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Energetic discrete and continuum models for a heterogeneous ordered alloy ofB2 structure are presented. In
the first instance we use a one-dimensional Ising model in the mean-field approximation where the interaction
range is limited to the first-nearest neighbors. From this discrete model the long-range-order parameter and
concentration profiles across the~100! nonconservative antiphase boundary~APB! are investigated. The free
energy and the interfacial free energy are calculated. The equilibrium equations prove to be coupled via linear
gradient terms that contribute to a concentration segregation at the APB, even in astoichiometriccompound.
The segregation amount is quantified by solving numerically the equilibrium equations, and is shown to be
associated with a reduction in the interfacial free energy. The discrete model is extended to two dimensions,
from which a continuum approximation is drawn. A three-dimensional generalization that accounts for aniso-
tropic effects is performed. As a particular case, a class of conservative APB’s is examined.

I. INTRODUCTION

In their pioneering work Cahn and Hilliard1 proposed a
phenomenological model for a heterogeneous disordered bi-
nary alloy in which a quadratic gradient energy term is added
to the homogeneous free-energy density, viz.

f ~c,¹W c!5 f 0~c!1kc~¹W c!2, ~1!

wherec is the concentration andkc is the gradient energy
coefficient. This yielded the equilibrium equation

dD f 0

dc
22kc

d2c

dx2
50. ~2!

In the dual case of a heterogeneous ordered binary alloy
Allen and Cahn2 have designed the analogous free-energy
functional

f ~h,¹W h!5 f 0~h!1kh~¹W h!2, ~3!

where h is the long-range-order parameter andkh is the
gradient energy coefficient. This led to the equilibrium equa-
tion

dD f 0

dh
22kh

d2h

dx2
50. ~4!

Recognizing the necessity of taking into account bothh and
c parameters when a nonstoichiometric ordered alloy is con-
sidered, Krzanowski and Allen3 proposed the addition of a
concentration gradient contribution to Eq.~3!, viz.,

f ~h,c,¹W h,¹W c!5 f 0~h,c!1kh~¹W h!21kc~¹W c!2. ~5!

In doing so they neglected the cross terms in the gradient
energy. The resulting two equilibrium equations

]D f 0

]h
22kh

d2h

dx2
50 ~6!

and

]D f 0

]c
22kc

d2c

dx2
50 ~7!

are coupled only through theD f 0(h,c) function. The authors
showed that these equations account for segregation at the
antiphase boundaries~APB’s! in a nonstoichiometric alloy.
However, their model does not acknowledge segregation in a
stoichiometricalloy, which is necessary at nonconservative
APB’s on account of the composition symmetry breaking
due to such APB’s, as shown in the next paragraph.

Consider a monocrystal ofB2 structure as consisting of a
series of~200! planes occupied alternatively by a majority of
A andB atoms~Fig. 1!. A particular antiphase domain can be
created by ‘‘cutting’’ out a slice of the crystal in the middle
of two AB pairs of planes and displacing the slice along the
bW 5(1/2)@111# vector. The extreme right-handA plane of the
slice is then moved to the vacant sites at the left-hand of the
slice. This produces two planar~100! APB’s, the left-hand
APB defining an excess ofA atoms and the right-hand one
an excess ofB atoms, as indicated below:

•••ABABAABABA•••BABABBABAB•••.

Note that this is an analog of the Gibbs scheme, where a
diffuse interface is idealized by an abrupt interface between
two homogeneous materials. The excess concentration at
each APB clearly breaks the translational symmetry of the
composition field. Although the composition field will be
smoothed out by relaxation towards equilibrium, the excess
concentrations cannot be completely removed unless the
APB’s themselves are removed. On the contrary, a conserva-
tive APB generates no excess concentration in its own plane
since in this case the ‘‘cut’’ and ‘‘pasted’’ plane is of matrix
composition. Any comprehensive energetic model will have
to account for these various features. It is the motivation of
this work to provide such a model.

In this paper a continuum model that incorporates the full
coupling effect between concentration and order parameter is
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presented. As a first step, the free-energy function is calcu-
lated within the Hillert4 atomistic framework and the equi-
librium equations are established analytically. The conse-
quences of these equations are determined in terms ofh and
c profiles and interfacial free energy for a planar~100! non-
conservative APB. To account for the anisotropy of theB2
structure a two-dimensional Ising model is constructed. In
the second part of this work the continuum model is pre-
sented. Its one- and two-dimensional versions are based upon
the continuum approximation of the discrete models. A three-
dimensional version is then induced. The consequences of
the later on anisotropic segregation are drawn.

II. THE DISCRETE ISING MODEL

Our representation of the sample consists of recognizing
two sublatticesa andb which in the@100# direction define
alternating~200! planes ofa and b type, a pair of these
planes being indexed byn ~Fig. 1!. The crystal consists ofN
biplanes containingV atoms each, thus defining a total of
NV sites over which atomsA and B are distributed. Two
numbers are necessary to define the composition of a given
biplanen. We choose the two concentrationscn

a andcn
b of B

atoms in planes (n,a) and (n,b), or alternatively the local
long-range-order parameter

hn5
1
2 ~cn

a2cn
b! ~8a!

and the local average concentration

cn5
1
2 ~cn

a1cn
b!. ~8b!

