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Weighted two-particle Green’s functions in the coherent-potential approximation
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We extend the two-particle theory of disordered systems within the coherent-potential approximation to
obtain weighted contributions to averaged two-particle resolvents which arise from separate alloy components.
Starting from first principles in a model of diagonal disorder and the single-site approximation for a binary
substitutional alloyA.B;_., we extend the approach of a fundamental paper by Veliokgvaluate various
weighted forms of a general class of two-particle Green'’s functions. Applications in a wide range of linear
response theory are discussed in detail as well as the behavior of the weighted functions in a strong disorder
limit. To exemplify our analytic calculations the optical absorption in a disordered model alloy is studied
numerically.

[. INTRODUCTION duced and which will be referred to hereafter as I, the theory
of weighted single-particle resolvents, discussed originally
In recent years the understanding of the effects of disordeior the case of lattice vibratiors,is extended to a properly
in the physics of metals, semiconductors, and amorphouseighted two-particle theory. Weighting of a Green’s func-
systems has made a tremendous progress. This vigorous d@n in this context means that through the application of
velopment was motivated to a great extent by a thorouglappropriate operators to the unaveraged resolvent, restric-
understanding of how strongly disorder effects determine théions are made on the type of alloy component of either or
behavior of real physical systems. The success of the variousth of the sites on which the particle starts and terminates
analytical descriptions which have been considered, howits motion. Upon averaging, this results in a statistical weight
ever, has always been decided by the relative simplicity tdeing attributed to the averaged unrestricted resolvent with
which approximations could be reduced, in order to keep th@ossibly separate additive terms.
theory tractable analytically, without losing its capability to  On the average, therefore, contributions to a full two-
account for the most important physical aspects. One of thparticle Green’s function in terms of constituent components
most successful approximations to match these requirementsan be resolved. This allows for a better understanding of

has been the coherent-potential approximati©oRA) devel-  how several physical processes contribute to a cumulative
oped by Soven, Taylor? and extended by Leath? Velicky behavior as the principal parameters of the system are varied
et al.’~° and many other¢see Ref. 10 for a review and it can therefore be used in an analysis of further effects

In contrast to other approximations for the procedure ofwhich differentiates between these components. In more re-
configurational averaging in disordered systems, the CPA isent work, restricted single-particle Green’s functions have
capable of interpolating correctly between the limits ofbeen used in the KKR and TB-LMTO versions of the
weak! and strong disordéf as well as low and high impu- CPAZ°~Z?whereby it was notable that in some of the papers
rity concentrations. Therefore it is also able to predict accuwhich also dealt with two-particle aspects single-particle de-
rately the formation of impurity bound states turning into couplings or other forms of approximation had to be used as
split-off impurity bands as the impurity concentration is in- the properly weighted two-particle averages were not
creased. The inclusion of more detailed knowledge of thevailable?*?*
electronic band structure and atomic pseudopotential shapes We have structured the paper as follows: In Sec. Il the
as in the Korringa-Kohn-Rostok€éKKR) and tight-binding important features of the single-particle CPA for diagonal
(TB) linear muffin-tin orbital(LMTO) CPA's (Refs. 13—1Y  disorder are recapitulated and relations which are important
as well as extensions of the single-site CPA to include scatto the calculation of the corresponding two-particle Green’s
tering from clusters of impuritié§ remain the only existing functions are established. In Sec. Il and the Appendix we
theories that allow for a calculation of the density of states incalculate the Fourier transforms of a class of weighted
disordered systems such that a reasonable verisimilitude tsvo-particle functions which are kept as general as pos-
attained. The main difficulty with the CPA is the relative sible. For that reason only a representative choice of weight-
complexity of the self-consistent equations which have to béngs are calculated explicitly, since other weights can be
solved in more accurate extensions of the theory. obtained in an analogous fashion. Section IV is devoted to

In the present paper we propose a more differentiategpossible applications of weighted two-particle functions in
analysis of two-particle properties within the CPA building linear response theory, and the peculiarities of two different
on the single-site approximatidi$SA) in which it was de- classes of such functions are discussed in detail, which we
veloped originally. Our treatment should be especially usefuhave selected to cover a large range of conceivable applica-
for applications to binary substitutional alloys in all regimestions.
of disorder. Following an earlier paper by Velickyn which In Sec. IV C the behavior of one class of functions dis-
the regular two-particle theory within the CPA was intro- cussed before is examined in a split band lifsirong dis-
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orden. Section V is devoted to a numerical study of thesymmetric model for the disorder, but as it turns out the
splitting into several components of an interband absorptiommount of algebra is somewhat reduced by the asymmetric
spectrum of a disordered binary alloy. Section VI in conclu-definition, while switching from one form to the other does
sion discusses the implications and possible further applicaiot present any difficulty. In general it may be convenient to

tions of the results obtained throughout this work. diagonalize at least one, the periodic band structure &)in
or the disorder potential, with respect to the orbital indices or
Il. SINGLE-PARTICLE PROPERTIES bands, but usually it is impossible to diagonalize them both

_ ) o simultaneously. In the following formalism we therefore re-
~We consider a binary substitutional alléy.B;_c on a  tain the most general form and all quantities should be re-
simple totally disordered monoatomic lattice on which eadbarded as matrices with site and orbital indices.
site is occupied by either ah or aB component with prob- The propagator of the disordered medi@relates to the

abilities ¢ and 1-c, respectively. By symmetry it is only one of a pure host mediurpure B phasé g through the
necessary to consider concentrations betweerc€0.5,  Dyson equation

and therefore we restrict our investigation to this region and

defineA as the impurity andB as the host component of the G=g+gUG=g+gUg+gUGUg, (5)
alloy. Since it is likely that this theory will find most appli- , o o
cations in the calculation of electronic properties of binaryhere summations over all occurring indices are implied as

solid solutions, we therefore cast the problem into a notatiofn@trix multiplications. The CPA for a disordered medium is
appropriate for this case, although, as has been stressed yjroduced by the usual methbtiof placing the impurities in
Ref. 10, the algebra is essentially the same for all elementar§ Self-consistent medium such that the averaged propagator
excitations. Although it has proved possible in the past tPf this effective medium fulfills the relation

also formulate the CPA for special cases of off-diagonal dis- — — —

order, the only analytical solutions are obtained for multipli- G=9g+g2G=g+GXg, (6)

cative off-diagonal disordér;*>**where the problem is ef- where3 is the CPA single-particle self-energy. itself is

fectively solved by casting it into @ model, where it can beqetermined by the self-consistency condition that the average

treated in an essentially equivalent way as for the diagonalt ihe total scattering of a particle in the effective medium be
disorder case. We assume that the same can be achlevedzl(grol This total scattering is described by the equation

the present problem, and in order to make the calculation of

the weights and their properties more tractable and transpar- G=G+ 5T5, 7

ent, we shall confine our treatment to diagonal disorder and

the single-site approximation from the outset. whereT is correspondingl’ matrix of the problem and the
We assume a Hamiltonian of the form self-consistency condition is therefof€)=0. In the SSA an

additional requirement is made through the condition that the
total scattering off a single site be zero. This scattering is
described by the single-site contribution to thematrix T,
which is defined as

H=Ho+U=Ho+ X, U,. (1)
n

Ho represents the periodic part and tblg are single-site
contributions to the disorder potentidl. We assume that T,=(U,—3)[1+FT,], (8)

whereF is the site-diagonal average propagator dhdand
HO:;( sa(KICh(KICo(K), (25 are the single-site decompositionsdfands.. The av-
’ erage of the disorder potentiadl alone amounts to
where the sum is over a series of bands or chanmeladk  (U)=cV. This along with the average dB) set to zero
values spanning the first Brillouin zone. It is often conve-determines, to be
nient to view the problem in a tight-binding approximation
where the bands are built from a restricted set of orb#als S=[1-(V-3)F] tcW. (9

centered on each site of the medium, so that
One can now define conditional or weighted propagéators

ot , which explicitly describe the propagation of a particle be-
Ho= 2 Wsg(n=n’)cg(n)cs (). (3 tween partly or completely specified types of sites by multi-
nnss plying them with a normalized version of the random poten-
Equally it is assumed that the single-site disorder potentiafial. For example,
has a similar structure

