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Employing a recently developed technique of component-weighted two-particle Green’s functions in the
coherent-potential approximation~CPA! of a binary substitutional alloyAcB12c we extend the existing theory
of excitons in such media using a contact potential model for the interaction between electrons and holes to an
approximation which interpolates correctly between the limits of weak and strong disorder. With our approach
we are also able to treat the case where the contact interaction between carriers varies between sites of different
types, thus introducing further disorder into the system. Based on this approach we study numerically how the
formation of exciton bound states changes as the strengths of the contact potentials associated with either of the
two site types are varied through a large range of parameter values.

I. INTRODUCTION

Excitonic optical absorption in strongly disordered semi-
conductor alloys has been of great interest to both semicon-
ductor physics and technological applications of semicon-
ductors and semiconductor structures in the past. Although
the theory of an optically excited electron-hole pair scattered
or bound under the influence of the mutual Coulomb inter-
action into an exciton is quite well understood in weakly
disordered systems and even at finite carrier densities in the
respective conduction and valence bands, theories for
strongly disordered systems such as alloys of insulators and
some semiconductors are still very incomplete.

One of the few theories of disorder which interpolates
correctly between all regimes of disorder strengths and con-
centrations is the coherent-potential approximation~CPA!
first developed by Soven1 and Taylor2 and subsequently ex-
tended to a proper two-particle theory by Velicky.3 The CPA
predicts correctly the occurrence of splitoff impurity bound
states and whole impurity bands, once the relative disorder
strength becomes of the order of the width of the unper-
turbed single-particle density of states considered. Despite
the numerous advantages that the CPA provides, it has
proved difficult to incorporate a treatment of a carrier-carrier
interaction into its framework and to our knowledge the only
attempt to find a joint treatment of both effects has been
made by Kanehisa and Elliott4 who introduced a random-
phase-like decoupling of the disorder average in the corre-
sponding perturbation expansion in combination with a con-
tact potential model for the Coulomb interaction. Although
this description produces a number of correct features in a
limit of low disorder, it could not be extrapolated success-
fully to the case where the disorder becomes stronger, i.e.,
when the joint density of states splits into two components
and the excitons move to a more localized Frenkel limit,
where a separate approach is needed. No theory has been
available for the region of intermediate disorder strengths
where the bands are about to split.

An improved treatment of this problem has become pos-
sible through the development of a properly weighted two-
particle CPA in a previous paper5 which allows one to dis-

tinguish between different site types involved in the
propagation of two-particles during an absorption process.
We will show that differentiating between alloy components
in a perturbation expansion with an appropriate decoupling
procedure of the disorder average can yield the correct inter-
polation to all ranges of disorder for a contact potential
model. Furthermore, this allows us to distinguish different
contact interaction strengths between the carriers if these
meet on different types of sites, due to different dielectric
constants in the respective materials, whereby these strengths
are modeled to represent the electron-hole interaction within
an atomic radius.

II. ABSORPTION IN THE NONINTERACTING
DISORDERED ALLOY

A. CPA model of the disordered system

We summarize here the results for a component-weighted
two-particle CPA. Our model system is a binary substitu-
tional alloy of componentsA andB with respective concen-
trationsc and 12c, on a simple three-dimensional mono-
atomic lattice. Both components are assumed to exhibit a
direct band gap in their pure phase. Our two-band model
Hamiltonian without carrier-carrier interactions can thus be
written in a site representation as

H5(
l ,n

$Wl
ccn1 l

1 cn1Wl
vdn1 l

1 dn%1(
n

$Un
ccn

1cn1Un
vdn

1dn%,

~1!

where thecn and dn are the annihilation operators for an
electron and a hole on the siten, respectively.Wm is the
periodic part of the Hamiltonian transferring particles be-
tween different sites in the bandm and Un

m is the matrix
element in the respective bands which assumes the values
Un

mP$«A
m ,«B

m% depending on whethern is anA or aB site.
The disorder in the system is generated by the difference of
the on-site energiesVm5«A

m2«B
m in the respective bands.
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The CPA for a disordered medium is introduced by the
usual method1,2,6of placing the impurities in a self-consistent
medium such that the scattering off a single impurity van-
ishes on the average. Independent of this approximation, the
single-particle propagator of the disordered mediumG re-
lates to the one of a pure mediumg through the Dyson
equation

Gm5gm1gmUmGm. ~2!

The the self-consistent CPA condition requires that the aver-
age propagatorḠm of the effective medium fulfill the rela-
tion

Ḡm5gm1gmSmḠm, ~3!

whereSm is the CPA single-particle self-energy of the effec-
tive medium.Sm itself is determined through the single-site
condition that the average atomicT matrix of the self-
consistent mediumTn

m defined as

Tn
m5~Un

m2Sm!1~Un
m2Sm!FmTn

m , ~4!

be zero. Here we have introduced the site diagonal single-
particle functionF5Ḡ(n,n). Sm and Fm therefore satisfy
the self-consistent relation

0[^Tn
m&5

c@«A
m2Sm#

12@«A
m2Sm#Fm 1

~12c!@«B
m2Sm#

12@«B
m2Sm#Fm . ~5!

Weights can now be attributed to the single-particle func-
tions before averaging through applying operatorsJm

i /h to
them which effectively exclude either impurity or host sites
from the choices of start or end sites of the propagation of
the particles. We make the following definitions:

Jm
A5@Un

m2«B
m#/Vm, GA5Jm

AG, GAA5Jm
A GmJm

A ,

Jm
B5@«A

m2Un
m#/Vm, GB5Jm

BG, GBB5Jm
BGmJm

B,

GAB5Jm
AGmJm

B , GBA5Jm
BGmJm

A . ~6!

Averaged versions of such weighted single-particle functions
have been introduced by Aiyeret al.7 It will be shown that
they are particularly useful in their unaveraged form when
employed in the definitions of two-particle functions in order
to calculate weighted components of the polarizability which
can thereupon be used in the treatment of the excitonic ab-
sorption.

