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We extend the two-particle theory of disordered systems within the coherent-potential approximation to
obtain weighted contributions to averaged two-particle resolvents which arise from separate alloy components.
Starting from first principles in a model of diagonal disorder and the single-site approximation for a binary
substitutional alloyAcB12c we extend the approach of a fundamental paper by Velicky´ to evaluate various
weighted forms of a general class of two-particle Green’s functions. Applications in a wide range of linear
response theory are discussed in detail as well as the behavior of the weighted functions in a strong disorder
limit. To exemplify our analytic calculations the optical absorption in a disordered model alloy is studied
numerically.

I. INTRODUCTION

In recent years the understanding of the effects of disorder
in the physics of metals, semiconductors, and amorphous
systems has made a tremendous progress. This vigorous de-
velopment was motivated to a great extent by a thorough
understanding of how strongly disorder effects determine the
behavior of real physical systems. The success of the various
analytical descriptions which have been considered, how-
ever, has always been decided by the relative simplicity to
which approximations could be reduced, in order to keep the
theory tractable analytically, without losing its capability to
account for the most important physical aspects. One of the
most successful approximations to match these requirements
has been the coherent-potential approximation~CPA! devel-
oped by Soven,1 Taylor,2 and extended by Leath,3–5 Velický
et al.,6–9 and many others~see Ref. 10 for a review!.

In contrast to other approximations for the procedure of
configurational averaging in disordered systems, the CPA is
capable of interpolating correctly between the limits of
weak11 and strong disorder12 as well as low and high impu-
rity concentrations. Therefore it is also able to predict accu-
rately the formation of impurity bound states turning into
split-off impurity bands as the impurity concentration is in-
creased. The inclusion of more detailed knowledge of the
electronic band structure and atomic pseudopotential shapes
as in the Korringa-Kohn-Rostoker~KKR! and tight-binding
~TB! linear muffin-tin orbital~LMTO! CPA’s ~Refs. 13–17!
as well as extensions of the single-site CPA to include scat-
tering from clusters of impurities18 remain the only existing
theories that allow for a calculation of the density of states in
disordered systems such that a reasonable verisimilitude is
attained. The main difficulty with the CPA is the relative
complexity of the self-consistent equations which have to be
solved in more accurate extensions of the theory.

In the present paper we propose a more differentiated
analysis of two-particle properties within the CPA building
on the single-site approximation~SSA! in which it was de-
veloped originally. Our treatment should be especially useful
for applications to binary substitutional alloys in all regimes
of disorder. Following an earlier paper by Velicky´,7 in which
the regular two-particle theory within the CPA was intro-

duced and which will be referred to hereafter as I, the theory
of weighted single-particle resolvents, discussed originally
for the case of lattice vibrations,19 is extended to a properly
weighted two-particle theory. Weighting of a Green’s func-
tion in this context means that through the application of
appropriate operators to the unaveraged resolvent, restric-
tions are made on the type of alloy component of either or
both of the sites on which the particle starts and terminates
its motion. Upon averaging, this results in a statistical weight
being attributed to the averaged unrestricted resolvent with
possibly separate additive terms.

On the average, therefore, contributions to a full two-
particle Green’s function in terms of constituent components
can be resolved. This allows for a better understanding of
how several physical processes contribute to a cumulative
behavior as the principal parameters of the system are varied
and it can therefore be used in an analysis of further effects
which differentiates between these components. In more re-
cent work, restricted single-particle Green’s functions have
been used in the KKR and TB-LMTO versions of the
CPA,20–23whereby it was notable that in some of the papers
which also dealt with two-particle aspects single-particle de-
couplings or other forms of approximation had to be used as
the properly weighted two-particle averages were not
available.22,24

We have structured the paper as follows: In Sec. II the
important features of the single-particle CPA for diagonal
disorder are recapitulated and relations which are important
to the calculation of the corresponding two-particle Green’s
functions are established. In Sec. III and the Appendix we
calculate the Fourier transforms of a class of weighted
two-particle functions which are kept as general as pos-
sible. For that reason only a representative choice of weight-
ings are calculated explicitly, since other weights can be
obtained in an analogous fashion. Section IV is devoted to
possible applications of weighted two-particle functions in
linear response theory, and the peculiarities of two different
classes of such functions are discussed in detail, which we
have selected to cover a large range of conceivable applica-
tions.

In Sec. IV C the behavior of one class of functions dis-
cussed before is examined in a split band limit~strong dis-
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order!. Section V is devoted to a numerical study of the
splitting into several components of an interband absorption
spectrum of a disordered binary alloy. Section VI in conclu-
sion discusses the implications and possible further applica-
tions of the results obtained throughout this work.

II. SINGLE-PARTICLE PROPERTIES

We consider a binary substitutional alloyAcB12c on a
simple totally disordered monoatomic lattice on which each
site is occupied by either anA or aB component with prob-
abilities c and 12c, respectively. By symmetry it is only
necessary to consider concentrations between 0<c<0.5,
and therefore we restrict our investigation to this region and
defineA as the impurity andB as the host component of the
alloy. Since it is likely that this theory will find most appli-
cations in the calculation of electronic properties of binary
solid solutions, we therefore cast the problem into a notation
appropriate for this case, although, as has been stressed by
Ref. 10, the algebra is essentially the same for all elementary
excitations. Although it has proved possible in the past to
also formulate the CPA for special cases of off-diagonal dis-
order, the only analytical solutions are obtained for multipli-
cative off-diagonal disorder,21,22,25where the problem is ef-
fectively solved by casting it into a model, where it can be
treated in an essentially equivalent way as for the diagonal
disorder case. We assume that the same can be achieved in
the present problem, and in order to make the calculation of
the weights and their properties more tractable and transpar-
ent, we shall confine our treatment to diagonal disorder and
the single-site approximation from the outset.

We assume a Hamiltonian of the form

H5H01U5H01(
n

Un . ~1!

H0 represents the periodic part and theUn are single-site
contributions to the disorder potentialU. We assume that

H05(
a,k

«a~k!ca
†~k!ca~k!, ~2!

where the sum is over a series of bands or channelsa andk
values spanning the first Brillouin zone. It is often conve-
nient to view the problem in a tight-binding approximation
where the bands are built from a restricted set of orbitalss,
centered on each siten of the medium, so that

H05 (
n,n8,s,s8

ws,s8~n2n8!cs
†~n!cs8~n8!. ~3!

Equally it is assumed that the single-site disorder potential
has a similar structure

Un5 (
n,s,s8

us,s8~n!cs
†~n!cs8~n!, ~4!

where us,s8(n) assumes either the valueus,s8
A (n)5vs,s8

or us,s8
B (n)50, such that Un

A5V, with V5

(n,s,s8vs,s8cs
†(n)cs8(n), andUn

B50 with probabilitiesc and
12c, depending on whether the siten is occupied by anA
or B atom. In principle one could also have introduced a

symmetric model for the disorder, but as it turns out the
amount of algebra is somewhat reduced by the asymmetric
definition, while switching from one form to the other does
not present any difficulty. In general it may be convenient to
diagonalize at least one, the periodic band structure as in~2!
or the disorder potential, with respect to the orbital indices or
bands, but usually it is impossible to diagonalize them both
simultaneously. In the following formalism we therefore re-
tain the most general form and all quantities should be re-
garded as matrices with site and orbital indices.

The propagator of the disordered mediumG relates to the
one of a pure host medium~pure B phase! g through the
Dyson equation

G5g1gUG5g1gUg1gUGUg, ~5!

where summations over all occurring indices are implied as
matrix multiplications. The CPA for a disordered medium is
introduced by the usual method1,2 of placing the impurities in
a self-consistent medium such that the averaged propagator
of this effective medium fulfills the relation

Ḡ5g1gSḠ5g1ḠSg, ~6!

whereS is the CPA single-particle self-energy.S itself is
determined by the self-consistency condition that the average
of the total scattering of a particle in the effective medium be
zero. This total scattering is described by the equation

G5Ḡ1ḠTḠ, ~7!

whereT is correspondingT matrix of the problem and the
self-consistency condition is therefore^T&[0. In the SSA an
additional requirement is made through the condition that the
total scattering off a single siten be zero. This scattering is
described by the single-site contribution to theT matrix Tn
which is defined as

Tn5~Un2Sn!@11FTn#, ~8!

whereF is the site-diagonal average propagator andUn and
Sn are the single-site decompositions ofU andS. The av-
erage of the disorder potentialU alone amounts to
^U&5cV. This along with the average of~8! set to zero
determinesS to be

S5@12~V2S!F#21cV. ~9!

