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From a discrete to a continuum model for static antiphase boundaries
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Energetic discrete and continuum models for a heterogeneous ordered él@ystiucture are presented. In
the first instance we use a one-dimensional Ising model in the mean-field approximation where the interaction
range is limited to the first-nearest neighbors. From this discrete model the long-range-order parameter and
concentration profiles across tiE00 nonconservative antiphase boundéPB) are investigated. The free
energy and the interfacial free energy are calculated. The equilibrium equations prove to be coupled via linear
gradient terms that contribute to a concentration segregation at the APB, evestoictdometriccompound.
The segregation amount is quantified by solving numerically the equilibrium equations, and is shown to be
associated with a reduction in the interfacial free energy. The discrete model is extended to two dimensions,
from which a continuum approximation is drawn. A three-dimensional generalization that accounts for aniso-
tropic effects is performed. As a particular case, a class of conservative APB’s is examined.

I. INTRODUCTION &Afo dZC
o " 2Kege =0 @

In their pioneering work Cahn and Hilliatgproposed a
phenomenological model for a heterogeneous disordered bi-

nary alloy in which a quadratic gradient energy term is added"e coupled only through thief°(7,c) function. The authors
to the homogeneous free-energy density, viz. showed that these equations account for segregation at the

antiphase boundarig®\PB’s) in a nonstoichiometric alloy.
f(c,Ve)=10(c)+ k(Ve)?, (1)  However, their model does not acknowledge segregation in a
_ _ . . stoichiometricalloy, which is necessary at nonconservative
wherec is the concentration and is the gradient energy APB’s on account of the composition symmetry breaking

coefficient. This yielded the equilibrium equation due to such APB’s, as shown in the next paragraph.
0 ) Consider a monocrystal &2 structure as consisting of a
ﬂ ) E -0 @) series of(200 planes occupied alternatively by a majority of
dc Kegye ~ A andB atoms(Fig. 1). A particular antiphase domain can be

created by “cutting” out a slice of the crystal in the middle

In the dual case of a heterogeneous ordered binary a"°¥f two AB pairs of planes and displacing the slice along the

Al d Cahf have designed th | free- -
funecr;ioannal a ave designe © analogous free energyb=(1/2)[111] vector. The extreme right-hamf plane of the

slice is then moved to the vacant sites at the left-hand of the
5 )= £9( 1) + vRY slice. This produces two plan&t00) APB’s, the left-hand
(V) =10m) + 1, (V)% & APB defining an excess & atoms and the right-hand one
where 7 is the long-range-order parameter arg is the an excess oB atoms, as indicated below:
gradient energy coefficient. This led to the equilibrium equa-

tion ...ABABAABABA - -BABABBABAB - -.
dAfe d?y o o
———2k,——>=0. (4) o .
dy 7 dx Note that this is an analog of the Gibbs scheme, where a

R ing th ity of taking i and diffuse interface is idealized by an abrupt interface between
ecognizing the necessity of taking into account bptand 4, homogeneous materials. The excess concentration at

C parameters when a nonstoichiometric ordered ‘."‘!on is CONzach APB clearly breaks the translational symmetry of the
sidered, K_rzanowg_lq and All_ébrp_roposed the addition of @ ,mhosition field. Although the composition field will be
concentration gradient contribution to E@), viz., smoothed out by relaxation towards equilibrium, the excess
- - - concentrations cannot be completely removed unless the
— 0 2 2
f(7.¢,.V7,Ve)=17(n,0)+ k, (V) "+ xe(VE)". (5 ApB's themselves are removed. On the contrary, a conserva-
In doing so they neglected the cross terms in the gradieri{ve APB generates no excess concentration in its own plane

energy. The resulting two equilibrium equations since in this case the “cut” and “pasted” plane is of matrix
composition. Any comprehensive energetic model will have

IATO d?y to account for these various features. It is the motivation of
pp 2Ky 2 0 (6)  this work to provide such a model.
In this paper a continuum model that incorporates the full
and coupling effect between concentration and order parameter is
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0 [100] Thg orQering energyo fpr first-nearest-ngighbqr pair inter-
action is chosen negative to favor ordering, viz.,
/o/’ l ° 04
b J/-’ ® B wZSAB_%(SAA+SBB)<O' (10)

a ~

In the B2 structure the total number of first-nearest neigh-
bors isZ=8 and the number of nearest neighbors in an ad-

FIG. 1. Atomic structure of a domain in B2-type alloy. The . -
jacent plane is onlyg=(1/2)2=4.

structure consists of the two sublatticesand 8 translated by the
vectorb=(1/2)[111]. Each pair of(200) planes is labeled.