B. The average polarizability in linear response theory

In the following we consider a linear response expression
for the polarizability of the Kubo type. The particular kind of
two-particle function needed in this case is determined by the
form of the dipole operators which account for the interac-
tion of the electronic excitation with the radiation field and
which in the case of allowed interband transitions8 effec-
tively couple the two single-particle resolvents in the respec-
tive bands:

p̂†5(
n

unc&p^nvu. ~7!

The total optical polarizability in a Matsubara representation
which we adopt for convenience can be written as

^P0~ iv!&52b21(
iz

^Trv$p̂Gc~ iz!p̂†Gv~ iv2 iz!%&,

~8!

where the angular brackets denote the configurational aver-
age,b is the usual inverse temperature and Trv denotes the
trace over the bandv as in Ref. 9:

Trv~••• !5(
n

^nvu•••unv&. ~9!

Here it is assumed that the dipole matrix elements are taken
for the transition from a valence band ofp-wave symmetry
to a conduction band ofs-wave symmetry in which case they
can be assumed to be essentially constant and we normalize
them to unity. This implies that for the calculation of a prop-
erly averaged polarizability which is void of any further in-
teractions we need to consider the following two-particle
function:

K~z1 ,z2!5(
m

K~z1 ,z2 ;n,m!5(
m

^ncu^Gc~z1!umc&

3^mvuGv~z2!&unv&. ~10!

Apart from the cumulative functionK stated above it is now
also possible to consider its weighted components by using
the appropriately weighted versions of the single-particle
functions in their definitions.

K and its weighted versions are obtained by means of the
two-particle extension of the CPA by Velicky´3 and our
method of obtaining the appropriate weights.5 The concept is
to use theT matrix representation of the unaveraged un-
weighted or weighted single particle functions from~6! to
obtain a CPA vertex correctionL(z1 ,z2) and average
weights for the correlated motion of two-particles in terms of
averages over products of atomicT matrices. With the vertex
correction, the equation for the correlated two-particle mo-
tion can be decoupled as

K~z1 ,z2!5
R~z1 ,z2!

12L~z1 ,z2!R~z1 ,z2!
, ~11!

whereR(z1 ,z2) is the average-decoupled two-particle func-
tion

R~z1 ,z2!5(
m

Ḡc~z1 ;n,m!Ḡv~z2 ;m,n! ~12!

and the vertex correction is found to be

L~z1 ,z2!5
VvSc~z1!2VcSv~z2!

VcFc~z1!2VvFv~z2!
. ~13!

If one assumes that the conduction and valence band disper-
sions are similar in shape

«c~k!

wc
57

«v~k!

wv
, ~14!

one finds a more explicit representation forR(z1 ,z2) Ref. 9
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R~z1 ,z2!5
wcFc~z1!6wvFv~z2!

wc@z22Sv~z2!#6wv@z12Sc~z1!#
. ~15!

In Ref. 5 we found that for the class of two-particle functions
as represented byK(z1 ,z2) two types of single-weighted
functions and three different double-weighted ones exist.
Similar to the single-particle theory it was found that these
weighted two-particle functions can be expressed in terms of
the unweighted one if energy dependent weighting factors
added to and multiplied onto it.

Introducing

j~z1 ,z2!5
~12c!L~z1 ,z2!

@Vc2Sc~z1!#@Vv2Sv~z2!#
, ~16!

h~z1 ,z2!5
cL~z1 ,z2!

Sc~z1!Sv~z2!
, ~17!

g~z1 ,z2!5
L~z1 ,z2!Fc~z1!Fv~z2!

VcVv
, ~18!

we find that

KA5jK, KB5hK, KAA5j2K1g, KBB5h2K1g,

KAB5KBA5jhK2g. ~19!

These functions can now readily be used to obtain corre-
sponding components of the polarizability which are calcu-
lated the same way as in~8!

^P0
XY~ iv!&52b21(

iz
KXY~ iz,iv2 iz!, ~20!

whereX andY denote possible weights (X,YP$A,B,B%).
Functions of this type have been discussed analytically and
numerically in Ref. 5 for various regimes of disorder.

III. INTRODUCTION OF ELECTRON-HOLE
INTERACTION

A. Difficulties with the treatment of the Coulomb interaction
in disordered systems

The inclusion of a carrier-carrier interaction into a model
for the optical polarizability is essential for the treatment of
exciton effects. However, an analytic treatment of this prob-
lem in strongly disordered systems such as alloys of insula-
tors and of semiconductors using the true or screened Cou-
lomb interaction seems to be almost impossible. This is due
to the fact that the corresponding Bethe-Salpeter equation,

^K ~ iv; i , j ;k,l !&5^K 0~ iv; i , j ;k,l !&

1 (
a,b,c,d

^K 0~ iv; i , j ;a,b!u~a,b;c,d!

3K ~ iv;c,d;k,l !&, ~21!

is extremely hard to decouple. Hereu(a,b;c,d)
5v(a2b)dacdbd2w(a2c)dabdcd is the Coulomb interac-
tion in the site representation with its direct and exchange
part andK 0( iv; i , j ;k,l ) is the noninteracting configuration
dependent two-particle function

K 0~ iv; i , j ;a,b!52b21(
iv

^ i uGc~ iz!uk&^ l uGv~ iz2 iv!u j &.

~22!

The exactly averaged polarizability including exciton effects
is calculated from the interacting version of this function
~21! as

^P~ iv!&5(
i ,k

^K ~ iv; i ,i ;k,k!&. ~23!

The main difficulty in solving Eq.~21! arises from the fact
that the disorder average over the second term creates higher
order correlations in the particle motion than those which are
accounted for by the inclusion of the vertex corrections.
These additional average induced correlations lead to an ef-
fective Coulomb interaction which is renormalized in a very
complicated fashion.

For these reasons two drastic simplifications have been
made in earlier treatments of the problem. First the Coulomb
interaction is replaced by a short range contact potential
which binds at most one state in a joint band limit when the
disorder is relatively weak. This state is meant to represent
the 1-s exciton from the Coulomb series which usually domi-
nates the optical absorption spectrum below the continuum
absorption edge. Second the disorder average in~21! is de-
coupled into a product of averages. The average polarizabil-
ity including this carrier-carrier interaction is then obtained
as

P̄~ iv!5
P̄0~ iv!

