PHYSICAL REVIEW B VOLUME 53, NUMBER 9 1 MARCH 1996-I

Elastic behavior of materials with multifractal structures
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A type of elasticity of randonimultifractal) structures is suggested. Two phenomenological laws of revers-
ible deformations of an elastic multifractal are postulated. The closed system of constitutive equations is
obtained on the basis of these laws. Some classical formulas are derived as special cases of developed theory.
The theoretical results are discussed with respect to available experimental data.

In the past ten years the theory of materials with random(1) ¢,,=Eeq;; (2) epp=€33=—veqy, 0pp=033=0,

(fractal or multifractal microstructure has become an attrac- 1)
tive topic in mechanics and physics of solfd$.Fractal ge-
ometry, developed by Mandelbrbgllows the description of whereE is the Young modulus, and is the Poisson’s ratio.
random structures which are more complex than Euclideain practice, instead of these two postulates, the generalized
shapes. Statistical properties of a multifractal structure aréorm of Hooke’s law is commonly used.According to this
characterized by the spectrum of generalized dimen&iondaw Poisson’s effect is a consequence of the symmetry of the
dq= limrHLO{Iq(r)”nr}v |q:(q_1)—l|ngi'\‘:1pﬁ(r), wherel stress and _strams tensors. .
is the generalized entropy®;(r) is the probability that a . .The t;zlassm postulates of the classical theor.y of rubber elas-
point of multifractal structure lies in box a of covering ticity are™ (1) the as_sumptu_)n.that the chains of polymer
network with boxes of size equaj the indexq ranges from netvyork obey Ga.u-SSIan statistics, a@ the assumption Of-

X . ) . .. the incompressibility of elastomers. Under these assumptions
— to « and dimensions satisfy the general inequalityjs \yaq derived dependence of streBs (per unit cross-
dq,=dg, for g;<qy; the equality being obtained in the case gection area of sample in the initial stateersus relative
of monofractal structur@The generalized dimensiahy_ois  strain\, in direction of applied force:
equal to the metri¢fracta) dimension evaluated by means of
box-counting algorithmdy=dg, which for multifractal E
structure is greater than its topological dimensiyn, but (1) Fl:_()\l_)\lﬂ);
smaller than, or equal to, the topological dimensibaf the 3
enveloping Euclidean space, i.d<dg=<d; the generalized
d_|menS|on of ordeq'z lis gqual to the information dimen- . (2) )\2:)\3:)\10.5 (AMAoNa=1), )
sion, d,=d;, associated with Shannon entropy, and the di-
mensiond,_, is equal to the correlation integral exponent where\;=L!(F,)/L} (L, andL' are the sample dimensions
dc=d,, also called correlation dimension. Aerogels, colloi-

) . Iin thei direction before and after application of the stress,
dal aggregates, polymers, some types of composite material Sig ectively
porous media, etc. have a multifractal structure in a wide P o . .a .
The springlike elasticify/is based on the empirical rela-

range of spatial scaldso<L<Ly,” " whereLo is the mi- ;0 honyeen relative strain, and applied force
croscopic cutoffithe minimal size of particles, components,
pores, blobs, ett.andL,, is the correlation length of self-
similarity. F=E(\;—1), 3

In practice or modeling elastic behavior of materials with
multifractal microstructure it is broadly used three differentwhich is valid for springs, long polymer chains, elastic
types of elasticitys>19-33(1) elasticity of energetic nature foams, etc. The mechanism of lateral deformations for a ma-
(elastic continuum, crystals, polycrystals, gt¢2) entropy terial which exhibits springlike elasticity, for example an
elasticity (elastomers and (3) springlike elasticity(long  elastic foam'® differs from those for an elastic continuum
polymer chains, foams, some structural composites). etc.(Poisson’s effegtand for elastomeréncompressibility and
Theories of these types of elastic behavior are based on dihas a pure geometrical natdte.
ferent phenomenological law@xperimental facjsand lead In this article we suggest a more general type of reversible
to different systems of constitutive equations. deformations of elastic random structures, that is the multi-