One can now define conditional or weighted propagators19

which explicitly describe the propagation of a particle be-
tween partly or completely specified types of sites by multi-
plying them with a normalized version of the random poten-
tial. For example,

Gi05V21UG, G0i5GUV21 ~10!

describe the motion of a particle commencing on an impurity
site and ending at an arbitrary other site in the medium~and
vice versa!, sinceU will be zero if the first site of the func-
tion is a host. Similarly,

Gii5V21UGUV21 ~11!

describes a situation where both sites are required to be
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impurities for the function not to be zero. Upon averaging
over all configurations, the Green’s functions become trans-
lationally invariant and the following relationships between
the averaged weighted and unweighted functions can be ob-
tained:

Ḡi05V21SḠ, Ḡ0i5ḠSV21, ~12!

Ḡii5V21$SḠS1~S2cV!%V21. ~13!

The second term corrects the site-diagonal elements when
Ḡii5Ḡi and uses identity~9!. From here on, other weighted
functions can be calculated by probability conservation. It is
found that

Ḡh05Ḡ2Ḡi5~12V21S!Ḡ, Ḡ0h5Ḡ~12SV21!, ~14!

Ḡih5Ḡi02Ḡii5V21$SḠ~V2S!2~S2cV!%V21, ~15!

Ḡhi5Ḡ0i2Ḡii5V21$~V2S!ḠS2~S2cV!%V21, ~16!

Ḡhh5Ḡ0h2Ḡih5V21$~V2S!Ḡ~V2S!1~S2cV!%V21. ~17!

It is our goal in the present paper to establish the two-particle analogs of these weighted Green’s functions, i.e., jointly
averaged products of such functions including the coherent scattering which induces correlations in the joint propagation of
two particles.

In order to deduce these jointly averaged weighted functions, we first need to obtain the nonaveraged weighted functions,
starting withGi0, G0i , andGii , in a representation such that no products between the disorder potentialU and the unweighted
single-particle functionG occur. To accomplish this, one can simply employ Eq.~5! which yields

Gi05V21~g21G21!, G0i5~Gg2121!V21, ~18!

Gii5V21@g21Gg212g212U#V21, ~19!
~20!

and by means of~7!, these go over to

Gi05V21@g21Ḡ1g21ḠTḠ21#, G0i5@Ḡg211ḠTḠg2121#V21, ~21!

Gii5V21@g21Ḡg211g21ḠTḠg212g212U#V21. ~22!

A further single-particle identity resulting from~6! which
will prove to be very useful is

g21Ḡ5SḠ11, Ḡg215ḠS11. ~23!

III. TWO-PARTICLE THEORY

A. Multichannel case

In this section a general weighted two-particle theory in-
volving particles moving in two different subspacesa andb,
which are possibly of different dimension, e.g., multiple con-
duction and valence bands of different angular momentum
origin, is established. From this, results for the case of two
particles moving in the same subspace can also be immedi-
ately obtained. The calculation for the unweighted two-
particle function has been done in I. As a main result of that
work the appropriate vertex corrections for the CPA were
obtained which account for the coherent scattering processes
of two particles that arise in the otherwise noninteracting
two-particle function through the averaging process.

We follow the outline of Velicky´’s reasoning to obtain the
proper weights for two choices of the functions

^Ga
mnCGb

m8n8&. The labelsm,n,m8,n8P$ i ,h,0% indicate the
kind of weight—either an impurity, a host or no weight—

which is attributed to the first and second sites of the respec-
tive function.C represents a generalized operator coupling
the two single-particle functions anda andb label two pos-
sibly different bands on which the respective single-particle
resolvents are defined. The positions of the weights within
one single Green’s function are thereby important, since the
disordered medium before averaging is neither homogeneous
nor isotropic and thus the nonaveraged Green’s functions
depend nontrivially on both arguments. In principle there
would now be 80 possible ways of applying specific weights
to these functions before averaging. However, in most cases,
even if different bands are involved, only two-particle func-
tions having an equal kind of weighting on its single-particle
constituents will be needed in most applications. Later, we
will consider two-particular examples of two-particle func-
tions which find frequent use in linear response theory where
the operatorC is diagonal in real space and also only diag-
onal elements~or sums of diagonal elements! of the func-
tions defined above are used. For both cases considered, the
total choices of weightings reduce to only five different ones,
since the first and the second sites of the first function will be
the same as the second and first sites of the second function,
respectively, which implies that they must also pairwise bear
the same weighting label.

As an example we calculate for a most general choice of
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C only the two functionŝGa
iiCGb

ii & and ^Ga
i0CGb

0i& in this
section, since they will prove to be the most useful types of
weightings for the cases discussed thereafter and all other
ones could be obtained in complete analogy to the calcula-

tions presented here.
Using the identities~21! and ~22!, the single-weighted

two-particle function can be written in terms of the single-
particle functions as

^Ga
i0CGb

0i&5Va
21^@ga

21Ḡa1ga
21ḠaTaḠa21#C@ḠbTbḠbgb

211Ḡbgb
2121#&Vb

21 ~24!

and the double-weighted one as

^Ga
iiCGb

ii &5Va
21^@~ga

21Ḡaga
212ga

21!1ga
21ḠaTaḠaga

212Ua#C8@~gb
21Ḡbgb

212gb
21!1gb

21ḠbTbḠbgb
212Ub#&Vb

21 , ~25!

where for convenience we introducedC85Va
21CVb

21 ~note thatC8 would also be useful in the calculation of^G0iCGi0&). We
calculate the double-weighted function first, since it proves the more difficult task and from its solution it is straightforward to
derive the single-weighted function as well. The problem of evaluating~25! is divided into two parts, the first one involving
all terms not containing the matrixU, and the second one containing the remainder, i.e.,

Va^Ga
iiCGb

ii &Vb5K1M, ~26!

K5@ga
21Ḡaga

212ga
21#C8@gb

21Ḡbgb
212gb

21#1ga
21Ḡa^TaḠaga

21C8gb
21ḠbTb&Ḡbgb

21 , ~27!

M5^UaC8Ub&1@ga
21C8^Ub&2ga

21Ḡaga
21C8^Ub&2ga

21Ḡa^TaḠaga
21C8Ub&1~a↔b!#, ~28!

where inK the terms involving an average over a singleT matrix have vanished, from the standard CPA condition, and
(a↔b) indicates that the labels are exchanged and the corresponding expressions reflected around the operatorC8. We
evaluateK first since it is the term needed in the wider range of applications.

With the identity~23! we find that

@ga
21Ḡaga

212ga
21#C8@gb

21Ḡbgb
212gb

21#5ga
21ḠaSaCSbḠbgb

21 . ~29!

The T matrix can be decomposed into its single-site contri-
butionsTn as

T5(
n

Tn1 (
nÞm

TnḠTm1 (
nÞmÞ l

TnḠTmḠTl1•••. ~30!

Thereby the characteristic exclusions in the sums prevent the
particle from scattering twice in sequence on the same site
andTn satisfies Eq.~8!.

As shown by Velicky´, T can then be replaced in two ways
by a closed set of equations, namely,

T5(
n

Qn5(
n

Q̃n , ~31!

where

Qn5TnS 11Ḡ(
nÞm

QmD ~32!

and

Q̃n5S 11 (
nÞm

Q̃mḠDTn . ~33!

Due to the requirement that^T&50 and the single-site de-
composition ofT from ~30! it is possible to decompose av-
erages on different sites to give

0[^T&5(
n

^Qn&5(
n

^Tn&S 11Ḡ(
mÞn

^Qm& D . ~34!

This also implies that̂Qn&5^Q̃n&50. A vertex functionG
can now be defined similar to I such that

K5ga
21Ḡa~SaC8Sb1G!Ḡbgb

21 , ~35!

where now

G5^TaḠaga
21C8gb

21ḠbTb&. ~36!

G can be manipulated along the lines of I by using~31! to
yield

G5(
n

(
m

^Qn
aḠaga

21C8gb
21ḠbQ̃m

b &. ~37!

By means of~32!–~34! this can be cast into the form

Gn5K TnaḠaga
21SC81ga(

pÞn
GpgbDgb21ḠbTn

bL , ~38!

where nowG5(nGn , since from the decoupling introduced
in ~34! one gets ^Qn

aḠaga
21C8gb

21ḠbQ̃m
b &

5^Qn
aḠaga

21C8gb
21ḠbQ̃n

b&dn,m . The only difference to the
corresponding expression in I,@cf. ~47! there# is that
(pÞnGp is surrounded by the propagators of the pure me-
dium ga/b here. We can then use~35! and ~38! to obtain

Gn5^Tn
aḠaga

21C8gb
21ḠbTn

b&1^Tn
agaKgbTn

b&

2^Tn
aḠaSaC8SbḠbTn

b&2^Tn
aḠaGnḠbTn

b&. ~39!
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To this point our model describes a situation where every
occurring quantity in each subspacea andb is a matrix in a
pair of channel~orbital or angular momentum! indices, as in
the Hamiltonian~1!–~4!. However, a solution of Eq.~39! for
this general case is quite involved and not easy to handle for
further applications. We shall therefore assume for the fur-
ther calculations in this section that all Green’s functions and
the disorder potential are scalars in the channel indices. On
the other hand we believe that the solution of the general
problem could be of great potential interest to a whole spec-
trum of work, which uses a multichannel CPA as in the
KKR-CPA or LMTO-CPA methods.20–23 The only work
known to us which addressed a simple version of the multi-
channel problem so far is a paper by Sen26 where a case of
band mixing was considered in the calculations of electrical
conductivities. Although Sen seems to have solved the cor-
responding matrix vertex equations at least in part for his
numerical calculations, the excerpts of the analytic solution
given in his work do not seem to be very general. A proper
formal solution of the most general multichannel problem is
therefore given in the Appendix.