11uP̄0~ iv!
, ~24!

whereu is the uniform strength of the contact potential and
the average was replaced through a horizontal bar over cor-
responding quantities. However, this type of decoupling of
the average becomes reasonable only in the limit of weak
disorder, when the electron-hole pair experiences many im-
purities before its constituents are Coulomb scattered~Wan-
nier excitons!. Effectively, therefore no higher than two-
particle correlations can be accounted for within this
approximation and it will be shown that for stronger disorder
even these correlations are significantly misweighted and
overcounted. It hence must clearly fail in a regime of strong
disorder where excitons may be primarily associated with
two separate impurity bands.

For the strong disorder limit it is shown explicitly in Ref.
4 how the solution for the two-particle function is modified
towards a regime of localized excitations~Frenkel excitons!,
which is equivalent to letting the overlap of the atomic wave
functions go to zero, while at the same time the disorder
strengths are kept constant. If~21! is considered before av-
eraging in this limit, it goes over to

@11p0~ iv; i !v~0!#K ~ iv; i i ,kk!

5d ikp0~ iv; i !1p0~ iv; i !(
j
w~ i2 j !K ~ iv; j j ,kk!,

~25!

wherep0( iv; i ) is the atomic polarizability on the sitei and
w( i2 j ) is the exchange part of the Coulomb interaction
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which is now entirely responsible for electron transfer from
one atom to another. It is this term which makes an exact
solution of Eq.~25! still difficult. If now the exchangew is
assumed to go to zero as well we obtain the limit of isolated
atoms.

The solution of~25! then becomes

K ~ iv; i i ,kk!5
d ikp0~ iv,i !

11v~0!p0~ iv,i !
, ~26!

which can be averaged exactly and summed to yield

P̄~ iv!5F cp0~ iv,A!

11v~0!p0~ iv,A!
1

~12c!p0~ iv,B!

11v~0!p0~ iv,B!G ,
~27!

whereA andB within p0 denote here that the atomic polar-
izabilities are considered on either anA or aB atom. Since
the present limit corresponds to letting the bandwidth of the
components of the joint density of states go to zero, given
some arbitrary strength of disorder, the same limiting behav-
ior of the polarizability can be attained5 by letting the disor-
der strengths become much larger than the bandwidth which
yields two energetically separated contributions to the joint
density of states~DOS! and the formal properties of~27! are
recovered.

The appearance of~27! suggests that one should also al-
low for the possibility of using two different contact interac-
tion strengths on different types of sites thus allowing for
different types of atomic screening in different alloy compo-
nents.

It is clear that Eq.~27! is not obtained by the extrapolation
to a strong disorder limit from Eq.~24! and so far there had
been no indication as to what type of approximation one
should use in the description of an intermediate disorder re-
gime, where the strengths of the disorderVm are of the order
of the corresponding half-widths of the single particle bands
wm , which at the same time extrapolates correctly to the
asymptotic behavior predicted by Eqs.~24! and ~27! for
weak and strong disorder, respectively.

B. Component-weighted approximation
of the scattering expansion

Based on our results in Ref. 5 we employ in the following
a component-weighted scattering expansion to obtain the ex-
citonic polarizability, while at the same time we allow the
contact potential strengths to assume different values on dif-
ferent types of sites. We use a similar decoupling of the
disorder averages to obtain a new approximation for the scat-
tering in an intermediate disorder regime. Subsequently, we
show that this approximation renders exactly the interpola-
tion behavior that we had hoped to achieve.

We introduce the following attractive weighted contact
scattering interaction strengths

ũA5
uA
c
, ũB5

uB
12c

, ~28!

associated with theA and B components of the medium,
wherebyuA anduB represent bare scattering strengths, and
the limit of uniform interaction strengths corresponds to
uA→uB→u. If one distinguishes now the different types of

sites involved in the propagation of the two-particles during
a scattering process, the expansion of the scattering series
can be represented pictorially as in Fig. 1. Mathematically
this corresponds to writing

P̄.P̄0
A1P̄0

B2@P̄0
AũAP̄0

A1P̄0
BũBP̄0

B#1@P̄0
AũAP̄0

AAũAP̄0
A

1P̄0
AũAP̄0

ABũBP̄0
B1P̄0

BũBP̄0
ABũAP̄0

A1P̄0
BũBP̄0

BBũBP̄0
B#

2•••, ~29!

where both, the diagrams in Fig. 1 and the terms written
down in ~29! above represent the expansion to second order.
These and higher order terms can can be conveniently rewrit-
ten in a 232 matrix scattering formalism by introducing

PW 05S P̄0
A

P̄0
BD , Û5S 2ũA 0

0 2ũBD , P̂05S P̄0
AA P̄0

AB

P̄0
AB P̄0

BBD .
~30!

Equation~29! then goes over to

FIG. 1. Diagrammatic representation of processes to second or-
der included in the weighted expansion of the excitonic polarizabil-
ity. The electron-hole pair can be excited on anA or aB site and
subsequently be scattered on either of such sites with the effective
contact potential strengthsũA andũB , respectively. Every connect-
ing line between two sites denotes a factor of a noninteracting
weighted polarizablityP̄0

XY (X,YP$A,B%), whereX andY are cho-
sen to match the type of the start and the end site of an arrow and all
conceivable paths occurring between the excitation and the recom-
bination of the electron-hole pair are being summed over.
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P̄5P̄01PW 0
TÛPW 01PW 0

TÛP̂0ÛPW 01•••. ~31!

The matrix products can be summed to give

P̄5P̄01PW 0
TÛ(

n50

`

@P̂0Û#nPW 0 , ~32!

which can be evaluated as a matrix geometric series as

(
n50

`

@P̂0Û#n5@12P̂0Û#21, ~33!

and Eq.~32! is calculated to yield

P̄5P̄0
A1P̄0

B2
ũA~P̄0

A!2~11ũBP̄0
BB!1ũB~P̄0

B!2~11ũAP̄0
AA!22P̄0

AũAP̄0
ABũBP̄0

B

~11ũAP̄0
AA!~11ũBP̄0

BB!2ũAũB~P̄0
AB!2

. ~34!

