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Possible disordered ground states for layered solids and their diffraction patterns

Jaichul Yi and Geoff S. Canright
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200
(Received 6 March 1995

It has recently been shown, assuming only ceri@hysica) symmetries of the Hamiltonian, that one-
dimensional Ising problems can have degenerate, disordered ground(&8&tes This result is of interest
since it implies a weak violation of the third law of thermodynamics. The ground-state disorder is, however, of
a special kind, consisting of arbitrary mixtures of a short-period structure and its symmetry-degenerate partner
or partners. In this study, we address the question of how this constrained disorder may appear in an experi-
mentally accessible signal, namely, the diffraction pattern. To calculate the latter, we gasuisieommonly
done with known polytypegsthat the Ising Hamiltonian represents the energetics of stacking of close-packed
layers of some hypothetical polytypic material. We then calculate the diffraction patterns along the stacking
direction for the various possible kinds of disordered GS’s. We find that some disordered GS’s give diffraction
patterns which are only weakly distinguished from their periodic counterparts, while in others the long-ranged
correlations among the layers is destroyed by the disorder, giving a diffraction spectrum which is purely
continuous.

[. INTRODUCTION of thermodynamics. Furthermore, since such disordered
GS’s do not require fine tuning of the parameters of the
One of the simplest problems in classical statistical meHamitonian to precise values, it is at least plausible that such
chanics is the one-dimensional spin chain, with the spingxceptions may be found in some real materials whose ener-
taking only values from a discrete setlofstates. The most getics may be represented by a one-dimensiokaitate
well-known example is of course the Ising problem, whereHamiltonian.
k=2. For generak-state models in one dimension, it is It is therefore of some interest to inquire whether CW’s
known that the ground state is “almost alway@i the sense  theoretical results may be applicable to any real physical
of for “almost all” possible Hamiltoniansperiodic. That is, systems. In the pursuit of this idea, two obvious questions
Radin and Schulmdnshowed that, for such models, any immediately arise(i) Are there any real materials which may
nondegenerate ground state is periodic, and that, for the d&e described by such a Hamiltoniafi®) If so, and if such
generate case, there always exists at least one periodigaterials do in fact have a disordered ground-state structure
ground state. In each case the period is at rkgsivherer is  of the type found by CW, how might the disorder appear
the range of interaction. Fdk=2 (Ising mode) Teubnef experimentally?
obtained(among other resultghese same results, using the (i) is readily answered: besides possible magnetic sys-
directed graptG® (called the de Bruijn diagrarhand de- tems, there is a multitudes of layered solig®lytypes)
scribed in more detail belowRecently, Canright and Wat- which may be described by such Hamiltonians, in the fol-
son (CW) (Ref. 4 considered the mathematically “excep- lowing sense: there is a low probability of intralayer defects,
tional” (but physically unexceptionatase of Hamiltonians while packing constraints force the layers to choose one of a
constrained bysymmetry CW showed that, for many values small, discrete set of relative stacking orientations. A one-
of k andr, the restriction to symmetric Hamiltonians leads to dimensional k-state Hamiltonian may then be usefully em-
the possibility of degenerate ardisorderedground states ployed to represent the ener@yr free energy fofTf >0) of
(GS’s) over a finite fraction of coupling-parameter space.the various ways of stacking the layéndle should of course
(This finite fraction is of course negligible in the higher- make it clear at this point that such a Hamiltonian is by no
dimensional space of all possible Hamiltonians, unconimeans restricted to near-neighbor couplings, nor even to
strained by symmetry; hence there is no contradiction betwo-body terms. In fact, there is no justification for exclud-
tween the CW result and that of Radin and Schulm@hat ing any term up to range, except those which violate the
is, if one allows the physically unexceptional “fine tuning” assumed symmetry of the Hamiltoni&h This broad class
of parameters arising from symmetry, then in many cases onef Hamiltonians is the same class studied by CW.
can find degenerate and disordered GS's without any further Hence we are led by the results of CW to imagine a lay-
fine tuning of parameters. The disorder arises since, in sucéred solid for which the ground state consists of a disordered
cases, there are multiple degenerate periodic stptesses  stacking of layers. The disorder is however of a special kind,
such that the energy of a domain wall between the degenenamely, the random mixture of tw@r more—see below
ate phases is zero. Hence any arbitréapd so in general stacking sequences, with the different sequences related by
aperiodig mixture of the degenerate states is also a groungymmetry. It is not obvious what experimental consequences
state. might arise from such a constrained form of disorder. In the
Such ground states have a finite entropy per spin, and soresent work, as a partial answer to quesiiibhabove, we
suggest the possibility dfveak exceptions to the third law study the diffraction patterns, along the stacking direction, of

0163-1829/96/5®)/519813)/$10.00 53 5198 © 1996 The American Physical Society



53 POSSIBLE DISORDERED GROUND STATES FOR LAYERED ... 5199

such hypothetical layered materials. We will refer to our hy-period of any SC is< 2" (the number of nodes @, ). In the
pothetical material as an polytype: it is a polytype in the case that the parameters ity are “fine tuned” to precise
broad sense of the term; however, we prefix the to dis-  values(as can occur from symmefrthere can be more than
tinguish our hypothetical layered solid from the well-studiedone SC with the least energy per spin in the graph
classical polytypes such as SiC. _ G,—that is, there can be degenerate ground states which are
In this work we consider the simplest possibl@olytype,  related by symmetry. We are interested here in the two sym-
namely, a f:lose-packed_sﬁolld, which may be modeled as gefries S (spin inversion and | (space inversion These
classical Ising k=2) chain? We assume oun-polytype has ds\‘ymmetries force the degeneracy miirs of SC's in G, .

a disqrdered grognd s'tate of the type found by CW, an ow assume that such a pair has the lowest energy per spin.
examine the possible kinds of diffraction pattefatong the If these two minimal-energy SC's share a node, then the GS

stacking axiy which may result from such a structure. Our is infinitely degenerate, since it includes arbitrary mixtures of

goal is to try to see how the constrained disorder describe )
above (i.e., mixtures of two distinct stacking sequencesﬂezle tWO. S.C S- .If on the pther. hand they do not share any
which are related by symmefrynay be realized in the ex- nodes, it is evident th"’.‘t Jumping from one cy_cle _to another
perimentally accessible form of the diffraction pattern. costs energy, and so gives a cor.1f|gu.rat|on which is not a GS.
CW found that the former casgnfinitely degenerate GS,
arising from a pair of minimal-energy SC’s which share a
node or nodesoccurs for many values & andr, assuming
only Sor | symmetry. We will follow their terminology and

Our approach, like that of CW, relies on the representatiorgall such a pair aD pair.” That is, aD pair is a pair of SC’s
of a HamiltonianH{™ (with r the range of interaction, ard  in G, which (i) can be minimal-energy configurations for a
the number of states per sitas a directed grapi(® . range of parameter values Iy ; (ii) are related by symme-
Hence, in this section, we first provide a brief description oftry and hence degeneratéj) share one or more nodes.
this representation, including the modifications introduced by For the Ising model(more precisely for everk) CW
CW to represent the effects of symmetry. Subsequently, wéound thatS symmetry alone never gives rise to disordered
show how to translate a cycle of Ising spins into a stackingdround statesd pairg. For the case of symmetry, CW
sequence of close-packed layers. This is a standard procghowed thatagain fork=2) D pairs do exist, but only for
dure, but we include it hergoriefly) for completeness, and to r=5. Combining the two symmetridgenotedS+| symme-
show how the relevant symmetry operations on the Isingry), CW found that the Ising case hd3 pairs only for
spins appear in the language of layer sequences. r=6.