B. Scalar theory

With the restriction to scalar quantities~with respect to
the channel indices! Gn and therefore alsoK are found from
~39! without difficulty. Note that we are now able to shift
site-diagonal expressions likeS and F at our convenience
within the products. As we cast our model into a site repre-
sentation we obtainTn5un&tn^nu and hence

Gn5un&L^nu@gaKgb1Ḡaga
21C8gb

21Ḡb

2SaSbḠaC8Ḡb#un&^nu, ~40!

whereL is the irreducible vertex part derived by Velicky´,

L~z1 ,z2!5
^tn
a~z1!tn

b~z2!&

11Fa~z1!^tn
a~z1!tn

b~z2!&Fb~z2!
. ~41!

The vertexL can be regarded as being intrinsic to the CPA,
since it does not depend on the particular form of the opera-
tor C8. Substituting~40! into ~35! yields

K5SaSbga
21ḠaC8Ḡbgb

211Lga
21Ḡa(

n
un&^nu@gaKgb1Ḡaga

21C8gb
21Ḡb2SaSbḠaC8Ḡb#un&^nuḠbgb

21 . ~42!

Multiplying by ga andgb from the left and right, we solve for the diagonal elements^mugaKgbum&,

^mugaKgbum&5SaSb^muḠaC8Ḡbum&1L(
n

^muḠaun&^nu@gaKgb1Ḡaga
21C8gb

21Ḡb2SaSbḠaC8Ḡb#un&^nuḠbum&,

~43!

and hence also solve~42!. At this point it is helpful to visu-
alize the form of the operatorC8, in the site representation,
which in the most general case can be written as

C85~VaVb!
21(

l ,m
g lmu l &^mu. ~44!

For convenience we introduce the short notation

Fn2m5^nuḠum&, ~45!

F n2m5^nug21Ḡum&, ~46!

whereF0[F as already defined in~9!. It should be noted
that Fn2m andF n2m are of different dimensions and their
definition has been chosen to reduce the algebra as much as
possible. Furthermore, these expressions show that Eq.~43!
only contains translationally invariant quantities and hence it
can be solved by Fourier transformation. The following Fou-
rier transforms are introduced:

ak5SaSb(
m

e2 ikRm^muḠaC8Ḡbum&, ~47!

ak5(
m

e2 ikRm^muga
21ḠaC8Ḡbgb

21um&

5(
m

e2 ikRmH SaSb^muḠaC8Ḡbum&1Va
21Vb

21

3Fgmm1Sa(
n

gnmFm2n
a 1Sb(

n
gmnFn2m

b G J ,
~48!

Ak5(
m

e2 ikRmFm
a F2m

b , ~49!

Ak5(
m

e2 ikRmF m
a
F 2m

b , ~50!

bk5(
m

e2 ikRm^mugaKgbum&, ~51!

ck5(
m

e2 ikRm^muK um&. ~52!

The units ofAk and ck are unity, and those ofak , ak ,
bk , andAk areJ

22. Inserting into~43! yields
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bk5
ak1LAk~ak2ak!

12LAk
, ~53!

and hence by means of~42!

ck5ak

SaSb1L~Ak2SaSbAk!

12LAk
5ak

SaSb1LD

12LAk
, ~54!

where

D5Ak2SaSbAk5@11SaFa1SbFb#, ~55!

whereD is independent ofk.
Similarly, one can evaluate the termM from ~28!, but it

turns out that little simplification can be made until an ex-
plicit form of C is known and therefore we postpone its
evaluation to the next section.

For now, we proceed to calculate the single weighted
function ^Ga

i0CGb
0i&. From ~24! we get

^Ga
i0CGb

0i&5ga
21ḠaC8Ḡbgb

211C82ga
21ḠaC8

2C8Ḡbgb
211ga

21Ḡa^TaḠaC8ḠbTb&Ḡbgb
21 .

~56!

Using ~23!, this can be recast into

^Ga
i0CGb

0i&5SaSbḠaC8Ḡb

1ga
21Ḡa^TaḠaC8ḠbTb&Ḡbgb

21 , ~57!

which can be readily solved since the term^TaḠaCḠbTb&
exactly corresponds to the vertex part of the unweighted
function which is known from I,

^TaḠaCḠbTb&5(
n

un&L^nu^GaCGb&un&^nu. ~58!

Thus, the Fourier transform

dk5(
m

eikRm^mu^Ga
i0CGb

0i&um& ~59!

can be obtained using the solution for the unweighted two
particle function and Eqs.~47!, ~49!, and~50! to yield

dk5ak1LAk

ak
SaSb~12LAk!

. ~60!

Using ~55! this can be written as

dk5
ak

SaSb

SaSb1LD

12LAk
. ~61!

It is important to indicate at this point that the solution for a
single-weighted function in which the weights have been
swapped to the inside, i.e.,^Ga

0iCGb
i0&, will not be the same

as the one just obtained. A similar type of calculation yields
instead of~60!

dk85bk , ~62!

wheredk85(ne
ikRm^mu^Ga

0iCGb
i0&um&.

Since we have now obtained expressions for the Fourier-
transformed site-diagonal elements of some of the impurity-

weighted two-particle functions, we are also able to find their
respective off-diagonal parts by inserting into the appropriate
Bethe-Salpeter equations@~42! in the case of the double-
weighted function#. Other types of weighted functions can
be calculated from here by setting up the corresponding
equations in analogy to~24! and~25! from the single-particle
functions. In particular, to obtain the corresponding
host-weighted functions one can apply the weights
(12Ua/b /Va/b) to the single-particle resolvents from either
side, but the form of this weight already suggests that host-
weighted properties can always be deduced by adding or
subtracting corresponding unweighted and impurity-
weighted functions. For the most general case the set of
closed equations will be quite large and for that reason we
will in the following deduce these equations only in some
more specific cases.

IV. APPLICATIONS IN LINEAR RESPONSE THEORY

The most obvious application of a two-particle theory as
introduced above is in linear response theory, i.e., in calcu-
lating weighted susceptibilities. The study of weighted func-
tions in this context helps to determine how such quantities
as susceptibilities and transport coefficients are constituted
~on the average! from processes on different components of
the alloy. A further advantage of such a differentiation is that
it allows for a more refined treatment of further renormaliza-
tions to the considered quantities once further interactions
are introduced into the problem. The standard expression
employed in linear response theory is a generalized Kubo
formula

xC~1!,C~2!~z!5E djdhS0~z,j,h!Z21Trb$e
2bHC†~2!

3^d̂mn~j2Ha!C
~1!d̂mn~h2Hb!&%. ~63!

TherebyxC(1),C(2) stands for a generalized type of suscepti-
bility characterizing the linear response of an observable
C(1) to an external perturbation coupling into the Hamil-
tonian through the operatorC(2). S0 denotes the zero-order
associated two-particle Matsubara function in the Lehmann
representation27 and d̂mn(j2Ha/b) is the corresponding
spectral function of the full resolvent Ga/b

mn (j)
5Ja/b

m @j2Ha/b#
21Ja/b

n , defined on the subspace~band!
a/b, with the weighting operatorsJa/b

m applied to it which
assume the valuesJa/b

i 5Ua/b /Va/b , Ja/b
h 5(12Ua/b /

Va/b), andJa/b
0 51. Trb denotes the trace over the subspace

~band! b. Our particular interest focuses on the operators
C(1) andC(2) which we now take to have the diagonal form

C~1!/~2!5(
m

gm
~1!/~2!~j,h!um&^mu. ~64!

To examine the behavior of the weighted functions further
under such a constraint it is useful to consider the two cases

gm5const3dm,r , ~65!

wherer is an explicitly specified site, and

gm5const. ~66!
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The first case arises in a treatment of the response from local
interactions such as for example the space-dependent ex-
change interaction between spin impurities~RKKY
interaction28! submerged in a system otherwise containing
nonmagnetic disorder.29 The second case is widely used in
calculations of the optical response in metals and
semiconductors,30,31 since the exciting optical fields can be
taken as uniform over space with approximate momentum
q50 and the optical matrix elements describing transitions
between bands of different angular momentum symmetry are
usually well approximated as constants.