Equation~34! is the central result of this work and much of
the further discussion will be based on its properties.

C. Limiting behavior

In order to test the usefulness of Eq.~34! it is necessary to
investigate its behavior in various limits of disorder.

1. Weak disorder limit; uniform interaction

To establish a connection with formula~24! we first study
the limit of low disorder and asymptotically equal bare con-
tact interaction strengthsuA5uB5u. It is well known4 that
in this limit the CPA self-energy goes over to the virtual
crystal limit Sc/v→cVc/v and the vertex correction to
L→c(12c)VcVv . Accordingly, the weights in the two-
particle function defined in~16!–~18! go over to j→c,
h→(12c), andg→c(12c)FcFv . As a result of this it is
possible to pull the two weightsj andh multiplied with the
unweighted two-particle function out of the energy convolu-
tion, since they are now independent of energy. The impurity
weighted versions of the polarizability can therefore
be expressed in terms of the unweighted function as
P̄A5cP̄ and P̄AA5c2P̄1c(12c)V, where V( iv)[
2b21( izFc( iz)Fv( iv2 iz). The behavior of the host
weighted functions and the mixed one follow in analogy.
Through inserting into~34! it is found that the scattering
term factorizes as

P̄→P̄02
P̄0uP̄0~11uV!

~11uP̄0!~11uV!
, ~35!

which is identical to~24!.

2. Strong disorder or split band limit

In Ref. 5 we had shown explicitly that in the regime of
strong disorder, when the widths of the single-particle bands
become negligible compared to the disorder strengths in-
volved, the mixed component of the CPA two-particle func-
tion KAB go to zero whereas the double-weighted functions
KAA/BB become effectively identical to the single-weighted
onesKA/B. The same behavior also translates to the weighted
polarizabilities and therefore in this limit~34! goes over to

P̄5
P̄0
A

11ũAP̄0
A

1
P̄0
B

11ũBP̄0
B
. ~36!

Even though this already looks very similar to~27! it is not
trivially the same. However we showed in Ref. 5 that in this
limit

KA/B→xA/B(
k
Gc crys
A/B ~k!Gvcrys

A/B ~2k!5xA/BKcrys
A/B , ~37!

wherexA/B is the concentrationc and (12c) of theA andB
component, respectively, and the subscript ‘‘crys’’ is chosen
to label the corresponding two-particle functions of the pure
A and B media. This in connection with the definition of
ũA and ũB from ~28! finally shows that~27! and ~34! are
indeed identical in this limit.

3. General behavior

In order to examine the predictions that~34! makes for a
general case, we introduce the following definitions:

P̄0
A[xP̄0, P̄0

AA[xzP̄01G, ~38!

where G( iv)[2b21( izg( iz,iv2 iz). Due to probability
conservation the other weighted functions are defined as

P̄0
B5~12x!P̄0, P̄0

AB5x~12z!P̄02G,

P̄0
BB5~122x1xz!P̄01G. ~39!

In a general case, the polarization weightsx andz are only
very indirectly related to the original weightsj andh for the
unintegrated two-particle functionK. They may assume dif-
ferent values for any particular energy at which the polariz-
ability is considered and therefore they generally depend on
energy. Inserting this into~34! we find that

P̄5P̄02P̄0
2$@x2ũA1~12x!2ũB#1ũAũB@x~z2x!P̄01G#%

3$11@xzũA1~122x1xz!ũB1ũAũBG#P̄0

1~ ũA1ũB!G1ũAũBx~z2x!P̄0
2%21. ~40!

If this this is compared to a corresponding Dyson equation
for the polarizability with a renormalized self-energy-like ex-
pressionM :

P̄5P̄01P̄0MP̄, ~41!

this expressionM , which can also be viewed as a disorder
average ‘‘dressed’’ interaction, is found to be
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M52
@ ũAx21~12x!2ũB#1ũAũBx~12x!F

11@ ũA1ũB#x~12x!F
, ~42!

where we had introduced F5@x(z2x)P̄01G#/
@x(12x)#. Introducing a generalized energy dependent av-
erage interaction strength

ū5x2ũA1~12x!2ũB, ~43!

and a generalized contact potential fluctuation strength

D5xũA2~12x!ũB, ~44!

Eq. ~42! can be rewritten as

M52ū1
x~12x!D2F

11@ ū1D~122x!#F
. ~45!

Finally introducing the renormalized function
C5F/(11ūF) one obtains

M52ū1
x~12x!D2C

11D~122x!C
. ~46!

We argue that this result represents a generalized form of an
averageT matrix approximation~ATA ! of the polarizability
of the medium with respect to the disordered contact poten-
tial relative to its ‘‘mean’’ background valueū which is taken
as the basis of an energy dependent background medium
similar to a virtual crystal~VCA! energy. To motivate our
comparison more, we recapitulate the main features of the
ATA for a single particle propagatorG in a binary disordered
medium with on-site potentials2«A and2«B on theA and
B components, respectively. The contact potentials have
been defined with a negative sign here to match the defini-
tion of uA and uB from before, which were introduced as
attractive interactions on an equivalent footing. The averaged
T matrix equation forG can be written as

Ḡ5Ḡ01Ḡ0T̄Ḡ0 , ~47!

in which Ḡ0 is the virtual crystal propagator

Ḡ05
g

11 «̄g
, ~48!

where we have set«̄5c«A1(12c)«B and g is the the
propagator for a medium without the on-site potentials. The
averageT matrix T̄ is defined as

T̄5
2c@«A2 «̄ #

11@«A2 «̄ #F0

1
2~12c!@«B2 «̄ #

11@«B2 «̄ #F0

, ~49!

whereF05Ḡ0(m,m). Introducing furthermored5«A2«B,
the corresponding ATA self-energySATA relating g and Ḡ
can be written as

SATA52 «̄1
T̄

11T̄F0

52 «̄1
c~12c!d2F0

11~122c!dF0
. ~50!

The aforementioned analogy hence builds on the correspon-
dence of the quantities

«̄ ↔ ū, d ↔ D,

g ↔ P̄0 , SATA ↔ M ,

Ḡ ↔ P̄, F0 ↔ C. ~51!

