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It has recently been shown, assuming only certain~physical! symmetries of the Hamiltonian, that one-
dimensional Ising problems can have degenerate, disordered ground states~GS’s!. This result is of interest
since it implies a weak violation of the third law of thermodynamics. The ground-state disorder is, however, of
a special kind, consisting of arbitrary mixtures of a short-period structure and its symmetry-degenerate partner
or partners. In this study, we address the question of how this constrained disorder may appear in an experi-
mentally accessible signal, namely, the diffraction pattern. To calculate the latter, we assume~as is commonly
done with known polytypes! that the Ising Hamiltonian represents the energetics of stacking of close-packed
layers of some hypothetical polytypic material. We then calculate the diffraction patterns along the stacking
direction for the various possible kinds of disordered GS’s. We find that some disordered GS’s give diffraction
patterns which are only weakly distinguished from their periodic counterparts, while in others the long-ranged
correlations among the layers is destroyed by the disorder, giving a diffraction spectrum which is purely
continuous.

I. INTRODUCTION

One of the simplest problems in classical statistical me-
chanics is the one-dimensional spin chain, with the spins
taking only values from a discrete set ofk states. The most
well-known example is of course the Ising problem, where
k52. For generalk-state models in one dimension, it is
known that the ground state is ‘‘almost always’’~in the sense
of for ‘‘almost all’’ possible Hamiltonians! periodic. That is,
Radin and Schulman1 showed that, for such models, any
nondegenerate ground state is periodic, and that, for the de-
generate case, there always exists at least one periodic
ground state. In each case the period is at mostkr , wherer is
the range of interaction. Fork52 ~Ising model! Teubner2

obtained~among other results! these same results, using the
directed graphGr

(k) ~called the de Bruijn diagram,3 and de-
scribed in more detail below!. Recently, Canright and Wat-
son ~CW! ~Ref. 4! considered the mathematically ‘‘excep-
tional’’ ~but physically unexceptional! case of Hamiltonians
constrained bysymmetry. CW showed that, for many values
of k andr , the restriction to symmetric Hamiltonians leads to
the possibility of degenerate anddisorderedground states
~GS’s! over a finite fraction of coupling-parameter space.
~This finite fraction is of course negligible in the higher-
dimensional space of all possible Hamiltonians, uncon-
strained by symmetry; hence there is no contradiction be-
tween the CW result and that of Radin and Schulman.! That
is, if one allows the physically unexceptional ‘‘fine tuning’’
of parameters arising from symmetry, then in many cases one
can find degenerate and disordered GS’s without any further
fine tuning of parameters. The disorder arises since, in such
cases, there are multiple degenerate periodic states~phases!
such that the energy of a domain wall between the degener-
ate phases is zero. Hence any arbitrary~and so in general
aperiodic! mixture of the degenerate states is also a ground
state.

Such ground states have a finite entropy per spin, and so
suggest the possibility of~weak! exceptions to the third law

of thermodynamics.5 Furthermore, since such disordered
GS’s do not require fine tuning of the parameters of the
Hamitonian to precise values, it is at least plausible that such
exceptions may be found in some real materials whose ener-
getics may be represented by a one-dimensional,k-state
Hamiltonian.

It is therefore of some interest to inquire whether CW’s
theoretical results may be applicable to any real physical
systems. In the pursuit of this idea, two obvious questions
immediately arise.~i! Are there any real materials which may
be described by such a Hamiltonian?~ii ! If so, and if such
materials do in fact have a disordered ground-state structure
of the type found by CW, how might the disorder appear
experimentally?

~i! is readily answered: besides possible magnetic sys-
tems, there is a multitudes of layered solids~polytypes6!
which may be described by such Hamiltonians, in the fol-
lowing sense: there is a low probability of intralayer defects,
while packing constraints force the layers to choose one of a
small, discrete set of relative stacking orientations. A one-
dimensional,k-state Hamiltonian may then be usefully em-
ployed to represent the energy~or free energy forT.0! of
the various ways of stacking the layers.7 We should of course
make it clear at this point that such a Hamiltonian is by no
means restricted to near-neighbor couplings, nor even to
two-body terms. In fact, there is no justification for exclud-
ing any term up to ranger , except those which violate the
assumed symmetry of the HamiltonianH. This broad class
of Hamiltonians is the same class studied by CW.