These results may seem somewhat surprising, from the
following point of view. It is easy to find SC’s of the graph
G, which are related by symmetry and hence satisfy

From here on we will restrict our attention on the Ising above, while also satisfyingii ). Hence one might think that
model k=2), and so drop the superscripeverywhere. An D pairs should be ubiquitous. However, it turns out that the
infinite Ising chain with interaction rangecan be viewed as imposition of symmetry often makes satisfaction(dfim-

a successive sequence of spin configurations, each of lenggssible, even as it enforcés), for a pair of SC’s. Hence
r. There are 2such configurations; these become the nodeg\w turned to modified graph&G{ (whereX is the sym-
(.77) of the graphG,. To complete the graph, two nodes metry S, I, or S+1) whose SC's always satisf{j). For the
A1=0y...0and.J) =0y ...0; are connected by an ar- polytype problem we will concentrate oft"'G, .

row (directed arg only if the last ¢ —1) spins of./"; are The graphS*'G, is most readily constructedor details
identical to the first (—1) spins of /. This arc then rep- see CW by first operating orG, with S (giving 5G,), and
resents a transition/;—./,, effected by the addition of then operating on the latter with. Similarly, a SC of
the spino; to the chain(which we imagine as growing from S*!'G, is mapped to its counterparts @, by reversing this
the lefy. The 2 nodes inG, are thus connected by 2! arcs,  sequence: first undoing (hence “unfolding” the SC into
each of which can be labeled with 1) sequential spin  SG,), then undoingS. This unfolding of a SC of°"'G, will
values. The grapls, then represents the Hamiltonigh} as  yield one, two, or more generally four SC’s &, . We are
follows. A unique weightenergy cost resulting from adding interested in those SC’s of*'G, which, upon unfolding,

a sping;, to the chaif can be associated with each arc. Any yield multiple node-sharing cycles. Although the precise
infinite Ising chain of spins can be then represented as a paitientification of distinct pairs may be complicated by the
through the grapltG,, with the energy of the chain being simultaneous presence of two symmetries, such unfolded
simply the sum of the energidweights of the arcs in the cycles are the analogs of tlie pairs identified by CW; we
path. Since the graph has a finite number of nodes, any infwill use the same term for thegmultiple, unfolded cycles
nite path must visit at least one node more than once; henc#y G, .

ignoring boundary effects, such a chain must be a closed It is useful to classify thé pairs into topological types.
cycle in G, . Furthermore, if we define a simple cyd80 CW found two topological SC’'s of any graph of the form
as a nondecomposalfiee., non-self-intersectingycle, then  'G (which includes S*'G,) which represenD pairs inG.

all the cycles inG, can be uniquely decomposed into SC's. Expansion of one type gives any of four topologically differ-

The general periodicity of the ground state can now beent types(I-1V) of D pairs inG, (Fig. 1). Expansion of the
understood in terms of SC’s. The gound state is the repetitionther type(which is found in *'G, only for r=8) yields
of that SC which has the minimum energy per spin, and theither a type IV or type \D pair in G, .

Il. DIRECTED GRAPHS, ISING SPINS, AND
CLOSE-PACKED STACKINGS

A. Directed graphs, cycles, and degenerate pair§' D pairs”)
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pairs related by symmetry. However, such genefalsym-
metric) D pairs only occur for =8—a range which we have
not studied systematically. Hence we have instead shown the
symmetric cases, for whicl®(D pair) = D pair. Such a
symmetric pair will give cycles with periody; which is
twice that of the “folded” D pair in S*'G, (hence even
These symmetric type Il and IYD pairs map to themselves
(@) (b) under eitherS or |; hencelunlike Figs. 1a) and 1b)] there
are not other pairs implicit in Figs.(@ and 1d).
x In a type V[Fig. 1(e)] D pair, all four symmetry related

nodes /", 7 )", )" are shared as shown. Again, there are
no other implicit pairs. Since there are two choices of path at
each shared node, there art=216 cycles(again, all degen-
eratg represented by a type VD pair, giving
S=1In16=4 In2 perTy, layers.

(©) (d) We note here that, besides the entropy, we can quantify
the complexity of the kinds of GS under study. Here we will
cyc’ o use the definition of Crutchfield and Yourgyhich is trivi-
4 e ally computed for ouD pairs, since it relies upon the rep-
‘ resentation of chains as probabilistic, finite-state automata.
& Thus we take the complexity &= —X,p,In(p,), wheren

, 4 runs over the nodes of the automatdn air), andp,, is the

cyC

T@

=— node probability. We can easily obtain a general expression
%’3% for C for all the types ofD pair in Fig. 1, as follows. Let

ng be the number of shared nodes in epair (1 for types

cye  cye I and Il, 2 for types lll and IV, and 4 for type } and let
& T4 n,=2(Tg;—ns) be the number of unshared nodes. Then
(e) ps=1/Ty; and p,=1/(2Tyy). Thus the complexity of &

pair is Cp=In(2Tyq) — (ng/Toq) IN2, which exceeds the com-
plexity Cpe=In(Tpy) of a periodic chain of the samg,, by
Cp—Cpe=In2[1-(ns/Tyy) ]. Hence we see that@ pair—
- that is, a disordered stacking sequence whose building
cyc and cyc=I(cyc). (b) Type II: cyc andcyc=Sl(cyc). (©  blocks are of lengtfi ,,—is less complex, by this definition,
Type lIl: there are four possible cycles, sharing two nodes. Here anghan a periodic chain of periodTg;. (Its entropy per layer
in (d) (type IV), we have shown symmetriD pairs which are is, of course, higher.

invariant underS, because such symmetry holds for these types for

r <8, which represents the majority of cases studied in this work. B. Layer stackings and Ising spins

(d) Type IV: there are four possible cycles sharing two nodes. . . .
Type V: there are sixteen possible cycles sharing four nodes. Type V We \_N'Sh to Computg and study Fhe dlffrf’ictlon pattern_s for
D pairs are invariant under any combination®nd| . these five types db pairs. To do this we will translate Ising

spin configurations into a\BC sequence of close-packed
Let us briefly describe the five types Bf pairs. First we  layers, using the standard mapping between the two, as fol-
may have a type-D pair in which a cyclecyc shares the 10Ws. Any pair in the sequenok—B—C—A is denoted by
node. /" with its | symmetry partnecyd Fig. 1a]. Atype 1 (or +, in Hagg's notatiort®); and a pair from the sequence

