 2mA2m

2 1 f 0mA0m
2 1 f 0m8 B0m

2 12 f 0m9 A0mB0m51.
~A8e!

The following definitions have been introduced here:

f 1m56S 12 d12
1

2k1m
s1mc1mD , ~A9a!

f 2m56S 12 d22
1

2k2m
s2mc2mD , ~A9b!

f 0m5S 12 d02
1

2k0m
s0mc0mD , ~A9c!

f 0m8 5S 12 d01
1

2k0m
s0mc0mD , ~A9d!

f 0m9 5
1

2k0m
s0m
2 , ~A9e!

where the upper and lower signs in Eq.~A9a! @and Eq.~9b!#
correspond, respectively, toem.U1 andem,U1 @em.U2 and
em,U2#.

APPENDIX B

Here we present the explicit expressions forK as
nm defined

by Eq. ~26! ~the spin index is suppressed also in this appen-

dix!. Taking into account the explicit forms of the states
cm(z) ~Appendix A!, one finds

K1
nm5

1

8
dA1n

2 A1m
2 Fk1mC1nS1m2dk1nS1nC1m

~k1m!22d~k1n!2
2
S1m

k1m
2
S1n

k1n

12d1G , ~B1a!

for nÞm, and

K1
nn5

1

8
A1n
4 SS1nC1n

2k1n
22

S1n

k1n
13d1D , ~B1b!

if n5m. Hered521 if only one of the levelsen and em is
lower thanU1 andd51 otherwise, whereasS1m andC1m are
defined as follows:

S1m5sinh~2k1md1!, ~B2a!

C1m5cosh~2k1md1!, ~B2b!

whenem,U1, and

S1m5sin~2k1md1!, ~B2c!

C1m5cos~2k1md1!, ~B2d!

whenem.U1. The amplitudesA1n andA1m are given by the
solutions of Eqs.~A8a!–~A8e!.

Similar formulas hold also forK 2
nm . They can be obtained

from the above formulas~B1a!–~B2d! by replacing every-
where the index 1 by the index 2. Finally,K 0

nm is given by

K0
nm5

1

16 F @~A0n
2 2B0n

2 !~A0m
2 2B0m

2 !24A0nB0nA0mB0m#
sin@2~k0n1k0m!d0#

k0n1k0m
1@~A0n

2 2B0n
2 !~A0m

2 2B0m
2 !

14A0nB0nA0mB0m#
sin@2~k0n2k0m!d0#

k0n2k0m
22~A0n

2 2B0n
2 !~A0m

2 1B0m
2 !

sin~2k0nd0!

k0n
22~A0n

2 1B0n
2 !~A0m

2

2B0m
2 !

sin~2k0md0!

k0m
14~A0nB0m1B0nA0m!~B0nB0m2A0nA0m!S sin2@~k0n1k0m!d0#

k0n1k0m
1
sin2@~k0n2k0m!d0#

k0n2k0m
D

18A0nB0n~A0m
2 1B0m

2 !
sin2~k0nd0!

k0n
18~A0n

2 1B0n
2 !A0mB0m

sin2~k0md0!

k0m
14d0~A0n

2 1B0n
2 !~A0m

2 1B0m
2 !G , ~B3a!

for nÞm, and

K0
nn5

1

16 F ~A0n
4 1B0n

4 26A0n
2 B0n

2 !
sin~4k0nd0!

2k0n
14~B0n

4 2A0n
4 !

sin~2k0nd0!

k0n
16d0~A0n

2 1B0n
2 !2G1

1

k0n
@A0n

3 B0n sin
4~k0nd0!

1A0nB0n
3 @12cos4~k0nd0!##, ~B3b!

for n5m.
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