In both cases the restriction to only consider diagonal el-
ements of two-particle functions reduces the set of closed
equations for all possible weightings to

^Ga
hCGb

h&5^GaCGb&2^Ga
i CGb

i &, ~67!

^Ga
ihCGb

ih&5^Ga
hiCGb

hi&5^Ga
i CGb

i &2^Ga
iiCGb

ii &, ~68!

^Ga
hhCGb

hh&5^Ga
hCGb

h&2^Ga
ihCGb

ih&. ~69!

It follows that for this case the calculation of only
^Ga

iiCGb
ii & and ^Ga

i CGb
i & is sufficient to also obtain the re-

maining mixed and host-weighted functions. We start to con-
sider the case of~65! first.

A. Electronic susceptibility

The response of a system at some pointr 1 in space to a
perturbation applied at pointr 2 has a wide range of applica-

bility. Disregarding the coupling constants which simply
scale the result we assume thatC(1)5u2&^2u and
C(2)5u1&^1u, where the choice of the origin is arbitrary.
In a slightly different notation the calculation of the
double-weighted function corresponds to evaluating
^Ga

ii (r 1 ,r 2 ;t)Gb
ii (r 2 ,r 1 ;t8)&.

For the RKKY interaction mentioned before, which
couples spins at a distancer 12r 2 through the electronic spin
susceptibility of electrons in the conduction band, the two-
particle time-dependent function is to be Fourier transformed
and to be taken at two identical single-particle energies.28 If
the spins are at impurity sites, the weighted functions must
be used to describe the problem adequately. Earlier
treatments29 neglected the vertex corrections and it is pro-
posed to investigate the effect of their inclusion in a separate
publication.

In this as in other problems the self-interactionr 15r 2 can
be neglected for most purposes, which implies that it will be
sufficient to calculate only the termK from ~27!, since all
terms occurring inM from ~28! will vanish for r 1Þr 2 ,
since the disorder potentialU is a diagonal matrix which
vanishes identically for off-diagonal terms. To clarify the
meaning of the quantity which is obtained through this spe-
cial choice ofC(1) andC(2), we look at how the correspond-
ing Bethe-Salpeter~BS! equation can be rewritten for the
case of a unweighted two-particle Green’s function as intro-
duced in Eqs.~22! of Ref. 4. In the single-site approximation
the BS equation for the unweighted function reads

^Ga~1,2!Gb~1,2!&[^Gab
~2!~1,1;2,2!&5^Ga~1,2!&^Gb~1,2!&1L(

n
^Ga~1,n!&^Gb~1,n!&^Gab

~2!~n,n;2,2!&, ~70!

where we have rewritten

^2uḠau1&^1uḠbu2&[Ḡa~1,2!Ḡb~1,2!, ~71!

and

^2u^Gau1&^1uGb&u2&[^Gab
~2!~1,1;2,2!&. ~72!

For the Fourier transforms from before~47!–~50! this amounts to

ak5
SaSb

VaVb
(
m

e2 ikRmḠa~m!Ḡb~m!, ~73!

akVaVb5(
m

e2 ikRm^muga
21Ḡau1&^1uḠbgb

21um&5(
m

e2 ikRm@SaSbḠa~m!Ḡb~m!1dm,1~11SaFa1SbFb!#5Ak . ~74!

Using ~73! and ~74! in connection with~60! and ~62! the
result for the single-weighted functions is independent of
whether the impurity weights are applied to the interior or to
the exterior of the single-particle resolvents, such that
^Ga

i0(1,2)Gb
0i(1,2)&5^Ga

0i(1,2)Gb
i0(1,2)&. Indeed it is not

hard to show that other arbitrary distributions of two impu-
rity weights also give the same results as long as there is one
weight applied to each resolvent. The same is of course true

for host related properties. Accordingly,bk from ~53! in the
previous section goes over to

bk5ak
SaSb1LVaVb~ak2ak!

SaSb2LVaVbak
~75!

and similarlyck from Eq. ~54! to
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ck5SaSbakS 11L
VaVbak

SaSb2LVaVbak
D . ~76!

We remember that the Fourier transform of the unweighted
two-particle Green’s function is

(
R1,2

eikR1,2̂ Ga~1,2!Gb~1,2!&5
akVaVb

SaSb2LVaVbak
. ~77!

Phenomenologically, one can scrutinize the uncorrelated
limit whereL→0 for which in ~76! thek-dependent part of
ck behaves as

lim
L→0

ck5SaSbak1•••, ~78!

which is the correct limiting result for a product of two av-
eraged double-impurity-weighted single-particle functions

Ḡa
ii (1,2)Ḡb

ii (1,2) or the weighted two-particle function with-
out coherent corrections.

However, taking this limit is reasonable only in special
cases since generally the vertexL depends on the self energy
S. It will be appropriate to take in a weak disorder limit
~virtual crystal limit! since forVa/b→0 the CPA predicts that
Sa/b→cVa/b andL→c(12c)VaVb which means thatL ap-
proaches zero faster thanSa/b in this limit.

One should also note at this point that although it is ap-
parent that the term (11SaFa1SbFb), which arises in the
difference of the Fourier transformsak and ak , originates
from the difference in the diagonal parts of their respective
real-space Green’s functions, it cannot be neglected in this
treatment. WhenL is finite, this term is multiplied with other
k-dependent quantities and thus contributes to the off-
diagonal elements as well. Written in terms ofak , ~76! can
be cast into

ck5
ak

SaSb2LVaVbak
S SaSb1

SaSb

akVaVb
~11SaFa1SbFb! D @SaSb1L~11SaFa1SaFb!#. ~79!

If again diagonal terms in real space are neglected, i.e.,k-independent quantities ink space, it can be shown that~79! can be
cast into the compact form

zk5
ak

SaSb2LVaVbak
@SaSb1L~11SaFa1SbFb!#

2, ~80!

where we have introducedzk[ck1c0 , wherebyc0 is independent ofk. According to the definition ofzk , this finally relates
the weighted off-diagonal real-space two-particle Green’s function to the unweighted one as

^Ga
ii ~1,2!Gb

ii ~1,2!&5^Ga~1,2!Gb~1,2!&
@SaSb1L~11SaFa1SbFb!#

2

~VaVb!
2 . ~81!

Equally, the relation for the single-weighted function^Ga
i (1,2)Gb

i (1,2)& can be obtained almost immediately if~60! is
modified for this choice ofC(1) andC(2), which goes over to

dk5ak1Lak

akVaVb

SaSb2LVaVbak
5

ak
SaSb2LVaVbak

@SaSb1L~11SaFa1SbFb!#, ~82!

thus relating the real-space functions in this case as

^Ga
i ~1,2!Gb

i ~1,2!&5^Ga~1,2!Gb~1,2!&
SaSb1L~11SaFa1SbFb!

VaVb
, ~83!

where no diagonal contributions were omitted.
The fact that in the single-weighted case the same weight-

ing factor occurs once as opposed to twice for the double-
weighted one is structurally equivalent to the results for the
single-particle theory. Although retrospectively that might
not be surprising, it is quite interesting in view of the fact
that for the most general case of the previous section the
weighting factors in~54! and ~61! almost look alike were it
not for the difference in the prefactors, i.e.,ak in the former
andak /SaSb in the latter case.

In principle all other functions can be derived now using
the set of relations~67!–~69!. However, one can save a con-
siderable amount of algebra by recalling the following rela-
tion which holds in the transition from impurity to host re-

lated properties in the CPA:

2S→~V2S!, c→~12c!. ~84!

Starting from the definition of the vertexL in ~41! and the
CPA condition^Tn&50 one finds that

L5F 12c

~Va2Sa!~Vb2Sb!
1

c

SaSb
G21

, ~85!

which in a single band case (a5b) readily simplifies to the
form first introduced by Leath,4

La5b5
dS

dF
5

S~V2S!

12~V22S!F
. ~86!
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With the relation~9! betweenF andS the weighting factor
for the single-weighted impurity function from~83! reduces
to

SaSb1L~11SaFa1SbFb!

VaVb
5

~12c!L

~Va2Sa!~Vb2Sb!
.

~87!

Correspondingly, the factor for the double-weighted function
is the square of this quantity. One can now employ~67! and
~68! to find the weights for the single host- and the impurity-
host-weighted functions, respectively. We find

^Ga
hGb

h&5^GaGb&
cL

SaSb
~88!

and

^Ga
ihGb

ih&5^GaGb&
c~12c!L2

SaSb~Va2Sa!~Vb2Sb!
, ~89!

which by means of~69! gives

^Ga
hhGb

hh&5^GaGb&S cL

SaSb
D 2. ~90!