At this level of approximation we take no account of the
short-range order, the state of the whole sample being fully
described by the set of parameters$hn ,cn%. For a closed
system the average concentrationc̄ of the sample is constant
and defined by

c̄5
1

N(
n51

N

cn5
1

2N(
n51

N

(
i5a,b

cn
i . ~9!

The ordering energyv for first-nearest-neighbor pair inter-
action is chosen negative to favor ordering, viz.,

v5«AB2 1
2 ~«AA1«BB!,0. ~10!

In the B2 structure the total number of first-nearest neigh-
bors isZ58 and the number of nearest neighbors in an ad-
jacent plane is onlyz5(1/2)Z54.

A. The mean-field free energy

The free energy per unit siteF5F /V, whereF is the
total free energy of the sample, is written in terms of the
energy of mixingE and the entropy of mixingS, viz.,

F5E2TS. ~11!

The energy of mixingE is calculated by a procedure analo-
gous to that used by Maugis5 in the fcc structure. The total
internal energy is first evaluated as the sum of the interaction
energies of each pair of first-nearest neighbors. Each pair
involving two sites, a single site contributes to half the inter-
action energy with each of his neighbors. In the biplane num-
ber n, the site (n,a) hasz neighbors in the plane (n21,b)
andz neighbors in the plane (n,b), while the site (n,b) has
z neighbors in the plane (n,a) andz neighbors in the plane
(n11,a). Each pair of sites will contribute according to the
probability that it is ofBB, AB, or AA type. For example,
the pair (n,a)-(n,b) gives the contribution

ES a

n D S b

n D 5
1

2
@cn

acn
b«BB1~cn

acn8
b1cn8

acn
b!«AB

1cn8
acn8

b«AA#. ~12!

In Eq. ~12! we have used the shorthand notationc8512c.
The contribution of the neighbors of site (n,a) is then

En
a5zES a

n D S b

n D 1zES a

n D S b

n21D , ~13!

while the contribution of the neighbors of site (n,b) is

En
b5zES b

n D S a

n D 1zES b

n D S a

n11D . ~14!

The contribution of one lattice cell of planen is now
En5En

a1En
b , which in full is

En5
1

2 H 2z@cn
acn

b«BB1~cn
acn8

b1cn8
acn

b!«AB1cn8
acn8

b«AA#

1z@cn
acn21

b «BB1~cn
acn218b 1cn8

acn21
b !«AB1cn8

acn218b «AA#

1z@cn
bcn11

a «BB1~cn
bcn118a 1cn8

bcn11
a !«AB1cn8

bcn118a «AA#
J . ~15!

FIG. 1. Atomic structure of a domain in aB2-type alloy. The
structure consists of the two sublatticesa andb translated by the

vectorbW 5(1/2)@111#. Each pair of~200! planes is labeledn.
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The total internal energy of the sample is the sum of the
contributions of each of the (1/2)V cells of each biplanen,
viz.,

E tot5
1

2
V (

n51

N

En . ~16!

The energy of formation equals the difference between the
total energyE tot and the energy of the separated pure metals
Epure. The latter is

Epure5
1

2
NVZ@ c̄«BB1 c̄8«AA# ~17!

which, according to the definition of c¯@Eq. ~9!#, can be
written

Epure5
1

2
VZF12 «BB(

n51

N

~cn
a1cn

b!1
1

2
«AA

3 (
n51

N

~cn8
a1cn8

b!G . ~18!

The energy of formation per unit site isE5(E tot2Epure)/V
and is written from Eqs.~16! and ~18! as

E5
1

2(n51

N FEn2
1

2
Z~cn

a1cn
b!«BB2

1

2
Z~cn8

a1cn8
b!«AAG .

~19!

Incorporating Eq.~15! in ~19! yieldsE as a function of the
set of average concentrations$cn

a ,cn
b%. Some simple algebra

shows that the ordering energyv defined in Eq.~10! can be
factorized, leading to

E5
1

2
Zv (

n51

N Fcna1cn
b2cn

acn
b2

1

2
~cn

acn21
b 1cn

bcn11
a !G .

~20!

Grouping the terms into two sums gives the final result

E5
1

2
Zv (

n51

N

@cn
a~12cn

b!1cn
b~12cn

a!#2
1

2
zv

3 (
n51

N

@2~cn
a2 1

2 !Dcn21
b 1~cn

b2 1
2 !Dcn

a#. ~21!

Here and in the following we use the discrete operators de-
fined by

Dhn5hn112hn , ~22a!

DShn5
1
2 ~hn112hn21!, ~22b!

and

D2hn5hn1122hn1hn21 . ~22c!

This anticipates a transformation to continuous derivatives.
In the case of a homogeneous alloy, the second sum in Eq.
~21! obviously reduces to zero, while the first sum reduces to

E5
1

2
NZv@ca~12cb!1cb~12ca!#. ~23!

The second sum in Eq.~21! is then the specific contribution
of the heterogeneities of composition in the sample.