The classical theory of elasticity is based on two experifractal elasticity. It will be shown that two basic types of
mentally established facté:(1) the Hooke’s law, according elasticity, e.g., the entropic elasticityubberlike and super-
to which the straire;; is proportional to the applied stress elasticity and the springlike elasticity may be interpreted as
gjj, and (2) the Poisson’s effect of lateral deformations special cases of the multifractal elasticity. A possible gener-
(transverse straifsvithout corresponding stresses. In case ofalization for developed theory is also briefly discussed.
uniaxial extension(compressionof an elastically isotropic In developing theory of multifractal elasticity we also
solid these facts may be represented in the form start with two postulatefaws).
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(1) When the external force F is applied to an elastic The mass density of a material with multifractal micro-
isotropic multifractal object, deformation occurs mostly on structure generally depends on the length stafé Dimen-
the length scale beyond certain characteristic length, whichsional analysis implies the following general functional re-
depends on Hhus the presence of an external stress leads ttation:
the appearance of the unique characteristic scaling length (L
Le. ¢ LF
" The initial morphology of multifractal can either be char- p:po‘y(f’f) =po¥(Ne.hy), ©)
acterized by one or more length scale parametersor not i _ _ ) _ _ )
to have them at all. In the first case the may have physical where ¥ is a dimensionless function qf its d|men5|qnless
significance such as the characteristic dimension of blobs igfgumentsk=&./L and Ay=Lg/L; & is the correlation
a polymer, characteristic size of cells, or mean distance bée'ng'th of muItlfracFaI(mlcro)structure. It is well known that
tween inclusions in a composite material, characteristic raWithin a bounded interval
dius of correlations in a random network and aerogelletc.

As it follows from the law postulated above, only one of the Le<l<& )
set of scale parameteks (or their invariant combination's  the mass density of a multifractal structyséL) obeys a
dependent on the external forces. If the initial multifractalpower law behaviof? According to(6) the second argument
structure has no scale parameters, then the physical meanigg dimensionless function® (A, \¢) is small (\;<1),

of Lg is the characteristic length above which deformationsand at the asymptotic self-similar state we can apply to
occur. It should be remarked that the idea that the presence gie function ¥ a scaling (incomplete self-similarity

an external stress introduces a length scale to the problem @épresentatioA®?* so that

elastic deformations of random structures was invokéfl in

to stud_y elas.tic macromolecules. p=pors “Y(N), a=d—dg, (7)
If this law is valid, from the second law of thermodynam- . . . ) )
ics it follows that the force obeys relation wheredg is the fractal(metric, box-countingdimension of

the multifractal andy is a dimensionless function af; (see

also Ref. 25. Notice thatp possess scaling behavi(f) in
ﬁ ) _ ( ﬂ ) _ ( ‘?_S ) 4) the initial state of multifractal structure as well as after any
dLe); \dLg/; aLe) deformation of this structure, bat;, A, anddg, generally

speaking, may be different before and after deformation.

The first term on the right of Eq4) is evidently the energy Howev.er{ according to the first postulated law, only the
component of internal forces, and the second term is thgharacteristic length g changes during the elasticevers-
entropic component. ible) deformation of elastically isotropic multlfractal; SO that
It is well known, that in the zeroth long-wave approxima- &. must be cpnstant._Eu_rthermore, elastic deformations are
tion, at low frequencies, the difference between models off®meomorphic by definition and thus do not affect the metric
the media with microstructure disappe&tTherefore, to de- dlmen5|ond_F of deformed multifractal, so that the scaling
velop a static theory of elasticity of multifractals, which is 8XPonenta is also constant. _ , _
considered below, it is possibland sufficient to formulate By this means, the mass density of an elastic multifractal
the first law in terms of relative deformations with scaling Structure after its reversiblghomeomorphig deformations
parametemF=LF1/LF2, whereLFl and Le, are the values caused by different external forcés, andF, is equ_al to
of scaling length which correspond ®=F; and F=F,, P(F1)=pokra(Ac) and p(F2)=porrat(Ac), respectively.