A. The mean-field free energy
presented. As a first step, the free-energy function is calcu-
lated within the Hillert atomistic framework and the equi-
librium equations are established analytically. The conse
guences of these equations are determined in termsawfd
c profiles and interfacial free energy for a plaria®0) non-
conservative APB. To account for the anisotropy of B# F=E-TS (11
structure a two-dimensional Ising model is constructed. In
the second part of this work the continuum model is pre-The energy of mixinge is calculated by a procedure analo-
sented. Its one- and two-dimensional versions are based up@ous to that used by Maugiin the fcc structure. The total
the continuum approximation of the discrete models. A threeinternal energy is first evaluated as the sum of the interaction
dimensional version is then induced. The consequences ehergies of each pair of first-nearest neighbors. Each pair

The free energy per unit site=.7/Q), where.7 is the
total free energy of the sample, is written in terms of the
energy of mixingE and the entropy of mixing, viz.,

the later on anisotropic segregation are drawn. involving two sites, a single site contributes to half the inter-
action energy with each of his neighbors. In the biplane num-
Il. THE DISCRETE ISING MODEL bern, the site f,«) hasz neighbors in the planen(-1,8)

) ) ~andz neighbors in the planen(3), while the site ,8) has
Our representation of the s_ample consists (_)f recognizing nejghbors in the planen(e) andz neighbors in the plane
two sublatticesa and 8 which in the[100] direction define (11 4. Each pair of sites will contribute according to the
alternating(200) planes ofa and 8 type, a pair of these propability that it is ofBB, AB, or AA type. For example,

planes being indexed hy (Fig. 1). The crystal consists 8 the pair (1,a)-(n,8) gives the contribution
biplanes containind) atoms each, thus defining a total of

NQ sites over which atom#& and B are distributed. Two

numbers are necessary to define the composition of a given (a) ( ,6’)

— 1 a B antB ra~f
=slcncregpt(cacy”+cpch)eas

biplanen. We choose the two concentratiocfsandc’ of B 2

atoms in planesr,«) and (n,8), or alternatively the local

n/j\n

long-range-order parameter +chclPenl. (12
1,0 B In Eq. (12) we have used the shorthand notat@n=1—c.
h=3(Ch—CH) (89 oo ; : :
n no*n The contribution of the neighbors of site,) is then
and the local average concentration
N a a B
Ch=3(c2+ch). (8b) En=zE +z8 ) (13

At this level of approximation we take no account of the
short-range order, the state of the whole sample being fullyhile the contribution of the neighbors of sita,3) is
described by the set of parametdrs,,c,}. For a closed

system the average concentratoof the sample is constant

and defined by s | S L . (14)
n n/in n/\n+1
1g 1 h b f | Il of pl
= _ [ The contribution of one lattice cell of plana is now
c=—2, C,==— c. 9
anl " 2NnZli=2a,B " ® E,=EZ+E?, which in full is
2z cicheget (chcy’+chch) et chicr e anl
En:% +Z[cpeh_jemst(cnchf it el eastcpchfisanl | (15

! ! ! !
+zlchcn 1eppt (Chentiterfen, Deapt ChPe s 1eanl
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The total internal energy of the sample is the sum of the 1 N 1
contributions of each of the (1/9) cells of each biplana, E= Esz [c(1—cP)+ch(1—cH]- 520
viz., n=1
N
N —(c%— Y\ oeh B_ 1\
1 X 2 [—(ct—haeh [ +(cP-Hoe]. (21
5tot—§ 2 (16) o~ n_ 2 n-1 n" 2 n

Here and in the following we use the discrete operators de-

The energy of formation equals the difference between théned by
total energy#,; and the energy of the separated pure metals

Zoure- The latter is D= Tns1— Tn > (229
1 £7/577n:%(77n+1_ Mn-1), (22b)

/pure ZNQZ[CSBB+C eaal (17) and
iZ277n: Tnr1~ 270+ Pn-1- (229

which, according to the definition of PEq. (9)], can be
written This anticipates a transformation to continuous derivatives.

In the case of a homogeneous alloy, the second sum in Eq.

(21) obviously reduces to zero, while the first sum reduces to

N
1 1 1
~epp, (Cp+ch)+ Senn
2 n=1 2

Loue=50Z

1
E= ENzw[ca(l—cﬁ)Jrcﬁ(l—ca)]. (23
(18) The second sum in Eq21) is then the specific contribution
of the heterogeneities of composition in the sample.

) _ o We have retained the Hillérapproximation of the con-
The energy of formation per unit site 5= (Zi— “pud/Q  figurational entropy of mixing which assumes that in each of
and is written from Eqs(16) and(18) as the sublatticesr and 3 the distribution ofA andB atoms is
totally random,

N
X > (che+clPy|.
n=1

i £ 27(co+ By 12( +clP)
== |E,—>Z(ci+c - =Z(c[*+c :
22 |Enm 2%(CnCh)es™ 3 2(Cn ) e =——k§‘, E', [cInci+(1—chin(1—ch)]. (24)
(19) =1li=aqa,B

. . _ . Notice that this form is invariant relatively to any permuta-
Incorporating Eq(15) in (19) yields E as a function of the 1, ¢ e c, and therefore does not contribute to the het-

set of average concentratiofis, ,c;;}. Some simple algebra erogeneity part of the free energy.

