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Equivalence of the antiferromagnetic Heisenberg ladder to a singl&=1 chain

Steven R. White
Department of Physics, University of California, Irvine, California 92717
(Received 28 Septemeber 1995

I introduce two continuous transformations between$kel Heisenberg chain and the antiferromagnetic
S=1/2 Heisenberg ladder. Both transformations couple diagonally situetetsnearest-neighbor=51/2's to
form eachS=1. Using the density matrix renormalization group, | demonstrate that the two systems are in the
same phase. Furthermore, | find that the hidden topological long-range order characteri8rdltsgstem is
even stronger in the isotropic two-chain system.

In the dozen years since Haldane’s conjectdnat anti-  tem is identical to the fully dimerized laddel, — o, with
ferromagnetic Heisenberg chains with integral spin aresinglets on each rung. Primarily using exact diagonalization,
gapped, while half-integral spin chains are gapless, our urHida gave evidence that the dimeriz&e 1/2 chain is in the
derstanding of these systems has increased tremendous$i~1 Haldane phas¥. This implies a Haldane phase region
New analytical approaches, exactly soluble models, experifor the AFHL for largeJ, . Numerical results for the AFHL
mental systems and techniques, and numerical techniqu@gve not shown any evidence for a change in phase as a
have provided convincing evidence in support of thefynction ofJ, ,° indicating that perhaps the AFHL is in the
conjecturé. One of the most instructive developments wasHg|dane phase for all, . In contrast, Xian has proposed
the dlgcovery of the Affleck-Kennedy-Lieb-TasaliKLT)  geyeral alternative possibilitiéé such as that there may be
model;’ an exactly soluble, gappesi=1 chain system, dif- 5 senarate phases for small and ladge-0, and that for
fering from the Heisenberg system only by the addition toSmall J,>0, the system may be in a non-Haldane gapped
the Hamiltonian of a biquadratic term 3(S-S)?. The L .

. . ) 1~ phase which has no topological long-range order.
AKLT “valence bond solid” state is now believed to be an . .
Hida also argued that the topological long-range order,

ideal example of the “Haldane” state of tf&=1 system. It . . . T :
has a hidden form of topological long-range ortigmea- Wh'_Ch he showed is pre?er;]t in the dn_nen?éd 1/2b chgun,
sured by a “string” correlation function, which is also found Indicates the presence of short-rarsgatic valence-bond or-

in the Heisenber@=1 chain>® der. In contrast, it has been generally presumed that a short-

More recently, attention has been focused on the problerfRng€ resonating valence bont_j(RVB)B state describes a
of the antiferromagnetic Heisenberg ladd@&FHL), two “featureless” gapped state without topological long-range
antiferromagnetically coupled antiferromagneti=1/2 order. The RVB ansatz has proven to be a useful qualitative
chains’~°There is now evidence that this system has a gapicture for the AFHL;*'and has been argued to apply for
for all nonzero interchain couplings .° This raises an im- all J,>0. However, if the RVB picture is valid for all
portant question: is the AFHL system in a fundamentally newd, >0, and if for largeJ, the system is in a Haldane phase,
state, or is it in the same phase as another, more familighen the RVB state must have topological long-range order.
system, namely, th&=1 Heisenberg chain? | consider two Indeed, | find that this is the case.
systems to be in the same phase if there is a continuous path In this article | show that the AFHL system does belong to
through model parameter space from one system to the othehe same phase as tBe=1 chain, the Haldane phase, falt
without crossing any phase boundaries or critical points, angtalues ofJ, >0. The dimerized phase, the Haldane phase,
consequently without change in any broken symmetries oand the dimer RVB phase are allentical These surprising
disappearance or appearance of gaps.fé€hemagnetically results are possible because, unlike the FHL case, diagonally
coupledHeisenberg laddefFHL), for sufficiently strong in-  situated next-nearest neighbor spins couple to form an effec-
terchain coupling, has been known for some time to be in theive S= 1, rather than two spins on the same rung. The AFHL
same phase as a sin@e-1 chain; in the limit), — —<, the  and FHL systems belong to the same phase in a slightly more
two models are identical. For the AFHL case, the origin oflimited sense, in that a shift of one chain relative to the other
the gap is clear in the largg limit, where a single “rung” by one lattice spacing is necessary in constructing the path
of the ladder has a gap of side between the singlet and connecting the systems. | demonstrate these results by con-
triplet states. This origin for the gap seems completely dif-structing explicit paths, and calculating the properties of the
ferent from the origin in the Haldane case, and it is natural tasystem to high accuracy, as the parameters are varied, using
assume that there are two distinct phases. Furthermore, thige density matrix renormalization grodpMRG).*® In ad-
most obvious path connecting the systems, vanjindrom  dition to calculating the gap, | calculate the limiting value of
positive to negative values, passes through the gapless poitiite string correlation function. Surprisingly, the hidden topo-
J, =0. logical order is stronger in two isotropically coupled chains

