
Elastic behavior of materials with multifractal structures

Alexander S. Balankin*
Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Estado de Me´xico, 52926 Mexico

~Received 31 May 1995; revised manuscript received 14 August 1995!

A type of elasticity of random~multifractal! structures is suggested. Two phenomenological laws of revers-
ible deformations of an elastic multifractal are postulated. The closed system of constitutive equations is
obtained on the basis of these laws. Some classical formulas are derived as special cases of developed theory.
The theoretical results are discussed with respect to available experimental data.

In the past ten years the theory of materials with random
~fractal or multifractal! microstructure has become an attrac-
tive topic in mechanics and physics of solids.1–6 Fractal ge-
ometry, developed by Mandelbrot,7 allows the description of
random structures which are more complex than Euclidean
shapes. Statistical properties of a multifractal structure are
characterized by the spectrum of generalized dimensions6

dq5 limr→L0
$I q(r )/ lnr%, I q5(q21)21ln(i51

N Pi
q(r), whereI q

is the generalized entropy;Pi(r ) is the probability that a
point of multifractal structure lies in box ai of covering
network with boxes of size equalr ; the indexq ranges from
2` to ` and dimensions satisfy the general inequality
dq1<dq2 for q2,q1; the equality being obtained in the case

of monofractal structure.6 The generalized dimensiondq50 is
equal to the metric~fractal! dimension evaluated by means of
box-counting algorithmd05dF , which for multifractal
structure is greater than its topological dimensiondT , but
smaller than, or equal to, the topological dimensiond of the
enveloping Euclidean space, i.e.,dT,dF<d; the generalized
dimension of orderq51 is equal to the information dimen-
sion, dI5d1 , associated with Shannon entropy, and the di-
mensiondq52 is equal to the correlation integral exponent
dC5d2 , also called correlation dimension. Aerogels, colloi-
dal aggregates, polymers, some types of composite materials,
porous media, etc. have a multifractal structure in a wide
range of spatial scalesL0,L,LM ,

6–9 whereL0 is the mi-
croscopic cutoff~the minimal size of particles, components,
pores, blobs, etc.! and LM is the correlation length of self-
similarity.

In practice or modeling elastic behavior of materials with
multifractal microstructure it is broadly used three different
types of elasticity:1–5,10–13~1! elasticity of energetic nature
~elastic continuum, crystals, polycrystals, etc.!; ~2! entropy
elasticity ~elastomers!; and ~3! springlike elasticity ~long
polymer chains, foams, some structural composites, etc.!.
Theories of these types of elastic behavior are based on dif-
ferent phenomenological laws~experimental facts! and lead
to different systems of constitutive equations.

The classical theory of elasticity is based on two experi-
mentally established facts:14 ~1! the Hooke’s law, according
to which the strain« i j is proportional to the applied stress
s i j , and ~2! the Poisson’s effect of lateral deformations
~transverse strains! without corresponding stresses. In case of
uniaxial extension~compression! of an elastically isotropic
solid these facts may be represented in the form

~1! s115E«11; ~2! «225«3352n«11, s225s3350,
~1!

whereE is the Young modulus, andn is the Poisson’s ratio.
In practice, instead of these two postulates, the generalized
form of Hooke’s law is commonly used.14 According to this
law Poisson’s effect is a consequence of the symmetry of the
stress and strains tensors.

The basic postulates of the classical theory of rubber elas-
ticity are15 ~1! the assumption that the chains of polymer
network obey Gaussian statistics, and~2! the assumption of
the incompressibility of elastomers. Under these assumptions
it was derived dependence of stressF1 ~per unit cross-
section area of sample in the initial state! versus relative
strainl1 in direction of applied force:

~1! F15
E

3
~l12l1

22!;

~2! l25l35l1
20.5 ~l1l2l3[1!, ~2!

wherel i5Li(F1)/L0
i (L0

i andLi are the sample dimensions
in the i direction before and after application of the stress,
respectively!.