Hence we are led by the results of CW to imagine a lay-
ered solid for which the ground state consists of a disordered
stacking of layers. The disorder is however of a special kind,
namely, the random mixture of two~or more—see below!
stacking sequences, with the different sequences related by
symmetry. It is not obvious what experimental consequences
might arise from such a constrained form of disorder. In the
present work, as a partial answer to question~ii ! above, we
study the diffraction patterns, along the stacking direction, of
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such hypothetical layered materials. We will refer to our hy-
pothetical material as anh polytype: it is a polytype in the
broad sense of the term; however, we prefix the ‘‘h’’ to dis-
tinguish our hypothetical layered solid from the well-studied
classical polytypes such as SiC.6

In this work we consider the simplest possibleh polytype,
namely, a close-packed solid, which may be modeled as a
classical Ising (k52) chain.6 We assume ourh-polytype has
a disordered ground state of the type found by CW, and
examine the possible kinds of diffraction patterns~along the
stacking axis! which may result from such a structure. Our
goal is to try to see how the constrained disorder described
above ~i.e., mixtures of two distinct stacking sequences
which are related by symmetry! may be realized in the ex-
perimentally accessible form of the diffraction pattern.

II. DIRECTED GRAPHS, ISING SPINS, AND
CLOSE-PACKED STACKINGS

Our approach, like that of CW, relies on the representation
of a HamiltonianHr

(k) ~with r the range of interaction, andk
the number of states per site! as a directed graphGr

(k) .
Hence, in this section, we first provide a brief description of
this representation, including the modifications introduced by
CW to represent the effects of symmetry. Subsequently, we
show how to translate a cycle of Ising spins into a stacking
sequence of close-packed layers. This is a standard proce-
dure, but we include it here~briefly! for completeness, and to
show how the relevant symmetry operations on the Ising
spins appear in the language of layer sequences.

A. Directed graphs, cycles, and degenerate pairs„‘‘ D pairs’’ …

From here on we will restrict our attention on the Ising
model (k52), and so drop the superscriptk everywhere. An
infinite Ising chain with interaction ranger can be viewed as
a successive sequence of spin configurations, each of length
r . There are 2r such configurations; these become the nodes
(N ) of the graphGr . To complete the graph, two nodes
N 15s1 . . .s r andN 25s18 . . .s r8 are connected by an ar-
row ~directed arc! only if the last (r21) spins ofN 1 are
identical to the first (r21) spins ofN 2 . This arc then rep-
resents a transitionN 1→N 2 , effected by the addition of
the spins r8 to the chain~which we imagine as growing from
the left!. The 2r nodes inGr are thus connected by 2

r11 arcs,
each of which can be labeled with (r11) sequential spin
values. The graphGr then represents the HamiltonianHr as
follows. A unique weight~energy cost resulting from adding
a spins r8 to the chain! can be associated with each arc. Any
infinite Ising chain of spins can be then represented as a path
through the graphGr , with the energy of the chain being
simply the sum of the energies~weights! of the arcs in the
path. Since the graph has a finite number of nodes, any infi-
nite path must visit at least one node more than once; hence,
ignoring boundary effects, such a chain must be a closed
cycle inGr . Furthermore, if we define a simple cycle~SC!
as a nondecomposable~i.e., non-self-intersecting! cycle, then
all the cycles inGr can be uniquely decomposed into SC’s.

The general periodicity of the ground state can now be
understood in terms of SC’s. The gound state is the repetition
of that SC which has the minimum energy per spin, and the

period of any SC is< 2r ~the number of nodes ofGr). In the
case that the parameters inHr are ‘‘fine tuned’’ to precise
values~as can occur from symmetry!, there can be more than
one SC with the least energy per spin in the graph
Gr—that is, there can be degenerate ground states which are
related by symmetry. We are interested here in the two sym-
metriesS ~spin inversion! and I ~space inversion!. These
symmetries force the degeneracy ofpairs of SC’s in Gr .
Now assume that such a pair has the lowest energy per spin.
If these two minimal-energy SC’s share a node, then the GS
is infinitely degenerate, since it includes arbitrary mixtures of
the two SC’s. If on the other hand they do not share any
nodes, it is evident that jumping from one cycle to another
costs energy, and so gives a configuration which is not a GS.
CW found that the former case~infinitely degenerate GS,
arising from a pair of minimal-energy SC’s which share a
node or nodes! occurs for many values ofk andr , assuming
only S or I symmetry. We will follow their terminology and
call such a pair a ‘‘D pair.’’ That is, aD pair is a pair of SC’s
in Gr which ~i! can be minimal-energy configurations for a
range of parameter values inHr ; ~ii ! are related by symme-
try and hence degenerate;~iii ! share one or more nodes.

For the Ising model~more precisely for evenk! CW
found thatS symmetry alone never gives rise to disordered
ground states (D pairs!. For the case ofI symmetry, CW
showed that~again fork52! D pairs do exist, but only for
r>5. Combining the two symmetries~denotedS1I symme-
try!, CW found that the Ising case hasD pairs only for
r>6.