We have retained the Hillert4 approximation of the con-
figurational entropy of mixing which assumes that in each of
the sublatticesa andb the distribution ofA andB atoms is
totally random,

S52
1

2
k(
n51

N

(
i5a,b

@cn
i lncn

i 1~12cn
i !ln~12cn

i !#. ~24!

Notice that this form is invariant relatively to any permuta-
tion of the cn

i and therefore does not contribute to the het-
erogeneity part of the free energy.

Introducinghn andcn defined by Eqs.~8a! and ~8b! into
~21! and ~24! we obtain by rearrangement

E5Zv (
n51

N

@hn
21cn~12cn!#2

1

2
zv (

n51

N

@~Dhn!
22~Dcn!

2

12~cn2
1
2 !DShn22hnD

Scn# ~25!

and

S52
1

2
k(
n51

N F ~cn1hn!ln~cn1hn!1~12cn2hn!ln~12cn2hn!

1~cn2hn!ln~cn2hn!1~12cn1hn!ln~12cn1hn!G . ~26!

In ~25!, (Dhn)
2 represents a contribution of the order-

parameter heterogeneity,2(Dcn)
2 represents a contribution

of the concentration heterogeneity, and the last two cross-
terms couple the contributions of order-parameter and con-
centration heterogeneities. As far as we know, these last two
terms have been neglected so far. They are discussed in a
following section.

B. The equilibrium equations

We introduce two chemical potentialsln andmn related,
respectively, tohn and cn , and show that the equilibrium
condition specifies that they both are uniform. The discrete
equilibrium equations follow from this requirement.
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At equilibrium, F($cn
i %) is extremal with respect to any

infinitesimal variation of the parameter set$cn
i % that con-

serves the overall concentrationc̄. This leads to the discrete
equilibrium equations

]DF/]cn
a5]DF/]cn

b50, ~27!

where

DF5F2F̄2m~c2 c̄!. ~28!

F̄ is the free energy of the equilibrium homogeneous sample
of the same compositionc̄. m is a Lagrange multiplier ac-
counting for the conservation ofB atoms and can be shown
to equate the equilibrium exchange chemical potential~see
the Appendix!. In order to use the alternate set of parameters
$hn ,cn% we now introduce the two discrete chemical poten-
tials,ln5]F/]hn andmn5]F/]cn , related, respectively, to
the parametershn andcn . Using Eqs.~25! and~26! they are
written in full as

ln522v@2Zhn2
1
2z~D

2hn12DScn!#

1
1

2
kTlnS cn1hn

12cn2hn
Y cn2hn

12cn1hn
D ~29a!

and

mn522v@Z~cn2
1
2 !1 1

2z~D
2cn12DShn!#

1
1

2
kTlnS cn1hn

12cn2hn
3

cn2hn

12cn1hn
D . ~29b!

The linear relations

ln5
1

2 S ]F

]cn
a 2

]F

]cn
bD ~30a!

and

mn5
1

2 S ]F

]cn
a 1

]F

]cn
bD ~30b!

associated with Eq.~28! and ~9! allow us to write the equi-
librium equations~27! under the form

ln50 and mn5m ~31!

which specifies that the discrete chemical potentialln has to
be uniformly null and that the discrete chemical potential
mn has to be uniformly equal tom. Note that in the particular
case whenc̄51/2 we havem50. Incorporating Eqs.~29a!
and ~29b! into ~31! and writing the homogeneous parts in a
condensed form yields the discrete equilibrium equations

]DF0

]hn
1zv@D2hn12DScn#50 ~32a!

and

]DF0

]cn
2zv@D2cn12DShn#50, ~32b!

whereDF0 is the homogeneous part ofDF.

C. The interfacial free energy

We consider the system described in the introduction and
consisting of an antiphase domain bounded by two noncon-
servative~100! planar APB’s. The interfacial free energy per
unit site of one of these APB’s is defined bys5DF. Incor-
porating Eqs.~25! and ~26! into ~28! and separating the ho-
mogeneous and heterogeneous parts into two sums we obtain

s5(
n

D f n
01(

n
En
h , ~33!

where the heterogeneous part is

(
n

En
h52

1

2
zv(

n
@~Dhn!

22~Dcn!
212~cn2

1
2 !DShn

22hnD
Scn#. ~34!

Using the equilibrium equations~32a! and ~32b! and per-
forming the summations in~33! yields

(
n

En
h50 ~35!

and the final result

s5(
n

D f n
052

1

2
zv(

n
@~Dhn!

22~Dcn!
2#. ~36!

Notice the negative sign before the concentration contribu-
tion in ~36!. A similar result was found by Gouyet8 within a
mean-field model with repulsive interactions. It is striking
that the heterogeneous part ofs reduces to zero. In more
details, it appears from the numerical results that the overall
positive contribution of the squared differences in(En

h @first
two terms in Eq.~34!# is exactly balanced by the overall
negative contribution of the linear differences@last two terms
in Eq. ~34!#, leading to a total null contribution.

D. Numerical results

The equilibrium equations are solved numerically for the
system of two APB’s described above. Attention is focused
on alloys of stoichiometric composition.