The springlike elasticity8 is based on the empirical rela-
tion between relative strainl1 and applied force

F5E~l121!, ~3!

which is valid for springs, long polymer chains, elastic
foams, etc. The mechanism of lateral deformations for a ma-
terial which exhibits springlike elasticity, for example an
elastic foam,16 differs from those for an elastic continuum
~Poisson’s effect! and for elastomers~incompressibility! and
has a pure geometrical nature.8

In this article we suggest a more general type of reversible
deformations of elastic random structures, that is the multi-
fractal elasticity. It will be shown that two basic types of
elasticity, e.g., the entropic elasticity~rubberlike and super-
elasticity! and the springlike elasticity may be interpreted as
special cases of the multifractal elasticity. A possible gener-
alization for developed theory is also briefly discussed.

In developing theory of multifractal elasticity we also
start with two postulates~laws!.
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(1) When the external force F is applied to an elastic
isotropic multifractal object, deformation occurs mostly on
the length scale beyond certain characteristic length, which
depends on F.Thus the presence of an external stress leads to
the appearance of the unique characteristic scaling length
LF .

The initial morphology of multifractal can either be char-
acterized by one or more length scale parametersLi , or not
to have them at all. In the first case theLF may have physical
significance such as the characteristic dimension of blobs in
a polymer, characteristic size of cells, or mean distance be-
tween inclusions in a composite material, characteristic ra-
dius of correlations in a random network and aerogel, etc.17

As it follows from the law postulated above, only one of the
set of scale parametersLi ~or their invariant combination! is
dependent on the external forces. If the initial multifractal
structure has no scale parameters, then the physical meaning
of LF is the characteristic length above which deformations
occur. It should be remarked that the idea that the presence of
an external stress introduces a length scale to the problem of
elastic deformations of random structures was invoked in18

to study elastic macromolecules.
If this law is valid, from the second law of thermodynam-

ics it follows that the force obeys relation

F5S ]F

]LF
D
T

5S ]U

]LF
D
T

2TS ]S

]LF
D
T

. ~4!

The first term on the right of Eq.~4! is evidently the energy
component of internal forces, and the second term is the
entropic component.

It is well known, that in the zeroth long-wave approxima-
tion, at low frequencies, the difference between models of
the media with microstructure disappears.19 Therefore, to de-
velop a static theory of elasticity of multifractals, which is
considered below, it is possible~and sufficient! to formulate
the first law in terms of relative deformations with scaling
parameterlF5LF1 /LF2, whereLF1 andLF2 are the values

of scaling length which correspond toF5F1 and F5F2 ,
respectively. Notice, however, that instead of nonlocal theo-
ries of elasticity considered in Ref. 19, all of which in zeroth
long-wave approximation are equivalent to classical model
of elastic continuum, the zeroth long-wave approximation in
our theory differs from the model of elastic continuum, be-
cause of distinctions in the basic laws.

(2) The information and correlation dimensions are not
changed during reversible deformations of an elastic multi-
fractal structure.

It is clear that elastic, i.e., homeomorphic~by definition20!
deformations do not change the metric~fractal! dimension of
deformed multifractal. Moreover, there are no changes in
dF , dI , anddC after an affine transformation~deformation!
of multifractal structure,21 while the limiting valuesdq52`

anddq5` of generalized dimension spectrum after an affine
transformation generally differs from the initial ones. Hence
the second postulate is valid at least in the case of affine
elastic deformations. However, this postulate seems to be
valid for any reversible~i.e., homeomorphic! deformation of
a multifractal structure, and thus it is more general than the
assumption15,18 of affinity of elastic deformations.

The mass densityr of a material with multifractal micro-
structure generally depends on the length scaleL.22 Dimen-
sional analysis23 implies the following general functional re-
lation:

r5r0CS jc
L
,
LF
L D5r0C~lc ,l f !, ~5!

whereC is a dimensionless function of its dimensionless
argumentslc5jc /L and l f5LF /L; jc is the correlation
length of multifractal~micro!structure. It is well known that
within a bounded interval

LF!L!jc ~6!

the mass density of a multifractal structurer(L) obeys a
power law behavior.22 According to~6! the second argument
of dimensionless functionC(lc ,lF) is small (l f!1),
and at the asymptotic self-similar state we can apply to
the function C a scaling ~incomplete self-similarity!
representation,23,24 so that

r5r0l f
2ac~lc!, a5d2dF , ~7!

wheredF is the fractal~metric, box-counting! dimension of
the multifractal andc is a dimensionless function oflc ~see
also Ref. 25!. Notice thatr possess scaling behavior~7! in
the initial state of multifractal structure as well as after any
deformation of this structure, butl f , lc , anddF , generally
speaking, may be different before and after deformation.