This correspondence becomes exact in the asymptotic limits
discussed before and continues to hold qualitatively in an
intermediate regime. The difficulty in finding a rigorous
comparison in the most general case stems again from diffi-
culty of finding general expressions for the energy depen-
dence of the integral weightsx and z and the integrated
diagonal correction termG.

The reason why our weighted scattering expansion can be
expected to yield a better result than an undifferentiated de-
coupling of the Dyson equation for the contact potential, as it
is shown to do by our numerical calculations in the next
section, can be understood from the argument that averages
over higher moments ofP0 which occur in this expansion
such aŝ P0

2& and^P0
3& are better approximated by a decou-

pling as ^P0
2&.(P̄0

A)2/c1(P̄0
B)2/(12c) and

^P0
3& . (P̄0

A)2P̄0
AA/c21 2P̄0

AP̄0
BP̄0

AB/c(12c)1 P̄0
BB(P̄0

B)2/
(12c)2 rather than̂ P0

2&.P̄0
2 and ^P0

3&.P̄0
3 , respectively,

because the former approximation reduces a wrong weight-
ing and overcounting of scattering processes that the latter
approximation erroneously infers.

IV. NUMERICAL RESULTS

In this section we discuss a numerical implementation of
our previous results within a commonly used model in three-
dimensional systems. Rather than attempting a direct com-
parison to experimental data, which would require us to con-
fine ourselves to a very narrow parameter region, it shall be
our particular priority in this section to exemplify and visu-
alize how the theory developed here correctly predicts the
formation of excitons also in intermediate regimes of disor-
der, where other theories to date fail to work, by running
through a wide range of parameters.

Since within the quasi-ATA contact potential model of the
electron-hole interaction the excitonic polarizability can be
obtained directly by inserting the weighted components of
the average polarizability for the free particle system into Eq.
~34!, we draw strongly from the results obtained for the non-
interacting system in Ref. 5. The main input necessary for
the numerical implementation of a single-site CPA are the
single-particle densities of states for the conduction and va-
lence band. As in Ref. 5 we take

rm~E!5
2

pwm
2Awm

22E2, uEu<wm ,

rm~E!50, uEu<wm . ~52!

It is well known that this density of states does not exhibit
any of the finer structure of a real system, but it includes the
more global features of a wide class of systems giving a
finite bandwidth and the appropriate van Hove singularities
at the band edges. Moreover, it matches well with the spirit
of a single-site CPA which, even though it reproduces the
global influence of disorder on the system correctly in all
regimes, cannot account for more detailed structure brought
about by the scattering of particles off clusters of impurities
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which usually involve momentum dependent self-energy
contributions whose evaluation would require a more spe-
cific knowledge of the single-particle dispersion laws.

For amalgamation-type solid solutions, i.e., alloys whose
densities of states of the pureA andB substances overlap to
a great extent in the respective conduction and valence
bands, CPA results already exist4 for the caseuA5uB5u.
We shall therefore focus on the region of parameters which
corresponds to intermediate disorder, where our approxima-
tion provides significantly better results than earlier ap-
proaches. A restriction to a rather specific region of param-
eter space becomes necessary since we now have six
independent parameters which govern the behavior of our
spectra, i.e., the concentrationc, the relative valence conduc-
tion bandwidthwv /wc , the disorder strengthsVc andVv in
the respective bands and the corresponding disordered con-
tact interaction strengthsuA anduB , accounting for the dy-
namic part of the electron-hole correlations.

In determining the region of interest we note that, as
pointed out by many workers~cf. for example the review
article by Rashba10!, the CPA produces a ‘‘pseudo’’ gap in
the single-particle DOS at all concentrations once the disor-
der strengths exceed the half-width of the single-particle
bands involved,Vm>wm , which also translates to the joint
DOS in some regimes. In more realistic systems, however,
usually a true gap only exists once the disorder strengths
exceed the full bandwidthsVm>2wm , even though in the
regime 2wm>Vm>wm the number of states in the region of
the pseudogap is strongly suppressed. Because of this, we
shall concentrate our attention to the beginning region of the
true gap behavior and chooseuVmu53wm .

In calculating the absorption spectra, we have first ob-
tained the weighted components of the polarizability without
electron-hole interactions. Figures 2~a!, 2~b! and 4~a!, 4~b!
show the real and negative imaginary part ofP̄0 and all its
decompositions into single- and double-weighted compo-
nents for parallel disorder, sgn(Vc)5sgn(Vv), and antiparal-
lel disorder, sgn(Vc)52sgn(Vv), respectively. Specifically,
the conduction and valence band disorder have been chosen
to be Vc53.0 andVv562.4 in connection with the half-
bandwidthswc51.0 andwv50.8. It should be noted that all
energies occurring in our results effectively scale with the
half-width of the conduction bandwc as it is normalized to
unity.

We can see from Figs. 2~b! and 4~b!, that in the region of
parameters considered, the joint density of states has already
split quite clearly into distinctA andB parts for both cases of
disorder and the difference of the double- and single-
weighted components has become relatively small due to the
dominance of the total diagonal matrix elements of the two-
particle function in this regime. Note that in all the figures
for the noninteracting polarizability only the singleAB func-
tion has been plotted and the components of the spectra sum
asP̄0

A/B5P̄0
AA/BB1P̄0

AB andP̄05P̄0
AA1P̄0

BB12P̄0
AB.

In the case of parallel disorder of Fig. 2~b!, the joint DOS
is divided up into into a central bulk part which is mainly
constituted fromAA andBB transitions and a separate set of
flanks on either side of it, which contain a notable amount of
AB transitions. In the case of antiparallel disorder of Fig.
4~b!, on the other hand, it decomposes into two separate
parts with a pronounced gap between them, whereby the up-

per part consists mainly ofAA and the lower part ofBB
transitions. Even though the joint function appears to be very
close to zero in the gap region for this case, we discover a
finite contribution of double-weighted components centered
between the split bands.5 These states can be considered
‘‘mute’’ in the absence of any electron-hole interaction since
cumulatively they do not contribute to the polarization.