shows_ that the _ordering energydefined in Eq(10) can be Introducing 7, andc, defined by Eqs(8a) and (8b) into
factorized, leading to (21) and (24) we obtain by rearrangement
N
1o p_ah L. g B E= sz [72+c,(1—c )]—EZwE [(Z,)2—(Tc,)?
E 2 Cn+Cn_CnCn_E(Cncn—l—i_cncn-#l) . In n n 2= I -en
20 +2(co— 5) PO 29,75, (25)

Grouping the terms into two sums gives the final resultand

(cnt mn)In(cy+ 70) +(1—cn— 7p)IN(1—cn— 7,)

+(ch— mn)In(c,— 7n) +(1—Cn+ np)IN(1—cy+7y) |- (26)

1 N
-5k

In (25), (Z75,)? represents a contribution of the order- B. The equilibrium equations

parameter heterogeneity,(Zc,)? represents a contribution

of the concentration heterogeneity, and the last two cross-

terms couple the contributions of order-parameter and con- We introduce two chemical potentials, and w,, related,
centration heterogeneities. As far as we know, these last twiespectively, ton, andc,, and show that the equilibrium
terms have been neglected so far. They are discussed incandition specifies that they both are uniform. The discrete
following section. equilibrium equations follow from this requirement.
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At equilibrium, F({c}) is extremal with respect to any C. The interfacial free energy
infinitesimal variation of the parameter sft,} that con- We consider the system described in the introduction and
serves the overall concentration This leads to the discrete consisting of an antiphase domain bounded by two noncon-
equilibrium equations servative(100) planar APB'’s. The interfacial free energy per
unit site of one of these APB’s is defined by=AF. Incor-
JAF/dcy=dAFIach=0, (27 porating Egs(25) and (26) into (28) and separating the ho-

Where mogeneous and heterogeneous parts into two sums we obtain

AF=F—F-pu(c—c). (28) o=2 Af0+ 2 ER, (33

F is the free energy of the equilibrium homogeneous sample

of the same composition. u is a Lagrange multiplier ac- where the heterogeneous part is

counting for the conservation & atoms and can be shown

to equate the equilibrium exchange chemical poterftak 1

the Appendiy. In order to use the alternate set of parameters > En=— EZwE [(Zmn)?—(ZCp)?+2(Ch—3) P g
{7n.Cn} we now introduce the two discrete chemical poten- " "

tials,\,=dF/dn, andu,= dF/dc,, related, respectively, to =29, 7%, ]. (34)
the parameterg, andc,,. Using Eqs(25) and(26) they are
written in full as Using the equilibrium equation&323 and (32b) and per-

forming the summations if33) yields
Ap=— 2(1)[ —Znn— %Z(fﬂzﬂﬁ 2£%Scn)]

1 Cnt 7n Ch= 7n E EEZO (35
+§len(1—cn—nn / 1=c,+ 7 (299 n
and and the final result
,un=—2w[Z(Cn—%)+%Z(@2CH+ZIZS77”)] 0 1 & 2 . 2
0=2 A== 35203 [(Vm)*=(7en)?].  (36)
1 Ccpt Ch—
+ —kTIn( n n_ ) (29b) _ o _ _
2 1-ch—mn 1-Cptmy Notice the negative sign before the concentration contribu-

tion in (36). A similar result was found by Gouyewithin a
mean-field model with repulsive interactions. It is striking
1( 9F aF) that the heterogeneous part efreduces to zero. In more

The linear relations

(309  details, it appears from the numerical results that the overall

n ~a .8
2\dcy dcy positive contribution of the squared diﬁerence@ﬁﬂ [first
and two terms in Eq.(34)] is exactly balanced by the overall
negative contribution of the linear differenddast two terms
1/ 9F OF in Eq. (34)], leading to a total null contribution.
=—|—+— 30b)
Ho= 2\ ace ™ ocP (300

. . . . D. Numerical results
associated with Eq28) and (9) allow us to write the equi-

librium equations27) under the form The equilibrium equations are solved numerically for the

system of two APB’s described above. Attention is focused
A=0 and u,=pu (31) on alloys of stoi_ch_iometric composition. _ N
In our description of the crystal lattice the pairing of
which specifies that the discrete chemical potertjghas to  planes is arbitrary. We choose to pair them so as to give rise
be uniformly null and that the discrete chemical potentialto biplanes of excesa (B) at the left(right) APB in Gibbs
M, has to be uniformly equal ta. Note that in the particular scheme, as indicated below:
case wherc=1/2 we haveu=0. Incorporating Eqs(29a

and (29b) into (31) and writing the homogeneous parts in a ...AB/AB/AA/BA/BA- - -BA/BA/BB/AB/AB- - -.
condensed form yields the discrete equilibrium equations — —
JAFC (type AA) (type BB)
+z0[ PP, +27%,]=0 (329
7n We integrate numerically the kinetic relaxation equations of
and the{c}} derived by Martifi to find the equilibrium state that
has been proven to identify with the asymptotic limit
JAFO 7 t—oo. We have checked that the resulting andc,, profiles
ac, —z0[ ZPcy+27°9,]=0, (32b  are not affected, except by a possible translation alongthe

