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I introduce two continuous transformations between theS51 Heisenberg chain and the antiferromagnetic
S51/2 Heisenberg ladder. Both transformations couple diagonally situatednext-nearest-neighbor S51/2’s to
form eachS51. Using the density matrix renormalization group, I demonstrate that the two systems are in the
same phase. Furthermore, I find that the hidden topological long-range order characterizing theS51 system is
even stronger in the isotropic two-chain system.

In the dozen years since Haldane’s conjecture1 that anti-
ferromagnetic Heisenberg chains with integral spin are
gapped, while half-integral spin chains are gapless, our un-
derstanding of these systems has increased tremendously.
New analytical approaches, exactly soluble models, experi-
mental systems and techniques, and numerical techniques
have provided convincing evidence in support of the
conjecture.2 One of the most instructive developments was
the discovery of the Affleck-Kennedy-Lieb-Tasaki~AKLT !
model,3 an exactly soluble, gappedS51 chain system, dif-
fering from the Heisenberg system only by the addition to
the Hamiltonian of a biquadratic term2 1

3(Si•Sj )
2. The

AKLT ‘‘valence bond solid’’ state is now believed to be an
ideal example of the ‘‘Haldane’’ state of theS51 system. It
has a hidden form of topological long-range order,4,5 mea-
sured by a ‘‘string’’ correlation function, which is also found
in the HeisenbergS51 chain.5,6

More recently, attention has been focused on the problem
of the antiferromagnetic Heisenberg ladder~AFHL!, two
antiferromagnetically coupled antiferromagneticS51/2
chains.7–10There is now evidence that this system has a gap
for all nonzero interchain couplingsJ' .9 This raises an im-
portant question: is the AFHL system in a fundamentally new
state, or is it in the same phase as another, more familiar
system, namely, theS51 Heisenberg chain? I consider two
systems to be in the same phase if there is a continuous path
through model parameter space from one system to the other,
without crossing any phase boundaries or critical points, and
consequently without change in any broken symmetries or
disappearance or appearance of gaps. Theferromagnetically
coupledHeisenberg ladder~FHL!, for sufficiently strong in-
terchain coupling, has been known for some time to be in the
same phase as a singleS51 chain; in the limitJ'→2`, the
two models are identical. For the AFHL case, the origin of
the gap is clear in the largeJ' limit, where a single ‘‘rung’’
of the ladder has a gap of sizeJ' between the singlet and
triplet states. This origin for the gap seems completely dif-
ferent from the origin in the Haldane case, and it is natural to
assume that there are two distinct phases. Furthermore, the
most obvious path connecting the systems, varyingJ' from
positive to negative values, passes through the gapless point
J'50.

Evidence in favor of a Haldane phase in the AFHL is
provided indirectly by the work of Hida,11 who studied the
dimerizedS51/2 chain. In the fully dimerized limit this sys-

tem is identical to the fully dimerized ladder,J'→`, with
singlets on each rung. Primarily using exact diagonalization,
Hida gave evidence that the dimerizedS51/2 chain is in the
S51 Haldane phase.11 This implies a Haldane phase region
for the AFHL for largeJ' . Numerical results for the AFHL
have not shown any evidence for a change in phase as a
function of J' ,9 indicating that perhaps the AFHL is in the
Haldane phase for allJ' . In contrast, Xian has proposed
several alternative possibilities,12 such as that there may be
two separate phases for small and largeJ'.0, and that for
small J'.0, the system may be in a non-Haldane gapped
phase which has no topological long-range order.

Hida also argued that the topological long-range order,
which he showed is present in the dimerizedS51/2 chain,
indicates the presence of short-rangestatic valence-bond or-
der. In contrast, it has been generally presumed that a short-
range resonatingvalence bond~RVB!13 state describes a
‘‘featureless’’ gapped state without topological long-range
order. The RVB ansatz has proven to be a useful qualitative
picture for the AFHL,14,10 and has been argued to apply for
all J'.0. However, if the RVB picture is valid for all
J'.0, and if for largeJ' the system is in a Haldane phase,
then the RVB state must have topological long-range order.
Indeed, I find that this is the case.

In this article I show that the AFHL system does belong to
the same phase as theS51 chain, the Haldane phase, forall
values ofJ'.0. The dimerized phase, the Haldane phase,
and the dimer RVB phase are allidentical. These surprising
results are possible because, unlike the FHL case, diagonally
situated next-nearest neighbor spins couple to form an effec-
tive S51, rather than two spins on the same rung. The AFHL
and FHL systems belong to the same phase in a slightly more
limited sense, in that a shift of one chain relative to the other
by one lattice spacing is necessary in constructing the path
connecting the systems. I demonstrate these results by con-
structing explicit paths, and calculating the properties of the
system to high accuracy, as the parameters are varied, using
the density matrix renormalization group~DMRG!.15 In ad-
dition to calculating the gap, I calculate the limiting value of
the string correlation function. Surprisingly, the hidden topo-
logical order is stronger in two isotropically coupled chains
than in theS51 chain. Furthermore, I show that the dimer
RVB state on two coupled chains has ‘‘perfect’’ topological
order, just like the AKLT state. In fact, in the composite spin
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model,16 which can be thought of as both a single chainS51
system and aS51/2 ladder, the dimer RVB stateis the
AKLT state.