Note that this could also have been expected from the trans-
formation property~84!. The impurity and host weights as
represented in~87! and ~88! are seen to be the two contri-
butions summing toL21 in ~85!. Thus, even though there
are many different possible representations of the two-band
vertex, the representation in~85! shows immediately that
the transition from impurity to host properties leavesL
invariant.

A notable feature about the weights calculated in this sec-
tion is that they are independent of any wave vectors and
only multiply the unweighted function as scalar energy-
dependent factors. This is a direct consequence of the single-
site approximation.

B. Theory of absorption

In this section we evaluate a form of the two-particle
functions needed in the calculation of the linear response
absorption in a disordered solid. We take the operators
C(1) andC(2) in the characteristic form of dipole operators
similar to ~66!. Furthermore, we assume that the dipole ma-
trix elements are essentially constant, such thatC(1)/(2)

5g (1)/(2)(mum&^mu. This choice corresponds to applications
for the description of processes involving transitions between
bands of different angular momentum symmetry such as re-
quired by the selection rule for optical processes at zero total
momentum.4,11

A special example of this case is the photoelectric effect
studied in alloys as in Refs. 22,24. In the theoretical discus-
sion there, it is noted that weighted susceptibilities were re-
quired. However, since the final continuum state of the tran-
sition is intrinsically nondisordered, the weighting reduces to
single-particle weights for the valence bands. Furthermore,
as also often pointed out in this context, it is possible that the
optical matrix elements are different for different types of
atoms.22,24,32 Such a situation would make the operators
C(1), C(2) random as well, but as it turns out, the weighted

two-particle functions are an excellent tool for dealing with
such a situation. More about this is postponed to the numeri-
cal section~Sec. V! @cf. ~131! there#. At the end of this sub-
section we will also give for completeness a short account of
the calculation of linear response conductivities in disordered
solids.

For the above choice ofg (1)/(2) the calculation of the
termK in ~42! is greatly simplified compared to before,
but it will be necessary now to also consider total diagonal
terms, since the sums over all states inC(1)/(2) couple all
sites and hence all contributions coming from termM in
~28! have to be included. As a consequence of the intro-
duction of the dipole operator the main change arising in the
result forK is that the site-diagonal elements^nuK un&
and^nuGaC

(1)Gbun& as well aŝ nuGaga
21C(1)gb

21Gbun& are
now actually independent ofn.30 SinceC(1) now couples
the functions to its left and right like a matrix product, the
BS equations~42! and ~43! have a very simple solution
in terms of their Fourier transforms. Introducing
a,b,c[ak ,bk ,ckuk50 as the zero-momentum elements of
the respective transforms from last section, we find
c5^nuK un&, a5SaSbVa

21Vb
21^nuḠaḠbun&, where the

omission ofC(1) indicates that the two single-particle resol-
vents are now simply multiplied as matrices. Equation~53!
now reduces to

b5a
SaSb1LVaVb~a2a!

SaSb2LVaVba
~91!

and Eq.~54! to

c5SaSbaS 11L
aVaVb

SaSb2LVaVba
D , ~92!

which can be recast as

c5
a

SaSb2LVaVba
@SaSb1L~11SaFa1SbFb!#

2

1~11SaFa1SbFb!@SaSb1L~11SaFa

1SbFb!#Va
21Vb

21 , ~93!

where the term independent ofa which was discarded in the
previous section has to be kept in this case since the contri-
butions of the diagonal elements become important.

In calculatingM one uses the fact thatU is a matrix
which just has a random occupation of its diagonal. The sum
over all sites in the operatorsC(1) andC(2) will hence just
pick out the sum of all total diagonal partŝnuG un&
3^nuUun& where G is a generalized product of several
Green’s functions in the same band~the case whereU and
G are swapped is analogous!. From~28! we get immediately

M5c1@cga
21Va

212cga
21Ḡaga

21Va
21

2ga
21Ḡa^TaḠaga

21Ub&Va
21Vb

211~a↔b!#, ~94!

where the only term giving slight complications is
^TaḠaga

21Ub&. However, by means of~23! we obtain

^TaḠaga
21Ub&5Sa^TaḠaUb&1^TaUb&. ~95!
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In this expression, the second term presents more complica-
tions, since for the first one we remember from~7! that

TḠ5Ḡ21G21 ~96!

andUb5UaVb /Va such that

^TaḠaUb&5^Ḡa
21GaUb&2cVb5

SaVb

Va
2cVb . ~97!

Subsequently, the second term can be decoupled by means of
~31!–~33!,

^TaUb&5(
n

^Q̃n
aUb&5(

n
K S 11 (

mÞn
Q̃m
a ḠaDTnaUbL .

~98!

Applying ~34! and using the fact thatU is diagonal yields

^Q̃m
a ḠaTn

aUb&5^Q̃m
a &Ḡa^Tn

aUb&50, ~99!

since (mÞn) and ^Q̃m&50, and hence we find

^TaUb&5(
n

^Tn
aUn

b&5
c~Va2Sa!Vb

12~Va2Sa!Fa
. ~100!

Collecting all terms forM and some more algebraic ma-
nipulation finally yields

M5c2~11SaFa!SaVa
212~11SbFb!SbVb

21 . ~101!

The sum of all diagonal parts, i.e.,M and the ones from
the second term in~93!, can be shown to assume the very
compact form

M1
11SaFa1SbFb

VaVb
@SaSb1L~11SaFa1SbFb!#

5LFaFb . ~102!

The final result for̂ Ga
iiGb

ii & thus amounts to

^Ga
iiGb

ii &5^GaGb&F ~12c!L

~Va2Sa!~Vb2Sb!
G21 LFaFb

VaVb
.

~103!

Here the first term has been rewritten in the same way as
already derived in the last subsection for the finite-range sus-
ceptibility. From there it is also seen that the single-weighted
function will have the same weight as calculated in~87! for
the corresponding function in the exchange coupling case.
We find

^Ga
i Gb

i &5^GaGb&
~12c!L

~Va2Sa!~Vb2Sb!
~104!

and by means of~67!–~69!

^Ga
hGb

h&5^GaGb&
cL

SaSb
, ~105!

^Ga
ihGb

ih&5^GaGb&
c~12c!L2

~Va2Sa!~Vb2Sb!SaSb
2

LFaFb

VaVb
,

~106!

^Ga
hhGb

hh&5^GaGb&F cL

SaSb
G21 LFaFb

VaVb
. ~107!

Comparing the results of the last two subsections, it be-
comes clear that the several weights obtained are essentially
universal. The main difference in the absorption case as com-
pared to the susceptibility one comes from the diagonal
terms which have to be kept in the double-weighted func-
tions. The single-weighted analogs are void of this difficulty
and the weighting factors are identical for both cases.

So far we have omitted to consider a form of the two-
particle functions which is needed for conductivity calcula-
tions. However, Velicky´7 showed for the unweighted func-
tions that the vertexG vanishes in the single-band case in the
corresponding expression for the conductivity, due to the an-
tisymmetry of the dipole matrix elements ink space if they
are taken between Bloch states of a noninteracting Fermi
system in a crystal with inversion symmetry. The same is
also true for the weighted case and effectively the weighted
functions which would have to be used for such calculations
would just consist of products of the corresponding single-
particle quantities.

This aspect turns out to be a general deficiency of the CPA
in the single-site approximation, since due to the multiple
scattering exclusions only ladders of nested diagrams are
used in calculating the total contribution of the coherent scat-
tering. The CPA therefore neglects higher-order two-particle
correlations which are in fact nonzero and contribute mark-
edly to the conductivity. Langer and Neal33 have shown that
the so called ‘‘maximally crossed’’ diagrams, i.e., diagrams
which have a maximal crossing of coherent particle-particle
scattering lines, actually contribute the leading part—in the
order of the expansion considered—to the full two-particle
disorder vertex for the conductivity in an otherwise noninter-
acting system. There are, however, two cases, where even the
CPA vertex gives a finite contribution to the conductivity.
One is the case of interacting Fermi systems, where the pres-
ence of interactions is sufficient to destroy the aforemen-
tioned antisymmetry and thus also the terms already included
in the vertex of a single-site two-particle CPA as discussed
here will give a finite contribution to the conductivity in real
systems. The other is the case of multiple conduction bands
with band mixing, discussed by Sen,26 where there is a finite
contribution from the mixing part of the vertex.

C. Split band limit

As already indicated, in contrast to many other theories of
disorder, the CPA interpolates correctly to the limits of strong
disorder and high concentrations. In this situation each band
splits into two components of strengthc and 12c, respec-
tively, which represent largely separateA- andB-type exci-
tations. An intuitive consideration of the underlying physics
in this limit suggests that the correct description of an ab-
sorption process should predict that the overlap integral for
transitions between sites pertaining to different alloy compo-
nents will gradually decrease and thus, in reverse, that tran-
sitions between sites of the same type will be more and more
favored. In the following, we prove that the CPA of weighted
two-particle functions predicts this behavior correctly which
makes it useful for a better quantitative understanding of
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absorptive and dispersive processes in strongly disordered
alloys. The corresponding single-particle theory must fail in
this respect, since it will weigh transitions only with the
products of concentrations of sites involved.