axis, by the initial profiles chosen. By adding a random field
whereAF? is the homogeneous part AfF. to the{c,} at each step of the integration we make sure not
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0.5
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o
0.5
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(a) Biplane number
0.1
5, 005+ A A
g
g 0 ~n-o-.:62'H—L'33=o-oq h.-oﬁiz\—Q—ISSSQ-.-..
@
£ 0.05 ¥ ¥ FIG. 3. Path lying on the\f%(#,c) surface corresponding to
el | —=E, Fig. 2. As  and ¢ vary across the antiphase domain the path is
——Af abcda If ¢ is constrained to 1/2 the path&SbSa S is the saddle
-0.1 point situated aty=0 andc=1/2.
0 5 10 15 20
) Biplane number the segregation profiles is comparable to that of the order-

parameter profile as defined by 27/(d7/dx) 7=0"

FIG. 2. Two (100 APB's bounding an antiphase domain in a  When crossing the antiphase domaip, andc, vary as
stoichiometric alloy at the temperature of 0,8 (a) Order param-  shown in Fig. 2a) and accordingly follow a path in the
eter and concentration profilet) Homogeneous and heteroge- (7,c) plane. In the ¢,c,Af° space this defines a path lying
neous parts of the free-energy density. on theAf%(%,c) surface(Fig. 3). We see that if the concen-

tration was constrained t@=1/2 the path would pass
to reach an unstable or metastable state. Figl@eshows  through the saddle point on thef®(#,c) surface. Since
the », and c, profiles computed at the temperature actually varies at each APB, the path is a cycle that passes
T=0.8T.. As expected, the leftype AA) APB is enriched through higher values ai f°. As a consequence, the contri-
in A atoms while the righttype BB) APB is enriched irB  bution of the homogeneous part of the free energy to the
atoms. The extremum of segregati@m— 1/2| occurring at interfacial free energjEq. (33)] is slightly higher. However,
the two»=0 planes is not negligible since it reaches 25% ofthis increase is largely compensated by the correlative anni-
the equilibriumz value. The total segregation at one APB is hilation of the heterogeneous pakq. (35)]. In summary,
defined by the excess concentration segregation occurs in the disordered region because it pro-
vides a decrease iheterogeneoufree energy that exceeds
the correlative increase in homogeneous free enekdy.
and E',] equilibrium profiles are shown in Fig(1d.

Values of interest concerning a single APB are summa-

ceX=§n) (cy—C). (37)

It is negative for theA A-type APB and positive for th&B- ) ) ;
type APB and amounts to 20% of a puk@\ or BB biplane rized in Tab!e | as functions of temperatl]feThe_extremum
(see Table ). By symmetry, the two APB's have opposite Of Segregatioric™—1/2 and the total segregatiqe®| ap-
segregations such that the total segregation in the sample R§2r t0 be decreasing functions of temperature, and tend to

zero, as required by the conservation of atoms. The extent &I_Fr?s(‘;‘;hir_g prroaches the critical temperature of ordering
. ig. 4

TABLE I. Results of the numerical calculations. Equilibrium !N nonstoichiometric alloys, APB segregation of the ex-

order parameter;, slope @7/dx),, and widthl of the # profile,

extremum of segregatige™— 1/2), total segregatiofic®|, and in- 03
terface free energy for the (100 APB as functions of the reduced 025 1
. . . . 0 .
temperaturelT/T.. Lengths are in units o and energies are in 5 o2 1
units of kT, per unit ared kT.= — (1/2)Zw]. '*E )
€ 015
TIT, 0.6 08 0.95 S 44
= 8 11|
7 0.463 0.355 0.190 0.05 + |mge |
(dn/dX)m 0.40 0.24 0.0805 0 } 1 } }
l 2.3 2.7 4.7 0 0.2 0.4 06 0.8
|c™—1/2 0.15 0.086 0.022 TiTe
|c®q 0.23 0.18 0.095
o 0.21 0.082 0.011 FIG. 4. Extremum segregation and total segregation aflbe

APB in a stoichiometric alloy.
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0.5 to be smooth enough so that, to the second order, we can let
g —=1 et oo n—x in units of the lattice parameter and
<] 03 + _._c...L /. ’\
o 2] 5 ‘
g 014 / - _,.\'\.\_ M= 7(X), (389
E ‘I;-‘l— ‘ .
g 014 / \ (Tmn)2—(dyldx)?, (38b)
5 J ,
I N S dnldx, (380

0.5 (57/‘2 2 2

0 5 10 15 20 S —d nldx (389

Biplane number and equivalently forc,, .