However, according to the first postulated law, only the
characteristic lengthLF changes during the elastic~revers-
ible! deformation of elastically isotropic multifractal; so that
jc must be constant. Furthermore, elastic deformations are
homeomorphic by definition and thus do not affect the metric
dimensiondF of deformed multifractal, so that the scaling
exponenta is also constant.

By this means, the mass density of an elastic multifractal
structure after its reversible~homeomorphic! deformations
caused by different external forcesF1 and F2 is equal to
r(F1)5r0l f1c(lc) and r(F2)5r0l f2c(lc), respectively.
Hence the ratior(F1)/r(F2) is not dependent on neither the
variable length scaleL nor the correlation lengthjc and
scales as

r~F1!

r~F2!
5S l f1

l f2
D 2a

5S LF1LF2
D
T5const

2a

5lF
2a , a5d2dF , ~8!

i.e., the relation governing the change in the mass density
r of elastically deformed multifractal26 is similar to the rela-
tion that governs the change in the mass density because of
the geometric changes in the dimensionalities of~multi!frac-
tal structure@within the interval~6!#. We emphasize that this
fact is a direct consequence of the first postulated law and the
homeomorphism of reversible deformations.

It immediately follows from Eq.~8! that under uniaxial
tension ~compression! the change in the dimensionality of
multifractal structure in the direction of external forceFx ,
which is lx5Lx / l x , is accompanied by changes in the lat-
eral dimensions of a deformed multifractal:l i5Li / l i , where
i51,2, . . . ,d21. The lateral deformationsl i are related to
lx5lF as
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l i5l'5lx
2nF5lF

2nF , i52,3, . . . ,d, ~9!

wherenF is the transverse deformation exponent. Note that
this exponent coincides with the Poisson’s ratio
n52A(l i

221)/(l j
221) only in the limiting case of infini-

tesimally small strains«5ul i
221u1/2!1.

Substituting ~9! into Eq. ~8! we obtain a51
2(d21)nF , so that

nF52
lnl'

lnlF
5

dF
d21

21. ~10!

Therefore, if the first law is valid, the transverse deformation
exponentnF of an elastically isotropic multifractal is deter-
mined by its metric dimension.

At the first glance, it is surprising that lateral deformations
are independent of the detailed geometry of deformed mul-
tifractal structure, whose transverse deformation exponent is
determined only by its metric dimension. Notice, however,
that similar phenomena~power law distribution of stresses
and strains with exponents, which are the functions of Pois-
son’s ratio! are common within singular problems of the
classical elasticity theory.27

Notice that Eqs.~9! and ~10! are satisfied in the general
case ofn-dimensional deformation of a multifractal structure
in d space. For example, for biaxial deformation in a three-
dimensional space we havelz5lF

2nF , lF5(lxly)
1/(12nF),

wherenF anddF are still related by the Eq.~7!, which is also
valid for triaxial deformation, whenlF5(l1l2l3)

1/a with
a532dF5122nF .

It must be emphasized that Eqs.~8! and~10! are not valid
for materials obeying Poisson’s effect~1! or, that is equiva-
lent, the generalized Hooke’s law.20 For such materials the
correlation lengthjc is equal to the sample size in direction
of applied external force, i.e.,jc[Lx ; so thatjc and

lC5
lc1

lc2
5

jc1
jc2

~11!

must change after deformation. At the same time, for an elas-
tic continuuml f50 and lF[1, while for regular elastic
lattice l f5a/a0 (a anda0 are the interatomic distance be-
fore and after deformation, respectively! and lF5lC .
Hence for materials obeying Poisson’s effect our first postu-
late is not valid.

Furthermore, the metric dimension of an elastic con-
tinuum as well as a regular elastic lattice@dF[dq for all q
~Ref. 6!#, which can be considered as a limiting case for
multifractal structures, is equal to the topological dimension
of structuredT ~Ref. 6!; so that28

dF5H d

d21
, and a5H 0, dT5d,

1, dT5d21.
~12!