G%=v UG, G%=Guv! (10
Up= E Us,s (N)ci(n)cg(n), (49 describe the motion of a particle commencing on an impurity
n.ss site and ending at an arbitrary other site in the mediand

where US,S’(n) assumes either the Va|ue§‘s,(n):l}s's, V.ice -Versa, S|nceUW|” be zero if the first site of the func-

or uzs,(n)=0, such that Uh=V, with V= tion is a host. Similarly,

Enys,srvsysrcl(n)cs,(n), andUE=0 with probabilitiesc and Gi=v-luguvt (11)
1-c, depending on whether the siteis occupied by am

or B atom. In principle one could also have introduced adescribes a situation where both sites are required to be
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impurities for the function not to be zero. Upon averaging éiizvfl{gézﬂz_cv)}vfl_ (13
over all configurations, the Green’s functions become trans-

lationally invariant and the following relationships between ) )
the averaged weighted and unweighted functions can be o€ second term corrects the site-diagonal elements when

tained: G'"=G' and uses identity9). From here on, other weighted
_ - functions can be calculated by probability conservation. It is
Go%=v 3G, GY=GxVvY (12)  found that
|
GM=G-G'=(1-V 13)G, G®=G(1-3VY), (14)
G"=G-Gi=V Y3G(V-3)-(Z-cV)}V 1, (15)
GN=GY-Gi=V Y(V-3)GS— (S —cV)}V L, (16)
GM=GoM—Gh=V"H(V-3)G(V-3)+(S—cV)}V L. (17)

It is our goal in the present paper to establish the two-particle analogs of these weighted Green’s functions, i.e., jointly
averaged products of such functions including the coherent scattering which induces correlations in the joint propagation of
two particles.

In order to deduce these jointly averaged weighted functions, we first need to obtain the nonaveraged weighted functions,
starting withG'°, G%, andG', in a representation such that no products between the disorder potémii the unweighted
single-particle functiorG occur. To accomplish this, one can simply employ Exj.which yields

G%=v g 'G-1), GY=(Gg -1V (18)
G'=V g 'Gg l-g '-UIV, (19
(20
and by means of7), these go over to
G°=VYgT!G+g7!GTG-1], GY=[Gg '+GTGg *-1]v 1, (1)
Gi=v g lGg l+g !GTGg 1-g 1-UJv L (22

A further single-particle identity resulting fron6) which  which is attributed to the first and second sites of the respec-

will prove to be very useful is tive function. C represents a generalized operator coupling
L _ B the two single-particle functions aradandb label two pos-
g 1G=3G+1, Gg '=G3+1. (23)  sibly different bands on which the respective single-particle

resolvents are defined. The positions of the weights within
one single Green’s function are thereby important, since the
lll. TWO-PARTICLE THEORY disordered medium before averaging is neither homogeneous
A. Multichannel case nor isotropic and thus the nonaveraged Green’s functions
i _ . _ . depend nontrivially on both arguments. In principle there
In this section a general weighted two-particle theory in-yoyid now be 80 possible ways of applying specific weights
volving particles moving in two different subspa@andb, {4 these functions before averaging. However, in most cases,
which are possibly of different dimension, e.g., multiple con-gyen if different bands are involved, only two-particle func-
duction and valence bands of different angular momentunions having an equal kind of weighting on its single-particle
origin, is established. From this, results for the case of WQsgnstituents will be needed in most applications. Later, we
particles moving in the same subspace can also be immedj;j| consider two-particular examples of two-particle func-
ately obtained. The calculation for the unweighted two-tions which find frequent use in linear response theory where
particle function has been done in I. As a main result of thag,,e operatolC is diagonal in real space and also only diag-
work the appropriate vertex corrections for the CPA wereg,g elementgor sums of diagonal elemeitsf the func-
obtained which account for the coherent scattering processeg s defined above are used. For both cases considered, the
of two particles that arise in the otherwise noninteractingota| choices of weightings reduce to only five different ones,
two-particle function through the averaging process. since the first and the second sites of the first function will be
We follow the outline of Velickis reasoning to obtain the ' {he same as the second and first sites of the second function,
proper weights for two choices of the functions respectively, which implies that they must also pairwise bear
(GK"CG} V). The labelsu,v,u’,v" €{i,h,0} indicate the the same weighting label.
kind of weight—either an impurity, a host or no weight—  As an example we calculate for a most general choice of
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C only the two functiongG!'CG}') and(G°CGY') in this  tions presented here.

section, since they will prove to be the most useful types of Using the identities(21) and (22), the single-weighted
weightings for the cases discussed thereafter and all othéwo-particle function can be written in terms of the single-
ones could be obtained in complete analogy to the calculgparticle functions as

(GCGY) =V, Y[g, 'Gat Uy 'GaTaGa— LIC[GpTuGpGp 1+ Gpgp — 11V, (24)

and the double-weighted one as

(GECGH =V, Y[(91 1602 1~ 92 1)+ 02 1GaTaGaba 1~ UaIC [(g5 1Gugp 1~ 05 ) + 051G TuGugs L~ UpIVp 1, (25)

where for convenience we introduc€d=V, *CV, * (note thatC’ would also be useful in the calculation @° CG'®)). We
calculate the double-weighted function first, since it proves the more difficult task and from its solution it is straightforward to
derive the single-weighted function as well. The problem of evalug@ayis divided into two parts, the first one involving

all terms not containing the matri¥, and the second one containing the remainder, i.e.,

VA (GICGHVy=20+.7, (26)
H=105"Gala "~ a IC'[95 *GuTy "~ 95 1+ 0a "Ga(TaGala "'C' 9y 'GuTr) Gy 27
=(U,C'Up)+[05C"(Up) — 95 1Go0; 'C'(Up) — 0, 1Ga(TaGag; 'C'Up) + (asb)], (28

where in.7Z" the terms involving an average over a singlematrix have vanished, from the standard CPA condition, and
(a<—b) indicates that the labels are exchanged and the corresponding expressions reflected around theCopéhstor
evaluate 7% first since it is the term needed in the wider range of applications.

With the identity(23) we find that

[9a'Ga0a "~ 02 *1C'[0p *GuOp *— U5 *1=0a 'GaZaCZ Gy * - (29)

The T matrix can be decomposed into its single-site contri-This also implies thatQ,)=(Q,)=0. A vertex functionl

butionsT, as can now be defined similar to | such that

T=3 To+ 3 T,GTp+ 2 T GT,GT,+---. (30 H=0a Ga(2aC'2p+T)Gr0p ", (39
e where now

Thereby the characteristic exclusions in the sums prevent the B B

particle from scattering twice in sequence on the same site I'=(T,G,g;C'g, 'GpTp). (36)

and T, satisfies Eq(8)
As shown by Velicky T can then be replaced in two ways I' can be manipulated along the lines of | by usi@g) to

by a closed set of equations, namely, yield
=2 Q=2 Qn, (3 r=3 > (Qi6.0.'C'g; 'GsQm). (37
where By means 0f(32)—(34) this can be cast into the form
Qn=Th 1+én§m Qm) (32 r, <T6‘Gaga c’ +gaz Fpgb>gb GpT, > (39
and

where nowl'=2.I",, since from the decoupling introduced
in (349 one  gets (Q3G,g,'C'g, GyQY)
(33 =(Q3G.g,'C’'gy *GLQL)Snm. The only difference to the
corresponding expression in [cf. (47) therd is that
Due to the requirement th@f)=0 and the single-site de- 2p+nl’p is surrounded by the propagators of the pure me-
composition ofT from (30) it is possible to decompose av- dium g, here. We can then ugg5) and(38) to obtain
erages on different sites to give

6n: 1+z émé Th

n#m

2 =(T2G.0a 1Cgp *GypTE) +(T39. 79y TD)

0=(T)=2 (Qu)=2 (Tw 1+5n§n<‘?m>>- 34 —(T36.3.C'3,GpTh —(T3GaIGu ). (39
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To this point our model describes a situation where every B. Scalar theory
occurring quantity in each subspagendb is a matrix in a

pair of channelorbital or angular momentumindices, asin  yhe channel indiced’,, and therefore also7 are found from
the Hamiltonian(1)—(4). However, a solution of Eq39) for 39, \yithout difficulty. Note that we are now able to shift

this general case is quite involved and not easy to handle Qe giagonal expressions lik& and F at our convenience
further applications. We shall therefore assume for the fur; ithin the products. As we cast our model into a site repre-
ther calculations in this section that all Green’s functions and,g «otion we obtaiff,= |n)t,(n| and hence

the disorder potential are scalars in the channel indices. On
the other hand we believe that the solution of the general . S P T
problem could be of great potential interest to a whole spec- Lp=InA(n[[ga s+ Gaga "C'gy "Gp

trum of work, which uses a multichannel CPA as in the _ ~ ~r~

KKR-CPA or LMTO-CPA methodg®-2 The only work *a6GaC’ Gol M), (40
known to us which addressed a simple version of the multi
channel problem so far is a paper by Sanhere a case of
band mixing was considered in the calculations of electrical a b

conductivities. Although Sen seems to have solved the cor- A(z1,2,)= (ta(z1)th(22)) (41)
responding matrix vertex equations at least in part for his Lo 1+ Fa(z){(tB(2)t2(22) Y Fp(20)

numerical calculations, the excerpts of the analytic solution

given in his work do not seem to be very general. A properThe vertexA can be regarded as being intrinsic to the CPA,
formal solution of the most general multichannel problem issince it does not depend on the particular form of the opera-
therefore given in the Appendix. tor C'. Substituting(40) into (35) yields