In our description of the crystal lattice the pairing of
planes is arbitrary. We choose to pair them so as to give rise
to biplanes of excessA (B) at the left~right! APB in Gibbs
scheme, as indicated below:

•••AB/AB/AA/BA/BA•••BA/BA/BB/AB/AB•••.

~ type AA! ~ type BB!

We integrate numerically the kinetic relaxation equations of
the $cn

i % derived by Martin6 to find the equilibrium state that
has been proven to identify with the asymptotic limit
t→`. We have checked that the resultinghn andcn profiles
are not affected, except by a possible translation along then
axis, by the initial profiles chosen. By adding a random field
to the$cn

i % at each step of the integration we make sure not
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to reach an unstable or metastable state. Figure 2~a! shows
the hn and cn profiles computed at the temperature
T50.8Tc . As expected, the left~typeAA! APB is enriched
in A atoms while the right~typeBB! APB is enriched inB
atoms. The extremum of segregationucm21/2u occurring at
the twoh50 planes is not negligible since it reaches 25% of
the equilibriumh̄ value. The total segregation at one APB is
defined by the excess concentration

cex5(
n

~cn2 c̄!. ~37!

It is negative for theAA-type APB and positive for theBB-
type APB and amounts to 20% of a pureAA or BB biplane
~see Table I!. By symmetry, the two APB’s have opposite
segregations such that the total segregation in the sample is
zero, as required by the conservation of atoms. The extent of

the segregation profiles is comparable to that of the order-
parameter profile as defined byl52h̄/(dh/dx)h50 .

When crossing the antiphase domain,hn andcn vary as
shown in Fig. 2~a! and accordingly follow a path in the
(h,c) plane. In the (h,c,D f 0) space this defines a path lying
on theD f 0(h,c) surface~Fig. 3!. We see that if the concen-
tration was constrained toc51/2 the path would pass
through the saddle point on theD f 0(h,c) surface. Sincec
actually varies at each APB, the path is a cycle that passes
through higher values ofD f 0. As a consequence, the contri-
bution of the homogeneous part of the free energy to the
interfacial free energy@Eq. ~33!# is slightly higher. However,
this increase is largely compensated by the correlative anni-
hilation of the heterogeneous part@Eq. ~35!#. In summary,
segregation occurs in the disordered region because it pro-
vides a decrease inheterogeneousfree energy that exceeds
the correlative increase in homogeneous free energy.D f n

0

andEn
h equilibrium profiles are shown in Fig. 2~b!.

Values of interest concerning a single APB are summa-
rized in Table I as functions of temperatureT. The extremum
of segregationucm21/2u and the total segregationucexu ap-
pear to be decreasing functions of temperature, and tend to
zero whenT approaches the critical temperature of ordering
Tc ~see Fig. 4!.

In nonstoichiometric alloys, APB segregation of the ex-

FIG. 2. Two ~100! APB’s bounding an antiphase domain in a
stoichiometric alloy at the temperature of 0.8Tc . ~a! Order param-
eter and concentration profiles.~b! Homogeneous and heteroge-
neous parts of the free-energy density.

TABLE I. Results of the numerical calculations. Equilibrium
order parameterh̄, slope (dh/dx)m and width l of the h profile,
extremum of segregationucm21/2u, total segregationucexu, and in-
terface free energys for the ~100! APB as functions of the reduced
temperatureT/Tc . Lengths are in units ofa and energies are in
units of kTc per unit area@kTc52(1/2)Zv#.

T/Tc 0.6 0.8 0.95

h̄ 0.463 0.355 0.190
(dh/dx)m 0.40 0.24 0.0805
l 2.3 2.7 4.7
ucm21/2u 0.15 0.086 0.022
ucexu 0.23 0.18 0.095
s 0.21 0.082 0.011

FIG. 3. Path lying on theD f 0(h,c) surface corresponding to
Fig. 2. As h and c vary across the antiphase domain the path is
abcda. If c is constrained to 1/2 the path isaSbSa. S is the saddle
point situated ath50 andc51/2.

FIG. 4. Extremum segregation and total segregation at the~100!
APB in a stoichiometric alloy.
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cess element is found to be ‘‘superimposed’’ with the segre-
gation observed at stoichiometry, leading to a different seg-
regation amount inAA- andBB-type APB’s~see Fig. 5!. The
details of this matter will be discussed in another paper.

III. THE CONTINUUM MODEL

Numerical simulations show that at temperatures suffi-
ciently close to the critical temperature of ordering thehn
andcn profiles are smooth. In this range of temperature it is
then legitimate to reach a continuum approximation from the
discrete equations. For that purpose, the profiles are assumed

to be smooth enough so that, to the second order, we can let
n→x in units of the lattice parametera and

hn→h~x!, ~38a!

~Dhn!
2→~dh/dx!2, ~38b!

DShn→dh/dx, ~38c!

D2hn→d2h/dx2 ~38d!

and equivalently forcn .

A. The continuum free energy

Substituting Eqs.~38! into ~25! and~26! and transforming
the sums into integrals yields the continuum approximation
for the free energy

F5E
2`

1`

f ~h,c,¹h,¹c!dx ~39!

with

f ~h,c,¹h,¹c!5 f 0~h,c!1kF S dh

dxD
2

2S dcdxD
2

12~c2 1
2 !
dh

dx
22h

dc

dxG ~40!

and

f 0~h,c!5Zv@h21c~12c!#1
1

2
kTF ~c1h!ln~c1h!1~12c2h!ln~12c2h!