FIG. 5. Order parameter and concentration profiles across an A. The continuum free energy
a_mtiphase domain in a nonstoichiometric alloy of average composi- Substituting Eqs(38) into (25) and(26) and transforming
tion ¢=0.55 at the temperature of 0.8. the sums into integrals yields the continuum approximation

. . ) for the free energy
cess element is found to be “superimposed” with the segre-

gation observed at stoichiometry, leading to a different seg- I
regation amount il A- andB B-type APB's(see Fig. 5. The F=]_ f(#.c.V7,Ve)dx (39
details of this matter will be discussed in another paper.
dn) 2 (dc) 2
Numerical simulations show that at temperatures suffi- dx dx
ciently close to the critical temperature of ordering the dy c
andc, profiles are smooth. In this range of temperature it is +2(c— %)&—297—} (40

then legitimate to reach a continuum approximation from the dx
discrete equations. For that purpose, the profiles are assumedd

with
I1l. THE CONTINUUM MODEL

f(n,c,Vny,Vc)= fo(ﬂ,C)+ K

(c+n)n(c+n)+(1—-c—n)n(l—c—7n)

f(n,0)=Zwn*+c(1=0)]+ 5KT| 4 (c= p)In(c— 5)+ (1—c+ p)In(1—c+ 7) | (4D

f0(7,c) is the homogeneous part of the free-energy densitytow. In effect, following Landau and Lifshitza quadratic

f(7,c,V 75, Vc) and the gradient energy coefficient(0) is  Taylor development of the heterogeneity part of a free energy
f(71,72) must include linear gradient terms of the form

K=—32w>0. (42 m(dy;/dx), i,j=1,2. The twon;(dy;/dx) terms can be

Only one gradient energy coefficient is necessary to accour‘iﬁscarded since they are identical to mere gradients and

for the spatial variations of botly andc. This is related to therefore amount 10 an insignifi(_:a_nt constant in the integral

the fact that our model incorporates only one energetic pa(—)f f OVer space. The two remaining terms can be grouped

rametere, and one lattice parameter into their symmetric and their antisymmetric part, respec-
In addition to the squared gradients, the heterogeneoJévely’

part of f includes nonsquared gradients of batlandc [see

Eqg. (40)]. It shall be noted that the presence of these linear

gradient terms does not violate the requirement thastin-  gn(g

dependent of the orientation of the space. Indeed, consider

the change of orientation defined by the transformation 7o(d 71 /dX) — 1(d 7 /dX). (44)

x— —X. 7 is defined as half the difference in concentration

between the left-hand and the right-hand planes of a biplanEquation (43) is a mere gradient and is discarded for the

[Eq. (8a)]. # is then orientation dependent and changes sigsame reason as mentioned above, whereas the remaining

when the orientation is reversed. Accordingly, the transforterm (44) has exactly the form of the cross terms found in

mation x— —x is accompanied by the transformation our Egq. (40) with the correspondencen;—» and

17— — 1 and we can check that these transformations applied,—c—1/2. We will show in a following section that these

to Eq. (40) leavef invariant, as expected. often neglected terms are essential to the segregation effect.
The last two cross terms in E40) arise naturally from We now focus on the two quadratic gradient terms in Eq.

our lattice model. For the purpose of a qualitative description40). Comparing Eq.(40) with the Krzanowski-Allen for-

they could however have been writtenpriori, as shown mula (5) our model identifiesc, = — k.= «. It is a remark-

72(dny /dX)+ 7, (d 7, /dX) (43
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able fact that the gradient energy coefficiantis negative As Af(#,c,V7,Vc) is not an explicit function ok we
Although it might be argued that this would lead to an insta-c@n Write the first integral of the Euler equatia@s), viz.,
bility of the concentration field, the numerical results show dy  9Af dc  gAf

that this is not the case, on account of the moderating effect Af— ax (d7idx) ~ix a(dcidx)

of the remaining cross terms.
The boundary conditions are the uniform equilibrium state
B. The equilibrium equations defined by »== 7, c=c, anddy/dx=dc/dx=0. Under
) ) o _ these conditions the constant in E¢9) is null. Using ex-
In this section the equilibrium equations of the system areyressjon(40) for f, Eq. (49) gives rise to the equality
established, their consequences are drawn in terms of profile
dn\? (dc\?
dx dx

characteristics and interfacial free energy, and the results are
verified along the equilibrium profiles. Sinakf%(#,c) is

compared with other authors in the case of a stoichiometric

alloy.
always positive, this relation shows that the quadratic gradi-
ent terms have an overall positive contribution to the hetero-

Using the definition ok [Eqg. (42)] and applying the set of
transformation rule$38) to the discrete equatiorni32) yields

geneity part of the free enerdieq. (40)]. Applying relation
(50) to the point of extremum segregation whese-c™,

=const. (49

AfO(n,c)=k (50

the continuum equilibrium equations

IATO [d?7  dc]