I consider the Heisenberg Hamiltonian

H5(
i , j

Ji jSi•Sj . ~1!

Figure 1 illustrates the various models considered. In all
cases, the intrachain coupling is taken asJi j5J51, while
additional interchain couplings are as shown. The mapping
used for the FHL system, which has been studied in some
detail,17 is shown in Fig. 1~a!. Figure 1~b! shows a mapping
for the AFHL case. Here next-nearest neighbor spins, which
because of the antiferromagnetic correlations tend to be in a
triplet state, are grouped in pairs to formS51 spins. For
J250, we have the AFHL system. In the limitJ2→2`, the
singlet states of the spins coupled byJ2 are pushed tò , and
the system is identical to anS51 single chain, with effective
couplingJeff53/4J.

Figure 2 shows the evolution of the gap asJ2 is varied for
the system shown in Fig. 1~b!. The gap is plotted as a func-
tion of x0

1/2, wherex0 is the probability~andx0
1/2 the ampli-

tude! that a pair of spinsi , j coupled byJ2 are in a singlet
state,x051/42^Si•Sj&. The results were obtained by ex-
trapolating from three system sizes,L519,31,39, using open
boundary conditions. The extrapolation used a polynomial fit
in 1/Ln, with the 1/L term excluded. The finite system ver-
sion of DMRG was used, keeping 60 states, with a typical
discarded weight of 231026. The point atx050 is taken
from previous results for the S51 chain,
D>0.41050(2)33/4. The line is a fourth-order polynomial
fit to the data. The typical deviation of the points from the fit
is >1024. At J250, the probability of finding a diagonally
situated pair of spins in a triplet state is 96.2%, a surpris-
ingly high number reflecting the short-range antiferromag-
netic correlations, indicating that even atJ250, the system is
not too far~in this sense! from theS51 system.

Figure 1~c! shows another mapping between the AFHL
system and a singleS51 chain. In this case afinite antifer-
romagnetic couplingJ351 turns two chains into the com-
posite spin model shown in Fig. 1~d!, if one shifts the upper
chain to the left by one spacing. The composite spin model is
identical to aS51 chain, except for some extra excited
states involving singlet modes of a rung. The total spin of
each rung commutes with the Hamiltonian, so the eigenstates
can all be classified by the total spin on each rung. The set of
eigenstates with no singlet modes on any rungs corresponds
to the spectrum of theS51 Heisenberg chain.

Figure 3 shows the gap asJ3 is varied from 0 to 1. In this
case the results for finiteL as well as the extrapolation to
L→` are shown. To demonstrate conclusively the robust-
ness of this mapping, large systems were used~up to
L5100). Again the finite system version of DMRG was
used, this time keeping up to 100 states, for a typical dis-
carded weight of 1028. The data was fit very well with a 14

FIG. 1. Several mappings between two coupledS51/2 Heisen-
berg chains and a singleS51 chain.

FIG. 2. Gap between the ground state and first excited state of
the ladder system shown in Fig. 1~b! as J2 is varied, plotted as a
function of x0

1/2, wherex051/42^Si•Sj&, with i and j coupled by
J2 .

FIG. 3. Gap as a function ofJ3 for the ladder system shown in
Fig. 1~c!. TheS51 chain corresponds toJ351.
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parameter polynomial function with terms of the form
J3
m/Ln, excludingn51. The resulting gap forL→` as a
function of J3 , accurate to four or five digits, is

D50.5024920.227786J310.074252J3
210.067215J3

3

20.005681J3
4 . ~2!

This very smooth evolution of the gap shows that no phase
transitions of either first or second order occur along this
path.

Given these results, the AFHL system must exhibit the
same topological order known to exist for Haldane chains.
This broken symmetry is measured by the string correlation
function4,12

g~ l !5K S0zS )
k51

l 21

eipSk
zDSlz L . ~3!

For coupled chains, the expression forg(l ) is the same as
for a singleS51 chain if we take

Sk5Sk,11Sk,2 , ~4!

where the indices 1, 2 indicate the twoS51/2 spins which
we expect to combine to form a single effectiveS51 spin. If
sites 1 and 2 are taken from the same rung, as would be
appropriate for the FHL system, the string correlation func-
tion decays very rapidly to zero, with a decay length of about
1 for J'5J. The inset of Fig. 4 showsg(`) when sites 1
and 2 are next-nearest neighbors, as shown in Fig. 1~c!, as
J3 is varied from 0 to 1. As many as 108 states were kept in
the calculations, for which no finite-size extrapolation is nec-
essary. Details of the procedure are described in Ref. 6. The
result atJ350, g(`)520.38010765 islarger in magnitude
than the result for theS51 chain (J351) ~Ref. 6!,
g(`)520.374325096(2).