Il D pair is composed otyc and itsSI symmetry partner A—C—B—Ais a0 (-). Itis worth pointing out here that
—— ) S the Ising (+/—) variables areelative coordinates, while the
cyc sharing a node/” [Fig. 1(b)]. Both type | and IID A notation refers to absolute layer positions.

pairs are always accompanied by anotbepar, related to We next introduce some notation, using an example for
the first byS symmetry(hence sharing the nodé'). Taking  clarity. OneD pair from 5*'Gg, for example, consists of
the length of the cyclecyc (in the lIsing or “01"  cyc=(0010111) [with Zhdanov symbdf cyc=(2113)]
representation—see belpwo be Ty;, and assuming a ran- , o
dom mixture of the two node-sharing cycles, we get the?d itsSI-symmetry partnecyc=(0001011).(The shared
entropy of types | and Il as In2 pefy, layers. node is 001011.) If the number of 1's and O's in a cycle is
Figures 1c) and Xd) shows type Il and IVD pairs. We denoted byn; and ng, a paramete’d can be defined by

can think of these types as a pair of cycles, which howevef =(N1—No) (mod 3. Hence a cycle witiA =0, if repeated
- periodically, gives a hexagonal polytype, while one with

share two nodesy " and./ for type Ill, and. /" andj" for ~ A==1 gives a rhombohedral polytype. The example shown
type IV. It is clear from the figures that four distindiut  above has\=1, and, as one may notice, the cycle does not
degenerafecycles may be formed from a type Il or 11 complete a period i\B C notation: The cycle is mapped to
pair. Hence the entropy for these is In4 dgy layers. (ACBCBCA(B...)(C...) (starting fromA). This re-
In general, as with types | and Il, types Il and I¥pairs  flects the fact that the rhombohedral polytypes must be re-
imply the existence of otheD pairs, with thepairs of D peated three times to complete the hexagonal unif ¢adi

FIG. 1. Schematic drawings of the five topological typedof
pair, assuming+1 symmetry for the Ising Hamiltoniaria) Type I:
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indicated by the subscript 3 in the Zhdanov symbdtlis  pear in the(somewhat more physigah B C notation. We will
convenient to define two different periodg, andT: Ty, is  use a different example, a S€yc=(101000001) (from

the period of a cycle in 01 notation, afidin ABC notation. $1Gy).
ThusT=To, for A=0 andT=3T,, for A= *1. SIn 01 language the operatolS takes the form

As noted above, botB andl are good symmetries of the 0«1, ~while —space inversion | is given by
Ising model as applied to polytypésal orh). We now want (g0, . ..oy < (onon-1 - - - 01). HenceS applied tocyc

to address how these operators, defined in 01 notation, ajs
|

101000001 3s 010 1 1 1 1 1 0
A B ABAGCT BATCA A ACACAGBTCATUB A (2.9)

As we can see here, tf®operation leaves one layer type invaridhére arbitrarily chosen to b&), and takeB<C.
I(cyc) is then

101 00 0O OO 1 1 1 00 0O0 0 1 0 1
A B ABAGCUBA AT CAADBATCT B ATCATC A (2.2)

Thus, inABC notation,| corresponds to the composite op-  j(n)=Paa(N)FAF + Pgg(N)FgFh + Pec(N)FcFE
eration of(spatial inversiojpp(B<C).

Given the above, it is clear that physically sensible Hamil- +Pap(N)FAFg + Pac(N)FgFE+Pca(n)FcFA
tonians for close-packed polytypes will be invariant under . . .
both S and | operations. We now proceed to examine the +Pea(N)FeFa+Pca(N)FcFg+Pac(n)FaFc.
diffraction patterns of some possible disordered ground (3.2
states for Hamiltonians witB+1 symmetry. Such “possible
disordered ground states” are of course Ehgairs obtained The structure factors ., Fg, andF for the hexagonah,
from S*'G,, as described above. B, and C layers are also well-knowtt. They differ from

each other only in phase since the layers represent identical
structures related by a rotation. If we divide out the common
IIl. DIFFRACTION PATTERNS: METHOD OF amplitude of the three structure factors by settifig=1,
CALCULATION thenFg andF¢ can be written as

For the purpose of our study, we assume that crystals of
the h polytype consist of unfaulted two-dimensional layers, Feg=exdi27my/3],
stacked as prescribed by the chosen SEUfG, . Hence the
diffracted intensity needs to be calculated only for wave vec-
tors normal to the close-packed laydi®., alongc). This
problem has been addressed previotfshf for perfect crys-
tals and for various stacking defects; hence here we only?heremy=ho—Kko is an integer constant determined by the
need apply old results to another kind of disorder. The intencomponents ty ko) parallel to the layers. Famy=3m, m
sity of x-ray diffraction from close-packed crystals can beany integer, the structure factors are all unity, and, as we can
expressed in terms of the numkirof layers in the chain, See from Eq(3.2), J(n) does not depend on the probabilities
and the average structure factor prodﬂlm), a514 at all. Hence for this case, by Ecsl), the intenSity is zero.
Taking my=3m+1 and inserting F values (the case
my=3m-—1 is trivially related, J(n) reduces to

FC:eXF[_iZ’iTmol:g], (33)

N
I(I)=Nabn:E_N (N=|n])I(nyexgi2anl), (3. (M) = P aa(n) + Pag(n) + Pea()

+[Pag(n)+Pgc(n)+Pea(n)]exp —i2m/3)
whereN,, is a constant coming from a summation over the ;
basal planed, is a continuous variable which determines the +LPsa(N) +Pca(n)+Pac(n) Jexp(i2m/3).
wave vectork=2l/c, andn is an integer number of units (3.4
of the primitive lattice vectoc. The average structure factor
productJ(n) can be written as a function of interlayer cor- Equation(3.4) shows that the intensity of the diffraction pat-
relations, or probabilities, as follows. L&2,,(n) be the tern depends on the sums of the probabilities that two layers
probability that two layers apart beA- - - A, and similarly  n units apart are iA---A, in A---B orin A- - - C relation-
define Ppg for A---B, Pgu for B---A, and so on. With ship.  After some  algebra, using the fact
these probabilitied(n) can be written as Pag(n)=Pga(—n), the intensityl (I) reduces to
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si?(7NI) N T : : . . : \ .
I(l):W_Z\EZl (N—n) Qc(n)COS(ZWnHE) 1.0+ 01111014010100 @
. 08 |
+Q,(n)cos(27m|— g” (3.5 06 | |
04 |
where  Q¢(n)=Pap(n)+Pgc(n)+Pca(n) and Q.(n) 0.2
=Ppga(n)+Pcp(n)+Pac(n). (Here we use for “cyclic” oo . ‘

and r for “reverse.” We also defineQ¢(n)=Pa(n)
+Pgg(n) +Pcc(n) =1-[Qc(n)+Q;(n)] (s="same”) for 1.0 |- 0011101010100 1
future use). Thus, in order to calculate the diffracted inten- 10001111010100 ®
sity, one needs only the lumped probabiliti€s(n) and
Qr(n).