It appears from these results as if the system is already
very close to the strong disorder asymptotic behavior where
the split components are essentially independent, but we
shall find that this is indeed not the case, agreeing with the
result of Onodera and Toyozawa11 who state that this regime
is reached only beyond a relative disorder strength of about
Vm /wm510. If in the interacting case states are pulled down
from the upper band into this region by means of the
electron-hole interaction, they will experience a significant
broadening and hence change the excitonic absorption in a
large region as as will be apparent from the plots in Fig. 5.

In order to show the effect of the various components of

FIG. 2. ~a! Real and~b! negative imaginary parts of the nonin-
teracting polarizability for parallel disorder atc50.35. All energies
scale with the conduction half-band widthwc which has been set to
unity, wc[1, whilewv is taken to bewv50.8. Since this spectrum
is taken at disorder strengthsVc53.0 andVv52.4, i.e., at the be-
ginning of the true gap region of the CPA, the single- and double-
weighted functions coincide to a great extent, and two flanks of the
spectra which to a substantial degree contain mixedAB compo-
nents have split off sideways@cf. the lower end of the joint DOS in
~b! where the values were enlarged by a factor of 10#. However, it
becomes clear from the spectra in Fig. 3 that the residual interfer-
ence ofA andB absorption amounts to a significant influence on
the excitonic absorption as the corresponding electron-hole interac-
tions are introduced.
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the densities of states on the formation of excitons in a con-
cise way we have plotted stacks of three-dimensional over-
lays of the obtained spectra. In every separate stack of the
spectra in Figs. 3~a!–3~d! and 5~a!–5~d! the strengthuB of
the contact interaction on aB site of the alloy — here asso-
ciated with the lower lying component — is kept constant
whereby the interaction strengthuA on anA site — associ-
ated with the higher lying component — is varied through an
interval of strengths from zero to a value where it is suffi-
ciently large to pull the exciton below the lowest component
of the contributing unperturbed joint density of states. The
same procedure is performed over all stacks of plots in Figs.
3 and 5 asuB is gradually increased through a similar inter-
val of values asuA .

Although, in an experimental situation it would probably
be much easier to vary such parameters of the system as the
concentration and to some extent also the strengths of the
disorder by using different substances for the production of
the solid solutions, a strong variation of the contact potential
strengthsuA anduB is better suited for a theoretical study of
the global features of the excitonic absorption predicted by

our model. As a result we are able to analyze the excitonic
absorption through a whole region of the three-dimensional
parameter space spanned byv, uA , and uB . In addition,
since it is difficult to find a view-angle of the resulting plots
which shows all features of the spectra simultaneously, we
have cut off the resonance peaks at an appropriate value and
overlayed a contour representation of the spectra which ren-
ders more detailed information about the position and the
width of the excitonic resonances as the interaction strengths
are increased.

As can already be seen from Eq.~34!, the width of the
resonances will be largely determined through the behavior
of the double-weighted components, i.e., through the magni-
tude of the imaginary parts ofP̄0

AA and P̄0
AB as well as

P̄0
BB and P̄0

AB at the solutions of Re@P̄0
AA#521/ũA and of

Re@P̄0
BB#521/ũB , respectively. This implies that it is pos-

sible to have a very sharp resonance of the exciton peak
associated with the higher lying component of the joint DOS
deep within the region where the DOS is relatively large, but
almost entirely consists of the opposite component. On the

FIG. 3. Excitonic absorption spectra created by means of Eq.~34! from the weighted components of the noninteracting spectrum in Fig.
2. In each of the plots~a!, ~b!, ~c!, ~d! the contact potential strengthuB associated withB atoms is kept at a constant value whileuA is
increased from 0 to 6 from the front to the back of the set of overlayed plots. The overlayed contour plots show the paths and broadenings
of the excitons as the parameter strengths are varied. The contour lines are taken at level heights of 0.1, 0.5, 1.0, 1.5, respectively. Comparing
the plots~a! uB50.0, ~b! uB50.4, ~c! uB51.5, ~d! uB53.5, one can see that mutual interference effects of both interactions are relatively
small. The main such interference effect is thatB resonance attains some broadening once theA resonance has passed it, cf.~c!.
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other hand the resonance can be very broad even in a region
where the cumulative DOS is practically zero, due to the
presence of finite double-weighted components which mutu-
ally cancel out to a great extent, once they are summed.

In Fig. 3~a! the set of spectra commences with the com-
pletely unperturbed joint DOS for parallel disorder in Fig. 2.
TheA exciton which is being pulled out at the lower end of
the central bulk part, which consists almost entirely ofAA
andBB components, becomes very sharp as soon as it leaves
the pureA component at aboutv520.7 corresponding to an
A interaction strengthuA50.45. Beyond this value almost
the entire oscillator strength of theA component is found in
the resonance and thus only the pureB contribution remains
in the central part asuA is increased further. It should be
noted that these resonances show a finite width also when
they are exterior of any of the DOS contributions due to a
small artificial imaginary part of about 1023 units which has
been added to the energy in order to ensure the correct ana-
lyticity of the quantities involved at the given numerical ac-
curacy. A major broadening occurs subsequently as the reso-
nance crosses the lowerAB region which sharpens again

once it has passed its lower end. The overlayed contour plot
suggests that in the region without almost anyAA states, the
increase of the excitonic binding energy is throughout linear
with the increase to the interaction strengthuA . However, as
the bound state passes through the the lower split off flank,
which is constituted of about 50%AB2 and 25%AA and
BB components, respectively, see the 103 enlarged region
in Fig. 2~b!, it gets broadened and the propagation path of the
bound state seems to attain a parallel shift~of about
v50.7) with respect to the initial one, corresponding to a
constant addition to the binding energy beyond the lowest
flank of the spectrum. This additional deepening of binding
is found through all stacks of spectra for parallel and anti-
parallel disorder equally. It can be observed throughout Figs.
3~b!–3~d! that as theA resonance passes the lowerAB flank
most of the states from this region are being absorbed into
the resonances while the same is true for the the upperAB
flank of the spectrum which feels the effect from afar. A very
similar behavior is observed asuB is increased over the se-
ries of stacked plots and the last bits of the upper flank get
absorbed in this process. Passing through the lowerAB flank
also gives a strong broadening which accounts for the per-
sistence ofB states which are not influenced by theA inter-
action.