respectively. Notice, however, that instead of nonlocal theoHenCe the ratig(F1)/p(F) is not dependent on neither the

ries of elasticity considered in Ref. 19, all of which in zeroth variable length scald nor the correlation lengtié, and

long-wave approximation are equivalent to classical mode

of elastic continuum, the zeroth long-wave approximation in —a [\«

our theory differs from the model of elastic continuum, be-p(_Fl)_ ﬂ [ =\Z% a=d-d (8)
Nf2 Lr, P F

§cales as

cause of distinctions in the basic laws. p(F2)

(2) The information and correlation dimensions are not
changed during reversible deformations of an elastic multi-i.e., the relation governing the change in the mass density
fractal structure. p of elastically deformed multifract®l is similar to the rela-

It is clear that elastic, i.e., homeomorpliiy definitiorf®  tion that governs the change in the mass density because of
deformations do not change the mefffiacta) dimension of  the geometric changes in the dimensionalitiegnoflti)frac-
deformed multifractal. Moreover, there are no changes iral structurgwithin the interval(6)]. We emphasize that this
de, d;, anddc after an affine transformatiofdleformation  factis a direct consequence of the first postulated law and the
of multifractal structuré’ while the limiting valuesd,__.. ~ homeomorphism of reversible deformations.
andd,_.. of generalized dimension spectrum after an affine It inmediately follows from Eq.(8) that under uniaxial
transformation generally differs from the initial ones. Hencetension(compressiopthe change in the dimensionality of
the second postulate is valid at least in the case of affingwultifractal structure in the direction of external forég,
elastic deformations. However, this postulate seems to bwhich is\,=L,/l,, is accompanied by changes in the lat-
valid for any reversibldi.e., homeomorphicdeformation of  eral dimensions of a deformed multifracta|=L;/l;, where
a multifractal structure, and thus it is more general than theé=1,2,...,d—1. The lateral deformations; are related to
assumptiofr*® of affinity of elastic deformations. Ay=\p as

T=const
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N=h=NFENT, =23, 0d, 9 lﬁp_(écl)‘ﬂ:(Lx(Fl))—B_M 13
_ _ “NGP,

. . §c2 LX(FZ)
where vg is the transverse deformation exponent. Note that

this exponent coincides with the Poisson’s ratioywhereg=1—(d;—1)v. The second relation ifl) may be
v=—+(A\{—1)/(\{—1) only in the limiting case of infini-  derived by substitution of Eq$13) and(9) with dr=d in the

tesimally small straing =|\2—1|Y?<1. general relation(7).
Substituting (9) into Eg. (8) we obtain a=1 Therefore, in the general case of an elastic multifractal
—(d—1)vg, so that structure, which also possesses a conventional Poisson’s ef-
fect, the scaling relatiof8) can be generalized into
In\ | de
TET I d-1 L (10 p(Fy) _ —(d=dg)y (dr=1)r—1 (14)
p(F2) F ¢ '

Therefore, if the first law is valid, the transverse deformation
exponentyg of an elastically isotropic multifractal is deter-
mined by its metric dimension.

At the first glance, it is surprising that lateral deformations
are independent of the detailed geometry of deformed mul
tifractal structure, whose transverse deformation exponent A=A,
determined only by its metric dimension. Notice, however,
that similar phenomengpower law distribution of stresses d—d
and strains with exponents, which are the functions of Pois- VE=v— F
son’s ratig are common within singular problems of the d-1
classical elasticity theory/.

Notice that Egs(9) and (10) are satisfied in the general Below we will consider only elastic multifractals revers-
case ofn-dimensional deformation of a multifractal structure ible behavior which obeys two laws postulated above. The
in d space. For example, for biaxial deformation in a threed{ateral deformations of such a structure have pure geometric

It should be emphasized that relatigi#) is valid only in the
limit of infinitely small strainse;; = y|\?—1|<1. Now, if
multifractal structure possess Poisson’'s effect with
the transverse deformation exponent is equal to

(15

dimensional space we hawg=\_"F, N\g=(\\)Y277F) nature {c=1) and are governed by its metric dimension
wherevg anddg are still related by the Eq7), which is also  [see Eq(10)]. . .