1~c2h!ln~c2h!1~12c1h!ln~12c1h!G . ~41!

f 0(h,c) is the homogeneous part of the free-energy density
f (h,c,¹h,¹c) and the gradient energy coefficient in~40! is

k52 1
2zv.0. ~42!

Only one gradient energy coefficient is necessary to account
for the spatial variations of bothh andc. This is related to
the fact that our model incorporates only one energetic pa-
rameterv, and one lattice parametera.

In addition to the squared gradients, the heterogeneous
part of f includes nonsquared gradients of bothh andc @see
Eq. ~40!#. It shall be noted that the presence of these linear
gradient terms does not violate the requirement thatf is in-
dependent of the orientation of the space. Indeed, consider
the change of orientation defined by the transformation
x→2x. h is defined as half the difference in concentration
between the left-hand and the right-hand planes of a biplane
@Eq. ~8a!#. h is then orientation dependent and changes sign
when the orientation is reversed. Accordingly, the transfor-
mation x→2x is accompanied by the transformation
h→2h and we can check that these transformations applied
to Eq. ~40! leave f invariant, as expected.

The last two cross terms in Eq.~40! arise naturally from
our lattice model. For the purpose of a qualitative description
they could however have been writtena priori, as shown

now. In effect, following Landau and Lifshitz,7 a quadratic
Taylor development of the heterogeneity part of a free energy
f (h1 ,h2) must include linear gradient terms of the form
h i(dh j /dx), i , j51,2. The twoh i(dh i /dx) terms can be
discarded since they are identical to mere gradients and
therefore amount to an insignificant constant in the integral
of f over space. The two remaining terms can be grouped
into their symmetric and their antisymmetric part, respec-
tively,

h2~dh1 /dx!1h1~dh2 /dx! ~43!

and

h2~dh1 /dx!2h1~dh2 /dx!. ~44!

Equation ~43! is a mere gradient and is discarded for the
same reason as mentioned above, whereas the remaining
term ~44! has exactly the form of the cross terms found in
our Eq. ~40! with the correspondenceh1→h and
h2→c21/2. We will show in a following section that these
often neglected terms are essential to the segregation effect.

We now focus on the two quadratic gradient terms in Eq.
~40!. Comparing Eq.~40! with the Krzanowski-Allen for-
mula ~5! our model identifieskh52kc5k. It is a remark-

FIG. 5. Order parameter and concentration profiles across an
antiphase domain in a nonstoichiometric alloy of average composi-
tion c50.55 at the temperature of 0.8Tc .
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able fact that the gradient energy coefficientkc is negative.
Although it might be argued that this would lead to an insta-
bility of the concentration field, the numerical results show
that this is not the case, on account of the moderating effect
of the remaining cross terms.

B. The equilibrium equations

In this section the equilibrium equations of the system are
established, their consequences are drawn in terms of profile
characteristics and interfacial free energy, and the results are
compared with other authors in the case of a stoichiometric
alloy.

Using the definition ofk @Eq. ~42!# and applying the set of
transformation rules~38! to the discrete equations~32! yields
the continuum equilibrium equations

]D f 0

]h
22kFd2hdx2

12
dc

dxG50 ~45a!

and

]D f 0

]c
12kFd2cdx2

12
dh

dxG50 ~45b!

with

D f 0~h,c!5 f ~h,c!2 f ~ h̄,c̄!2m~c2 c̄!. ~46!

In Eqs.~45! we have

]D f 0

]h
52Zvh1

1

2
kT lnS c1h

12c2h Y c2h

12c1h D
~47a!

and

]D f 0

]c
522Zv~c2 1

2 !1
1

2
kT lnS c1h

12c2h
3

c2h

12c1h D .
~47b!

Notice that Eqs.~45! are coupled via both the gradient terms
and the homogeneity ones. It is easily checked that they are
identical to the Euler equations of the continuum free energy
@Eqs.~39! and ~40!#, which are written

]D f

]h
2

d

dx

]D f

]~dh/dx!
50 ~48a!

and

]D f

]c
2

d

dx

]D f

]~dc/dx!
50. ~48b!

This confirms the self-consistency of the continuum approxi-
mation. In two particular cases, when we restrict the descrip-
tion of the alloy to one parameter, the equilibrium equations
~45! reduce to classical results. That is, if the concentration is
constrained to a constant value throughout the sample, Eqs.
~45! reduce to Eq.~4! obtained by Allen and Cahn, with
kc52(1/2)zv.0. In the dual case of a disordered hetero-
geneous alloy wherev.0, they reduce by settingh50 to
Eq. ~2! obtained by Cahn and Hilliard, with
kh5(1/2)zv.0.

As D f (h,c,¹h,¹c) is not an explicit function ofx we
can write the first integral of the Euler equations~48!, viz.,

D f2
dh

dx

]D f

]~dh/dx!
2
dc

dx

]D f

]~dc/dx!
5const. ~49!