Evidence in favor of a Haldane phase in the AFHL isthan in theS=1 chain. Furthermore, | show that the dimer
provided indirectly by the work of Hid& who studied the RVB state on two coupled chains has “perfect” topological
dimerizedS= 1/2 chain. In the fully dimerized limit this sys- order, just like the AKLT state. In fact, in the composite spin
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function of x5, wherex,=1/4—(S-S;), with i andj coupled by

FIG. 1. Several mappings between two coupledl1/2 Heisen-  J2-
berg chains and a single=1 chain.
Figure Xc) shows another mapping between the AFHL

|16 system and a singl8=1 chain. In this case finite antifer-

model;® which can be thought of as both a single ch@inl

system and &=1/2 ladder, the dimer RVB statis the
AKLT state.
| consider the Heisenberg Hamiltonian

romagnetic coupling;=1 turns two chains into the com-
posite spin model shown in Fig(d), if one shifts the upper
chain to the left by one spacing. The composite spin model is

identical to aS=1 chain, except for some extra excited
states involving singlet modes of a rung. The total spin of
each rung commutes with the Hamiltonian, so the eigenstates
can all be classified by the total spin on each rung. The set of
Figure 1 illustrates the various models considered. In alkigenstates with no singlet modes on any rungs corresponds
cases, the intrachain coupling is takenJs=J=1, while  to the spectrum of th&=1 Heisenberg chain.

additional interchain couplings are as shown. The mapping Figure 3 shows the gap ds is varied from 0 to 1. In this
used for the FHL system, which has been studied in somease the results for finite as well as the extrapolation to
detail!” is shown in Fig. 1a). Figure 1b) shows a mapping L— are shown. To demonstrate conclusively the robust-
for the AFHL case. Here next-nearest neighbor spins, whiclmess of this mapping, large systems were uged to
because of the antiferromagnetic correlations tend to be in B=100). Again the finite system version of DMRG was
triplet state, are grouped in pairs to forS=1 spins. For used, this time keeping up to 100 states, for a typical dis-
J,=0, we have the AFHL system. In the limlp— —o, the  carded weight of 10%. The data was fit very well with a 14
singlet states of the spins coupled hyare pushed ter, and
the system is identical to &= 1 single chain, with effective
coupling J= 3/4J.

Figure 2 shows the evolution of the gapJlss varied for
the system shown in Fig.(d). The gap is plotted as a func-
tion of x3'?, wherex, is the probabilityandx3'? the ampli-
tude that a pair of spinsg,j coupled byJ, are in a singlet
state,xo=1/4—(S-S;). The results were obtained by ex-
trapolating from three system sizés+19,31,39, using open
boundary conditions. The extrapolation used a polynomial fit
in 1/L", with the 1L term excluded. The finite system ver-
sion of DMRG was used, keeping 60 states, with a typical
discarded weight of 2107 . The point atx,=0 is taken
from  previous results for the S=1 chain,
A=0.41050(2)X 3/4. The line is a fourth-order polynomial =
fit to the data. The typical deviation of the points from the fit 0.35 ! ! L .
is =10 %. At J,=0, the probability of finding a diagonally 00 02 04 06 08 1.0
situated pair of spins in a triplet state is 96.2%, a surpris- Is
ingly high number reflecting the short-range antiferromag-
netic correlations, indicating that evenJat=0, the system is
not too far(in this sensgfrom the S=1 system.
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FIG. 3. Gap as a function af; for the ladder system shown in
Fig. 1(c). The S=1 chain corresponds td;=1.
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0.4 . . ' . S=1's. The main part of Fig. 4 shows the results, plotted as
' o % a function ofJ, /(1+J,). NearJ, =0, | find g(=)~JV2.

At the maximum point shown, J, =1.3, ¢g(«)

¢ =-0.387263374. Al, =, | find g() = — 1/4.

03 L . The behavior ofg(e) atJ, = is easily understood. In
this limit, the ground state consists of singlets on each rung.
If sitesi andj are part of such a singlet, then necessarily

Sf+S/=0. Using this, all but a few of the' ™S terms in(3)
cancel, leaving a factor of-i/2 for each of the two ends.
Henceg(«~) = —1/4 atJ, =<, in agreement with our results.
It is useful also to consider a “normalized” string correlation
function, defined by
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wherek is anyS=1 “site.” The denominator in5) is simply
0.0 0.2 0.4 0.6 0.8 1.0 i ; ; e
: : : : : : the probability that neither endpoirk=0 andk=/, is in a
/(1441 Sk1t S 2=0 configuration. Since these configurations give
no contribution tog(/), the normalized function shows

FIQ. 4. Limiting value of the string correlation functio.n as a more clearly whether there are defects in the topological or-
function of J, for the AFHL system(with J,=J;=0). The inset der betweersites 0 and”. ForJ, =, §(=)=1, indicating

showsg(=) as a function of, for the system of Fig. ). perfect topological order. For 8=1 single chain, the de-

i | ial functi ith t f the f nominator of(5) is 4/9, and the AKLT model also has perfect
parameter polynomial function with terms of the form ... §(=)=1. For the HeisenbergS=1 chain

MmN . - :
QLY excludingn=—1. The resulting gap fot —+ 8 & 5084 For the AFHL system withJ,=1
unction of J5, accurate to four or five digits, is 0(*)=0.924. The presence of a maximum in the main part

—9()
(St S2?*

(/)=

®

A =0.50249- 0.2277863+0.074252§+0.067215§ of Fig. 4 is entirely due to a maximum in the denominator of
(5); g(0) is monotonic as a function af, . In contrast, the
—0.00568103. (20  maximum in the inset of Fig. 4 reflects nonmonotonic behav-
ior in g().