For perfectly periodic crystals these probabilities are pe-
riodic, giving é-function peaks in the diffraction pattern. On
the other hand, for disordered crystals, the periodicity of the
probabilities may(or may noj be destroyed, depending on . . . ) . . .
the type of disorder which is introduced. If the correlations
are not periodic, then the diffraction pattern is of course con- % [ o1111011010100
tinuous. 0.8 10000111010100

A common approach to disorder in close-packed poly-
types is to assume the random introduction, with various
probabilities, of various kinds of stacking faults in otherwise 0.4

Probabilities Q,(n)

(©

06

perfect structure$!®'* This approach gives nonperiodic &
probabilities Q. , Q,) which decay to 1/3 at large. In real 02 I
polytypes, the defectistacking faulty are often not random, 0.0 - ” -

however(see, e.g., Sebastian and Krishna in Ref.sé that
long-range periodicity of correlation functions cannot be
ruled out. As an interesting example, whi@s we will se¢ o
is closely related to the present work, we cite the study by FIG- 2. The probabilitieQy(n) for T=42. (a) For a perfect
Kabra and Pandéf/ of the 2H—6H (or in Zhdanov nota- chain with A=—1. Other probabilities are related t@_s(n) by
tion, (1)—(3)) transformation in SiC. In this work it was Qr(")=Qs(14+n) and Q¢(n)=Q(28+n). (b) For a disordered
shown that certain types of stacking faults do not destroy th%ham’ type IID pair with A=0. We can see the irregular part only

long-range order, so that the metastable structures at Whi@r the first fewn. In general, the probabilities are periodic for this

o . . (“sameA") type of D pair, for n>n., with n,<Tgy;. (c) For a
the transformation is arrested may be described as having, .4 chain: type ID pair with A= 1. The probability de-

“Iong-range order without short-rf'inge Or‘?'e“" cays exponentially to 1/3. OtherQf, Q,) show the same behav-
The disorder we are dealing with here is unusual: the only,

type of “stacking fault” we consider is a zero-energy fault

consisting of a free choice among multiple pathsGp, at D pairs, four half cycles share two nodgsgs. 1c), 1(d)].

one or more points in an otherwise completely deterministicThere are two possible half cycles to be selected at each

stacking sequence. Furthermore, the distinct paths considghode; again the choice is made randomly, with equal prob-

ered are always related by symmetry. Hence the commoability. Given the symmetries of the problem, we believe that

methods for computing the probabilities are not appropriatehe assumption of equal probabilities is reasonable for a real

for our case. We found instead a simple rule for calculatingphysical system. In this manner a long disordered chain

the probabilitieQ, (x=s,c,r) for both the ordered and dis- (over 50 000 layejpsis produced, and its diffraction pattern

ordered close-packing sequences. Some useful properties @mputed from the correlations.

these correlations are proved in the Appendix. In the disordered case the value dfplays an important
We now examine the correlatior@®,, comparing those role in determining the properties of the correlations. Sup-

for a perfect crystal with those for a disordered chain builtpose the value ok of a cycle, sayxyc, is+1 or—1, and let

from a D pair. Figure 2a) shows Qg(n) for a perfect the number of 1's (0% be n; (ng). In the cycle

(A= —1) stacking sequence withy;=14. We can see that Cyc=I(cyc), n, andng will remain unchanged, so that

the period isT=3Ty;=42. Q,(n) andQ,(n) are very simi- remains unchanged. On the other hand, if the other half of

lar, being related t@Q4(n) by a shift inn. T i :
We next consider the disordered case. Disordered chai@ir%e%alrséstﬁa)ﬁhes \I/(aclzg);ﬁ?sl s%vni(tjcagdotfofyAc are ex

were constructed by computer, using a pseudorandom num- When a disordered chain is built up froayc and Gyc

ber generator. For type | andl pairs, this involves starting [Fi
. g. (@], the As of both cycles are the same. Somewhat
from a shared node’” [for example, see Figs(d), 1(b)] and surprisingly, the result, as shown in Fig(b? is that the

c(@osing one cycléeithercyc or €yc for type I, orcyc or probabilitiesQ,(n) are periodic, with period T (recall that
cyc for type Il) randomly; adding the chosen cycle brings usT=3T; for A=*=1 and T=T,; for A=0), whenn is
back ta./", and the choice is made again. For type Ill and IV greater than a threshold valag (see Appendix It turns out
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thatn. is a small number which is always less thef, but 100 . . . .

the irregularity in this small region makes a bump in the

intensity (see below. Whenn>n,_ we can expectsee Ap- 1101001000001 @)

pendix for details that the basic properties of periodic cor- (4=0)

relations can be applied for this case, so that the diffraction

patterns are very similar to those for the periodic case. In

particular, the locations of thé functions are unchanged.
The correlations of a disordered chain grown by uding

pairs of types II-V show a special behavior whr + 1. A

For example, a chain produced by a random mixtureyof 0 ' ‘ -

andcyc (type ll) gives an arbitrary mixture of cycles with 100101110010000000%

A=1 and—1. The otheD pairs(types IlI-V) also have this
feature, as may be seen from Fig. 1. In the Appendix we g
show that the correlations, in these cases, decay exponen—;50 r i
tially and approach 1/BFig. 2(c)] (note that the same result 2
was obtained by Wilsdri using difference equations for dis-
ordered hcp polytypes However, whenA is O for any of J ‘ J ‘
types lI-V, the result is similar as that forcg c-Cyc D pair: o b L. :

the chain has periodic probabilities for>n, [with however

Q.(N)=Q,(n)], and irregular “noise” belown. 200 - 0111011010100 ©
(a=-1)

(b)

Unit)

(a=+1)

Intensi

IV. DIFFRACTION PATTERNS: RESULTS 100

After growing a close-packed but disordered crystal from

a D pair, we calculate the probabiliti€3,(n), Q.(n), and l
Q.(n), and then calculate the intensity diffracted from these 0 A . .
structures by feeding these probabilities to E215).

Figure 3 shows the intensity from a perfect crystal for
various A. As noted above, the perfect crystals are con-
structed by repetition of one cycle of a givéh pair. For FIG. 3. Diffraction patterns from perfect chains with various
A=0 whereT=Ty,, in general, allT diffraction lines occur A. (a) ForA=0, T=Ty,=13. Basically all lines occur; the number
at|=h/T with h an integer. Figure 8) shows the peaks in of lines isT. Some lines are too small to s€b) For A=+1, lines
the range &Il<1. We see in contrast from Figs(i$ and at I=h/T, with h=3k _and h=3kf_1, are extinguished(c) For
3(c) that & function intensities occur only at the positions 4= ~1, 3k and %+1 lines are extinguished.
h=TI=3k+1 for A=1 and %—1 for A=—1. Then the
number of peaks in the rangesh<T is Typ;=T/3. These When the disordered lattice is built from type 11-M
are well-known results; we only reproduce them here to fapairs the diffraction patterns can show very different behav-
cilitate the comparison with the disordered cases. The extingor. For A=0, the result is similar to that of type I: all
tion of 2/3 of the peaks, foA = =1, is proved in the Appen- sharp peaks occur at the regular positions, with an intensity
dix. bump due to the irregular part of the correlati¢Rey. 5a)].