—2k| == +2—|=0 (459 =0, anddc/dx=0, the slope of the; curve at this point is
an | dx=  dX] found to be
and d Afo0c™) 2
- dr| _[Ar0en) ™ -
IS d’c dy m K
ac 2K g2 t%ax| O (45D Since Af°(0,c™) is necessarily higher thasf°(0,1/2) (see
. ) ’ Fig. 4), the slope is higher in our case than when the con-
with centration is constrained t=1/2, leading to a slightly nar-
0 _ _ rower interfacial zone. However, these facts do not lead to a
Af%(n,c)=1f(n,c)—f(7,¢)—u(c—c). (46)  higher interfacial energy, as shown below.
In Egs. (45) we have ' The Fiiscrete expression of the interfacial free endBfy
yields, in the continuum case,
ﬂAfO 1 c+n C—n@ i i 2 2
- - o © (dgy dc
Gy 2Aemt KT '”(1—c—n / I-cty a=J Afo(n,c)dx=KJ (&) —(d—x> dx.
47 - o
(473 (52)
and The second equality of Eq52) illustrates clearly how the
0 _ concentration heterogeneity contributes to a decrease in the
IAT 1 cC+y c—7n ) . ) : .
=—2Zw(c—3)+ =kT In X . interfacial free energy. This result is at variance to that of
Jc 2 1-c=n 1-c+ty Krzanowski and AllefEq. (1) of Ref. 3] who find a positive
(47D contribution of the concentration heterogeneity. In the case

Notice that Eqs(45) are coupled via both the gradient terms of a stoichiometric alloy the first equality in Eq&2) can be
and the homogeneity ones. It is easily checked that they argompared to Allen and C_:ahﬁ’se_sulta=2fAf0(7;,1/_2)dx
identical to the Euler equations of the continuum free energyvhich is a value about twice as high. So, the relaxation of the

[Egs.(39) and (40)], which are written concentration field is associated to a reduction of the interfa-
cial free energy by a factor of approximately 2. This shows
JAf d  IAf 0 (484 that segregation at the APB is very favorable energetically.
dn  dxa(dyldx)
and IV. GENERALIZATION TO HIGHER DIMENSIONALITY
JAT  d oAf Thus far we have developed a one-dimensional model for
0. (48b planar APB'’s oriented in thgELOQ] direction. In order to ex-

¢ dx d(dcldx) plore other APB orientations a two-dimensional treatment is

This confirms the self-consistency of the continuum approxi1ow undertaken, which will later be generalized to three di-
mation. In two particular cases, when we restrict the descripfensions. This will allow us to quantify the previous assess-
tion of the alloy to one parameter, the equilibrium equationgnent, based upon symmetry arguments, that nonconservative
(45) reduce to classical results. That is, if the concentration i€\PB’s undergo segregation at stoichiometry.

constrained to a constant value throughout the sample, Egs. _ _ _

(45) reduce to Eq.4) obtained by Allen and Cahn, with A. The two-dimensional mean-field model
k.=—(1/2)zw>0. In the dual case of a disordered hetero- We are concerned withlanar portions of APB’s that in-
geneous alloy where>0, they reduce by setting=0 to  clude the[001] zone axis. Accordingly, we build a two-
Eq. (2) obtained by Cahn and Hilliard, with dimensional model in thé001) plane. Our representation of
K,=(12)zw>0. the crystal thus consists d[001] columns containing(}
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cells each. Each column is indexed by the numipeesdq geneity terms. Following the same steps as for the one di-

in [001] and[010] directions, respectively. The composition mension case, the energy of formation is found to be

of a given column is defined by the order parameter
— a _ B 1 = 1

Mp.q= (1/2)(Cpq—Cpq) and the concentratior, 4= (1/2) _1 « 1 B B (1 a

X(CpqT cqu) wherecg (cﬁq) is the average concentration E Zzw% [Cp.q(1=Cpq) ¥ Cpq(1~Cpq)]

of the & (B) sites contained in the column. Similarly to the

?ne-_dime_r:tsional case, the configurational entropy of forma- 1 Cg'q(C’g,lyq"-Cg’q,l"- cg,lyq,l—?:cg’q)
ion is written ——
220)% +C€,q(cg+l,q+Cg,q+l+cg+1,q+l_gcg,q) !
1 . : . _
— _ i i Al Al
S= 2k% i;a‘,ﬁ [CpginCh g+ (1—cp In(1—ch )] (54)

(53  The second sum in E@54) is the specific contribution of the
heterogeneities. Introducing the parametggs and 7,4 in
As before, the entropy of formation does not include heteroEq. (54) we obtain after some algebra

E= pr}% [n’zqu-l- Cpq(l—Cpg)]

2 2 2
(77p+1,q_ 77p,q) +(77p,q+1_ 77p,q) +(77p+1,q+1_ 77p,q)
2 2 2
_(Cp+1,q_cp,q) _(Cp,q+1_cp,q) _(Cp+1,q+1_cp,q)

1
_Zzw% +(Cp,q_%)[(77p+1,q_7]p71,q)+(77p,q+1_ 7/p,q71)+(77p+1,q+1_ 77pfl,qfl)] (59
+ Wp,q[(cp-%—l,q_cp—l,q)+(Cp,q+l_cp,q—l)+(Cp+l,q+1_cp—l,q—1)]
|