The plots also show that the formation of excitonic states
associated with either of the underlying components of the
alloy is largely independent of correlations between the two
interaction strengthsuA anduB , i.e., the formation of bound
states associated with one of the two material components is
seen to be as good as unaffected by a variation of interaction
strength associated with the complementary component. The
only slight correlation which comes into play is via the
mixed AB components to which bothuA and uB couple
weakly. It can be observed that as the resonance associated
with the higher lying component passes through the shifted
body of the lower lying one, both this resonance and the
peak width of the absorption edge narrow in the case of
parallel disorder Figs. 3~b!–3~d! and broaden in the case of
antiparallel disorder Figs. 5~b!–5~d!.

Figures 5~a!–5~d! for antiparallel disorder exhibit many
similar properties to the ones for the parallel case, but they
also display quite a few novel features. TheA resonance is
strongly broadened as it is pulled into the center of the gap,
which the noninteracting absorption for this case from Fig.
4~b! exhibits. This broadening stems from theAA andBB
components which still prevail in this region and which are
compensated by theAB gain contribution, see the 53 en-
larged region of Fig. 4~b!. It is very curious to observe how-
ever, that even after the resonance has passed to lower ener-
gies, there is a finite hump remaining in the gap center which
is subsequently bleached as theB resonance also shifts
downwards. The development of this hump can be followed
through Figs. 5~a!–5~d! if one looks through the trough that
theA resonance forms in the central region of the gap onto
the residual spectrum visible at the back. It mainly consists
of BB states which remain in this region whereas both the
AA andAB components become largely withdrawn. Looking
at the contour plots of this arrangement suggests that, in
addition to the constant increase in binding of theB reso-
nance asuB increases, which is comparable in magnitude to
the one observed for parallel disorder as the centralAB re-

FIG. 4. ~a! Real and~b! negative imaginary parts of the nonin-
teracting polarizability for antiparallel disorder and parameters
c50.35, Vc53.0, Vv522.4, wc51.0, andwv50.8. The antipar-
allel direction of the band offsets causes the imaginary part~joint
DOS! in ~b! to split into two distinct components mainly constituted
by A andB transitions, respectively, separated by a wide gap. Even
though the cumulative function is very close to zero in the central
region, the double-weighted components are finite there@cf. the
central region in~b! where the values were enlarged by a factor of
5# and hence they lead to a substantial broadening if an excitonic
resonance is pulled out of the higher lyingA component into this
region, as can be seen from the excitonic spectra in Fig. 5.
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gion is passed, the constant of proportionality for the deep-
ening seems to have increased corresponding to a faster lin-
ear deepening of theA exciton binding with increasinguA .

The spectra of Figs. 5~a!–5~d! are also particularly suit-
able to visualize that a weighted scattering expansion used in
the context of an average decoupling and a contact potential
model with two distinguishable interaction strengths renders
a much more accurate prediction for the formation of the
excitonic resonances than the unweighted one of Eq.~24!.
Equation ~24! produces a resonance whenever
Re@P̄0#521/u and Im@P̄0# is small or zero. In a split band
case as shown in Fig. 4 the real part is seen to have a zero in
the gap where Im@P̄0#.0. This means that an increase of the
interaction strengthu would lead to a bound state being
trapped between the split bands at this zero of Re@P̄0# in the
limit u→`. This behavior of course is clearly wrong, since
one can expect that the binding energy of any occurring ex-
citonic resonance deepens, in this case the binding energy of
the resonance associated with the higher lyingA band, as the
interaction strength increases. This failure in giving the right

asymptotic description can be ascribed to a misweighting
and overcounting even of scattering processes which contain
two-particle correlations only. Our approximation overcomes
this problem to a great extent and it is void of the erroneous
trapping of the resonance, which as expected passes on to
lower energies and finally appears below theB band asuA is
increased, independently of the value ofuB .

The variation range of the carrier interaction strengths,
particularly the one foruA , which we have plotted through-
out Figs. 3 and 5 is very large and is unlikely to be found in
semiconductor alloys. However, mixtures of molecular crys-
tals, and mixed crystals of rare gases,12 which form quite
narrow bands and at the same time have rather strong band
offsets,13 might be candidates for such behavior. Unfortu-
nately, experimental work on the spectra of mixed rare gas
solids has only been reported in relatively narrow regions,
where only one of the substances exhibits the interesting
exciton lines, whereas the corresponding features of the other
component lie outside the captured region.14,15This makes a
quantitative comparison of these results with the theory pre-
sented here unrewarding.

FIG. 5. Excitonic absorption spectra based on the noninteracting spectrum in Fig. 4. While in each of the plots~a!, ~b!, ~c!, ~d! uA is
varied from 0 to 8 to pull theA resonance below the onset of the lowestB states,uB is varied as~a! ub50.0, ~b! uB50.4, ~c! uB50.8, ~d!
uB51.8. Opposite to the parallel case shown in Fig. 3 the interference of the two interactions amounts to a narrowing of theB type
resonance as theA resonance passes it, cf.~c!. Both here and for the cases shown in Fig. 3 this can be understood to originate from the mixed
AB contribution into which bothuA anduB couple weakly. Similar to Fig. 3 the contour lines are taken at level heights of 0.1, 0.4, 0.8, 1.2,
respectively. Note also that an unweighted contact potential model with a uniform interactionu of Eq. ~24! would in this case erroneously
predict a trapping of an excitonic resonance in the gap region where Re@P̄0#50 at aboutv50.8, asu→`.
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V. COMPARISON TO EARLIER WORK

Much earlier work on excitons in strongly disordered bi-
nary solid solutions at finite concentrations focussed on sys-
tems where the exciton is tightly bound with a binding en-
ergy greater that the narrow bandwidth. In this case the
Frenkel exciton has been frequently described by a ‘‘single’’-
particle Green’s function based on the theory of molecular
excitons by Davydov.16 One of the standard assumptions
within this framework is that the matrix elements in the op-
tical absorption,mk,k85^c,ku«̂•puv,k8& are strongly local-
ized in momentum space, i.e.,mk,k85const3dk,k8dk,0 which
means that the contributing transitions are not only required
to be vertical due to the approximate absence of total mo-
mentum of the exciting photon but also to only occur at one
single point in the bands atk5k850 ~Davydov component!,
due to the momentum of the relative electron-hole motion
being approximated to zero.