These results may seem somewhat surprising, from the
following point of view. It is easy to find SC’s of the graph
Gr which are related by symmetry and hence satisfy~ii !
above, while also satisfying~iii !. Hence one might think that
D pairs should be ubiquitous. However, it turns out that the
imposition of symmetry often makes satisfaction of~i! im-
possible, even as it enforces~ii !, for a pair of SC’s. Hence
CW turned to modified graphsXGr

(k) ~whereX is the sym-
metryS, I , or S1I ! whose SC’s always satisfy~i!. For the
polytype problem we will concentrate onS1IGr .

The graph S1IGr is most readily constructed~for details
see CW! by first operating onGr with S ~giving SGr), and
then operating on the latter withI . Similarly, a SC of
S1IGr is mapped to its counterparts inGr by reversing this
sequence: first undoingI ~hence ‘‘unfolding’’ the SC into
SGr), then undoingS. This unfolding of a SC ofS1IGr will
yield one, two, or more generally four SC’s ofGr . We are
interested in those SC’s ofS1IGr which, upon unfolding,
yield multiple node-sharing cycles. Although the precise
identification of distinct pairs may be complicated by the
simultaneous presence of two symmetries, such unfolded
cycles are the analogs of theD pairs identified by CW; we
will use the same term for these~multiple, unfolded! cycles
in Gr .

It is useful to classify theD pairs into topological types.
CW found two topological SC’s of any graph of the form
IG ~which includes S1IGr) which representD pairs inG.
Expansion of one type gives any of four topologically differ-
ent types~I–IV ! of D pairs inGr ~Fig. 1!. Expansion of the
other type~which is found in S1IGr only for r>8) yields
either a type IV or type VD pair inGr .
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Let us briefly describe the five types ofD pairs. First we
may have a type-ID pair in which a cyclecyc shares the
nodeN with its I symmetry partnercycQ @Fig. 1~a!#. A type
II D pair is composed ofcyc and itsSI symmetry partner

cycQ sharing a nodeN @Fig. 1~b!#. Both type I and IID
pairs are always accompanied by anotherD pair, related to
the first byS symmetry~hence sharing the nodeN ). Taking
the length of the cyclecyc ~in the Ising or ‘‘01’’
representation—see below! to beT01, and assuming a ran-
dom mixture of the two node-sharing cycles, we get the
entropy8 of types I and II as ln2 perT01 layers.

Figures 1~c! and 1~d! shows type III and IVD pairs. We
can think of these types as a pair of cycles, which however

share two nodes:N andNQ for type III, andN andN
←

for
type IV. It is clear from the figures that four distinct~but

degenerate! cycles may be formed from a type III or IVD
pair. Hence the entropy for these is ln4 perT01 layers.

In general, as with types I and II, types III and IVD pairs
imply the existence of otherD pairs, with thepairs of D

pairs related byS symmetry. However, such general~asym-
metric! D pairs only occur forr>8—a range which we have
not studied systematically. Hence we have instead shown the
symmetric cases, for whichS(D pair! 5 D pair. Such a
symmetric pair will give cycles with periodT01 which is
twice that of the ‘‘folded’’D pair in S1IGr ~hence even!.
These symmetric type III and IVD pairs map to themselves
under eitherS or I ; hence@unlike Figs. 1~a! and 1~b!# there
are not other pairs implicit in Figs. 1~c! and 1~d!.

In a type V @Fig. 1~e!# D pair, all four symmetry related

nodesN , N
←
, N , NQ are shared as shown. Again, there are

no other implicit pairs. Since there are two choices of path at
each shared node, there are 24516 cycles~again, all degen-
erate! represented by a type VD pair, giving
S5 ln1654 ln2 perT01 layers.

We note here that, besides the entropy, we can quantify
the complexity of the kinds of GS under study. Here we will
use the definition of Crutchfield and Young,9 which is trivi-
ally computed for ourD pairs, since it relies upon the rep-
resentation of chains as probabilistic, finite-state automata.
Thus we take the complexity asC52(npnln(pn), wheren
runs over the nodes of the automaton (D pair!, andpn is the
node probability. We can easily obtain a general expression
for C for all the types ofD pair in Fig. 1, as follows. Let
ns be the number of shared nodes in theD pair ~1 for types
I and II, 2 for types III and IV, and 4 for type V!, and let
nu52(T012ns) be the number of unshared nodes. Then
ps51/T01 and pu51/(2T01). Thus the complexity of aD
pair isCD5 ln(2T01)2(ns /T01)ln2, which exceeds the com-
plexity Cper5 ln(T01) of a periodic chain of the sameT01 by
CD2Cper5 ln2@12(ns/T01)#. Hence we see that aD pair—
that is, a disordered stacking sequence whose building
blocks are of lengthT01—is less complex, by this definition,
than a periodic chain of period 2T01. ~Its entropy per layer
is, of course, higher.!