In Fig. 4 we show the intensity diffracted from disordered[One difference is that, for this case, the intensity lines are
lattices. When the disordered lattice is type | whtk=0 [Fig.  symmetrically placed about the axis-0.5, due to the fact
4(a)], A=1 [Fig. 4b)], andA=—1 [Fig. 4(c)], we can see thatQ.(n)=Q(n).]
that the sharp peaks occur at the same positioompare, Figure 8b) shows that some structures, built frob
for example, Figs. @) and 4a)] as for the periodic cases, pairs, show a completely diffuse diffracted intensity with no
but the intensities of the lines change. We note also that theré&-function peaks. That is, we see here that the equilibrium,
occurs a small intensity bump on the base line of the patzero-temperature structures of durpolytype may have an
terns. This is the only evidence of the disorder in the chaingntirely continuous diffraction spectrum, like that seen for
we see that it can in fact be quite small, and hence difficult tdighly disordered but metastable structures in known poly-
detect experimentally. types. When theD pair is of type Il through V, with

There are two reasons why the disorder is so well hidded = £ 1, the sharpS-function lines are destroyed by the ran-
in these cases. One is of course the identithdbr the two ~ dom mixture of cycles(or parts of cycles related bySI
halves of theD pair, which preserves long-range correlations(types 11-V), or simply byS (types IlI-V). This can perhaps
as noted above. The second reason is that the two cfgdgs be understood in an intuitive way as follows. Suppose two
cyc and €yc) must share at least one node, and so have atycles, constituting th® pair, have differentA values: one
leastr bits which are identical. This leaves at most only has+1 and the other has 1. Then, of course, if we have a
(Tos—r) bits which can differ between the two cycles. The perfect crystal(i.e., all one cyclg the sharp peaks tend to
actual number of differing bits can be as small as one; henceccur at(respectively h=3k+1 andh=3k— 1. Mixing the
the amplitude of the continuous part of the spectrum can b&vo cycles arbitrarily, the sharp peaks of one cysaycyc)
quite small. will be destroyed by any significant fraction of the other

0.0 0.2 0.4 0.6 0.8 1.0
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I FIG. 5. Diffraction patterns from disordered chains built from a

type 1l D pair. The lines are symmetric with repectite 0.5, due to
Q. (n)=Q,(n). (& A=0. Here we still have a samk-pair, and
FIG. 4. Diffraction patterns from disordered chaiige I) with hence sharp lines in the spectruth) When A#0 we have an

variousA. (a) Pattern for a disordered chain built fromDapair  “opposing-A” pair. [An example of probabilities for an opposing-
(shown); the pattern for a perfect chain from half of tHis pair is A case is shown in Fig.(2).] In this case, as shown in the Appen-
shown in Fig. 8a). Relative to Fig. 8a), the positions of the lines dix, the probabilities are not periodic, and there are no sharp lines in
are not changed; but there is a smooth background, with a visiblene diffraction spectrum.
“bump.” (b) A=+ 1; compare with Fig. ®). (c) A=—1; compare
with Fig. 3(c).

metry. To do this, we drew the graphs'G4 and S*'G; by
— hand, and picked out by inspection the simple cycles which
cycle (say, cyc) since the positions of lines afyc corre-  satisfy the CW rules foD pairs? We also found a fewD
pairs forr =8, since this is the smallestgiving type VD
pairs forS+1 symmetry. Our method rapidly becomes cum-

cycles. In Fig. 6 we vary the ratio of the two cycles, in orderbirsomgnioer :?gr?wi‘u?[ﬂgrlzezlr?ha?g) ra;ﬂgra??;rlisyisfor
to clarify how the disordered, continuous pattern is related td= ! ' y P 9

the two discrete spectra obtained for the pure periodic Casé/garr_anted, it should b_e automatéehich is possiblg and
carried out by a machine.

(cycandcyc). We see from Fig. 6 that, as claimed above, Our manual search is however extensive enough to un-
the intensity is changed from discrete to continuous by anyover both types ob pair in S*'G, found by CW. There-
finite fraction of the symmetry-related cycle. It is also clearfore, we believe that the five types of Fig. 1 represent all the
that the peaks are smoothly shifted, as a function of the mixtopological types oD pairs that can occur i, . Hence we
ture ratio, from one limit (&+1) to the other (8—1).(We  feel that the present study has revealed all the qualitative
are of course not aware of any physical mechanism whiclieatures of disorder which may occur for Ising Hamiltonians.
would bias the ratio away from 1/2; we include Fig. 6 simply  In Table I, we list all theD pairs we found from

to clarify the behavior of the continuous spectra for theseS*!G,. Table | is actually not typical of larger, sincer =6
types ofD pairs) is the smallest value, giveB+1 symmetry, for whichD
pairs occur at all. However, the pairs for larger are very
V. D PAIRS numerous; hence we just summa_rize those _results here.
For r=7 we found 66D pairs, of which 38 gave
We have compiled a modest catalog of fgairs which  §-function patterns and 28 gave pure continuous spectra. The
may occur forr=6 andr=7, always assumin®+| sym-  periodsT, for the §-function spectra included 9-15, 17-19,

sponds to the positions of zero intensitiescgfc.
Figure §b) is for the case of an equal mixture of the two
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VI. DISCUSSION AND SUMMARY

40

1001011 Recent work by Canright and Wats¢@W) (Ref. 4 has

0001011 0:100% R .
20 - h proposed a type of disordered ground state for classical one-
I dimensional chains whose Hamiltonians obey certain sym-
.| \ I metries. This disorder involves arbitrary mixtures of simple
sequencesgcycles which are related by symmetry. Our goal
in the present work has then been to ask how this kind of
f disorder might appear in an experimentally accessible signal.
0l Wi \\ A A We chose to view the one-dimensioriaD) chains as stack-
40:60 ings of identical close-packed layers, i.e., (agpothetical
00 | _ polytypes, and computed the the diffraction patterns along
the stacking direction. In particular, we assumed, as appro-
/\ priate for close-packed polytypes, that the distinct ways of
stacking the layers gave simple phase shifts in the scattering.
Given these assumptions, we found that the diffraction
patterns fell into two classes: discrete, with a continuous
/I\ baseline, or pure continuous. In the former case the baseline
can be quite smallsee for example Fig.(8)], giving a pat-
80:20 tern strongly similar to that for a periodic structure; or it can
20 r 1 be larger{Fig. 4a)]. In the latter cas¢Fig. 5(b)], the disor-
j}\ der is obvious; however the remnant periodicity is also
0 A A clear® Briefly (see the Appendix for detajlsthe reasons for
the two classes are as follows. In binary notation, there is
long-ranged orde{LRO) for all types ofD pairs, because the
shared node&wvhich represent at leastbits) recur with per-
0 ! B L. fect periodicity. However, when the binary chain is translated
00 02 04 . 06 08 10 to a close-packedBC sequence, this LRO may or may not
be lost, depending on the relative symmetries of the pieces
which are mixed by the degeneracy, and on the parameter
A which determines the net shift in spatial phase after one
period.
— These results, being based on an entire class of generic
moving from &—1 to 3k+1 as the fraction ofyc increasestop  Hamiltonians, are as yet purely theoretical. It remains to be
tq bottom). We have drawn a few dotted Iine§ as a guide to the €Yeseen whether or not real materials might be governed by any
Figure 5b) shows the case of a 50:50 % mixture. of that fraction of Hamiltonians which give disordered
ground states. Such Hamiltonians should apply to any com-
pound whose structure consists of stacked identical layers,
with the layers restricted to a discrete numbarthis paper,