With the restriction to scalar quantitidsvith respect to

whereA is the irreducible vertex part derived by Veligky

=343 "GaC'Guh 1+ A0, "G [N)(I[0a %8s+ Gada 'C' Gy *Go— 2a36GaC' Golln)(n|Gugy ' (42)
Multiplying by g, andg, from the left and right, we solve for the diagonal elememtsg, 7 g,|m),

(mlga 7 Go/m) =23 o(MIGoC' Golm) + A 3 (M|Galm)(nl[Ga 7 Gu+ GaBa "C' 9y Go— LaZsGaC’ Gyl In)(n| Gelm),

(43
|
and hence also solv@2). At this point it is helpful to visu- R = o=
alize the form of the operatd®’, in the site representation, =2, e "Fn(m|g, 1G,C' Gpg, M)
which in the most general case can be written as "
=> e—‘kRm[Ea2b<m|éac'éb|m>+v;1vg1
AR (44) "
X 7mm+2az '}’an%fn*_EbE 7manm“’
For convenience we introduce the short notation " "
(48)
anm:<n|G|m>’ (45 )
A=2 e MRoFRFD (49)
— m
-?nfm:<n|gilc"|m>v (46)
/! — 7ikRmU//§a U/;b
whereFo=F as already defined if9). It should be noted i %: € Y m” —m (50

thatF,_,, and.7,_, are of different dimensions and their

definition has been chosen to reduce the algebra as much as .

possible. Furthermore, these expressions show that4B}. bk=2 e"kRm<m|gak7ng|m>, (51
only contains translationally invariant quantities and hence it m

can be solved by Fourier transformation. The following Fou-

rier transforms are introduced: c=>, e KRm(m|.7%|m). (52)
m
aL= e *Ru/mIG.C'Gum , 4 The units of. %, and c, are unity, and those o&,, «,
K Eazbzm" (m|GaC’ Gp|m) “n by, andA, areJ 2. Inserting into(43) yields



5306
k:ak+ /:_ék/(\ﬁk_ ak), 53
and hence by means ¢42)
S St A (A= S 2 bA) 3.3, +AD
Ci= 1—AA, “aTaA 0 O
where
D=/~ A=[1+3Fat3SFpl, (55)

whereD is independent ok.
Similarly, one can evaluate the tetn¥ from (28), but it
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weighted two-particle functions, we are also able to find their
respective off-diagonal parts by inserting into the appropriate
Bethe-Salpeter equatiori$42) in the case of the double-
weighted functiof Other types of weighted functions can
be calculated from here by setting up the corresponding
equations in analogy t24) and(25) from the single-particle
functions. In particular, to obtain the corresponding
host-weighted functions one can apply the weights
(1—-U,p/Vyy) to the single-particle resolvents from either
side, but the form of this weight already suggests that host-
weighted properties can always be deduced by adding or
subtracting corresponding unweighted and impurity-
weighted functions. For the most general case the set of

turns out that little simplification can be made until an ex-closed equations will be quite large and for that reason we
plicit form of C is known and therefore we postpone its will in the following deduce these equations only in some

evaluation to the next section.

more specific cases.

For now, we proceed to calculate the single weighted

function (G°CGY'). From (24) we get
(G{CGY)=0,"GaC' Grgy '+ C' g, 'GaC’
—C'GyGp '+ 0z *Ga(TaGaC' GpTy) GGy *-
(56)
Using (23), this can be recast into
(GYCGY)=2,3,G,C'Gy,
+0, 'Ga(TaGaC' Gy Tr) G0y - (57)

which can be readily solved since the te(maC_EaC(_BbTb>

IV. APPLICATIONS IN LINEAR RESPONSE THEORY

The most obvious application of a two-particle theory as
introduced above is in linear response theory, i.e., in calcu-
lating weighted susceptibilities. The study of weighted func-
tions in this context helps to determine how such quantities
as susceptibilities and transport coefficients are constituted
(on the averagefrom processes on different components of
the alloy. A further advantage of such a differentiation is that
it allows for a more refined treatment of further renormaliza-
tions to the considered quantities once further interactions
are introduced into the problem. The standard expression
employed in linear response theory is a generalized Kubo

exactly corresponds to the vertex part of the unweightedormula

function which is known from |,
(TaGaCGoTo) =2 [MA(MKGLCCr) Il (59
Thus, the Fourier transform

d=2, e n(m|(G;"CGR)|m) (59

Xewce(?)= [ dednSy(z.6mZ Tnfe #C!™

X (3"(£¢~Ha) CV3* (n—Hp))}. (63

Therebyxcw) c(2) stands for a generalized type of suscepti-
bility characterizing the linear response of an observable
CW to an external perturbation coupling into the Hamil-
tonian through the operat@(?). S, denotes the zero-order

can be obtained using the solution for the unweighted twdssociated two-particle Matsubara function in the Lehmann

particle function and Eqg47), (49), and(50) to yield

) ay
=+t A Ypee——.
S M AT S a-AA ©0
Using (55) this can be written as
a, >.2p+AD
dk: k a<'b (61)
Sa2p 1-AA

representatioti and 3“V(§—Ha,b) is the corresponding
spectral function of the full resolvent G4} (€)
=E4 [é—Hupl 'EL,, defined on the subspad®and
a/b, with the weighting operatorg},,, applied to it which
assume the valueEl,,=Uyp/Van, Znp=(1—Ugyp/
V) andEg,b: 1. Try, denotes the trace over the subspace
(band b. Our particular interest focuses on the operators
c® andC® which we now take to have the diagonal form

It is important to indicate at this point that the solution for a
single-weighted function in which the weights have been
swapped to the inside, i.€G2CG), will not be the same
as the one just obtained. A similar type of calculation yieldsTo examine the behavior of the weighted functions further
instead of(60) under such a constraint it is useful to consider the two cases

CWI@= W@ 1y |my(m|. (64)

dy=by, (62

whered; =3 ,e*Rm(m|(G2 CGI®)| m). wherer is an explicitly specified site, and
Since we have now obtained expressions for the Fourier-
transformed site-diagonal elements of some of the impurity-

Ym=CONsSK &, ;, (65)

Ym= const. (66)
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The first case arises in a treatment of the response from locaility. Disregarding the coupling constants which simply
interactions such as for example the space-dependent egeale the result we assume that®=|2)(2| and

change interaction between spin impuritieRKKY  c(@=|1)(1|, where the choice of the origin is arbitrary.
interactiorf’) submerged in a system otherwise containingin a slightly different notation the calculation of the
nonmagnetic disordér. The second case is widely used in gouple-weighted function corresponds to evaluating
calculations of the optical response in metals and<Gii(r F )Gl (rp,rqit'))

. 0,31 : . . . a 1:1 2 b 2111, .
semiconductord?®! since the exciting optical fields can be

: . . For the RKKY interaction mentioned before, which
taken as uniform over space with approximate momentum : . . .
couples spins at a distance—r, through the electronic spin

g=0 and the optical matrix elements describing transitions S . .
between bands of different angular momentum symmetry ar usceptibility of electrons in the conduction band, the two-
particle time-dependent function is to be Fourier transformed

usually well approximated as constants. d to be tak identical sinal ic| Bas
In both cases the restriction to only consider diagonal el2nd to be taken at two identical single-particle energids.