Now it is easy to understand that in the case of a Euclid-
ean elastic structure obeying Eq.~1!, the dimensionless func-
tion cP(lC)5c(lc1)/c(lc2) scales~in the limit of infi-
nitely small strains! as

cP5S jc1
jc2

D 2b

[S Lx~F1!

Lx~F2!
D 2b

5lC
2b , ~13!

whereb512(dT21)n. The second relation in~1! may be
derived by substitution of Eqs.~13! and~9! with dT5d in the
general relation~7!.

Therefore, in the general case of an elastic multifractal
structure, which also possesses a conventional Poisson’s ef-
fect, the scaling relation~8! can be generalized into

r~F1!

r~F2!
5lF

2~d2dF!
lC

~dT21!n21 . ~14!

It should be emphasized that relation~14! is valid only in the
limit of infinitely small strains« i i5Aul i

221u!1. Now, if
multifractal structure possess Poisson’s effect with
lC5lF , the transverse deformation exponent is equal to

nF5n2
d2dF
d21

. ~15!

Below we will consider only elastic multifractals revers-
ible behavior which obeys two laws postulated above. The
lateral deformations of such a structure have pure geometric
nature (lC[1) and are governed by its metric dimension
@see Eq.~10!#.

Unfortunately, no case of accessible experimental data for
an elastic behavior of multifractal structures has come to our
notice. However, we can verify relation~10! by using avail-
able data for elastic monofractals.

For example, the fractal dimension of aerogel SiO2 was
measured by the small-angle neutron scattering method and
by the molecular adsorption technique.6,29 It was found that
aerogel has themonofractal structure ~i.e., dF5dI5dC),
which is characterized by the fractal dimension
dF52.360.1,29 so that according to Eq.~10! we expect that
nF50.1560.05. This value is in reasonable agreement with
the experimental datan50.1260.08,27 which were obtained
in the studies of longitudinal and transverse elastic waves
propagation.

The metric dimension of monofractal strongly twisted
polymer filament equals the fractal dimension of self-
avoiding random walk6 and thus is equal tods2a52.6,30 Ac-
cording to Eq. ~10! we expect nF50, that agrees with
experiments.31 On the other hand, rubberlike polymers are
characterized bydF53 ~Refs. 32 and 33! and thus obey
property of incompressibility,15,31 i.e., nF50.5.

Looking back at the two proposed laws of reversible de-
formations for multifractal structures, we see that it is nec-
essary to know the changes in entropy and internal energy as
functions of deformations, before the closed system of con-
stitutive equations can be obtained.

Using the definitions of information and correlation
dimensions6 and scaling properties of a multifractal,34 with
relations~4!, ~8! valid, it is readily shown that the changes in
thermodynamic entropyDS(l i) and internal energyU(l i)
due to the reversible deformation of an elastic multifractal
~in d-dimensional space! may be represented as
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DS52C2S (
i51

d

l i
dI2dD , ~16!

and

DU52C1~lF
aC21!, aC5d2dC , ~17!

respectively. HereC1 andC2 are constants~notice that pa-
rametersC1 andC2 also can be determined for any detailed
model of structure15,31!.

Substituting~16! and~17! into ~4!, and using relations~9!
and ~10! we can derive relationships between external force
Fi and relative deformationsl j for an elastic multifractal
structure. For example, in the case of uniaxial deformation
we obtain

F15C2H dIl1
dI21

2dI@dF2~d21!#l1
2dI @dF /~d21!21#21

2
C1

C2
~d2dC!l1

d2dC21J . ~18!

According to the obvious conditionF(l i51)50, it follows
from Eq. ~18! that

C1

C2
5dI

d2dF
d2dC

<dF . ~19!

Hence the behavior patterns of elastic multifractals~for
which two postulated laws are valid! can be determined by
the metric, information, and correlation dimensions.

Moreover, it is easy to see that in the limit of infinitely
small strains Eqs.~18! and~19! can be generalized by using
Eqs.~14! and ~15!.

In the case of monofractal structure all generalized dimen-
sions equal the metric~fractal! dimension, i.e.,dq[dF
5dI5dC ,

6 and Eq.~19! results in the relation

C1

C2
5dF , ~20!

so that Eq.~18! may be rewritten in the form

F15C1$l1
dF21

2@dF2~d21!#l1
2nFdF21

2~d2dF!l1
a21%.