valid for triaxial deformation, whemg= (X ;X\, 3)Y with Unfortunately, no case of accessible experimental data for
a=3—de=1—2v¢. an elastic behavior of multifractal structures has come to our

It must be emphasized that E¢8) and(10) are not valid ~ notice. However, we can verify relatidd0) by using avail-
for materials obeying Poisson’s effed) or, that is equiva- ~ablé data for elastic monofractals. _
lent, the generalized Hooke's I&%.For such materials the ~ For example, the fractal dimension of aerogel SiWas

correlation lengtht, is equal to the sample size in direction Measured by the small-angle neutron scattering method and
of applied external force, i.e&.=L,; so thaté, and by the molecular adsorption technigt&. It was found that

aerogel has themonofractal structure (i.e., dg=d,=d),
which is characterized by the fractal dimension
A €a de=2.3+0.12° so that according to Eq10) we expect that
Ao €co ve=0.15+0.05. This value is in reasonable agreement with
the experimental data=0.12+0.082’ which were obtained
must change after deformation. At the same time, for an elasn the studies of longitudinal and transverse elastic waves
tic continuumA¢=0 and Ag=1, while for regular elastic propagation.
lattice \y=al/ay (a anda, are the interatomic distance be-  The metric dimension of monofractal strongly twisted

fore and after deformation, respectiveland Ng=\c. polymer filament equals the fractal dimension of self-
Hence for materials obeying Poisson’s effect our first postuavoiding random wafkand thus is equal td_,=2.5%° Ac-
late is not valid. cording to Eq.(10) we expectvg=0, that agrees with

Furthermore, the metric dimension of an elastic con-experiments! On the other hand, rubberlike polymers are
tinuum as well as a regular elastic latticg-=d,, for all g characterized bydr=3 (Refs. 32 and 3Band thus obey
(Ref. 6], which can be considered as a limiting case forproperty of incompressibilit}®3!i.e., v.=0.5.
multifractal structures, is equal to the topological dimension | ooking back at the two proposed laws of reversible de-
of structuredy (Ref. 6); so that® formations for multifractal structures, we see that it is nec-

essary to know the changes in entropy and internal energy as
d 0 d-=d functions of deformations, before the closed system of con-
) T=4 E— ; ;
dF:| . and a:: (12) stitutive equations can be obtglned. . _
d-1 1, dr=d-1. Using the definitions of information and correlation
dimension8 and scaling properties of a multifract4lwith

Now it is easy to understand that in the case of a Euclidrelations(4), (8) valid, it is readily shown that the changes in
ean elastic structure obeying Ed), the dimensionless func- thermodynamic entropAS(\;) and internal energyJ(\;)
tion ¢Yp(Nc)=(hc1)/ (M) scales(in the limit of infi-  due to the reversible deformation of an elastic multifractal
nitely small strainsas (in d-dimensional spagemay be represented as
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d 011 and o», such that there is no change in the length along
AS=— CZ( > )\?'—d) , (16)  a second direction, i.eN,=1.
=1 The relationships between elastic moduli, i.e., Young'’s
modulus E, shear moduluss, and bulk modulusB, and
Lame coefficients\,u of elastically isotropic monofractal,
AU=—-C;(\*°—1), ac=d—dc, (17)  Which are derived by analogy to the derivation of corre-
F sponding relationships in the classical elasticity thédiye
respectively. HereC, andC, are constantgnotice that pa- as follows:
rametersC, andC, also can be determined for any detailed
model of structure Y. oo E(d—1)

and

Substituting(16) and(17) into (4), and using relation&9) 2dp B= d(d—dg)’
and(10) we can derive relationships between external force
Fi and relative deformations; for an elastic multifractal Notice that these relations differ from those which were con-
structure. For example, in the case of uniaxial deformatiorjectured for elastic fractals by Bergman and Kartét the

2
B=\+ a/.l, (23

we obtain same time, substituting Eq10) in the Egs.(23) we obtain
expressions that fa=2 andd=3 are identical to those for
. . _1)-11— two- and three-dimensional elastically isotropic continuum.
- d-1_ o d[dg /(d—1)-1]-1 _ . ot
Fi=Coldn' di[de—(d=1)Jn, F Classical formulas for rubberlike elasticitg) may be de-

rived within a framework of Eq98)—(10) and(18), (19) for
C _ _ . .
B C_l(d_dc))\(lj de-1| 19 multifractals obeyintp
2