ements of two-particle functions reduces the set of close{{1® SPIns are at impurity sites, the weighted functions must

equations for all possible weightings to be used to describe the problem adequately. Earlier
o treatment® neglected the vertex corrections and it is pro-
(GhcGN=(G,CG,)—(GLCG}), (67)  posed to investigate the effect of their inclusion in a separate
, A . , o o publication.
(GPCG)=(GL'CGh)=(GLCGL)—(GACGY), (68) In this as in other problems the self-interactigrer, can
_ , be neglected for most purposes, which implies that it will be
(GR"CGp"=(GACGH) — (G, CGy). (69 sufficient to calculate only the terr#% from (27), since all

It follows that for this case the calculation of only terms occurring in./ from (28 will vanish for ry#r,,
(GCGll) and(GLCGL) is sufficient to also obtain the re- since the disorder potentid) is a diagonal matrix which
maining mixed and host-weighted functions. We start to Conyanlshes identically for off-diagonal terms. To clarify the
sider the case of65) first. meaning of the quantity which is obtained through this spe-
cial choice ofC™ andC(®, we look at how the correspond-
ing Bethe-SalpetefBS) equation can be rewritten for the
case of a unweighted two-particle Green’s function as intro-
The response of a system at some pointn space to a duced in Eqs(22) of Ref. 4. In the single-site approximation
perturbation applied at poimt, has a wide range of applica- the BS equation for the unweighted function reads

A. Electronic susceptibility

<Ga(1,2)Gb(1,2)>z<eg€;(1,1;2,3):<Ga(1,2)><Gb(1,2)>+A§ (Ga(1M)NGL(1,M)W G (n,n;2,2)), (70)

where we have rewritten

(21G4|1)(1]Gp|2)=Ga(1,2Gp(1,2), (72)
and
(2[(Gal 1)(1|Gp)2)=(GL(1,1;2,2). (72
For the Fourier transforms from befo(47)—(50) this amounts to
2a2p —ikRp~ ~
ak_vavb = e mGa(m)Gb(m)! (73)
a VaVp= Zn: e KRm(m|g; G| 1)(1|Gpgy M) = %‘4 e kR[5 3 Go(m)Gp(m) + Oma(1+ 2 F o+ 2pFp) = 7. (74

Using (73) and (74) in connection with(60) and (62) the  for host related properties. Accordingly, from (53) in the
result for the single-weighted functions is independent ofprevious section goes over to

whether the impurity weights are applied to the interior or to
the exterior of the single-particle resolvents, such that
(G(1,2)GY(1,2))=(G%(1,2)G{%(1,2)). Indeed it is not bk:akEaEbJ“AVaVb(“k 2
hard to show that other arbitrary distributions of two impu- 2a2p— AVaVia
rity weights also give the same results as long as there is one

weight applied to each resolvent. The same is of course truend similarlyc, from Eq. (54) to

(79
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V,Vyay G, (1,2)G}(1,2) or the weighted two-particle function with-
5SS —AV.Via (76)  out coherent corrections.
a<b aVbak . T . .
However, taking this limit is reasonable only in special
We remember that the Fourier transform of the unweightedases since generally the vert&xdepends on the self energy
two-particle Green’s function is 3. It will be appropriate to take in a weak disorder limit
VY (virtual crystal limif since forV,,— 0 the CPA predicts that
kR _ kVaVp 3 a/b— CVap andA —c(1—c)V,V, which means thah ap-
REI,Z eAGa(1,2Gp(1,2)= 33— AV Ve 77 proaches zero faster thah,, in this limit.
One should also note at this point that although it is ap-
Phenomenologically, one can scrutinize the uncorrelate@arent that the term (&3 ,F,+2,F}), which arises in the
limit where A— 0 for which in (76) the k-dependent part of difference of the Fourier transforms, and a,, originates
¢, behaves as from the difference in the diagonal parts of their respective
real-space Green’s functions, it cannot be neglected in this
treatment. Whenr is finite, this term is multiplied with other
k-dependent quantities and thus contributes to the off-
which is the correct limiting result for a product of two av- diagonal elements as well. Written in termsagf, (76) can
eraged double-impurity-weighted single-particle functionsbe cast into

CKZEaEbak 1+A

lim Ck:EaEbak‘f' B (78
A—0

Ak Za2p
=< +
Ci EaEb— AVaVbak Eazb aVaVy

If again diagonal terms in real space are neglected k-mgdependent quantities k space, it can be shown th@9) can be
cast into the compact form

(1+2aFa+2be) [2a2b+A(1+2aFa+2an)]- (79)

R S 5
é’k—Eazb_Avavbak[2a2b+A(1+EaFa+2be)] , (80)

where we have introducegji=c,+ ¢y, wherebyc, is independent ok. According to the definition of,, this finally relates
the weighted off-diagonal real-space two-particle Green’s function to the unweighted one as
[SaSpt A(1+3Fa+3pFp) ]2

(GA(1,2G}(1,2)=(Ga(1,2Gy(1,2) (VaV)?

(81
Equally, the relation for the single-weighted functioﬁg(l,Z)GL(l,Z» can be obtained almost immediately(80) is
modified for this choice o€ andC(®, which goes over to

domat A aVaVp B ay

thus relating the real-space functions in this case as

[2a2b+A(1+2aFa+2be)]r (82)

2aEb_"A(l"‘EaFa_"Ebe)

(GL(1,2G}(1,2)=(G4(1,2GK(1,2) : (83
VaVb
|
where no diagonal contributions were omitted. lated properties in the CPA:
The fact that in the single-weighted case the same weight-
ing factor occurs once as opposed to twice for the double- —3—(V-2%), c—(1-o). (84)

weighted one is structurally equivalent to the results for theStarting from the definition of the vertek in (41) and the

single-particle theory. Although retrospectively that might cpa condition(T,)=0 one finds that
not be surprising, it is quite interesting in view of the fact

that for the most general case of the previous section the l1-c c |?

weighting factors in(54) and (61) almost look alike were it A= (Va3 (Vp—Sp) + S (85
not for the difference in the prefactors, i.ey, in the former

anda, /3,3, in the latter case. which in a single band casa€b) readily simplifies to the

In principle all other functions can be derived now usingform first introduced by Leat,
the set of relation$67)—(69). However, one can save a con-
siderable amount of algebra by recalling the following rela- A 6% 3(V-3) (86)

tion which holds in the transition from impurity to host re- a=b= 5 = 1-(V-23)F"



53 WEIGHTED TWO-PARTICLE GREEN’S FUNCTIONS IN THE ... 5309

With the relation(9) betweenF andZ, the weighting factor two-particle functions are an excellent tool for dealing with
for the single-weighted impurity function frort83) reduces such a situation. More about this is postponed to the numeri-

to cal section(Sec. V) [cf. (131) therd. At the end of this sub-
section we will also give for completeness a short account of
a2t A(L+3F+2pFp) (1-c)A the calculation of linear response conductivities in disordered
VaVs (Va2 (Vo—Sp)° solids.
(87 For the above choice of(?'(?) the calculation of the

Correspondingly, the factor for the double-weighted functionterm. ]{ in (42) is greatly simplified compared to bgfore,
but it will be necessary now to also consider total diagonal

is the square of this quantity. One can now empley) and _ )(2)
(68) to find the weights for the single host- and the impurity- terms, since the sums over all statesQH couple all
sites and hence all contributions coming from ter# in

host-weighted functions, respectively. We find (28) have to be included. As a consequence of the intro-
cA duction of the dipole operator the main change arising in the
<G2GE>:<GaGb>ﬁ (88  result for .7 is that the site-diagonal elements|.7|n)
a=b and(n|G,C™MG,|n) as well agn|G,g; *C g, 'Gy|n) are
and now actually independent ai.* Since C) now couples
the functions to its left and right like a matrix product, the
BS equations(42) and (43) have a very simple solution
in terms of their Fourier transforms. Introducing
a,b,c=ay,by,c k-0 as the zero-momentum elements of
the respective transforms from_last section, we find
CA \2 c=(n|.Z|n), a=3,3,V,V,n|G,Gyn), where the
(GQ“GB'B:(GaGb)(ﬁ) . (90)  omission ofC") indicates that the two single-particle resol-
ab vents are now simply multiplied as matrices. Equat{8)
Note that this could also have been expected from the trangow reduces to
formation property(84). The impurity and host weights as
represented ir87) and (88) are seen to be the two contri- b:aEaEbJFAVaVb(a—a) 1
butions summing to\ ~* in (85). Thus, even though there 32— AV Va
are many different possible representations of the two-band
vertex, the representation if85) shows immediately that and Ed.(54) to
the transition from impurity to host properties leavAs VRY
invariant. c=33pal 14 A o2 2 |,
A notable feature about the weights calculated in this sec- 2a2p—AVaVpa
tion is that they are independent of any wave vectors and , .
. . : Which can be recast as
only multiply the unweighted function as scalar energy-
dependent factors. This is a direct consequence of the single-

c(1—c)A?
b> EaEb(Va_Ea)(Vb_Eb) ’

which by means of69) gives

(GG )=(G,G (89)