Early treatments of the absorption of mixed molecular
crystals employed the average amplitude approximation
~AAA ! first introduced by Broude and Rashba,17 which is
able to roughly predict the position and gravity center
strengths of the dominant transitions only. With the introduc-
tion of the CPA, which has some important advantages over
the AAA, such as being able to produce an approximation of
the actual shape of the joint DOS, it became possible to
implement the Davydov theory within a self-consistent
framework.

This has been pursued by Onodera and Toyozawa11 and a
little later by Hong and Robinson18 who implemented the
CPA as a single exciton band theory and tried to model their
results particularly on observations made in experiments19,20

on naphtalene and anthracene. In the early 1970s Sen real-
ized that the spectra of alkali and cuprous halides were modi-
fied through spin-orbit splitting of the valence band and
found that the situation can be better addressed using a two-
channel exciton band theory with band mixing21 which he
compared to experimental spectra in CuClcBr12c ,

22

KClc Br12c ,
23–25 and KcRb12cBr.

25 This two-channel exci-
ton band theory, however, does not correspond to a genuine
two-particle theory including vertex corrections, although
Sen had also worked on the latter at that time for other
purposes.26,27

The approaches of all the authors of Refs. 11, 18 and 21,
despite their self-consistency, result in serious restrictions to
the predictions their models can render about aspects of
genuine two-particle behavior. They seem to give reasonable
predictions on some of the features of Frenkel excitons in the
strongly insulating substances, such as the movement of the
exciton peaks as the concentration of the alloy is varied,
when the calculated positions of the Davydov components
are compared with the ones of the experimentally observed
peaks in the absorption spectra.

A significant disadvantage of exciton band theories in
general is that they only truly work if there is no disorder in
the system such that the relative carrier motion decouples
from the center of mass part. Once disorder is introduced this
decoupling fails to work, corresponding to a continuous
breaking of thek selection rule, and only a properly vertex
corrected configurational averaging procedure on a two-
particle level can overcome this difficulty.5 Moreover, only
one ‘‘joint density of states’’ bandwidth and disorder strength

can be considered, rather than two independent values for
both of these parameters, associated with the underlying con-
duction and valence bands. A behavior of the joint density of
states as displayed for parallel conduction-valence band dis-
order which can lead to the filling of the central part of the
joint DOS by the states arising from theAA andBB transi-
tions even in a split band limit, as shown in Fig. 2, could for
example never be obtained in such a simple single-particle
picture. In none of the aforementioned references is the
electron-hole interaction considered, so that the binding en-
ergy of the excitons and therefore their spacing from the
continuum absorption edge, a particularly striking feature
with Frenkel excitons, cannot be properly accounted for in
any way. For the case of the weakly bound Wannier excitons
such as occur in many semiconductor alloys, the only early
work is found in a paper by Mahanti,28 which, however, is
largely phenomenological and primarily seeks to make pre-
dictions about how the linewidths of the exciton resonances,
a property which is not well represented in any CPA theory
of absorption, may be derived from the single-particle life-
times involved.

The first work known to us, which is based on the treat-
ment of a proper two-particle theory, is the paper by Abe and
Toyozawa9 who employed Velicky´’s two-particle CPA~Ref.
3! to calculate the absorption in a noninteracting system with
Gaussian disorder. Kanehisa and Elliott4 thereafter consid-
ered both a two-particle CPA for the disorder and a contact
interaction as a model for an electron-hole interaction, but
they were only able to obtain an asymptotic solution in the
regime of weak disorder, using the average decoupling of the
unweighted polarizability in~24!. As they pointed out, their
results can be regarded as applying to the amalgamation re-
gime and a comparison was made with experiments on III-V
alloys such as IncGa12cP,

29 Gac Al12cAs,
30 and

GaAs12c Pc .
31 Since these substances are all clearly within

the amalgamation limit in which our results converge to for-
mula ~24!, the same comparison holds for our theory in this
limit and we do not attempt here to repeat it.

One should note that the approaches of Refs. 9, 4, 5, and
the present work make the assumption that the optical matrix
elements are constant over the single-particle bands in-
volved, even though only vertical transitions atk5k8 are
allowed, which contrasts the Davydov theory used in the
earlier theoretical models of Refs. 11, 18, 21, where only the
zero-momentum componentk5k850 is taken. In a more
realistic situation, the appropriate matrix elements will ex-
hibit a more generalk dependence, but it does not present
any conceptual difficulty to modify our present results to
model such cases as well, provided the actual dispersion
laws for the conduction and valence bands are known.

VI. CONCLUSION

The present work is the most extensive to date which
treats the correlated motion of pairs of interacting particles in
a disordered medium. It draws from the extension of the CPA
to two-particle propagation developed by Velicky´3 and its
extension to weighted two-particle Green’s functions given
in our earlier paper.5

The model introduced here achieves a better but still ap-
proximate treatment of the interference between the effects
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of impurity scattering and direct two-particle~electron-hole!
interaction and it provides an interpolation scheme through
all strengths of disorder as well as the possibility to include
site dependent variations in the direct electron-hole interac-
tion within an ATA-like framework. It is therefore most ap-
propriate for systems where the disorder causes a small but
distinct band splitting, where previous asymptotic models
fail to work. There are many disordered systems where such
interacting pairs of particles play an important physical role
and we believe the method can be extended to such situa-
tions. Modeling the excitonic absorption provides a particu-
larly obvious application.

It seems that compared to the amount of experimental

data available for the strongly amalgamation type solid solu-
tions such as III-V and II-VI semiconductor alloys, experi-
ments on more strongly persistent-type substances, in which
the interesting physical features of both components are cap-
tured in a single measurement, are not so numerous. With our
present treatment we therefore also hope to encourage further
experimental work in this direction.
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