B. Layer stackings and Ising spins

We wish to compute and study the diffraction patterns for
these five types ofD pairs. To do this we will translate Ising
spin configurations into anABC sequence of close-packed
layers, using the standard mapping between the two, as fol-
lows. Any pair in the sequenceA→B→C→A is denoted by
1 ~or 1, in Hägg’s notation10!; and a pair from the sequence
A→C→B→A is a 0 (2). It is worth pointing out here that
the Ising (1/2) variables arerelativecoordinates, while the
ABC notation refers to absolute layer positions.

We next introduce some notation, using an example for
clarity. OneD pair from S1IG6 , for example, consists of
cyc5(0010111) @with Zhdanov symbol11 cyc5(2113)3#

and itsSI-symmetry partnercycQ 5(0001011).~The shared
node is 001011.) If the number of 1’s and 0’s in a cycle is
denoted byn1 and n0 , a parameterD can be defined by
D[(n12n0) ~mod 3!. Hence a cycle withD50, if repeated
periodically, gives a hexagonal polytype, while one with
D561 gives a rhombohedral polytype. The example shown
above hasD51, and, as one may notice, the cycle does not
complete a period inABC notation: The cycle is mapped to
(ACBCBCA)(B . . . )(C . . . ) ~starting from A!. This re-
flects the fact that the rhombohedral polytypes must be re-
peated three times to complete the hexagonal unit cell6 ~as

FIG. 1. Schematic drawings of the five topological types ofD
pair, assumingS1I symmetry for the Ising Hamiltonian.~a! Type I:

cyc and cycQ [I (cyc). ~b! Type II: cyc and cycQ [SI(cyc). ~c!
Type III: there are four possible cycles, sharing two nodes. Here and
in ~d! ~type IV!, we have shown symmetricD pairs which are
invariant underS, because such symmetry holds for these types for
r,8, which represents the majority of cases studied in this work.
~d! Type IV: there are four possible cycles sharing two nodes.~e!
Type V: there are sixteen possible cycles sharing four nodes. Type V
D pairs are invariant under any combination ofS and I .
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indicated by the subscript 3 in the Zhdanov symbol!. It is
convenient to define two different periodsT01 andT: T01 is
the period of a cycle in 01 notation, andT in ABC notation.
ThusT5T01 for D50 andT53T01 for D561.

As noted above, bothS andI are good symmetries of the
Ising model as applied to polytypes~real orh!. We now want
to address how these operators, defined in 01 notation, ap-

pear in the~somewhat more physical! ABCnotation. We will
use a different example, a SCcyc5(101000001) ~from
S1IG7).
In 01 language the operatorS takes the form

0⇔
S
1, while space inversion I is given by

(s1s2 . . .sN)⇔
I
(sNsN21 . . .s1). HenceS applied tocyc

is

1 0 1 0 0 0 0 0 1

A B A B A C B A C A⇔
S 0 1 0 1 1 1 1 1 0

A C A C A B C A B A. ~2.1!

As we can see here, theS operation leaves one layer type invariant~here arbitrarily chosen to beA!, and takesB⇔C.
I (cyc) is then

1 0 1 0 0 0 0 0 1

A B A B A C B A C A⇒
I 1 0 0 0 0 0 1 0 1

A B A C B A C A C A. ~2.2!

Thus, inABC notation,I corresponds to the composite op-
eration of~spatial inversion!+(B⇔C).

Given the above, it is clear that physically sensible Hamil-
tonians for close-packed polytypes will be invariant under
both S and I operations. We now proceed to examine the
diffraction patterns of some possible disordered ground
states for Hamiltonians withS1I symmetry. Such ‘‘possible
disordered ground states’’ are of course theD pairs obtained
from S1IGr , as described above.

III. DIFFRACTION PATTERNS: METHOD OF
CALCULATION

For the purpose of our study, we assume that crystals of
the h polytype consist of unfaulted two-dimensional layers,
stacked as prescribed by the chosen SC ofS1IGr . Hence the
diffracted intensity needs to be calculated only for wave vec-
tors normal to the close-packed layers~i.e., alongc). This
problem has been addressed previously12–14 for perfect crys-
tals and for various stacking defects; hence here we only
need apply old results to another kind of disorder. The inten-
sity of x-ray diffraction from close-packed crystals can be
expressed in terms of the numberN of layers in the chain,
and the average structure factor productJ(n), as14

I ~ l !5Nab (
n52N

N

~N2unu!J~n!exp~ i2pnl !, ~3.1!

whereNab is a constant coming from a summation over the
basal planes,l is a continuous variable which determines the
wave vectork52p l /c, andn is an integer number of units
of the primitive lattice vectorc. The average structure factor
productJ(n) can be written as a function of interlayer cor-
relations, or probabilities, as follows. LetPAA(n) be the
probability that two layersn apart beA•••A, and similarly
define PAB for A•••B, PBA for B•••A, and so on. With
these probabilitiesJ(n) can be written as

J~n!5PAA~n!FAFA*1PBB~n!FBFB*1PCC~n!FCFC*

1PAB~n!FAFB*1PBC~n!FBFC*1PCA~n!FCFA*

1PBA~n!FBFA*1PCB~n!FCFB*1PAC~n!FAFC* .