(92

) L a
site approximation. - 2
pp c Eazb—AVaVba[Ea2b+A(1+2aFa+Ebe)]
B. Theory of absorption +(A+ 3 Fat S Fp) 23+ A(1+3,F,
In this section we evaluate a form of the two-particle +2be)]V;1VQ1, (93)

functions needed in the calculation of the linear response
absorption in a disordered solid. We take the operatorgvhere the term independent afwhich was discarded in the
C® andC® in the characteristic form of dipole operators previous section has to be kept in this case since the contri-
similar to (66). Furthermore, we assume that the dipole ma-utions of the diagonal elements become important.
trix elements are essentially constant, such tB&t’(? In calculating. 7 one uses the fact thad is a matrix
=y Im)(m|. This choice corresponds to applications which just has a random occupation of its diagonal. The sum
for the description of processes involving transitions betweemver all sites in the operato®™ and C® will hence just
bands of different angular momentum symmetry such as repick out the sum of all total diagonal part&|<|n)
quired by the selection rule for optical processes at zero totak(n|U|n) where <" is a generalized product of several
momentunfh* Green'’s functions in the same bafttie case wher& and

A special example of this case is the photoelectric effects” are swapped is analoggusrom (28) we get immediately
studied in alloys as in Refs. 22,24. In the theoretical discus-

sion there, it is noted that weighted susceptibilities were re- _z=c+[cg; 'V, - cg; 'G,g; V;*
quired. However, since the final continuum state of the tran- _ _
sition is intrinsically nondisordered, the weighting reduces to — 02 Ga(TaGagy 'Up)V, 'V M+ (ab)], (94)

single-particle weights for the valence bands. Furthermore, . ) o )
as also often pointed out in this context, it is possible that thd'nere _t?e only term giving slight complications is
optical matrix elements are different for different types of (TaGada “Up). However, by means d23) we obtain
atoms?22432 gych a situation would make the operators S _

c®, ¢® random as well, but as it turns out, the weighted (TaGaga "Up) =2 a(TaGaUp) +(TaUy). (95)
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In this expression, the second term presents more complica- - cA 1> AF,F,
tions, since for the first one we remember frém that (G1'Gp ) =(GaGp) S YAV (107
a<'b avb
TG=G 'G-1 (96)

Comparing the results of the last two subsections, it be-
andU,=U_pV,/V, such that comes clear that the several weights obtained are essentially
universal. The main difference in the absorption case as com-
pared to the susceptibility one comes from the diagonal
terms which have to be kept in the double-weighted func-
'zi{ﬁns. The single-weighted analogs are void of this difficulty

d the weighting factors are identical for both cases.
So far we have omitted to consider a form of the two-
B particle functions which is needed for conductivity calcula-
1+ 2, Q%Ga) TﬁUb>- tions. However, Velicky showed for the unweighted func-
m#n tions that the verteX' vanishes in the single-band case in the
(98 corresponding expression for the conductivity, due to the an-

Applying (34) and using the fact thd is diagonal yields tisymmetry of the dipole matrix elements knspace if they
are taken between Bloch states of a noninteracting Fermi

2 avb

(TaGaUp)=(G;'GUp) —CcVp= v
a

_CVb . (97)

Subsequently, the second term can be decoupled by means
(3D—(33),

(Tan>:§n‘4 <éﬁUb>:§n: <

<Q%éaTgUb>:(é%>éa<TﬁUb>:01 (99 system in a crystal with inversion symmetry. The same is
_ - _ also true for the weighted case and effectively the weighted
since m#n) and(Q,)=0, and hence we find functions which would have to be used for such calculations
would just consist of products of the corresponding single-
B a b C(Va=2)Vy particle quantities.
(TUp) =2 (TAUR =7 —s - (100 | "
n 1-(V,—2)F. This aspect turns out to be a general deficiency of the CPA

_ , ) in the single-site approximation, since due to the multiple
Collecting all terms for.7Z and some more algebraic ma- gcattering exclusions only ladders of nested diagrams are
nipulation finally yields used in calculating the total contribution of the coherent scat-

_ _ tering. The CPA therefore neglects higher-order two-particle
M=C—(1+3F )2V, ' = (1+3F)SpV, t. (109 corre?lations which are in factgnonzerc? and contributepmark—
edly to the conductivity. Langer and Néhhave shown that
the so called “maximally crossed” diagrams, i.e., diagrams
which have a maximal crossing of coherent particle-particle
scattering lines, actually contribute the leading part—in the

The sum of all diagonal parts, i.e# and the ones from
the second term if93), can be shown to assume the very
compact form

1+3 F.4+3.F order of the expansion considered—to the full two-particle
A TS S A AL+ S Pt SuFy)] disorder vertex for the conductivity in an otherwise noninter-
VaVp acting system. There are, however, two cases, where even the
=AF,Fy. (102 CPA _vertex gives a finite.contribut.ion to the conductivity.
One is the case of interacting Fermi systems, where the pres-
The final result fOKGEGibi thus amounts to ence of interactions is sufficient to destroy the aforemen-
tioned antisymmetry and thus also the terms already included
i i (1-0)A 2 AF,Fy in the vertex of a single-site two-particle CPA as discussed
(GaGp) =(GaGp) VoS (Ve—3p) + VAR here will give a finite contribution to the conductivity in real

(103 systems. The other is the case of multiple conduction bands
with band mixing, discussed by Séhwhere there is a finite
Here the first term has been rewritten in the same way agontribution from the mixing part of the vertex.
already derived in the last subsection for the finite-range sus-
ceptibility. From there it is also seen that the single-weighted
function will have the same weight as calculated8a) for
the corresponding function in the exchange coupling case. As already indicated, in contrast to many other theories of
We find disorder, the CPA interpolates correctly to the limits of strong
disorder and high concentrations. In this situation each band
(1-c)A 10 splits into two components of strengthand 1-c, respec-
o) (Va=22)(Vp—3p) (109 tively, which represent largely separaie and B-type exci-
tations. An intuitive consideration of the underlying physics
and by means of67)—(69) in this limit suggests that the correct description of an ab-
sorption process should predict that the overlap integral for

C. Split band limit

(GyGLy=(G,G

(GG =(G,Gy,) C_, (105 transitions between sites pertaining to different alloy compo-

a2y nents will gradually decrease and thus, in reverse, that tran-

5 sitions between sites of the same type will be more and more
(GIGIM=(G,Gy) c(1-c)A _ AFSFy favored. In the following, we prove that the CPA of weighted
a=b A (V=3 ) (V=302 23, VaVp two-particle functions predicts this behavior correctly which

(106 makes it useful for a better quantitative understanding of
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absorptive and dispersive processes in strongly disordered TABLE I. Energies of poles at which interband transitions may
alloys. The corresponding single-particle theory must fail inoccur versus center of gravity weights in an asymptotically strong

this respect, since it will weigh transitions only with the disorder limit before and after the inclusion of vertex corrections.
products of concentrations of sites involved.

To illustrate this we assume that our material componentgransition Ap—Aa Bp—A; Ap—Ba By—B,
A andB have corresponding single site energi€s s, and ~ Energy of pole £a—€h ©a—ep 5, 5 ep
¢8, &8 for the two bands, respectively, and the carriers havéVeight without vertex ¢ ¢(1-¢) c¢(1-¢) (1-¢)?
become totally localized; i.e., their effective mass goes tdVeight including vertex ¢ 0 0 1-c

infinity or vice versa the bandwidths involved go to zero.