Although the homogeneous term @5) is analogous to that Mp+1q~ Tp—1q— 2071 X, (568
of the one-dimensional modgEq. (25)], the heterogeneity ' ’
term is more complicated since it involves finite differences Mp.gr1— Mp.g—1— 20713y, (56f)
in [100], [010], and[110] directions. To reach a continuum ' '
approximation we use the set of transformation rules, valid Mps1q+1— Tp-1q-1— 2(Inldx+dnldy), (569

to the second order,
and equivalently foc. Applying the rules(56) to Egs.(53)

Mp.q— 7(X.Y), (568  and(55), and transforming the sums into integrals yields the

continuum approximation for the free energy
(77p+1,q_ np’q)2—>((977/(9X)2, (56b)

(Toas 1 T *— (7l Y%, (560 F= [[ tn.c.9 v oraxay 57
(Mp+1q+1~ Mp.g) > (Inldx+anldy)?, (56  with

H(Vn)?+i(e-Vy)?—1(Vc)?—3(e-Vc)?

L e - 2
f(7,c,V7,Ve)=1"(n,c)+« +2(c—1)6-Vy—278- Ve , (58

wherek andf® keep their previous definitiof&€qgs.(41) and  Comparison of Eq(58) with the one-dimensional version,
(42)]. In Eq. (58) we have used the two-dimensional vectorsEq. (17), illustrates that generalization from one dimension
e=[11] andV =[4d/dxdl dy] so that the differential operator to two dimensions is not straightforward. The simple
e-V is simply term-by-term transformatiord/dx—e-V is not sufficient
) and one has to use a particular rule for the square of the
e-V=(dlax+alay). (59  gradient, viz.,
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B. The three-dimensional continuum model

o) 2
1o
(&) —2[(Ve)*+(e-Ve)’]. (60 The generalization method from two to three dimensions

used here consists of inducing the form of the heterogeneous
part of the free-energy densityand then deducing the un-

This last transformation accounts for the incorporation of thenown coefficients by comparison with the two-dimensional

coupling betweerx andy directions, which is of the form  form [Eq. (58)]. In a Taylor expansion we take into account

(d9+/19x)(a9+/3y). Notice the absence of thﬁn Vc term  all terms up to the second degreesjrc and their first spatial

which has been proved nonexistent by the symmetry arguderivatives. Accordingly, the general form forcan be writ-

ment discussed in Sec. Il A. ten, taking advantage of the cubic symmetry of the crystal,
|
an ac ac an\? n\[dn
f| n.c, | = =f%7n,c)+ — |+ — |+ —
el &) A5 slen (3R AT 3 (7] {3 (35
ac\? ac\ ([ ac
+ Ky Z ((9_)(| + ks < (é’—xl (ﬁ_XJ) . (61)
|
The term =(dn/dx;)(dc/dx;) has been discarded since it d77 dc o 1 L.,
does not verify the symmetry requirement of invariance by dg dg =(7.0)+ x| 5[1+(e-n)7]

the X,y,z,7)—(—X,—Yy,—2z,—n) transformation. In the

two-dimensional case wheien/dz=dc/dz=0 comparison dn\2 (dc\? -
of Eq. (61) with Eq. (58) identifies the coefficients dg dg +2(e-n)
L dc
SK1=Ky=K3=— K4=— K5=K. (62 X (C_E)d_g_nd_g - (64)

. _ , , , _ The scalar produce-n accounts for the APB orientation
It ItSI etﬁsny see? tha'; lpcor.potﬁltlrt@Z)dmto (62) y'?lds €X- dependence. Two particular cases will illustrate this point. In
actly the same form fof as in the two-dimensional cageq. the case of th€100) APB examined in Sec. IIﬁz[lOO] o)

,(58)] provlded that the vectcle. is redefined ae=[111] thate-n=1 andg=x. Substitution into Eq(64) recovers
instead ofe=[11]. Notice thate is now parallel to the vector Eq. (40) of the one-dimensional model, as expected. Con-
b= (1/2)[ 111] which defines the translation between the tWOsjder now the conservative ((Dj. APB which has the prop-
sites of an atomic cellsee Fig. ). It is not surprising to find erty that the translation vectdrlies in the plane of the APB.

ultimately this vector as part of the free-energy functional bering thdi— (1/2)6. th | h i
since it is intimately related to the definitions gfandc. Remembering that=(1/2)e, the normal vector then verifies

We can check that in the particular case afLa0) planar  €-N=0 and Eq.(64) reduces to the simple form

portion of an APB, Eq{(58) with éz[lll] reduces as ex- dn dc 1 7/d de\2
pected to the form obtained earlier in this paper. Indeed, f( ki )_fo(,7 c)+—;< ( 77) (_)
substituting 9/ dy = dnl dz= dcdy=dcldz=0 in Eq. (58 dg dg dg dg

leads directly to the one-dimensional fofifq. (40)].