~21!

The stresss11 is related to the forceF1(l1) by obvious
equations115F1l1

12a , which by using Eqs.~21! and ~10!
may be written in the form

s115
E

116nF14nF
3 @~l1

114nF21!22nF~l
1
2122nF

2

21!#,

~22!

whereE5(]s11/]«11)T is the Young modulus.
It can be clearly seen that within the limit of infinitesi-

mally small strains,u«11u5Aul1
221u!1, Eq.~22! leads to its

classic counterpart Eq.~1!. Thus, for monofractal structure
we haveC152(11nF)C25(116nF14nF

3)E.
Similarly, we can derive relationss i j (lk) for n-axial de-

formations of an elastically isotropic monofractal ind space.
Pure shear is essentially a biaxial loading under the stresses

s11 ands22 such that there is no change in the length along
a second direction, i.e.,l251.

The relationships between elastic moduli, i.e., Young’s
modulusE, shear modulusG, and bulk modulusB, and
Lamé coefficientsl,m of elastically isotropic monofractal,
which are derived by analogy to the derivation of corre-
sponding relationships in the classical elasticity theory,14 are
as follows:

G5
E~d21!

2dF
, B5

E

d~d2dF!
, B5l1

2

d
m. ~23!

Notice that these relations differ from those which were con-
jectured for elastic fractals by Bergman and Kantor.1 At the
same time, substituting Eq.~10! in the Eqs.~23! we obtain
expressions that ford52 andd53 are identical to those for
two- and three-dimensional elastically isotropic continuum.

Classical formulas for rubberlike elasticity~2! may be de-
rived within a framework of Eqs.~8!–~10! and~18!, ~19! for
multifractals obeying35

dF5d53, and dI52.

However, calculations based on Eq.~2! with the value of
E adjusted by fitting are in reasonable agreement with the
experiments only in the range of relatively small strains
(l i,1.2).15 Traditionally, the refinement of the relation~2!
is made by the phenomenological modifications of entropic
theory, or by using empirical models for the elastic
potential.15,31 At the same time, elastomers are known to
have fractal or multifractal microstructure.10,13,36Therefore,
it is natural to describe the rubber elasticity of polymers by
using the concept of multifractal elasticity.

Normally, the generalized dimensions of polymer net-
works swelled in a good solvent are within the range
2,dq<3.32 Assuming in the first approximation that
dF5dI5dC and substituting Eq.~10! into Eq. ~21!, we ob-
tain a relationship between the nominal stressF1 and the
strain factorl1 in the following form:

F15
E

116nF14nF
3 $l1

112nF22nFl1
2122nF~11nF!

2~122nF!l1
22nF%, ~24!

which was first derived in our work4 by other means. Notice
that behavior~24! differs from ~2! even in the limit of in-
compressibly deformed material, when Eq.~24! reduces to
the formula

F25
E

4.5
~l1

22l1
22.5!, ~25!

obeying the experimental established asymptotic15

F1}l1
2 , when l1@1.

It was shown in Refs. 4, 12, and 36 that calculations based
on Eqs.~24! and ~25! agree well with experimental data for
rubbers without any adjustment of parameters~exceptE!
right up tol157.
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The nonlinear stress-elongation asymptotic for superelas-
tic network13

s11}l1
1/3 ~26!

is also a special case of constitutive equations~10!, ~18!, and
~19!, which is valid for multifractals possessing
dF1dI2d51/3, for example,dF5d52, dI54/3.

The basic relation for springlike elasticity~3! may be also
derived from~18! and ~19! in the case of multifractal struc-
tures for whichdF5dI52.

Hence the proper regard for the real morphology allows
an adequate description for the behavior of a reversible de-
formed material with fractal or multifractal microstructure.
The examples considered in present work revealed that two
laws of reversible deformations of a multifractal structure,

which are postulated in the present work, are valid at least
for some classes of materials with~multi!fractal ~micro!-
structure.

We hope this work will stimulate experimental research
along this line. We expect that these investigations will sup-
port our concept of multifractal elasticity. If so, experimental
data on elastic behavior can be used to estimate the metric,
information, and correlation dimensions of the~multi!fractal
microstructure.
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