~3.2!

The structure factorsFA , FB , andFC for the hexagonalA,
B, and C layers are also well-known.12 They differ from
each other only in phase since the layers represent identical
structures related by a rotation. If we divide out the common
amplitude of the three structure factors by settingFA51,
thenFB andFC can be written as

FB5exp@ i2pm0/3#,

FC5exp@2 i2pm0/3#, ~3.3!

wherem05h02k0 is an integer constant determined by the
components (h0 ,k0) parallel to the layers. Form053m, m
any integer, the structure factors are all unity, and, as we can
see from Eq.~3.2!, J(n) does not depend on the probabilities
at all. Hence for this case, by Eq.~3.1!, the intensity is zero.
Taking m053m11 and inserting F values ~the case
m053m21 is trivially related!, J(n) reduces to

J~n!5PAA~n!1PBB~n!1PCC~n!

1@PAB~n!1PBC~n!1PCA~n!#exp~2 i2p/3!

1@PBA~n!1PCB~n!1PAC~n!#exp~ i2p/3!.

~3.4!

Equation~3.4! shows that the intensity of the diffraction pat-
tern depends on the sums of the probabilities that two layers
n units apart are inA•••A, in A•••B or in A•••C relation-
ship. After some algebra, using the fact
PAB(n)5PBA(2n), the intensityI ( l ) reduces to
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I ~ l !5
sin2~pNl !

sin2~p l !
22A3(

n51

N

~N2n!FQc~n!cosS 2pnl1
p

6 D
1Qr~n!cosS 2pnl2

p

6 D G , ~3.5!

where Qc(n)[PAB(n)1PBC(n)1PCA(n) and Qr(n)
[PBA(n)1PCB(n)1PAC(n). „Here we usec for ‘‘cyclic’’
and r for ‘‘reverse.’’ We also defineQs(n)5PAA(n)
1PBB(n)1PCC(n)512@Qc(n)1Qr(n)# (s5‘‘same’’! for
future use.… Thus, in order to calculate the diffracted inten-
sity, one needs only the lumped probabilitiesQc(n) and
Qr(n).

For perfectly periodic crystals these probabilities are pe-
riodic, giving d-function peaks in the diffraction pattern. On
the other hand, for disordered crystals, the periodicity of the
probabilities may~or may not! be destroyed, depending on
the type of disorder which is introduced. If the correlations
are not periodic, then the diffraction pattern is of course con-
tinuous.

A common approach to disorder in close-packed poly-
types is to assume the random introduction, with various
probabilities, of various kinds of stacking faults in otherwise
perfect structures.6,13,14 This approach gives nonperiodic
probabilities (Qc , Qr) which decay to 1/3 at largen. In real
polytypes, the defects~stacking faults! are often not random,
however~see, e.g., Sebastian and Krishna in Ref. 6!, so that
long-range periodicity of correlation functions cannot be
ruled out. As an interesting example, which~as we will see!
is closely related to the present work, we cite the study by
Kabra and Pandey15 of the 2H→6H ~or in Zhdanov nota-
tion, ^1&→^3&) transformation in SiC. In this work it was
shown that certain types of stacking faults do not destroy the
long-range order, so that the metastable structures at which
the transformation is arrested may be described as having
‘‘long-range order without short-range order.’’

The disorder we are dealing with here is unusual: the only
type of ‘‘stacking fault’’ we consider is a zero-energy fault
consisting of a free choice among multiple paths inGr , at
one or more points in an otherwise completely deterministic
stacking sequence. Furthermore, the distinct paths consid-
ered are always related by symmetry. Hence the common
methods for computing the probabilities are not appropriate
for our case. We found instead a simple rule for calculating
the probabilitiesQx (x5s,c,r ) for both the ordered and dis-
ordered close-packing sequences. Some useful properties of
these correlations are proved in the Appendix.

We now examine the correlationsQx , comparing those
for a perfect crystal with those for a disordered chain built
from a D pair. Figure 2~a! shows Qs(n) for a perfect
(D521) stacking sequence withT01514. We can see that
the period isT53T01542.Qs(n) andQr(n) are very simi-
lar, being related toQs(n) by a shift inn.