22, 24, 26, 28, and 30; for the continuous spectra we foundV0) Of states(say, orientations Here we have assumed the
periods 9, 10, 14, 16, 18, 20, 22, 26, 28, 30, 34, and ggsimplest of such structures, i.e., those built from close-
There are no type VD pairs for r=7, since S*'G, packed layers. . .

_ 'Ge-4 We did find (with help from a computer search There are many well-known polytypic materials whose
type V D pairs in S*'Gg; typically, they involve nonzero structures obey théABC state restriction. SiC and ZnS,

A values and so give continuous patterns. Hence the princ}['—"hICh are almon(:[:; th? _mlostt) Welll'SJUd'ted clasc'is_lga: p0|)t/- .
pal feature which distinguishes this tyflgesides their topo- ypes, can aimost certainly be ruled out as candidate materi-

. . . I als for realization of the zero-temperature disorder described
logical structure in the graphis their higher entropy per

T (which t vield a hiah t by CW? and here. For these materials, there are good
o1 'ayersiwhich may or may not ylelid a higher entropy Per o imatet of the effective interlayer couplings in the Ising
layer, depending offy,).

X _ ) ) Hamiltonian. These couplings point to a simple periodic
We note finally that, for=6 or 7, odd-periodD pairs  graynd state; in particular, they fall off too rapidly, being

with continuous diffraction patterns are rare. The reason i$ery small forr=5 (recall that CW showed that all ground
that such patterns are only obtained, for thes@lues, from  giates are periodic for<6). It is also likely (though not
type Il pairs with nonzeroA. Type | pairs always give certain that the other classical polytypes will also have in-
o-function patterns, and types IlI-V always have even peteractions of a range too short to give rise to the phenomena
riod (because all these types, fiox 8, areS symmetric, i.e., studies here. It is of course of interest to see whether these
they “unfold” into two doubled cycles rather than four dis- potentials, or any other known potentials for real polytypic
tinct ones. From Table |, the continuous spectra with odd materials, are close to any of those which give disordered
period do not appear to be uncommon; however, they repreground states. The answer to this question however requires
sent only 2 out of 6@ pairs forr=7. further work; specifically, the “inverse problem” of finding

20:80 |

60:40

intensity (Arb. unit)

DT .

100:0%

FIG. 6. The diffracted intensity with varying probabilitiéas

shown) for mixing the two cyclesgyc andcyc, from a type 11D
pair with A= *+1. We can see the positions of maximum intensity



5206 JAICHUL YI AND GEOFF S. CANRIGHT 53

TABLE I. D pairs found in S*'Gg. The first column gives th® pairs in binary notation. The type Il

pairs are alwaysyc/cyc. The type Il pairdsee Fig. {c)] can be decomposed in several ways; here we give
them ascyc/€yc. The (binary) periods of the paired cycles are given, as these are apparent even in the
disordered diffraction patterrisee, e.g., Fig.®)]. The A value and type determines whether the diffraction
pattern hass functions, or is continuous.

' D pair Tou A values® Type Spectrum
° cortitostooer 14 00-Lfl  m Coninuous
° So11111011000001 18 00-L¥l W Continuous
6 éggigﬁ 7 +1,-1 I Continuous
° looiotootiotors 16 00¢L-l W Continuous
° égﬂﬁﬂggiggggggi 18 00-1+1 i Continuous
6 388181811 9 +1-1 I Continuous

8 ach entry has two or four values depending on the typp @hir (see Fig. L

the set of Hamiltonians which correspond to a given groundrum, in which the underlying disorder is obvious. These
state(e.g., aD pair) must be solved. We plan to address thisresults are an essential component of any search for disor-
guestion in future work. dered ground states in layered solids.

Besides the “classical” polytypes such as SiC, there are
polytypic structures among simple metals and metallic ACKNOWLEDGMENTS
alloys!® Here the effective potentials are long ranged, and
highly frustrated. The approach of CWRefs. 1,2,4 is We thank Greg Watson for help in finding=8 D pairs
strictly valid only for finite-ranged interactions. However, by a computer search. This work was funded by the NSF
there remains the possibility that the ground state for theinder Grant No. DMR-9413057.
long-ranged interactions is already determined by those up to

some range, so that our logic may be useful even for this APPENDIX

case. Zangwill and Bruinsmahave argued that the ground

states for this class of problem form a “devil’s staircase” as 1. Probabilities for the periodic chain

a function of the average valenzeof the metallic alloy. This In this appendix we prove various properties of the prob-

argument implies a periodic ground state for AlIThis re-  gpjlities Q,, which are useful for understanding the diffrac-
sult depends on allowing elastic displacements of the layergon patterns. We begin, in this section, with some general
from perfectly periodicc-axis spacing; this feature is also yroperties for the periodic case. The following sections will
absent from the simple discrete state space considered hefgen consider the presence or absence of sharp lines for the
Thus it seems that the best current logic predicts pe”Od"beriodic and disordered pair cases, respectively.
ground states for metallic polytypes; however, there is Define A(l) to be theA of a set ofl spins within an
clearly room for, and need for, further work on this question.jneryal, from the ¢+ 1)st to the g+ 1)th spin @,! integers

Our theoretical approach to polytypes, and many othe{yiy 4=0 andI=1) in an infinite Ising chain[Hence

approaghes, share the common feature of reducing a threg—a):A (1) strictly depends om as well; but we will usu-
dimensional, quantum-mechanical problem to a one: d

lly ignore theq dependencé.The A defined in the main
dimensional classical problem. We believe such an approac?éy 9 q aep ¢ ! I !