To illustrate this we assume that our material components
A andB have corresponding single site energies«a

A , «b
A and

«a
B , «b

B for the two bands, respectively, and the carriers have
become totally localized; i.e., their effective mass goes to
infinity or vice versa the bandwidths involved go to zero.
The potentialsVa andVb are then defined as

Va5«a
A2«a

B , Vb5«b
A2«b

B , ~108!

and the single-particle site-diagonal Green’s functions go
over to

Fl~z!5
c

z2«l
A 1

12c

z2«l
B[

1

z2«l
B2Sl

, ~109!

where l labels the corresponding band. Thus, if a two-
particle theory is constructed from single-particle properties
only, and coherent terms in the two-particle scattering are
neglected, this leads to peaks in the absorption spectrum as
shown in Table I. The energies at which the peaks are cen-
tered are shown in row 2 and their relative weight for the
uncorrelated average is shown in row 3.

For this limit of strong disorder we find, upon introducing
the vertex corrections in conjunction with the appropriate

weighting factors for the two respective components, that the
expected transitions are given correctly with their appropri-
ate transition strengths and the spurious crossed terms are
suppressed as shown in row 4 of Table I. Defining

z2«l
B[x, ~110!

F andS can be rewritten as

F~x!5
1

x2S
5
x2~12c!V

x~x2V!
, ~111!

S~x!5
cVx

x2V~12c!
, ~112!

and the vertexL given by ~85! can be written

L5
~12c!cVaVbxaxb~xa2Va!~xb2Vb!

@xa2Va~12c!#@xb2Vb~12c!#@cxaxb1~12c!~xa2Va!~xb2Vb!#
. ~113!

The impurity weightj[(12c)L/(Va2Sa)(Vb2Sb) can
be represented as

j5
cxaxb

cxaxb1~12c!~xa2Va!~xb2Vb!
~114!

and equally the host weighth[cL/SaSb as

h5
~12c!~xa2Va!~xb2Vb!

cxaxb1~12c!~xa2Va!~xb2Vb!
. ~115!

It is now evident that the impurity-weighted quantities are
proportional toc and the host-weighted ones to 12c and not
the other way around as the appearance of the weighting
factors, e.g.,~104! and ~105!, might superficially suggest.
The correction factor coming from the diagonal terms in the
double-weighted functions can be recast into

g[
LFaFb

VaVb
5

~12c!c

cxaxb1~12c!~xa2Va!~xb2Vb!
.

~116!

Furthermore, the unweighted but vertex corrected two-
particle propagatorK5^GG& assumes the form

K5
cxaxb1~12c!~xa2Va!~xb2Vb!

xaxb~xa2Va!~xb2Vb!
. ~117!

After further algebra one can show, that in this limit the
weighted functions can be expressed as

^GiiGii &5Kj21g5^GiGi&5Kj5
c

~xa2Va!~xb2Vb!
,

~118!

^GhhGhh&5Kh21g5^GhGh&5Kh5
~12c!

xaxb
, ~119!

^GihGih&50, ~120!

which is exactly what is expected to happen physically in
this limit. The crossed terms in the transition are canceled
out—hence the crossed function in~120! goes to zero—and
the double-weighted functions become identical to the
single-weighted ones, since now only the totally site diago-
nal elementKD[^Gnm( l ,l )Gnm( l ,l )& still contributes to the
transitions, which implies that only two possibilities for
weighting the two-particle functions remain, namely, as
^Ga

i Gb
i & and ^Ga

hGb
h&. As could be expected from a theory

which properly describes the strong disorder limit the transi-

TABLE I. Energies of poles at which interband transitions may
occur versus center of gravity weights in an asymptotically strong
disorder limit before and after the inclusion of vertex corrections.

Transition Ab→Aa Bb→Aa Ab→Ba Bb→Ba

Energy of pole «a
A2«b

A «a
A2«b

B «a
B2«b

A «a
B2«b

B

Weight without vertex c2 c(12c) c(12c) (12c)2

Weight including vertex c 0 0 12c
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tion strengths now distribute with the concentrationsc and
12c between theAb→Aa andBb→Ba transitions, respec-
tively, such as shown in row 4 of Table I. This feature may in
reverse be used to derive the total diagonal elementKD for
all ranges of disorder. By requiringKD

ih50 we find

KD5
g

jh
5
FaFb

VaVb
S SaSb

c
1

~Va2Sa!~Vb2Sb!

~12c! D . ~121!

The weighted versions of this element are obtained by just
multiplying the corresponding single weights from~104! and
~105! onto it. Moreover,KD is equivalent to ther 1,250
component of the two-particle function calculated for the
finite-range susceptibility in the last subsection. In terms of
the notation introduced there it reads

KD5(
k

akVaVb

SaSb2La,bVaVbak
, ~122!

which would have been harder to evaluate starting from that
representation. The total site-diagonal element thus de-
couples into the corresponding site-diagonal single-particle
functions with an appropriate correction term accounting for
the coherent processes.

V. NUMERICAL RESULTS

In this subsection, in order to exemplify the general re-
sults, we discuss numerical results obtained for the optical
absorption in a binary semiconductor alloy with a completely
filled valence and empty conduction band for a simple model
density of states. We are thus able to show how a CPA type
of polarization, including vertex corrections, decomposes
into contributions originating from single-alloy components
as the strength of the disorder is increased, thus eventually
causing the joint density of states to split into several com-
ponents~up to three different ones for the double-weighted
case!.

In all our calculations we have used a semi elliptic density
of states for a pair of three-dimensional~3D! conduction and
valence bands as introduced in Ref. 6 for the single particle
CPA, i.e.,

rl~E!5
2

pwl
2Awl

22E2, uEu<wl ,

rl~E!50, uEu<wl , ~123!

where l labels either the conductionl5a or valence
l5b, andwl is the half-width of the band considered. This
has the advantage that the self-consistent CPA equation for
the self energyS(E) is a third-degree polynomial which can
be solved analytically.

To understand the effects that arise from genuine two-
particle behavior as compared to those expected from the
single-particle CPA, we recapitulate some of the features of
the single-particle theory first, mainly building on the treat-
ment presented in Ref. 6. It is established there that depend-
ing on the concentration and disorder strength relative to the
bandwidth, an impurity band is eventually split off while in
this split regime under some circumstances the CPA self-
energy exhibits a pole. Figure 1 shows a reproduction of the
‘‘phase’’ diagram first presented there, indicating how the

several regions are separated. It can be seen that for a disor-
der strengthuVl /wlu.1 the bands always split intoA andB
components, whereas the splitting occurs earlier as the con-
centrationc is reduced, going down touVl /wlu.0.5 as
c→0.

We have calculated the linear polarizability of the me-
dium by employing a Kubo formula as introduced in~63!.
Furthermore, we continue assume that the optical matrix el-
ements are essentially constant and that such elements are
the same for both alloy components and we hence normalize
them to unity. The optical absorption is proportional to the
negative imaginary part of the retarded polarizability of the
disordered medium2ImP(v), which can be formally writ-
ten as

P r~v!52 lim
b→`

iv→v1 id

b21(
i«

E d3k

~2p!3

3^Ga~k; i«!Gb~2k; iv2 i«!&, ~124!

whereby thek integration is understood to be carried out
after the configurational average has been performed, since
before that both resolvents would depend nontrivially on two
momentum variables.

We consider our system at zero temperature and follow
partly the method used in Ref. 30 for our calculations. At
T50, the polarization can be obtained as the energy convo-
lution around the conduction band branch cut of the
k-summed vertex-corrected two-particle functionK(z1 ,z2)
5* d3k/(2p)3 ^Ga(k;z1)Gb(2k;z2)&, such that

P r~v!5rCK~z,v1 id2z!dz, ~125!

where we have taken over the following definitions from
Ref. 30:

K~z1 ,z2!5
R~z1 ,z2!

12L~z1 ,z2!R~z1 ,z2!
, ~126!

whereL(z1 ,z2) is the usual CPA vertex from~85! and

R~z1 ,z2!5E d3k

~2p!3
Ḡa~k,z1!Ḡb~2k,z2! ~127!

FIG. 1. Regimes for the CPA of the single-particle density of
states~123! for wl51 in a binary substitutional alloy depending on
the impurity concentrationc and the disorder strengthV. In the
lowest region the band is unsplit. Above the first dashed line the
bands split into two components and above the second dashed line
the CPA self-energyS exhibits a pole between these components.
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is the average-decoupled two-particle function. Assuming
that the conduction and valence band dispersion relations
exhibit a similar shape such that they scale proportionally

«a~k!

wa
57

«b~k!

wb
, ~128!