We next consider the disordered case. Disordered chains
were constructed by computer, using a pseudorandom num-
ber generator. For type I and IID pairs, this involves starting
from a shared nodeN @for example, see Figs. 1~a!, 1~b!# and
choosing one cycle~eithercyc or cycQ for type I, orcyc or

cycQ for type II! randomly; adding the chosen cycle brings us
back toN , and the choice is made again. For type III and IV

D pairs, four half cycles share two nodes@Figs. 1~c!, 1~d!#.
There are two possible half cycles to be selected at each
node; again the choice is made randomly, with equal prob-
ability. Given the symmetries of the problem, we believe that
the assumption of equal probabilities is reasonable for a real
physical system. In this manner a long disordered chain
~over 50 000 layers! is produced, and its diffraction pattern
computed from the correlations.

In the disordered case the value ofD plays an important
role in determining the properties of the correlations. Sup-
pose the value ofD of a cycle, saycyc, is11 or21, and let
the number of 1’s (0’s! be n1 (n0). In the cycle
cycQ 5I (cyc), n1 andn0 will remain unchanged, so thatD
remains unchanged. On the other hand, if the other half of

the D pair is cycQ 5SI(cyc), n1 and n0 of cyc are ex-
changed, so that the value ofD is switched to2D.

When a disordered chain is built up fromcyc and cycQ
@Fig. 1~a!#, the Ds of both cycles are the same. Somewhat
surprisingly, the result, as shown in Fig. 2~b!, is that the
probabilitiesQx(n) are periodic, with periodT ~recall that
T53T01 for D561 and T5T01 for D50), when n is
greater than a threshold valuenc ~see Appendix!. It turns out

FIG. 2. The probabilitiesQs(n) for T542. ~a! For a perfect
chain with D521. Other probabilities are related toQs(n) by
Qr(n)5Qs(141n) andQc(n)5Qs(281n). ~b! For a disordered
chain; type IID pair withD50. We can see the irregular part only
for the first fewn. In general, the probabilities are periodic for this
~‘‘same-D ’’ ! type of D pair, for n.nc , with nc,T01. ~c! For a
disordered chain; type IID pair with D561. The probability de-
cays exponentially to 1/3. Others (Qc , Qr) show the same behav-
ior.
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thatnc is a small number which is always less thanT01, but
the irregularity in this small region makes a bump in the
intensity ~see below!. Whenn.nc we can expect~see Ap-
pendix for details! that the basic properties of periodic cor-
relations can be applied for this case, so that the diffraction
patterns are very similar to those for the periodic case. In
particular, the locations of thed functions are unchanged.

The correlations of a disordered chain grown by usingD
pairs of types II–V show a special behavior whenD561.
For example, a chain produced by a random mixture ofcyc

and cycQ ~type II! gives an arbitrary mixture of cycles with
D51 and21. The otherD pairs~types III–V! also have this
feature, as may be seen from Fig. 1. In the Appendix we
show that the correlations, in these cases, decay exponen-
tially and approach 1/3@Fig. 2~c!# ~note that the same result
was obtained by Wilson13 using difference equations for dis-
ordered hcp polytypes!. However, whenD is 0 for any of
types II–V, the result is similar as that for acyc-cycQ D pair:
the chain has periodic probabilities forn.nc @with however
Qc(n)5Qr(n)#, and irregular ‘‘noise’’ belownc .

IV. DIFFRACTION PATTERNS: RESULTS

After growing a close-packed but disordered crystal from
a D pair, we calculate the probabilitiesQs(n), Qc(n), and
Qr(n), and then calculate the intensity diffracted from these
structures by feeding these probabilities to Eq.~3.5!.

Figure 3 shows the intensity from a perfect crystal for
various D. As noted above, the perfect crystals are con-
structed by repetition of one cycle of a givenD pair. For
D50 whereT5T01, in general, allT diffraction lines occur
at l5h/T with h an integer. Figure 3~a! shows the peaks in
the range 0< l<1. We see in contrast from Figs. 3~b! and
3~c! that d function intensities occur only at the positions
h5Tl53k11 for D51 and 3k21 for D521. Then the
number of peaks in the range 1<h<T is T015T/3. These
are well-known results; we only reproduce them here to fa-
cilitate the comparison with the disordered cases. The extinc-
tion of 2/3 of the peaks, forD561, is proved in the Appen-
dix.

In Fig. 4 we show the intensity diffracted from disordered
lattices. When the disordered lattice is type I withD50 @Fig.
4~a!#, D51 @Fig. 4~b!#, andD521 @Fig. 4~c!#, we can see
that the sharp peaks occur at the same positions@compare,
for example, Figs. 3~a! and 4~a!# as for the periodic cases,
but the intensities of the lines change. We note also that there
occurs a small intensity bump on the base line of the pat-
terns. This is the only evidence of the disorder in the chain;
we see that it can in fact be quite small, and hence difficult to
detect experimentally.