The anisotropy effect in the free-energy denig. (58)]  \where the linear gradient terms have disappeared. This equa-
is included in thee- V operator. This vectorial representation tion is similar to that stated by Krzanowski and AllgEg.
allows us to find easily the expression of the free-energy8) of Ref. 3, except for the sign ok,
density in the local frame of reference associated to any pla- Notice that in our description the anisotropy effect is re-
nar portion of an APB. For this purpose, we deffnas the lated to the APB orientatiorelative to the [111] direction
abscissa along the normalto the plane of the APB in the This direction is that chosen for the definition gf andc
direction of the gradient ofy. » andc are now functions of ~among the eight equivalent directions. The three-dimensional
g only. As a result, the differential operator form of the free-energy density is then closely related to the

precise definition of the parameters describing the alloy.
Returning to the general case, the three-dimensional Euler

. d equations
o (63)

i g oAf

= ax; d(Inlax;) =0 (663
Substituting Eq.(63) in the free-energy densityEq. (58)]
gives and
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S IAT k5 reaches its maximum value,,,=2« in the [111] direc-
Z ax%; d(aclax;) =0 (66D tion and reaches its minimum valug,i,=«/2 for any APB
orientation included in thé111) plane.

aAf

applied to Eq(58) lead directly to the equilibrium equations

dATO N - .. V. CONCLUSIONS
—2«[3V?n+3(e-V)?p+2e-Vc]=0 (679
n We have given an atomistic basis to the continuum free-
and energy functional for a heterogeneous ordered alloy. The gra-
dient energy coefficients,, and «. entering the free energy
AATO have been related to the parameters of the Ising model. The

o t2«lz $V2c+3(e-V)%c+2e-V5]=0. (670  concentration gradient energy coefficiexg proves to be
negative Furthermore, the free energy generally contains
In the local frame of reference the equilibrium equations arenon-negligible cross terms linear with the gradients. These
0 ) terms couple the variations of concentration with the varia-
JAf —9 [ 1 2.2 d_77 gy %] _ tions of order parameter and account for nontrivial segrega-
ki z[1+(e-n)*]5=+2(e-n) =0 . ; ) ; .
an d d tion behavior. In particular, numerical results show evidence
(689 of segregation in atoichiometricalloy at all nonconserva-
tive APB's. It is associated to a significant reduction in the

and . . : .
interfacial free energy. We believe this effect to be general to
IAFO d%c all ordered alloys, since it is related to the compositional
7 +2k [1+(e ”)Z]d > +2(e- n) dg =0. symmetry breaking of nonconservative APB'’s.
(68b)
They can be numerically solved for any particular APB, ACKNOWLEDGMENTS

leading to the corresponding(g) and c(g) profiles. It is The author is grateful to Dr. J. S. Kirkaldy for critical
clear that the terms containing the first spatlal derivatives iy mments and revision of an early draft of the manuscript.
Egs. (68) vanish only if the conditiore-n=0 is fulfiled.  Part of this work was done at the IMR, McMaster University,
Since these terms are those responsible for the segregati@htario, Canada, under a funding by the Natural Sciences
effect at stoichiometry, we conclude that in a stoichiometricgng Engineering Research Council of Canada.

alloy all APB’s undergo segregation, with various ampli-

tudes, except for the class of conservative APB'’s that verify

el n. The maximum segregation effect is obtained for the APPENDIX

(111) APB whereg||n. As can be seen from the definition ofin Eq. (9), Egs.
The first integral of the Euler equatiori68) yields the (30 and (31) give the additional equilibrium condition that

relation verified along the equilibrium profiles dAF/oc=0. From this the relation betwegn and the equi-

librium free energy can be derivegi:=9F/Jc. We prove in
(69) the following thatw is the equilibrium exchange chemical

potential ug— e a -

L . . L Consider an isothermal and isochoric quasistatic transfor-
which is the three-dimensional generalization of E8P). ; : ; =L
mation during which the compositiom is changed to

The general form of the free-energy density, ), allows =~ = . .
us to calculate the interfacial free energy for any equilibrium.(:LdC' The total change in free energy in the whole system

facet of an APB. Taking advantage of E§9) we have

Af%(7n,c)= —[1+(e n)Jx

55 el

+ oo 1 N P
a=J Afo(y,c)dg= S[1+(e-n)*]x d.7=puadNa+ ugdNg, (A1)

+of [ d 2 d 2
><f dz _(_C
—»|ldg dg

In Eq. (70) the orientation-dependent coefficient

whereN, and Ng are the total number oA andB atoms,

(70) respectively. Since the total number of sites is constant, the
change of concentration proceeds by exchangé aihd B
atoms such thatNy= —dNg and

dg.

‘=%[1+(é~ﬁ)2]K 71 d7=(ug—ma)dNg. (A2)

rom the definitions==.77Q andc=Ng/Q it follows that
can be considered as the anisotropic gradient energy coeffi-
cient. However it shall be noted that the validity of this _
simple identification is restricted to Eq&0) and(71). The dF=(ug—pua)dc. (A3)
polar plot of k;=(1/2)[ 1+ 3 cogd]«, where d is the angle
betweere andn, exhibits two lobes oriented along thill] ~ Remembering thap=dF/dc, Eq. (A3) simply shows that
axis, with a sharp neck in thélll) plane. It follows that u=ug— ta-
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