The potentialsv, andV,, are then defined as o )
weighting factors for the two respective components, that the

Vazs{:_sg, Vbzsﬁ_gg, (108) expected transitions are given correctly with their appropri-
ate transition strengths and the spurious crossed terms are
and the single-particle site-diagonal Green’s functions gasuppressed as shown in row 4 of Table I. Defining
over to
c 1 z—eB=x, (110
B
A

(109

c
Fi(2)= At B )
zZ— Z—gy—3, F and>, can be rewritten as

l_
8)\ Z—e
where \ labels the corresponding band. Thus, if a two-
particle theory is constructed from single-particle properties 1 x=(1-cV

only, and coherent terms in the two-particle scattering are F(x)= x=3 x(x=V) ' (113
neglected, this leads to peaks in the absorption spectrum as

shown in Table I. The energies at which the peaks are cen-

tered are shown in row 2 and their relative weight for the S(x)= C—VX (112
uncorrelated average is shown in row 3. x=V(1l-c)’

For this limit of strong disorder we find, upon introducing
the vertex corrections in conjunction with the appropriateand the vertex\ given by (85) can be written

) (1 €)CVaVpXaXs(Xa— Va) (Xo— Vi)
A VA (1= 0) T Xo— V(1= ) J[CXaXo+ (1= C) (Xa—Va) (Xo— V)] 13

The impurity weighté=(1—c)A/(V,—2)(Vp—2,) can CXaXp+ (1= C) (Xa— Vo) (Xp— Vp)
be represented as K= XaXe(Xa— Vo) (Xp—Vp) (117
CXaXb After further algebra one can show, that in this limit the
&= XXt (1—C) (Xa— Vo) (Xg— V) (114  weighted functions can be expressed as
and equally the host weighj=cA/3 .2, as (GG =K¢*+ y=(G'G')=K¢= TRSTATCRSVAL
(1) (Xa— Va) (Xo— Vi) (118
7 ot (10K VA (- V) - (1-0)
(GG =K 72+ y=(G"G") =K 5= o (119

It is now evident that the impurity-weighted quantities are
proportional toc and the host-weighted ones te-t and not (G”‘G”‘>=O (120

the other way around as the appearance of the weighting '

factors, e.g.,(104) and (105, might superficially suggest. which is exactly what is expected to happen physically in
The correction factor coming from the diagonal terms in thethis limit. The crossed terms in the transition are canceled

double-weighted functions can be recast into out—hence the crossed function ({020 goes to zero—and
the double-weighted functions become identical to the
AF,Fy (1-c)c single-weighted ones, since now only the totally site diago-

Y= VVp | CxaXpt (1—C)(Xa— Vo) (Xp—Vp) nal elemenKp=(G"*(I,1)G"*(1,1)) still contributes to the

(116 transitions, which implies that only two possibilities for

weighting the two-particle functions remain, namely, as

Furthermore, the unweighted but vertex corrected two{G,Gp) and (GGD). As could be expected from a theory
particle propagatoK =(GG) assumes the form which properly describes the strong disorder limit the transi-
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tion strengths now distribute with the concentratianand 2.0 ©
1-c between theA,— A, and B,— B, transitions, respec- \ split band ;
tively, such as shown in row 4 of Table I. This feature may in Vis A . olein =
reverse be used to derive the total diagonal elerignfor split \\p
all ranges of disorder. By requiring! =0 we find 104 band  "TIzoeo |
Y  FaFp[2a2p  (Va=Za)(Vp—2p) i
== + 0.5 1 ;

D P SAVAVA c (1-c) (121 band unsplit
The weighted versions of this element are obtained by just 0 T
multiplying the corresponding single weights frq@04) and 0 025 0.5
(105 onto it. Moreover,Kp, is equivalent to ther; ;=0 ¢

component of the two-particle function calculated for the
finite-range susceptibility in the last subsection. In terms ofS
the notation introduced there it reads

FIG. 1. Regimes for the CPA of the single-particle density of
tateg123) for w, =1 in a binary substitutional alloy depending on
the impurity concentratiort and the disorder strengttd. In the
aVv.V lowest region the band is unsplit. Above the first dashed line the
Kp= E k¥aVb ’ (122 bands split into two components and above the second dashed line
K Eazb_Aa,bVaVbak the CPA self-energ®. exhibits a pole between these components.

which would have been harder to evaluate starting from thaéeveral regions are separated. It can be seen that for a disor-

representation. The total site-diagonal element thus deder strengthV/, /w,|> 1 the bands always split int& andB
couples into the corresponding site-diagonal Single'p"’lrti(:k(a:omponents T/vhexreas the splitting occurs earlier as the con-
functions with an appropriate correction term accounting forcentrationc ’is reduced, going down 1oV, /w,|>0.5 as
the coherent processes. es0 ’ N

We have calculated the linear polarizability of the me-
dium by employing a Kubo formula as introduced (#3).

In this Subsection, in order to exemp“fy the genera' re_FUrthermore, we continue assume that the Optical matrix el-
sults, we discuss numerical results obtained for the opticsgments are essentially constant and that such elements are
absorption in a binary semiconductor alloy with a completelythe same for both alloy components and we hence normalize
filled valence and empty conduction band for a simple modethem to unity. The optical absorption is proportional to the
density of states. We are thus able to show how a CPA typBegative imaginary part of the retarded polarizability of the
of polarization, including vertex corrections, decomposedlisordered medium-ImII(w), which can be formally writ-
into contributions originating from single-alloy components ten as
as the strength of the disorder is increased, thus eventually

V. NUMERICAL RESULTS

causing the joint density of states to split into several com- M(0)=— lim g > f d°k
ponents(up to three different ones for the double-weighted ' B % ) (2m)3
CaSG). io—w+id
In all our calculations we have used a semi elliptic density X(Ga(k;ie)Gy(—kjim—ig)), (124)

of states for a pair of three-dimensiortdD) conduction and _ o .
valence bands as introduced in Ref. 6 for the single particlvhereby thek integration is understood to be carried out

CPA, i.e., after the configurational average has been performed, since
before that both resolvents would depend nontrivially on two
momentum variables.

_ 2 2 .
P(E)= W2 wy—E?  [El=w,, We consider our system at zero temperature and follow

partly the method used in Ref. 30 for our calculations. At
p(E)=0, |[El=wy, (123 T=0, the polarization can be obtained as the energy convo-
where N labels either the conductiom=a or valence lution around the conduction band branch cut of the

A=Db, andw, is the half-width of the band considered. This k-surgmed vgrtex-corrected two-particle functigtfz, ,z,)
has the advantage that the self-consistent CPA equation farJ d°K/(27)°(Ga(k;z1) Gp(—k;25)), such that
Lheessgge%ng:lgi/gi;l:;a third-degree polynomial which can T, (0) = § K (2, 0+ 6-2)dz, (125

To understand the effects that arise from genuine twowhere we have taken over the following definitions from
particle behavior as compared to those expected from thmef. 30:
single-particle CPA, we recapitulate some of the features of
the single-particle theory first, mainly building on the treat- R(z1,2,)
ment presented in Ref. 6. It is established there that depend- K(z1,2) = 1-A(21,2,)R(21,23) (126
ing on the concentration and disorder strength relative to the ' '
bandwidth, an impurity band is eventually split off while in whereA(z;,2,) is the usual CPA vertex frort85) and
this split regime under some circumstances the CPA self-
energy exhibits a pole. Figure 1 shows a reproduction of the
“phase” diagram first presented there, indicating how the

d*k — —
R(Zl-zz):f WGa(k,Zl)Gb(—k-Zz) (127
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transitions described by convolution p(E)
split valence band split conduction band
—— = —
p(E)
-— liel
B(A) AB) B A AB BB AA AB paralle
(BB) (AB) (AB) (AA) | =— anti-
parallel
B(A) A(B) B A E T T
gy €y 2 €, 1 T AV I E
k= Vy—=  k— Eg—=  —V_ — Eg A+V, ¢ A+V +V,

A )

. . . . FIG. 3. Qualitative result of the convolutigii25 as it can be

FIG. 2. Diagrammatic representation of the energy convolution . .
. ; . expected if performed using the telR{z,,z,) from (129 only. At
in (125 effectively using the ternR(z;,z,) from (129 only. If . : .