There are two reasons why the disorder is so well hidden
in these cases. One is of course the identity ofD for the two
halves of theD pair, which preserves long-range correlations
as noted above. The second reason is that the two cycles~say
cyc andcycQ ) must share at least one node, and so have at
least r bits which are identical. This leaves at most only
(T012r ) bits which can differ between the two cycles. The
actual number of differing bits can be as small as one; hence
the amplitude of the continuous part of the spectrum can be
quite small.

When the disordered lattice is built from type II–VD
pairs the diffraction patterns can show very different behav-
ior. For D50, the result is similar to that of type I: allT
sharp peaks occur at the regular positions, with an intensity
bump due to the irregular part of the correlations@Fig. 5~a!#.
@One difference is that, for this case, the intensity lines are
symmetrically placed about the axisl50.5, due to the fact
thatQc(n)5Qr(n).#

Figure 5~b! shows that some structures, built fromD
pairs, show a completely diffuse diffracted intensity with no
d-function peaks. That is, we see here that the equilibrium,
zero-temperature structures of ourh polytype may have an
entirely continuous diffraction spectrum, like that seen for
highly disordered but metastable structures in known poly-
types. When theD pair is of type II through V, with
D561, the sharpd-function lines are destroyed by the ran-
dom mixture of cycles~or parts of cycles! related bySI
~types II–V!, or simply byS ~types III–V!. This can perhaps
be understood in an intuitive way as follows. Suppose two
cycles, constituting theD pair, have differentD values: one
has11 and the other has21. Then, of course, if we have a
perfect crystal~i.e., all one cycle! the sharp peaks tend to
occur at~respectively! h53k11 andh53k21. Mixing the
two cycles arbitrarily, the sharp peaks of one cycle~saycyc!
will be destroyed by any significant fraction of the other

FIG. 3. Diffraction patterns from perfect chains with various
D. ~a! ForD50, T5T01513. Basically all lines occur; the number
of lines isT. Some lines are too small to see.~b! ForD511, lines
at l5h/T, with h53k and h53k21, are extinguished.~c! For
D521, 3k and 3k11 lines are extinguished.
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cycle ~say, cycQ ) since the positions of lines ofcyc corre-

sponds to the positions of zero intensities ofcycQ .
Figure 5~b! is for the case of an equal mixture of the two

cycles. In Fig. 6 we vary the ratio of the two cycles, in order
to clarify how the disordered, continuous pattern is related to
the two discrete spectra obtained for the pure periodic cases

(cyc andcycQ ). We see from Fig. 6 that, as claimed above,
the intensity is changed from discrete to continuous by any
finite fraction of the symmetry-related cycle. It is also clear
that the peaks are smoothly shifted, as a function of the mix-
ture ratio, from one limit (3k11) to the other (3k21). ~We
are of course not aware of any physical mechanism which
would bias the ratio away from 1/2; we include Fig. 6 simply
to clarify the behavior of the continuous spectra for these
types ofD pairs.!

V. D PAIRS

We have compiled a modest catalog of theD pairs which
may occur forr56 and r57, always assumingS1I sym-

metry. To do this, we drew the graphsS1IG6 and
S1IG7 by

hand, and picked out by inspection the simple cycles which
satisfy the CW rules forD pairs.4 We also found a fewD
pairs for r58, since this is the smallestr giving type VD
pairs forS1I symmetry. Our method rapidly becomes cum-
bersome for largerr , and is already rather unwieldy for
r>7. Hence, if any further search forD pairs at largerr is
warranted, it should be automated~which is possible! and
carried out by a machine.

Our manual search is however extensive enough to un-
cover both types ofD pair in S1IGr found by CW. There-
fore, we believe that the five types of Fig. 1 represent all the
topological types ofD pairs that can occur inGr . Hence we
feel that the present study has revealed all the qualitative
features of disorder which may occur for Ising Hamiltonians.

In Table I, we list all theD pairs we found from
S1IG6 . Table I is actually not typical of largerr , sincer56
is the smallest value, givenS1I symmetry, for whichD
pairs occur at all. However, theD pairs for largerr are very
numerous; hence we just summarize those results here.

For r57 we found 66D pairs, of which 38 gave
d-function patterns and 28 gave pure continuous spectra. The
periodsT01 for thed-function spectra included 9–15, 17–19,

FIG. 4. Diffraction patterns from disordered chains~type I! with
variousD. ~a! Pattern for a disordered chain built from aD pair
~shown!; the pattern for a perfect chain from half of thisD pair is
shown in Fig. 3~a!. Relative to Fig. 3~a!, the positions of the lines
are not changed; but there is a smooth background, with a visible
‘‘bump.’’ ~b! D511; compare with Fig. 3~b!. ~c! D521; compare
with Fig. 3~c!.