. S xt is then A(Ty;) in this notation. Also defineng(l),
is well justified by the large mass of the layers. However, one, (), and n.(l) to be the number of sets which give
c ’ r

must %onsider the possibility that true quantum-mechanicaA(l)=0 +1, and— 1, respectively, when we scanfrom 0
solids® may not sample the entire range of possibilities ofto Tos— 1. Then, for the periodic case,

classical interlayer Hamiltonians, even after allowing for
symmetry. This question also we plan to address in future

K ns(n)
work. o Qs(mT+n)=——,
In summary, our study of the diffraction patterns [of To
pairs is motivated by an interest in determining whether the
kind of disordered ground states identified by Canright and ne(n)
Watsort may arise in real materials. We find that, depending Qc(mT+n)=——, (A1)

on the details of the disordered structure) gair may give ot

either a diffraction spectrumd functiong very much like n.(n)
that for a perfect crysta{with however some continuous Q,(mT+n)= ol (m=0).
spectrum as welj or one may find a purely continuous spec- To
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We can prove these relations as follows. First consider & his result is independent df since it only uses the fact that
set ofn spins and a corresponding close-packing sequence. £(T)=0.
the stacking sequence begins wikh(B,C) then aftem fur- With the logic described above it is not hard to derive a
ther layers the position will b& (B,C) if A(n)=0, or will number of relations among the probabilities. In the next sec-
beB (C,A) if A(n)=+1, orC (A,B) if A(n)=—1. Thus, tion we will use such relations as needed.
for exampleng(n) is the number of pairs of layers, apart,
which are in the saméhence ‘s”) orientation: A- - - A, 2. Extinction of diffraction lines
B---BorC---C. (Similarly, as in the main text,¢” stands
for “cyclic” and “ r” for “reverse.”)

Let Np(n) be the number of layer pairs, apart, over a
whole chain, anoh("")(n) be the number of pairs among

Using the properties shown in Sec. |, we can show that
the lines indexed B and & —1 (k=0) are extinguished for
a periodic chain withA = + 1. Rewrite the intensity equation

Np(n) which givesA(n)=0. For a periodic chain composed [Eq. (3.5 as
of Ny unit cycles with periodTy; we will have Ny=Tg;N,, (N 1)

() sIn(m T
andn (n)=ng(N)N,. With this notatlonQS(n) can be 1(1)= 2\/—2 (N=n)| Q(n)cod 27nl+ —
written as sir?(wl) 6

a
Q@F@ (1=n<w). (A2) *Qrm)CO\"(Z’T”"EH
01
Since the chain is periodic it is useful to write as _Sinz(WNl)

== (A7)
n=mT+n’, m=0 and I=<n’<T. Then ngn) sin(l)

=ng(mT+n’)=ng(n") [since  A(mMT+n")=A(mT)

+A(n')=A(n")]. Finally we can drop the prime, giving Using the fact that the probabilitie®.(n) and Q,(n) are

periodic and thatQ.(T—n)=Q,(n) we can simplify the

ny(n) summation in Eq(A7) as
Q(MmT+n)= (A3)
TOl \/— 2 T
Other equations in Eq$Al) can be derived using the same 2 Qr (n)C°S< anl_ 6/ (A8B)

method. Thus we do not need to count the number of layer

pairs over a whole chain in order to calculate the probabili-Next, usingQ, (Tt n)=Q¢(n) and Q,(2Ty;+n)=Qx(N),
tiesQq(n), Q(n), andQ,(n). Instead only one to three unit .*” can be written as

cycles are enough in calculating the probabilitisse be-

low) J3N2 o o
In the remainder of this section we will talde= +1 for = > [Qr(n)COS( 2mnl— g)
concretenesgGeneralizations to othek are obvious. We n=1

want to derive relationships betweem(n) and n,(n’), T

wheren andn’ differ by a multiple ofT,;. For example, let + Qc(n)cos< 27T ogl +27nl— g)

us show thatn,(Ty;+n)=n.(n) and n,(2Ty;+n)=ng(n)

for the caseA=+1. We will use the modular arithmetic T

properties ofA(n): +Qs(”)005( AmTogl +27nl— g” (A9)

(£1)+(x1)=F1 and (=1)—(x1)=0. (A4 Let I=h/T (h=intege). The first term in Eq(A7) is O ev-

) i ) erywhere except=0 andh=T. Thus if.””vanishes for any
A set of To;+n spins contributes ton, (ne, Ns) if  giherh 0<h<T, then the intensity lines are extinguished.
A(Toytn) is -1 (+1, 0. Thus (for examplg () h=0 or T. ./=N? and then the intensity
A(Tortn)=—1=A(Toy) +A(n) implies thatA(n) should | _n2_N2=0.

be +1, sinceA=A(Ty,) =+ 1. With this argument we can (i) h=3k

see thatn,(Tgitn)=n¢(n). Similarly, if A(2Ty+n) is

—1, thenA(n)=0, sinceA(2Tyy) is —1 for the case of 2\/—N2T01 omkn
A=+1. Hencen,(2Ty;+n)=ng(n). Finally we see that 2 [Q;(N)+Q.(n)+Q, (n)]cog( — E)'
Qr(Tort N)=Qc(n), (A10)
B The sum of all three probabilities is always 1, and the sum-
Qr(2Tor+1)=Qs(n). (AS) mation of the cosine term can be carried out to be 0. Thus

. . . k)=0.
We can consider properties under subtraction, as well as( ("?) h=3k+2=3k—1. Using Q,(n)=Q4(To;—n), the
Cc S

under addition. Noting thatA (T—n)=A(T)—A,_,(Nn),

and averaging to eliminate thee dependence, we find, for

example, \/_N2T°1 2mn(3k—1) =
QM=0uT-n (=n=T). e T &M 5( T 6/

last two terms in Eq(A9) cancel. Hence” becomes

(A1)
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By straightforward algebra we can show the above equation n(n)
also vanishes, using Q,(n)=Q,(Ty;—n). Hence Qs(n)=—F—.
1(3k—1)=0. ot
Thus we find that only one-third of the allowed lines ap- n(n)
pear in the rhombohedral cade= + 1; the same conclusion Q.(n)=— , (A12)
holds forA=—1. In the hexagonal casé&0) all T lines Toy
appear. —0)

n n
Qr(n): (T01+ 1<n$2TOl)
Toy

3. Disordered case
) . (iv) 2Tp;+1<n<3Ty;. In this region there exists one
For the disordered case, we need to consider the averaggit cycle which is lumpedi.e., makes an invariant addition

values forng(n), ne(n), andn.(n) over the entire chain. 5 the sumwhen we scamg from 0 toTy,— 1. This cycle can
[For the remainder of this section we will use the notationpe either ¢ or ¢’ with equal probability, and the

n,(n), earlier defined for periodic chains, to denote this aV-A (T, =A of this cycle will be 0,+1, or — 1 depending on
erage] For simplicity, we will assume that the chain is built the D pair considered. Lef(ls) f'(lc) ’andf(lr) be the prob-
from a random mixture of two symmetry-related CyCIeS"abilities[we will use the term “cycle probability” in order to

present with equal probability. Hence our derivation will bedistinguish these probabilities from tig@(n)] that theA of

strictly valid only for type | and IID pairs; however our ; .

) o i ! the lumped cycle is 0+ 1, or — 1, respectively. For example,
conclusyons{perlodlc probab|ll'§|es ané-fungt!on spectra for for a type IID pair, in which theA of cycis +1 and that of
pairs with the same\, decaying probabilities and loss of —.