The boundary conditions are the uniform equilibrium state
defined byh56h̄, c5 c̄, and dh/dx5dc/dx50. Under
these conditions the constant in Eq.~49! is null. Using ex-
pression~40! for f , Eq. ~49! gives rise to the equality

D f 0~h,c!5kF S dh

dxD
2

2S dcdxD
2G ~50!

verified along the equilibrium profiles. SinceD f 0(h,c) is
always positive, this relation shows that the quadratic gradi-
ent terms have an overall positive contribution to the hetero-
geneity part of the free energy@Eq. ~40!#. Applying relation
~50! to the point of extremum segregation wherec5cm,
h50, anddc/dx50, the slope of theh curve at this point is
found to be

dh

dx U
m

56S D f 0~0,cm!

k D 1/2. ~51!

SinceD f 0(0,cm) is necessarily higher thanD f 0(0,1/2) ~see
Fig. 4!, the slope is higher in our case than when the con-
centration is constrained toc51/2, leading to a slightly nar-
rower interfacial zone. However, these facts do not lead to a
higher interfacial energy, as shown below.

The discrete expression of the interfacial free energy~36!
yields, in the continuum case,

s5E
2`

1`

D f 0~h,c!dx5kE
2`

1`F S dh

dxD
2

2S dcdxD
2Gdx.

~52!

The second equality of Eq.~52! illustrates clearly how the
concentration heterogeneity contributes to a decrease in the
interfacial free energy. This result is at variance to that of
Krzanowski and Allen@Eq. ~1! of Ref. 3# who find a positive
contribution of the concentration heterogeneity. In the case
of a stoichiometric alloy the first equality in Eqs.~52! can be
compared to Allen and Cahn’s2 results52*D f 0(h,1/2)dx
which is a value about twice as high. So, the relaxation of the
concentration field is associated to a reduction of the interfa-
cial free energy by a factor of approximately 2. This shows
that segregation at the APB is very favorable energetically.

IV. GENERALIZATION TO HIGHER DIMENSIONALITY

Thus far we have developed a one-dimensional model for
planar APB’s oriented in the@100# direction. In order to ex-
plore other APB orientations a two-dimensional treatment is
now undertaken, which will later be generalized to three di-
mensions. This will allow us to quantify the previous assess-
ment, based upon symmetry arguments, that nonconservative
APB’s undergo segregation at stoichiometry.

A. The two-dimensional mean-field model

We are concerned withplanar portions of APB’s that in-
clude the @001# zone axis. Accordingly, we build a two-
dimensional model in the~001! plane. Our representation of
the crystal thus consists ofN@001# columns containingV
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cells each. Each column is indexed by the numbersp andq
in @001# and @010# directions, respectively. The composition
of a given column is defined by the order parameter
hp,q5(1/2)(cp,q

a 2cp,q
b ) and the concentrationcp,q5(1/2)

3(cp,q
a 1cp,q

b ) wherecp,q
a (cp,q

b ) is the average concentration
of thea (b) sites contained in the column. Similarly to the
one-dimensional case, the configurational entropy of forma-
tion is written

S52
1

2
k(
p,q

(
i5a,b

@cp,q
i lncp,q

i 1~12cp,q
i !ln~12cp,q

i !#.

~53!

As before, the entropy of formation does not include hetero-

geneity terms. Following the same steps as for the one di-
mension case, the energy of formation is found to be

E5
1

2
Zv(

p,q
@cp,q

a ~12cp,q
b !1cp,q

b ~12cp,q
a !#

2
1

2
zv(

p,q
F cp,qa ~cp21,q

b 1cp,q21
b 1cp21,q21

b 23cp,q
b !

1cp,q
b ~cp11,q

a 1cp,q11
a 1cp11,q11

a 23cp,q
a !G .
~54!

The second sum in Eq.~54! is the specific contribution of the
heterogeneities. Introducing the parameterscpq and hpq in
Eq. ~54! we obtain after some algebra

E5Zv(
p,q

@hp,q
2 1cp,q~12cp,q!#

2
1

4
zv(

p,q 5
~hp11,q2hp,q!

21~hp,q112hp,q!
21~hp11,q112hp,q!

2

2~cp11,q2cp,q!
22~cp,q112cp,q!

22~cp11,q112cp,q!
2

1~cp,q2
1
2 !@~hp11,q2hp21,q!1~hp,q112hp,q21!1~hp11,q112hp21,q21!#

1hp,q@~cp11,q2cp21,q!1~cp,q112cp,q21!1~cp11,q112cp21,q21!#
6 . ~55!

Although the homogeneous term of~55! is analogous to that
of the one-dimensional model@Eq. ~25!#, the heterogeneity
term is more complicated since it involves finite differences
in @100#, @010#, and @110# directions. To reach a continuum
approximation we use the set of transformation rules, valid
to the second order,

hp,q→h~x,y!, ~56a!

~hp11,q2hp,q!
2→~]h/]x!2, ~56b!

~hp,q112hp,q!
2→~]h/]y!2, ~56c!