I have also calculatedg(`) as a function ofJ' with
J350, again with next-nearest neighbors combined to form

S51’s. The main part of Fig. 4 shows the results, plotted as
a function ofJ' /(11J'). NearJ'50, I find g(`);J'

1/2.
At the maximum point shown, J'51.3, g(`)
520.387263374. AtJ'5`, I find g(`)521/4.

The behavior ofg(`) at J'5` is easily understood. In
this limit, the ground state consists of singlets on each rung.
If sites i and j are part of such a singlet, then necessarily

Si
z1Sj

z50. Using this, all but a few of theeipSk
z
terms in~3!

cancel, leaving a factor of2 i /2 for each of the two ends.
Henceg(`)521/4 atJ'5`, in agreement with our results.
It is useful also to consider a ‘‘normalized’’ string correlation
function, defined by

g̃~ l !5
2g~ l !

^~Sk,1
z 1Sk,2

z !2&2
, ~5!

wherek is anyS51 ‘‘site.’’ The denominator in~5! is simply
the probability that neither endpoint,k50 andk5l , is in a
Sk,1
z 1Sk,2

z 50 configuration. Since these configurations give
no contribution tog(l ), the normalized function shows
more clearly whether there are defects in the topological or-
derbetweensites 0 andl . For J'5`, g̃(`)51, indicating
perfect topological order. For aS51 single chain, the de-
nominator of~5! is 4/9, and the AKLT model also has perfect
order, g̃(`)51. For the Heisenberg S51 chain
g̃(`)50.84. For the AFHL system with J'51,
g̃(`)50.924. The presence of a maximum in the main part
of Fig. 4 is entirely due to a maximum in the denominator of
~5!; g̃(`) is monotonic as a function ofJ' . In contrast, the
maximum in the inset of Fig. 4 reflects nonmonotonic behav-
ior in g̃(`).

The rung-singlet ground state ofJ'5` can be considered
a limiting case of a more general set of wave functions,
dimer RVB states, which are themselves limiting cases of the
set of short-range RVB states. A dimer RVB state also has
perfect topological order. The proof is straightforward and
similar to that of the strong-coupling case: pairs of spins
which are parts of singlets cancel in their effect ong̃(l ).
Valence bond configurations for which the contribution to
g̃(l ) is not 1 are either ‘‘staggered’’ configurations,14 which
are neglible in the thermodynamic limit, or they have at least
one long-range~nondimer! bond, with exactly one end
within the region between 0 andl . This means that the
confinement of long-range bonds within the RVB picture14 is
directly measured by the string correlation function; conse-
quently, we expect any short-range RVB state to have non-
zero topological order. In particular, we expect any Heisen-
berg ladder with an even number of legs to have topological
long-range order, while a ladder with an odd number of legs
does not.

The AKLT state of theS51 chain is constructed within
the composite spin model@Fig. 1~d!# by first making intra-
chain near-neighbor singlets so that each rung has two sin-
glets attached, one to the left and one to the right. Then, one
symmetrizes the spins on each rung. It has apparently not
been noticed before that this state is also the dimer RVB state
for the composite spin model, provided that one eliminates
the two spin-Peierls valence bond configurations, which are
neglible in the thermodynamic limit.~Also, no single-rung
dimers are allowed.! The symmetrizing operation corre-
sponds to summing over all dimer valence bond configura-

FIG. 4. Limiting value of the string correlation function as a
function of J' for the AFHL system~with J25J350). The inset
showsg(`) as a function ofJ3 for the system of Fig. 1~c!.
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tions, which have an especially simple structure in the com-
posite spin model. Note that the lattice of the composite spin
model is symmetrical with respect to interchange of the sites
on any rung. Consequently, there is only one reasonable
dimer state that can be constructed, as opposed to the AFHL
system, for which an infinite number of dimer states can be
constructed, corresponding to different amplitudes for hori-
zontal and vertical bonds and to different correlations be-
tween horizontal and vertical bonds.

The mappings discussed here also explain the relationship
between theS51/2 end states seen at open ends ofS51
chains18,19,15and later also on AFHL systems with an extra
site on the end of one of the chains.14 Because of the shift of
one chain relative to the other implicit in the transformation
of one system to the other, an openS51 end is equivalent to
a ladder with an extra site on one chain.

An important consequence of these results concerns

doped ladders and chains. Recent studies of Hubbard andt-J
ladders have found evidence for a spin-liquid phase with
strong pairing correlations for moderate doping.20 It may be
possible to dope ladder compounds to form a physical analog
of such a system. Our results suggest that doped Haldane
chains may also exhibit a spin-liquid phase with strong pair-
ing correlations.

After this work was finished, I received two independent
reports,21,22 each of which partially overlaps this work.
Watanabe21 emphasizes the new form of the string correla-
tion function, while Nishiyama, Hatano, and Suzuki22 em-
phasize the relevance of the RVB theory to the topological
order and perform an interesting analysis of theJ'50 criti-
cal point. I thank Ian Affleck for helpful conversations. I
acknowledge support from the Office of Naval Research un-
der Grant No. N00014-91-J-1143. This work was supported
in part by the University of California through an allocation
of computer time.
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