. , . ) dg.=d=3, andd,=2.
According to the obvious conditioR(\;=1)=0, it follows

from Eq. (18) that However, calculations based on E@) with the value of
E adjusted by fitting are in reasonable agreement with the
&: —d_dpsd . (19 experiments only in the range of relatively small strains

C, 'd-dc © (\i<1.2).2® Traditionally, the refinement of the relatid@)

is made by the phenomenological modifications of entropic
theory, or by using empirical models for the elastic
potential*>3! At the same time, elastomers are known to
have fractal or multifractal microstructut&*2¢ Therefore,

it is natural to describe the rubber elasticity of polymers by

Hence the behavior patterns of elastic multifractéfier
which two postulated laws are validan be determined by
the metric, information, and correlation dimensions.
Moreover, it is easy to see that in the limit of infinitely
small strains Eqs(18) and(19) can be generalized by using = . .
Egs. (14) and (15). using the concept of multifractal elasticity.

. . Normally, the generalized dimensions of polymer net-
In the case of monofractal structure all generalized dimen- . L
. . . ) . — works swelled in a good solvent are within the range
sions equal the metri¢fracta) dimension, i.e.,d,=dg

N : ; 2<dy=<33 Assuming in the first approximation that
=di=dc,” and Eq.(19) results in the relation de=d,=d¢ and substituting Eq(10) into Eqg. (21), we ob-
c tain a relationship between the nominal stréssand the
C—1=dF, (200  strain factor\ 4 in the following form:

2

so that Eq(18) may be rewritten in the form F,= {)\1+2VF_2VF)\—1—2VF<1+VF>
1 gt . 1+6ve+4,3t00 1
F1=C1{)\1F _[dp_(d_l)])\l FF _(d_dp))\f_ } —2up
(21) —(1=2ve)N " (24)

The stressoy; is related to the forcd=;(\;) by obvious  which was first derived in our wofkoy other means. Notice
equationollel)\}’“, which by using Eqgs(21) and (100  that behavior(24) differs from (2) even in the limit of in-

may be written in the form compressibly deformed material, when E84) reduces to
the formula
_ 1+4vg ~1-2,%
=————~=[(\ —1)—2ve(n -1)7,
71 1+6V|:+4V,:[( ! )7 2ve(hy )] F,=—(A2—\725) (25)
(22) 2_45 1 1 ’
whereE=(do,/de1y)7 is the Young modulus.  gpeying the experimental established asymptdtic
It can be clearly seen that within the limit of infinitesi-
mally small strains|e,,| = \|\i—1|<1, EqQ.(22) leads to its FiA2, when A;>1.
classic counterpart Eq1). Thus, for monofractal structure
we haveC,;=2(1+ vF)C2:(1+6vF+4v§)E. It was shown in Refs. 4, 12, and 36 that calculations based

Similarly, we can derive relations;;(\y) for n-axial de-  on Egs.(24) and (25 agree well with experimental data for
formations of an elastically isotropic monofractaldrspace. rubbers without any adjustment of parametéegceptE)
Pure shear is essentially a biaxial loading under the stresseight up toA,=7.
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The nonlinear stress-elongation asymptotic for superelaswvhich are postulated in the present work, are valid at least
tic network® for some classes of materials witlmulti)fractal (micro)-
structure.

We hope this work will stimulate experimental research
along this line. We expect that these investigations will sup-
port our concept of multifractal elasticity. If so, experimental
data on elastic behavior can be used to estimate the metric,
information, and correlation dimensions of ttraulti)fractal
microstructure.

1/3

O11% 0] (26)

is also a special case of constitutive equatid®, (18), and
(19, which is wvalid for multifractals possessing
de+d,—d=1/3, for exampled:=d=2, d,=4/3.

The basic relation for springlike elasticig) may be also
derived from(18) and(19) in the case of multifractal struc-

tures for whichdg=d,=2. , .
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