This very smooth evolution of the gap shows that no phase The rung-singlet ground state &f = can be considered

transitions of either first or second order occur along thisy limiting case of a more general set of wave functions,
path: o dimer RVB states, which are themselves limiting cases of the
Given these results, the AFHL system must exhibit thege of short-range RVB states. A dimer RVB state also has
same topological order known to exist for Haldane chainsperfect topological order. The proof is straightforward and
This prokgn symmetry is measured by the string correlationimilar to that of the strong-coupling case: pairs of spins
functiort” which are parts of singlets cancel in their effect @fr).
/-1 Valence bond configurations for which the con}'gfrgivt\)Iution to
N_| az irst | oz 9(7) is not 1 are either “staggered” configuratiotiswhich
9(7) <S°( kll © )S/> ' ® are neglible in the thermodynamic limit, or they have at least
one long-range(nondimej bond, with exactly one end
within the region between 0 and. This means that the
confinement of long-range bonds within the RVB picttiis
Sc=Sc1+ Seas 4) directly measured by the string correlation function; conse-
quently, we expect any short-range RVB state to have non-
where the indices 1, 2 indicate the tv-=1/2 spins which  zero topological order. In particular, we expect any Heisen-
we expect to combine to form a single effect®e 1 spin. If  berg ladder with an even number of legs to have topological
sites 1 and 2 are taken from the same rung, as would beng-range order, while a ladder with an odd number of legs
appropriate for the FHL system, the string correlation func-does not.
tion decays very rapidly to zero, with a decay length of about The AKLT state of theS=1 chain is constructed within
1 for J, =J. The inset of Fig. 4 showg(») when sites 1 the composite spin mod¢Fig. 1(d)] by first making intra-
and 2 are next-nearest neighbors, as shown in Rig, &4s  chain near-neighbor singlets so that each rung has two sin-
Js is varied from 0 to 1. As many as 108 states were kept irglets attached, one to the left and one to the right. Then, one
the calculations, for which no finite-size extrapolation is nec-symmetrizes the spins on each rung. It has apparently not
essary. Details of the procedure are described in Ref. 6. Thigeen noticed before that this state is also the dimer RVB state
result atJ;=0, g()=—0.38010765 idarger in magnitude for the composite spin model, provided that one eliminates
than the result for theS=1 chain J;=1) (Ref. 6, the two spin-Peierls valence bond configurations, which are
g()=—0.3743250962). neglible in the thermodynamic limitAlso, no single-rung
| have also calculatedj(e) as a function ofJ, with dimers are allowed. The symmetrizing operation corre-
J;=0, again with next-nearest neighbors combined to formsponds to summing over all dimer valence bond configura-

For coupled chains, the expression ") is the same as
for a singleS=1 chain if we take
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tions, which have an especially simple structure in the comdoped ladders and chains. Recent studies of Hubbard-and
posite spin model. Note that the lattice of the composite spifddders have found evidence for a spin-liquid phase with
model is symmetrical with respect to interchange of the site§trong pairing correlations for moderate dopfridt may be

on any rung. Consequently, there is only one reasonablROSsible to dope ladder compounds to form a physical analog

dimer state that can be constructed, as opposed to the AF f such a system. Our results suggest that doped Haldane

system, for which an infinite number of dimer states can b(?cngalélosrrrgl?tligrl]sso exhibit a spin-liquid phase with strong pair-

constructed, corresponding to different amplitudes for hori- . o _ _
zontal and vertical bonds and to different correlations be- After this work was finished, | received two independent
tween horizontal and vertical bonds. reports??? each of which partially overlaps this work.

The mappings discussed here also explain the relationshW”‘t"’m"’Ibél emphasizes the new form of the string correla-

between theS=1/2 end states seen at open endsSefl ion f_unction, while Nishiyama, Hatano, and Suzakem- :
chaind®1915and later also on AFHL systems with an extra phasize the relevance of the RVB theory to the topological

. . ) order and perform an interesting analysis of she=0 criti-
site on the end of one of the chaitfBecause of the shift of point. | thank lan Affleck for helpful conversations. |

one chain relative to the other implicit in the transformationacknowledge support from the Office of Naval Research un-

of one system to the other, an opBr 1 end is equivalentto  der Grant No. N00014-91-J-1143. This work was supported

a ladder with an extra site on one chain. in part by the University of California through an allocation
An important consequence of these results concernef computer time.
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