~127! can be shown to simplify to

R~z1 ,z2!5
waFa~z1!6wbFb~z2!

wa@z22Sb~z2!#6wb@z12Sa~z1!#
, ~129!

whereFl(z) are the site-diagonal single-particle functions
first introduced in connection with~45!. As usual we assume
that the effective mass of an electron in the conduction band
is positive and that of a hole in the valence band is negative.
Accordingly we have chosen the upper choice of signs in
~128! and ~129! for our calculations.

To be able to analyze the obtained results with regard to
the effect of the inclusion of vertex corrections we first con-
sider qualitatively the features that would be expected from
the transition process represented by the energy convolution
in ~125! in an intermediate regime of disorder, if the configu-
rational average in the two-particle function is decoupled and
effectively only single-particle properties are employed. This
would correspond to replacingK from ~126! byR from ~127!
in ~125!. We assume for now that the concentration is about
0.5 and the bands have just split by a finite amount. With the
semielliptic bands used, the transition process can be repre-
sented as shown in Fig. 2.

The disorder strengths give approximately the distance
between the centers of the single bands. The convolution of
two separated finite bands, occurring inR, would yield a set
of finite bands in the joint density of states~DOS! whose

width is the sum of the widths of the contributing compo-
nents. Two cases are considered where the band offsets of the
A andB components of the alloy are in equal or opposite
directions corresponding to parallel or antiparallel disorder.

In the case of parallel disorder, this would amount to the
Ab→Aa and Bb→Ba transitions lying in the center of the
joint DOS, framed by the contributions from theBb→Aa and
Ab→Ba transitions at the upper and lower ends, respectively,
as shown in Fig. 3. Atc50.5 these regions would have rela-
tive distribution of weighted states of 1:2:1 from lower end :
center : higher end. In the case of antiparallel disorder the
picture should be similar with the only difference that the
spectrum is turned inside out with theBb→Ba andAb→Aa
components on the top and the bottom ends of the joint DOS
and the mixed transitions in the center, again with a distribu-
tion of 1:2:1.

The calculations in the previous section for the split band
case strongly suggest that the vertex corrections will increas-
ingly suppress the cross transitions as the disorder strength is
increased, which is verified in our numerical results. Indeed,
our results show that this suppression is already displayed
quite strongly in an intermediate disorder range, i.e., in a
regime where the single bands just begin to split.

The plots in Figs. 4 and 5 show cumulative absorption
spectra calculated from~125! as well as their single- and
double-weighted components for parallel and antiparallel
disorder of various strengths, covering both the joint and the
split band regime. The conduction band half-width is nor-
malized to unity and the valence band half-width is taken to
be 0.8. The concentration of impurities is fixed to 0.35 in
order to study the high-concentration behavior rather than
dilute impurity effects.

In the transitional region when the disorder strengths start
to exceed the single-particle half-bandwidthsuVl /wlu>1
and the conduction and valence bands start to split we ob-
serve the following behavior: In the case of parallel disorder
shown in Fig. 4 the spectrum starts to exhibit a discontinuity

FIG. 2. Diagrammatic representation of the energy convolution
in ~125! effectively using the termR(z1 ,z2) from ~129! only. If
R is taken atz15z2 and c is aboutc50.5, the conduction and
valence bands are split and the imaginary part ofR decomposes
into four components centered about«a

A , «a
B and«b

A , «b
B as shown

qualitatively. The components are separated by the band gapEg in
the middle and the single-particle splittings in the conduction
and valence parts at the upper and lower ends, respectively.
The energetic differences between the gravity centers are given
by Va5«a

A2«a
B and Vb5«b

A2«b
B , as already introduced, as well

asD[«a
B2«b

A(B) . Bracketed expressions denote antiparallel disor-
der.

FIG. 3. Qualitative result of the convolution~125! as it can be
expected if performed using the termR(z1 ,z2) from ~129! only. At
aboutc50.5 the joint density of states would be expected to dis-
tribute over regions in terms of their compositional origin as shown.
The inclusion of the vertex is expected to primarily suppress the
mixed AB transitions and favor theAA andBB transitions as the
disorder strength is increased. For parallel disorder this leads to a
suppression of the spectra at the flanks while for antiparallel disor-
der ~in brackets! it causes a suppression of the central part. Both
these features are well represented in the calculated spectra of Figs.
4 and 5.
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in its derivatives at the flanks, accounting for a pair of mixed
components splitting off sideways from the main contribu-
tion. At the transition point the contributions of the flanks
relative to the central bulk part are approximately distributed
in a ratio of 1:14:1. In the case of antiparallel disorder
shown in Fig. 5 the suppression of the mixed transitions is
even stronger so that as soon as the single bands split the
crossed transitions cancel out entirely within the numerical

accuracy and the joint density of states starts to exhibit a gap
between two separate contributions which mainly consist of
A andB transitions, respectively.

In a regime of strong disorder, where there is a large
splitting of the single-particle bands as shown in the last
plots of Figs. 4 and 5, one finds that over large regions the
single- and uniformly double-weighted contributions coin-
cide almost exactly, implying that the spectrum is built al-
most entirely from the total diagonal element of the two-
particle function, which we had calculated at the end of Sec.
IV. The total diagonal element can be obtained as an inde-
pendentk sum over the two single-particle resolvents in-
volved. This situation represents a breakdown of the
k-selection rule which holds in pure media.

If the splitting of P into single-weighted components
P5PA1PB is considered and the result is compared in
appearance with the splitting into components of the site-
diagonal single-particle function6

Fr~v!5E d3k

~2p!3
Ḡ~k,v1 id!, ~130!

one finds that the single- and the two-particle behaviors ap-
pear to be strikingly similar in the case of antiparallel disor-
der, as can be seen if the plots for the imaginary part of the
single-particle function shown in Figs. 6~a! and 6~b! are

FIG. 4. Negative imaginary part of the polarizability of the dis-
ordered medium~joint DOS! for parallel disorder and its possible
weightings intoA and B or AA, AB, andBB components. The
concentration ofA atoms is fixed toc50.35 and the band half-
widths were taken to bewa51.0 andwb50.8 for the conduction
and valence bands, respectively. The disorder was varied through a
range of parameters, annotated on the bottom right of the plots, with
particular focus on the splitting pointuVl /wlu51 of the single-
particle bands. At the splitting point a pair of flank components
starts separating sideways and gets completely isolated as
Vl /wl→3 in the last plot. These flanks are constituted of about
50% by theAB component, whereas the central region almost en-
tirely consists ofAA andBB components only.

FIG. 5. Negative imaginary part of the polarizability for antipar-
allel disorder~reversed in the valence band! with otherwise equal
model parameters to the parallel case shown in Fig. 4. The joint part
starts to exhibit a gap as soon as the conduction and valence bands
do. In the split regime the spectrum almost entirely builds up from
singleA andB components which in the interior of the two bands
again coincide largely with theAA andBB components, indicating
a strong breaking of thek-selection rule already in an intermediate
disorder regime. In the last plotVa53.0, Vb522.4 it can be seen
that the double-weighted functions are nonzero in the gap region.
This means that in a case where the optical cross sectionsmA/B of
the ofA andB atoms in~131! are nonequal, the gap in the observed
absorption spectrum would be less complete, containing eitherAA
or BB states primarily.

FIG. 6. Imaginary parts of the site-diagonal single-particle func-
tion F taken for the same concentrationc50.35, a band half-width
of w51.0, and disorder strengths of~a! V50.8 and~b! V51.2. By
comparing the splitting behavior of this function with the one of the
corresponding two-particle function for antiparallel disorder, shown
in the third and fourth plots in Fig. 5, one finds that the behavior,
particularly the one of the single-weightedA andB components, is
strikingly similar.
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compared to the ones for the corresponding parameters in the
two-particle case of Fig. 5~third and fourth plots from the
front!.

In a system without disorder this similarity is evident if
there are no further local interactions in the problem, since
the noninteracting two-particle motion decouples into a cen-
ter of mass and a relative coordinate, and while the center-
of-mass motion can be set to zero, the relative one can be
mapped onto a single-particle coordinate. Upon the addition
of the disorder, this decoupling fails to work and it can only
be regained by using an appropriate configurational averag-
ing procedure. However, if in the presence of disorder an
average is only performed on a single-particle level, thus
omitting average induced two-particle correlations, the re-
duction obviously fails to work, as is seen through compar-
ing the plots of Fig. 7 showing a spectrum calculated without
the vertex corrections with the ones for the corresponding
parameter values of Fig. 5, which properly include these cor-
rections. The results show that in regimes of intermediate
and strong disorder the influence of the vertex corrections is
very substantial.