~hp11,q112hp,q!
2→~]h/]x1]h/]y!2, ~56d!

hp11,q2hp21,q→2]h/]x, ~56e!

hp,q112hp,q21→2]h/]y, ~56f!

hp11,q112hp21,q21→2~]h/]x1]h/]y!, ~56g!

and equivalently forc. Applying the rules~56! to Eqs.~53!
and~55!, and transforming the sums into integrals yields the
continuum approximation for the free energy

F5EE f ~h,c,¹W h,¹W c!dxdy ~57!

with

f ~h,c,¹W h,¹W c!5 f 0~h,c!1kF 1
2 ~¹W h!21 1

2 ~eW•¹W h!22 1
2 ~¹W c!22 1

2 ~eW•¹W c!2

12~c2 1
2 !eW•¹W h22heW•¹W c G , ~58!

wherek and f 0 keep their previous definitions@Eqs.~41! and
~42!#. In Eq. ~58! we have used the two-dimensional vectors
eW5@11# and¹W 5@]/]x]/]y# so that the differential operator
eW•¹W is simply

eW•¹W 5~]/]x1]/]y!. ~59!

Comparison of Eq.~58! with the one-dimensional version,
Eq. ~17!, illustrates that generalization from one dimension
to two dimensions is not straightforward. The simple

term-by-term transformationd/dx→eW•¹W is not sufficient
and one has to use a particular rule for the square of the
gradient, viz.,
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S d•dxD
2

→ 1
2 @~¹W • !21~eW•¹W • !2#. ~60!

This last transformation accounts for the incorporation of the
coupling betweenx and y directions, which is of the form
(]•/]x)(]•/]y). Notice the absence of the¹W h•¹W c term
which has been proved nonexistent by the symmetry argu-
ment discussed in Sec. III A.

B. The three-dimensional continuum model

The generalization method from two to three dimensions
used here consists of inducing the form of the heterogeneous
part of the free-energy densityf and then deducing the un-
known coefficients by comparison with the two-dimensional
form @Eq. ~58!#. In a Taylor expansion we take into account
all terms up to the second degree inh,c and their first spatial
derivatives. Accordingly, the general form forf can be writ-
ten, taking advantage of the cubic symmetry of the crystal,

f S h,c,S ]h

]xi D
i51,3

,S ]c

]xi D
i51,3

D 5 f 0~h,c!1k1F ~c2 1
2 !S (

i

]h

]xi D 2hS (
i

]c

]xi D G1k2F(
i

S ]h

]xi D
2G1k3F(

iÞ j
S ]h

]xi D S ]h

]xj D G
1k4F(

i
S ]c

]xi D
2G1k5F(

iÞ j
S ]c

]xi D S ]c

]xj D G . ~61!

The term((]h/]xi)(]c/]xj ) has been discarded since it
does not verify the symmetry requirement of invariance by
the (x,y,z,h)→(2x,2y,2z,2h) transformation. In the
two-dimensional case where]h/]z5]c/]z50 comparison
of Eq. ~61! with Eq. ~58! identifies the coefficients

1
2k15k25k352k452k55k. ~62!

It is easily seen that incorporating~62! into ~61! yields ex-
actly the same form forf as in the two-dimensional case@Eq.
~58!# provided that the vectoreW is redefined aseW5@111#
instead ofeW5@11#. Notice thateW is now parallel to the vector
bW 5(1/2)@111# which defines the translation between the two
sites of an atomic cell~see Fig. 1!. It is not surprising to find
ultimately this vector as part of the free-energy functional
since it is intimately related to the definitions ofh andc.

We can check that in the particular case of a~100! planar
portion of an APB, Eq.~58! with eW5@111# reduces as ex-
pected to the form obtained earlier in this paper. Indeed,
substituting ]h/]y5]h/]z5]c]y5]c/]z50 in Eq. ~58!
leads directly to the one-dimensional form@Eq. ~40!#.

The anisotropy effect in the free-energy density@Eq. ~58!#
is included in theeW•¹W operator. This vectorial representation
allows us to find easily the expression of the free-energy
density in the local frame of reference associated to any pla-
nar portion of an APB. For this purpose, we defineg as the
abscissa along the normalnW to the plane of the APB in the
direction of the gradient ofh. h andc are now functions of
g only. As a result, the differential operator

¹W [nW
d

dg
. ~63!

Substituting Eq.~63! in the free-energy density@Eq. ~58!#
gives

f S h,c,
dh

dg
,
dc

dgD5 f 0~h,c!1kH 12 @11~eW•nW !2#

3F S dh

dgD
2

2S dcdgD
2G12~eW•nW !

3F ~c2 1
2 !
dh

dg
2h

dc

dgG J . ~64!

The scalar producteW•nW accounts for the APB orientation
dependence. Two particular cases will illustrate this point. In
the case of the~100! APB examined in Sec. II,nW 5@100# so
that eW•nW 51 andg5x. Substitution into Eq.~64! recovers
Eq. ~40! of the one-dimensional model, as expected. Con-
sider now the conservative (110̄) APB which has the prop-
erty that the translation vectorbW lies in the plane of the APB.
Remembering thatbW 5(1/2)eW , the normal vector then verifies
eW•nW 50 and Eq.~64! reduces to the simple form

f S h,c,
dh

dg
,
dc

dgD5 f 0~h,c!1
1

2
kF S dh

dgD
2

2S dcdgD
2G ,

~65!

where the linear gradient terms have disappeared. This equa-
tion is similar to that stated by Krzanowski and Allen@Eq.
~8! of Ref. 3#, except for the sign ofkh .