. - . - . aboutc=0.5 the joint density of states would be expected to dis-
R is taken atz;=z, and c is aboutc=0.5, the conduction and . . . . o -

. - . tribute over regions in terms of their compositional origin as shown.

valence bands are split and the imaginary parRoflecomposes . : - L
. B A B The inclusion of the vertex is expected to primarily suppress the
into four components centered abadt, 2 andsfy, &£ as shown

- . mixed AB transitions and favor th& A and BB transitions as the
qualitatively. The components are separated by the bandgap . L . ;
- - - - . ._disorder strength is increased. For parallel disorder this leads to a
the middle and the single-particle splittings in the conduction

and valence parts at the upper and lower ends, respectiVelsuppressmn of the spectra at the flanks while for antiparallel disor-

L . . ¥ier (in bracket$ it causes a suppression of the central part. Both
The energetic differences between the gravity centers are give . .
A B A B . hese features are well represented in the calculated spectra of Figs.
by V,=e;—¢, andVy=g;;—¢,, as already introduced, as well

: : .4 andb5.
asA=s2—¢)® . Bracketed expressions denote antiparallel disor-

der. width is the sum of the widths of the contributing compo-
nents. Two cases are considered where the band offsets of the
is the average-decoupled two-particle function. AssumingA and B components of the alloy are in equal or opposite
that the conduction and valence band dispersion relationgirections corresponding to parallel or antiparallel disorder.
exhibit a similar shape such that they scale proportionally  In the case of parallel disorder, this would amount to the
Ap,—A, and B,— B, transitions lying in the center of the
ea(k) ep(K) joint DOS, framed by the contributions from tBg— A, and
W T W (128 A,—B, transitions at the upper and lower ends, respectively,
a b . . .
as shown in Fig. 3. At=0.5 these regions would have rela-
tive distribution of weighted states of 1:2:1 from lower end :
center : higher end. In the case of antiparallel disorder the
picture should be similar with the only difference that the
WaFa(21) ZWpFp(Z2) (129  Spectrum is tumed inside out with i — B, and A,—A,
Wa[Zo—2p(Z2) 1= Wp[ 21— 2 a(Z0) 1’ components on the top and the bottom ends of the joint DOS
and the mixed transitions in the center, again with a distribu-
where F,(z) are the site-diagonal single-particle functionstion of 1:2:1.
first introduced in connection wittd5). As usual we assume The calculations in the previous section for the split band
that the effective mass of an electron in the conduction bandase strongly suggest that the vertex corrections will increas-
is positive and that of a hole in the valence band is negativangly suppress the cross transitions as the disorder strength is
Accordingly we have chosen the upper choice of signs irincreased, which is verified in our numerical results. Indeed,
(128 and (129 for our calculations. our results show that this suppression is already displayed
To be able to analyze the obtained results with regard tguite strongly in an intermediate disorder range, i.e., in a
the effect of the inclusion of vertex corrections we first con-regime where the single bands just begin to spilit.
sider qualitatively the features that would be expected from The plots in Figs. 4 and 5 show cumulative absorption
the transition process represented by the energy convolutiogpectra calculated fronmil25 as well as their single- and
in (125 in an intermediate regime of disorder, if the configu- double-weighted components for parallel and antiparallel
rational average in the two-particle function is decoupled andlisorder of various strengths, covering both the joint and the
effectively only single-particle properties are employed. Thissplit band regime. The conduction band half-width is nor-
would correspond to replacirig from (126) by R from (127) malized to unity and the valence band half-width is taken to
in (125. We assume for now that the concentration is aboube 0.8. The concentration of impurities is fixed to 0.35 in
0.5 and the bands have just split by a finite amount. With therder to study the high-concentration behavior rather than
semielliptic bands used, the transition process can be reprelilute impurity effects.
sented as shown in Fig. 2. In the transitional region when the disorder strengths start
The disorder strengths give approximately the distancéo exceed the single-particle half-bandwidtpg, /w,|=1
between the centers of the single bands. The convolution aind the conduction and valence bands start to split we ob-
two separated finite bands, occurringRnwould yield a set  serve the following behavior: In the case of parallel disorder
of finite bands in the joint density of stat¢éBOS) whose shown in Fig. 4 the spectrum starts to exhibit a discontinuity

(127) can be shown to simplify to

R(Zl 122) =
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FIG. 4. Negative imaginary part of the polarizability of the dis- 1.5¢
ordered mediurjoint DOY) for parallel disorder and its possible o
weightings intoA and B or AA, AB, and BB components. The ) 1.00 ]
concentration ofA atoms is fixed toc=0.35 and the band half- L'g
widths were taken to ba/,=1.0 andw,=0.8 for the conduction T
and valence bands, respectively. The disorder was varied through a 0.5° Ve ]
range of parameters, annotated on the bottom right of the plots, with -
particular focus on the splitting point/, /w,|=1 of the single- 0.0
particle bands. At the splitting point a pair of flank components -4 4
starts separating sideways and gets completely isolated as @

V, /w,—3 in the last plot. These flanks are constituted of about
50% by theAB component, whereas the central region almost en- FIG. 6. Imaginary parts of the site-diagonal single-particle func-
tirely consists ofAA and BB components only. tion F taken for the same concentratior 0.35, a band half-width
of w=1.0, and disorder strengths @ V=0.8 and(b) V=1.2. By
comparing the splitting behavior of this function with the one of the
in its derivatives at the flanks, accounting for a pair of mixedcorresponding two-particle function for antiparallel disorder, shown
components splitting off sideways from the main contribu-in the third and fourth plots in Fig. 5, one finds that the behavior,
tion. At the transition point the contributions of the flanks particularly the one of the single-weightédandB components, is
relative to the central bulk part are approximately distributeddtrikingly similar.
in a ratio of 1:14:1. In the case of antiparallel disorder
shown in Fig. 5 the suppression of the mixed transitions is
even stronger so that as soon as the single bands split tRgcuracy and the joint density of states starts to exhibit a gap
crossed transitions cancel out entirely within the numericabetween two separate contributions which main|y consist of
A andB transitions, respectively.
s In a regime of strong disorder, where there is a large

1.

T~ Joing splitting of the single-particle bands as shown in the last
<1 ‘; 1o plots of Figs. 4 and 5, one finds that over large regions the
§ _— s?ngle- and uniformly dou_ble-weighted contributi_ons _coin-
T osh T a Tos cide almost exactly, implying that the spectrum is built al-

' 8 ] most entirely from the total diagonal element of the two-

0 o0 particle function, which we had calculated at the end of Sec.

IV. The total diagonal element can be obtained as an inde-
pendentk sum over the two single-particle resolvents in-
volved. This situation represents a breakdown of the
§ k-selection rule which holds in pure media.
If the splitting of II into single-weighted components
FIG. 5. Negative imaginary part of the polarizability for antipar- 17— 7A+ 118 is considered and the result is compared in

allel disorder(reversed in the valence bandith otherwise equal appearance with the splitting into components of the site-
model parameters to the parallel case shown in Fig. 4. The joint pa%iagonal single-particle functién
s

starts to exhibit a gap as soon as the conduction and valence ban
do. In the split regime the spectrum almost entirely builds up from
single A and B components which in the interior of the two bands a3k
again coincide largely with thA A andBB components, indicating F(w)= j (S(k w+id) (130

a strong breaking of thk-selection rule already in an intermediate ' (2m) ' '

disorder regime. In the last pl&f,=3.0, V= —2.4 it can be seen

that the double-weighted functions are nonzero in the gap region.

This means that in a case where the optical cross sectiffisof ~ one finds that the single- and the two-particle behaviors ap-
the of A andB atoms in(131) are nonequal, the gap in the observed pear to be strikingly similar in the case of antiparallel disor-
absorption spectrum would be less complete, containing ekider der, as can be seen if the plots for the imaginary part of the
or BB states primarily. single-particle function shown in Figs.(@& and Gb) are
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—ImII” and— ImII® in some parts of the spectra, which one
might expect to happen globally on first thought, they either
coincide with them or even exceed them in other parts—
sometimes to such an extent that they reach beyond the cu-
mulative function. However, it has to be noted that these
components, like the unweighted function, are always uni-
formly positive in sign, and therefore exhibit the correct ana-
lytic behavior that a function defined on this footing has to
satisfy. It is required that these components be positive defi-
nite, because the net absorption in the medium must always
be positive unless the system is excited out of equilibrium,
which we do not consider here. In the preceding discussion
we have assumed for convenience that the optical matrix
elements between states of different components of the alloy
are equal. If, as mentioned at the beginning of Sec. IV B,
different optical cross sectionsnatrix elements u*'B are
distinguished folA andB atoms, the weighted contributions

to yield the integrand of125 would sum as

—ImII(w)

—ImI(w)

R:(MA)ZKAA+ ZMAMBKAB_F(MB)ZKBB' (131

This shows that it would be possible to observe one of the
@ functions ITA* or I1B8 predominantly if eitheru® or wu®
happens to be much larger than the other. The mixed function
FIG. 7. Negative imaginary part of the polarizability without TTAB however, will never be a separately observable quan-
vertex corrections for antiparallel disorder. The parameters takeﬂty, no matter how the cross sectiopé and B scale rela-
were (&) ¢=0.35,V;=0.8, Vp=—0.64 and(b) c=0.35,V,=1.2,  tjyely, and therefore not so rigid criteria for its analyticity

V,=1.0. The characteristic splitting of the joint DOS, which is apply as for the uniformly double-weighted functions.
displayed in the properly corrected function of Fig. 5 as the disorder

strengths exceed the valy¥, /w,|=1, does not occur and the
shape of the joint DOS rather resembles the qualitative one of Fig.
3. The curves for the single-weighted components in katrand

(b), which were obtained from correspondingly weighted uncoupled
single-particle  functions, do not satisfy the sum rule
M=TII"+11B.