In comparison to the single-weighted~twofold! splitting
the double-weighted~threefold! splitting exhibits a rather cu-
rious behavior. Even though the components2ImPAA and
2ImPBB lie underneath their single-weighted complements

2ImPA and2ImPB in some parts of the spectra, which one
might expect to happen globally on first thought, they either
coincide with them or even exceed them in other parts—
sometimes to such an extent that they reach beyond the cu-
mulative function. However, it has to be noted that these
components, like the unweighted function, are always uni-
formly positive in sign, and therefore exhibit the correct ana-
lytic behavior that a function defined on this footing has to
satisfy. It is required that these components be positive defi-
nite, because the net absorption in the medium must always
be positive unless the system is excited out of equilibrium,
which we do not consider here. In the preceding discussion
we have assumed for convenience that the optical matrix
elements between states of different components of the alloy
are equal. If, as mentioned at the beginning of Sec. IV B,
different optical cross sections~matrix elements! mA/B are
distinguished forA andB atoms, the weighted contributions
to yield the integrand of~125! would sum as

K̃5~mA!2KAA12mAmBKAB1~mB!2KBB. ~131!

This shows that it would be possible to observe one of the
functionsPAA or PBB predominantly if eithermA or mB

happens to be much larger than the other. The mixed function
PAB, however, will never be a separately observable quan-
tity, no matter how the cross sectionsmA andmB scale rela-
tively, and therefore not so rigid criteria for its analyticity
apply as for the uniformly double-weighted functions.

VI. DISCUSSION AND CONCLUSION

In the previous sections we have obtained expressions for
a wide class of weighted two-particle Green’s functions. Ad-
ditionally, in conjunction with the Appendix, we have man-
aged to derive a general description for the solution of the
two-particle CPA vertex equation, applicable for a case in-
cluding weights as well as for one without, for an arbitrary
number of channels within each of the two single-particle
subspaces considered. The large choice for possible weight-
ings is substantially reduced as restrictions are made to func-
tions which would be useful in linear response theory. In
both cases which are discussed for this kind of application,
only five different weighted functions remain of which only
two are genuinely independent.

The structure of the weighting process is closely related to
that derived for the single-particle theory with the main dif-
ference that now the weights also depend significantly on the
CPA vertex corrections. The calculation for the split band
limit, the domain in which the CPA is superior to most of the
other theories of disordered systems, gives direct insight into
how the properly weighted CPA extracts the correct limiting
behavior from different possible physical processes.

Some care is needed in interpreting the precise physical
meaning of the weights, since they are obtained for the av-
eraged functions, which describe the disordered medium as
effectively homogeneous. The concept of the propagation of
a particle between sites of different components is therefore
lost in the effective medium as a consequence of averaging
and the initial exclusion of specific propagation paths in the
unaveraged function leads to the effective weights. These
weights simply account for the average partition in probabil-

FIG. 7. Negative imaginary part of the polarizability without
vertex corrections for antiparallel disorder. The parameters taken
were ~a! c50.35, Va50.8, Vb520.64 and~b! c50.35, Va51.2,
Vb51.0. The characteristic splitting of the joint DOS, which is
displayed in the properly corrected function of Fig. 5 as the disorder
strengths exceed the valueuVl /wlu51, does not occur and the
shape of the joint DOS rather resembles the qualitative one of Fig.
3. The curves for the single-weighted components in both~a! and
~b!, which were obtained from correspondingly weighted uncoupled
single-particle functions, do not satisfy the sum rule
P5PA1PB.
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ity for the simultaneous propagation of the particles between
partly or completely specified site types at a given pair of
energiesz1 andz2 .

Our numerical results show the general importance of the
inclusion of vertex corrections into a properly self-consistent
two-particle formalism. We find that, as a consequence of the
inclusion of these average induced two-particle correlations,
the center of mass and relative motion of the two-particle
system effectively decouple to a large extent.

We believe that the general method developed here will
find applications in various situations where two-particle mo-
tion is studied in a disordered medium. The effect of alloying
on the electronic susceptibility and hence for example on the
Ruderman-Kittel interaction has already been mentioned. In
particular it can be extended for use in systems where the
two particles have a direct interaction, such as the Coulomb
interaction between carriers occurring in excitons in alloyed
systems. In such a case the static correlations between par-
ticles, created by the disorder and accounted for by the ver-
tex corrections, and the dynamic correlations introduced
through the carrier-carrier interaction create additional static-
dynamic correlations. Moreover it may be possible that the
underlying disorder of the system gives rise to an induced
disorder to the carrier-carrier interaction itself. Both of these
effects can be treated within the method developed here and
are discussed in a further publication.34
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APPENDIX

In this appendix we show how the site-diagonal vertex
equation~39! can be solved even if all quantities in thea and
b subspaces are matrices in an arbitrary choice of channel
indices. First of all one can replace the average in~39! by
writing

Gn5^Tn
a$Ḡaga

21C8gb
21Ḡb1gaKgb2ḠaSaC8SbḠb

2ḠaGnḠb%Tn
b&. ~A1!

This now represents a matrix equation for the site-diagonal
vertexGn , which has a definite solution. However, its solu-
tion cannot be obtained through a simple inversion of any
combination of matrices which occur in the above expres-
sion, not even in a case when the two subspacesa and b

coincide, asGn on the right hand side is embraced by other
matrices fromboth sides. It is therefore necessary to intro-
duce some further algebraic tools. Equation~A1! is of the
form

X5A1BXC, ~A2!

where a solution forX is required,A is an N3M , B an
N3N, andC an M3M matrix, andB andC are regular.
The matrix elements of all the matricesX, A, B, andC may
be represented asxi j , ai j , bi j , and ci j , respectively. The
quantityB^C shall be defined as theN•M3N•M matrix
representation of the tensor product ofB andC,

B^C[@bi j ^ckl# iM1 l , jM1k , ~A3!

as well asI the matrix representation of the unit tensor prod-
uct,

I[@d i j ^ dkl# iM1 l , jM1k , ~A4!

wherei , jP$1, . . . ,N% andk,lP$1, . . . ,M % and every sym-
bol representing an element of the newN•M3N•M tensor
space is printed in boldface. Furthermore, theN•M vector
A shall be defined as

A[@aik# iM1k . ~A5!

This notation now allows us to rewrite the productBXC
from ~A2! as

BXC5~B^C!X, ~A6!

and therefore~A2! is simply solved as

X5$I2B^C%21A. ~A7!

Implicitly, this also immediately gives the solution for the
matrixX, as the row index of its matrix elements is given by
the integer value of division of the index of each element of
X by M and their column index by the remainder of the
division.

The solution of the vertex equation~A1! can therefore be
written very similarly to~40!,

Gn5un&L̂^nu@gaKgb1Ḡaga
21C8gb

21Ḡb

2ḠaSaC8SbḠb#un&^nu, ~A8!

with the vertexL defined as

L5$I1^tn
aFa^Fbtn

b&%21^tn
a

^ tn
b&, ~A9!

and Tn5un&tn^nu was used again. Equations~42! and ~43!
generalize to

K5ga
21ḠaSaC8SbḠbgb

211(
n

~@ga
21Ḡaun&# ^ @^nuḠbgb

21# !L^nu@gaKgb1Ḡaga
21C8gb

21Ḡb2ḠaSaC8SbḠb#un&

~A10!

^mugaKgbum&5^muḠaSaC8SbḠbum&1(
n

~^muḠaun& ^ ^nuḠbum&!Lu@gaKgb1Ḡaga
21Cgb

21Ḡb2ḠaSaC8SbḠb#un&,

~A11!
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as well as~47!–~52! to

ak5(
m

e2 ikRm^muḠaSaC8SbḠbum&, ~A12!

ak5(
m

e2 ikRm^muga
21ḠaC8Ḡbgb

21um&, ~A13!

Ak5(
m

e2 ikRm~Fm
a

^F2m
b !, ~A14!

Bk5(
m

e2 ikRm~^muga
21Ḡau0& ^ ^0uḠbgb

21um&!,

~A15!

bk5(
m

e2 ikRm^mugaKgbum&, ~A16!

ck5(
m

e2 ikRm^muK um&, ~A17!

with which ~A10! and ~A11! can be solved as

bk5@ I2LAk#
21@ak1LAk~bk2ak!#, ~A18!

ck5~Sa^ Sb!ak1LBk@bk1ak2ak#. ~A19!

As in the section for the scalar theory,ck only provides a
solution for the termK and not the termM which com-
prises the terms containing single products withU, for
whose solution the structure ofC8 has to be known. Once
this is the case,M can be calculated exactly along the same
lines as the generalized calculation forK presented here. As
before the solutions for the single-weighted functions, as, for
example,̂ G0iCGi0&, are void of this difficulty, and in anal-
ogy to before, the solution for the Fourier transforms of its
diagonal elements can be obtained as

dk5bk, ~A20!

wheredk5(me
ikRm^mu^Ga

0iCGb
i0&um&.
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