Notice that in our description the anisotropy effect is re-
lated to the APB orientationrelative to the [111] direction.
This direction is that chosen for the definition ofh and c
among the eight equivalent directions. The three-dimensional
form of the free-energy density is then closely related to the
precise definition of the parameters describing the alloy.

Returning to the general case, the three-dimensional Euler
equations

]D f

]h
2(

i51

3
]

]xi

]D f

]~]h/]xi !
50 ~66a!

and
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]D f

]c
2(

i51

3
]

]xi

]D f

]~]c/]xi !
50 ~66b!

applied to Eq.~58! lead directly to the equilibrium equations

]D f 0

]h
22k@ 1

2¹W 2h1 1
2 ~eW•¹W !2h12eW•¹W c#50 ~67a!

and

]D f 0

]c
12k@ 1

2¹W 2c1 1
2 ~eW•¹W !2c12eW•¹W h#50. ~67b!

In the local frame of reference the equilibrium equations are

]D f 0

]h
22kH 12 @11~eW•nW !2#

d2h

dg2
12~eW•nW !

dc

dg J 50

~68a!

and

]D f 0

]c
12kH 12 @11~eW•nW !2#

d2c

dg2
12~eW•nW !

dh

dg J 50.

~68b!

They can be numerically solved for any particular APB,
leading to the correspondingh(g) and c(g) profiles. It is
clear that the terms containing the first spatial derivatives in
Eqs. ~68! vanish only if the conditioneW•nW 50 is fulfilled.
Since these terms are those responsible for the segregation
effect at stoichiometry, we conclude that in a stoichiometric
alloy all APB’s undergo segregation, with various ampli-
tudes, except for the class of conservative APB’s that verify
eW'nW . The maximum segregation effect is obtained for the
~111! APB whereeW inW .

The first integral of the Euler equations~68! yields the
relation verified along the equilibrium profiles

D f 0~h,c!5
1

2
@11~eW•nW !#kF S dh

dgD
2

2S dcdgD
2G , ~69!

which is the three-dimensional generalization of Eq.~50!.
The general form of the free-energy density, Eq.~64!, allows
us to calculate the interfacial free energy for any equilibrium
facet of an APB. Taking advantage of Eq.~69! we have

s5E
2`

1`

D f 0~h,c!dg5
1

2
@11~eW•nW !2#k

3E
2`

1`F S dh

dgD
2

2S dcdgD
2Gdg. ~70!

In Eq. ~70! the orientation-dependent coefficient

knW5
1

2
@11~eW•nW !2#k ~71!

can be considered as the anisotropic gradient energy coeffi-
cient. However it shall be noted that the validity of this
simple identification is restricted to Eqs.~70! and ~71!. The
polar plot ofknW5(1/2)@113 cos2u#k, whereu is the angle
betweeneW andnW , exhibits two lobes oriented along the@111#
axis, with a sharp neck in the~111! plane. It follows that

knW reaches its maximum valuekmax52k in the @111# direc-
tion and reaches its minimum valuekmin5k/2 for any APB
orientation included in the~111! plane.

V. CONCLUSIONS

We have given an atomistic basis to the continuum free-
energy functional for a heterogeneous ordered alloy. The gra-
dient energy coefficientskh andkc entering the free energy
have been related to the parameters of the Ising model. The
concentration gradient energy coefficientkc proves to be
negative. Furthermore, the free energy generally contains
non-negligible cross terms linear with the gradients. These
terms couple the variations of concentration with the varia-
tions of order parameter and account for nontrivial segrega-
tion behavior. In particular, numerical results show evidence
of segregation in astoichiometricalloy at all nonconserva-
tive APB’s. It is associated to a significant reduction in the
interfacial free energy. We believe this effect to be general to
all ordered alloys, since it is related to the compositional
symmetry breaking of nonconservative APB’s.
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APPENDIX

As can be seen from the definition ofc̄ in Eq. ~9!, Eqs.
~30! and ~31! give the additional equilibrium condition that
]DF/] c̄50. From this the relation betweenm and the equi-
librium free energy can be derived:m5]F/] c̄. We prove in
the following thatm is the equilibrium exchange chemical
potentialmB2mA .

Consider an isothermal and isochoric quasistatic transfor-
mation during which the compositionc̄ is changed to
c̄1dc̄. The total change in free energy in the whole system
is

dF 5mAdNA1mBdNB , ~A1!

whereNA andNB are the total number ofA andB atoms,
respectively. Since the total number of sites is constant, the
change of concentration proceeds by exchange ofA andB
atoms such thatdNA52dNB and

dF 5~mB2mA!dNB . ~A2!

From the definitionsF5F /V and c̄5NB /V it follows that

dF5~mB2mA!dc̄. ~A3!

Remembering thatm5]F/] c̄, Eq. ~A3! simply shows that
m5mB2mA .
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