VI. DISCUSSION AND CONCLUSION

In the previous sections we have obtained expressions for
a wide class of weighted two-particle Green'’s functions. Ad-
ditionally, in conjunction with the Appendix, we have man-
aged to derive a general description for the solution of the
two-particle CPA vertex equation, applicable for a case in-
compared to the ones for the corresponding parameters in tliguding weights as well as for one without, for an arbitrary
two-particle case of Fig. %third and fourth plots from the number of channels within each of the two single-particle
front). subspaces considered. The large choice for possible weight-
In a system without disorder this similarity is evident if ings is substantially reduced as restrictions are made to func-
there are no further local interactions in the problem, sincagions which would be useful in linear response theory. In
the noninteracting two-particle motion decouples into a cenboth cases which are discussed for this kind of application,
ter of mass and a relative coordinate, and while the centeenly five different weighted functions remain of which only
of-mass motion can be set to zero, the relative one can bivo are genuinely independent.
mapped onto a single-particle coordinate. Upon the addition The structure of the weighting process is closely related to
of the disorder, this decoupling fails to work and it can onlythat derived for the single-particle theory with the main dif-
be regained by using an appropriate configurational averagerence that now the weights also depend significantly on the
ing procedure. However, if in the presence of disorder arCPA vertex corrections. The calculation for the split band
average is only performed on a single-particle level, thudimit, the domain in which the CPA is superior to most of the
omitting average induced two-particle correlations, the re-other theories of disordered systems, gives direct insight into
duction obviously fails to work, as is seen through compar-how the properly weighted CPA extracts the correct limiting
ing the plots of Fig. 7 showing a spectrum calculated withoutbehavior from different possible physical processes.
the vertex corrections with the ones for the corresponding Some care is needed in interpreting the precise physical
parameter values of Fig. 5, which properly include these cormeaning of the weights, since they are obtained for the av-
rections. The results show that in regimes of intermediateraged functions, which describe the disordered medium as
and strong disorder the influence of the vertex corrections igffectively homogeneous. The concept of the propagation of
very substantial. a particle between sites of different components is therefore
In comparison to the single-weightdtivofold) splitting  lost in the effective medium as a consequence of averaging
the double-weighte@threefold splitting exhibits a rather cu- and the initial exclusion of specific propagation paths in the
rious behavior. Even though the componentsnII”” and  unaveraged function leads to the effective weights. These
—ImIIBB lie underneath their single-weighted complementsweights simply account for the average partition in probabil-



5316 N. F. SCHWABE AND R. J. ELLIOTT 53

ity for the simultaneous propagation of the particles betweeroincide, ad", on the right hand side is embraced by other

partly or completely specified site types at a given pair ofmatrices fromboth sides. It is therefore necessary to intro-

energiesz; andz,. duce some further algebraic tools. Equati@dl) is of the
Our numerical results show the general importance of théorm

inclusion of vertex corrections into a properly self-consistent

two-particle formalism. We find that, as a consequence of the X=A+BXC, (A2)

inclusion of these average induced two-particle correlationsynere a solution forX is required,A is anNXM, B an

the center of mass and relative motion of the two-particlen x N, andC an MxM matrix, andB and C are regular.

system effectively decouple to a large extent. _The matrix elements of all the matric¥s A, B, andC may
We believe that the general method developed here wiljo represented as; , a;, by, andc; , respectively. The

find applications in various situations where two-particle MO-guantity B® C shaIIJ be éiefinjed as th!N~ MXN-M matrix

tion is studied in a disordered medium. The effect of alloyingrepresentation of the tensor product®fnd C,

on the electronic susceptibility and hence for example on the

Ruderman-Kittel interaction has already been mentioned. In BRC=[bjj®Ciilim+1,jm+k (A3)

particular it can be extended for use in systems where the

two particles have a direct interaction, such as the CoulomB> well adl the matrix representation of the unit tensor prod-

interaction between carriers occurring in excitons in aIoneo“Ct'

systems. In such a case the static correlations between par- 1=[6® Slim +1.jm + (A4)
ticles, created by the disorder and accounted for by the ver- o ‘

tex corrections, and the dynamic correlations introducedvherei,je{l,... N} andk,l e{1,... M} and every sym-

through the carrier-carrier interaction create additional staticbol representing an element of the nélvM X N-M tensor
dynamic correlations. Moreover it may be possible that thespace is printed in boldface. Furthermore, teM vector
underlying disorder of the system gives rise to an induced shall be defined as

disorder to the carrier-carrier interaction itself. Both of these

effects can be treated within the method developed here and A=[aik]im+k- (A5)

are discussed in a further publicatih. This notation now allows us to rewrite the produXC
from (A2) as

ACKNOWLEDGMENT BXC=(B®C)X, (AB)

The authors would like to thank Carsten Heide at Oxfordand therefor¢A2) is simply solved as
for reading the manuscript and making useful suggestions. 1
X={I-BeC} 'A. (A7)

Implicitly, this also immediately gives the solution for the
APPENDIX matrix X, as the row index of its matrix elements is given by

In this appendix we show how the site-diagonal vertexthe integer value of division of the index of each element of

equation(39) can be solved even if all quantities in taeand X by M and their column index by the remainder of the

b subspaces are matrices in an arbitrary choice of channinViSion'
indices. First of all one can replace the averagé3® by The solution of the vertex equatidAl) can therefore be

writing written very similarly to(40),

_ — - — _ A ~ 1=l
F=(T3Ga0a 'C' Gy "G+ 0a 70y~ GoZ.aC 34Gy Lo=ImA(nIga 7o+ Ga0a C'9y Co

- éarnéb}Tﬁ>. (A1) —Ga2aC'EpGpl[n)(n, (A8)
This now represents a matrix equation for the site-diagona‘fvith the vertexA defined as
vertexI',, which has a definite solution. However, its solu- A={l +<tﬁFa®Fbtﬁ)}‘1<tﬁ®tﬁ), (A9)

tion cannot be obtained through a simple inversion of any
combination of matrices which occur in the above expresand T,=|n)t,(n| was used again. Equatiori42) and (43
sion, not even in a case when the two subspaces\db  generalize to

J0=9a'Ga%aC'26Gu8y '+ 2 (05 Galm)]@[(n]Gugy "D A(NI[9a 7 Gy +Gada 'C' G5 "Gy~ Ga¥aC'¥uGolIn)
(A10)

(mlga7/gs|m) = (M| Ga¥aC'S,Gylm)+ 3 ((mIGaln)@(n|Gelm)) Allga 7 Gy +Gada 'CTh G~ GaZaC' 25GlIn),
(A11)
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as well as(47)—(52) to

ac=2, e FRn(m|G,3,C'S,Gplm), (A12)
=2 Ga2aC'24Gyp
a=3 e n(mlg, 'G,C'Gugy ), (AL3)
A= e KRm(FAg P ) (A14)
m
B=2 e "n(m|g; 'G,/0)®(0]Gyg; Y m)),
(A15)
b= e *Rm(m|g, 7 gp|m), (A16)
=2 9a79p
c=2>, e *Rm(m|.7%Z|m), (A17)
- m
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with which (A10) and (A11) can be solved as
bi=[1-AAJ a+ AA(B-a0],  (A18)
C=(2a®2p) a+ ABy[ b+ a—ay]. (A19)

As in the section for the scalar theory, only provides a
solution for the term7 and not the term# which com-
prises the terms containing single products with for
whose solution the structure &' has to be known. Once
this is the caseZ can be calculated exactly along the same
lines as the generalized calculation f@f presented here. As
before the solutions for the single-weighted functions, as, for
example{G%CG'%), are void of this difficulty, and in anal-
ogy to before, the solution for the Fourier transforms of its
diagonal elements can be obtained as

dhe=by, (A20)

whered,= 3 e Rm(m|(GACGY) | m).
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