_ () — ¢(r) — (s) — i -
sharp diffraction lines for mixtures of cycles of opposing cycis L, f.l f1 1,/2 andfy 0'. Rec_alllng the modu
A) are valid in general. lar arithmetic of theA’s, the n,(n) in this range can be

We consider two cycles andc’, related by symmetry v_v(rg'gten in te_r(rgs of the cycle probabilities ana®(n),
(1 or SI), with bit paritiesA andA’, respectively. We will Nc (), andng=(n):
need to distinguish the case thAt=A’ (“sameA” case; _ _
type | D pairs, or type Il withA=0) from that with Ns(2Tor+ n) =N () +£17,n% () + 7% (n),
A=—A" (“opposing-A” case; type Il withA==1). _

Our strategy is to first calculate the short-ranggis, then  Ne(2Tort M) ="f1"n(n) +F17n” () + f1n%(n), (A13)
the longer-ranged ones, building from the short-ranged val- o o o
ues. Fom sufficiently large &2To,+ 1), there is always at  N(2Tgy+n) =00 (n)+ 700 (n) + £V (n).
least one complete cycle, of length,, which appears un- _. . . .
changed in all sums involved in the averaging process uset'a'v'dIng Eq. (A13) bydT01, we can calculate the probabili-
to compute then,(n) and hence th&,(n) (x=s,c,r). We les Qq(n), Qc(n), andQ(n).

call such a cycle “lumped.” If a cycle, or fraction of a cycle, (v) Largern. If n is in the range Jo,+ L=n=4Toq,
is included but not lumped, we say it is “scanned.” there are two lumped cycles. The cycle probabilitfé3,

(i) n=1. We begin withn=1. For a same\ pair, n, and 9, andf$’ can then be obtained using those obtained be-
n, are the same for either or ¢’. Thus it is clear that fore: f&=ff+ 71+t and so on. From these
Q.(1)=n;N,/N=n;/To;, Q,(1)=nyN,/N=ny/To;, and  cycle probabilities we can calculate thg(n) as before.
Q4(1)=0. These are the same as for the periodic case. Inthe In ~ general, if n is in the range
opposingA case the probabilities will depend on the prob-(P+1)Toi+1sn<(p+2)Tp (p=1), we can use the fol-
abilities of the two cycles. Taking an equal fraction of thelowing formulas:
two cycles, the probabilitiegneglecting edge effegtsare

Qe(1)=Q,(1)= (1/2) (ny+ )/ T = 1/2. f =t o f 7+ £ 119+ 110,
(i) 2=sn=sTy+1. If 2<n<Ty+1 the length of spin
sets involved in the counting process will be up to =0 15+ 102 159+ 07, 7, (A14)
2T—that is, two cycles are scannéffom the first spin
(q=0) to 2Tth spin = To;—1)].*° Since we scan more =00 F9+ £ £+ 10110,

than one cycle in this case, we need to computentfin) by

averaging over the four possible combinations of two cyclesSincef{?, f{?, andf{” can be determined by the of the

cc, cc’, ¢'c, c'c’. We find that, in the sama-case, there D pair, we can obtain the cycle probabilities for gmyising

exists a thresholdr(,) between 1 and;, above which the these recursion relations. Using E¢&14) we can finally get

probabilitiesQ, are periodic. Since the most general boundMx[(P+1)To1+n]:

is n.<Ty;+ 1, we will confine ourselves to showing the pe- _ _

iodicity o 1T 1 T R ot = (RO 0+ £ o),
(i) Tg1+1<n=<2Ty;. For n in this range, three unit

cycles are scanned. Therefore thgn) should be calculated  Nol (P+ 1) Tor+n]=f7nV(n)+ 0% (n) + 570 (n),

by averaging over eight possible combinations of the two

cycles Ecc, ccc, etg. Let these averaged values be n[(p+1)Toi+n]=f"n"(n)+f"n (n)+fFni%(n)

n(n), n®(n), andn!®(n). Then the probabilities can be

written as (p=2,1=n<Ty). (A15)
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Thus, once we know{”(n), n®(n), andn{®(n), and the ~ With the same method we can show the periodicity of prob-
£ from the recursion relations, we can calculate the probabilities for any same case, i.e., any typeD pair, or for a
abilities Q,[ (p+1)To;+ n] by dividing Egs.(A15) by Ty;. type Il D pair with A=0. It is clear that the proof generalizes

WhenA=+1 in a type ID pair, for example, we know t0 types IlI-V, as long aa =0 for all possible cycles which
that f=0, f{=1, and f{?=0. The recursion relations ¢an be formed.

(A14) for this case will be .On th_e other hand, for the qpposingeasestypg !I_—V D
pairs, withA #0) we have a different story. The initial cycle
fé3>: f<prjlf(p0>: f<p8)lf(pf>: fg?jl (A16)  probabilities for this case are different from the previous ex-

ample: they aré{®=0 andf(9=f{"=1/2. From Eqs(0.14

so that the probabilites are given by and the initial cycle probabilities it is not hard to get the

rTﬁO)(n) r_lf:‘))(n) following recursion relation:
Qs(2Tgtn)= , Qs(38Tgy+n)= ,
To1 To L0 L r
F=5 (50, +100,) (A18)
ny’(n)
Qs(4Tp+n)= T (where againx=s,c,r); here we have used the fact that
01 f(0=£(). We can solveA18) to get
N0 n0)
nc (n) ns (n) 1 P
2T tn)= , 3Tt Nn)= , _ _
Qu(@Tort ===, Qi3Tortm) =~ 5p=fp_fpl_c(_§) | (A9
n®(n) with C=4(f,—f;). We then sun{A19) to get, for largep,
Qi (4Tt n)= To (A17) ,
(X) () Z g0 _g(x)
2O(n) 70(n) fole=11 +3(f2 fi). (A20)
Qe(2Tortn)= Tor Qe(3Tortn)= Tor ' With initial conditions appropriate td=+1 (i.e., f{¥=0
o andf$=1/2, or equivalentlyf{“" =1/2 andf{*" =1/4) we
n_(c '(n) can show that all three cycle probabilities decay to 1/3 at

Qc(4To1tn)= Tor large p. With Egs.(A13), n, (largen) can be found to be

, 20y 4 017y + ©)
Thus, even for the disordered chain, we can see that thglg)TOl’ using the fact thatng(n)+nc (n)+ns7(n)

probabilities are periodic, whem>n., with period = Tos. Finally, the probabilities for large are

3To:=T for the A=+1 case. In that region ai the prop- ng(n) 1

erties of periodic probabilitieésee abovecan be applied to Qs(N)= 5 —=3=Qc(M=Q(n). (A21)
this disordered case. Therefore we can expect that the dif- ol

fraction lines @ function) in Fourier space occur at the same The diffraction pattern for the opposing-case is thus dif-
positions as those for a periodic chain, as derived abovduse, without anys functions.
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