FIG. 5. Diffraction patterns from disordered chains built from a
type IID pair. The lines are symmetric with repect tol50.5, due to
Qc(n)5Qr(n). ~a! D50. Here we still have a same-D pair, and
hence sharp lines in the spectrum.~b! When DÞ0 we have an
‘‘opposing-D ’’ pair. @An example of probabilities for an opposing-
D case is shown in Fig. 2~c!.# In this case, as shown in the Appen-
dix, the probabilities are not periodic, and there are no sharp lines in
the diffraction spectrum.
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22, 24, 26, 28, and 30; for the continuous spectra we found
periods 9, 10, 14, 16, 18, 20, 22, 26, 28, 30, 34, and 38.
There are no type VD pairs for r57, since S1IG7

; IG6 .
4 We did find ~with help from a computer search!

type V D pairs in S1IG8; typically, they involve nonzero
D values and so give continuous patterns. Hence the princi-
pal feature which distinguishes this type~besides their topo-
logical structure in the graph! is their higher entropy per
T01 layers~which may or may not yield a higher entropy per
layer, depending onT01).

We note finally that, forr56 or 7, odd-periodD pairs
with continuous diffraction patterns are rare. The reason is
that such patterns are only obtained, for theser values, from
type II pairs with nonzeroD. Type I pairs always give
d-function patterns, and types III–V always have even pe-
riod ~because all these types, forr,8, areS symmetric, i.e.,
they ‘‘unfold’’ into two doubled cycles rather than four dis-
tinct ones!. From Table I, the continuous spectra with odd
period do not appear to be uncommon; however, they repre-
sent only 2 out of 66D pairs for r57.

VI. DISCUSSION AND SUMMARY

Recent work by Canright and Watson~CW! ~Ref. 4! has
proposed a type of disordered ground state for classical one-
dimensional chains whose Hamiltonians obey certain sym-
metries. This disorder involves arbitrary mixtures of simple
sequences~cycles! which are related by symmetry. Our goal
in the present work has then been to ask how this kind of
disorder might appear in an experimentally accessible signal.
We chose to view the one-dimensional~1D! chains as stack-
ings of identical close-packed layers, i.e., as~hypothetical!
polytypes, and computed the the diffraction patterns along
the stacking direction. In particular, we assumed, as appro-
priate for close-packed polytypes, that the distinct ways of
stacking the layers gave simple phase shifts in the scattering.

Given these assumptions, we found that the diffraction
patterns fell into two classes: discrete, with a continuous
baseline, or pure continuous. In the former case the baseline
can be quite small@see for example Fig. 5~a!#, giving a pat-
tern strongly similar to that for a periodic structure; or it can
be larger@Fig. 4~a!#. In the latter case@Fig. 5~b!#, the disor-
der is obvious; however the remnant periodicity is also
clear.15 Briefly ~see the Appendix for details!, the reasons for
the two classes are as follows. In binary notation, there is
long-ranged order~LRO! for all types ofD pairs, because the
shared nodes~which represent at leastr bits! recur with per-
fect periodicity. However, when the binary chain is translated
to a close-packedABC sequence, this LRO may or may not
be lost, depending on the relative symmetries of the pieces
which are mixed by the degeneracy, and on the parameter
D which determines the net shift in spatial phase after one
period.

These results, being based on an entire class of generic
Hamiltonians, are as yet purely theoretical. It remains to be
seen whether or not real materials might be governed by any
of that fraction of Hamiltonians which give disordered
ground states. Such Hamiltonians should apply to any com-
pound whose structure consists of stacked identical layers,
with the layers restricted to a discrete number~in this paper,
two! of states~say, orientations!. Here we have assumed the
simplest of such structures, i.e., those built from close-
packed layers.

There are many well-known polytypic materials whose
structures obey theABC state restriction. SiC and ZnS,
which are among the most well-studied ‘‘classical’’ poly-
types, can almost certainly be ruled out as candidate materi-
als for realization of the zero-temperature disorder described
by CW,4 and here. For these materials, there are good
estimates7 of the effective interlayer couplings in the Ising
Hamiltonian. These couplings point to a simple periodic
ground state; in particular, they fall off too rapidly, being
very small forr*5 ~recall that CW showed that all ground
states are periodic forr,6!. It is also likely ~though not
certain! that the other classical polytypes will also have in-
teractions of a range too short to give rise to the phenomena
studies here. It is of course of interest to see whether these
potentials, or any other known potentials for real polytypic
materials, are close to any of those which give disordered
ground states. The answer to this question however requires
further work; specifically, the ‘‘inverse problem’’ of finding

FIG. 6. The diffracted intensity with varying probabilities~as

shown! for mixing the two cycles,cyc andcycQ , from a type IID
pair with D561. We can see the positions of maximum intensity

moving from 3k21 to 3k11 as the fraction ofcycQ increases~top
to bottom!. We have drawn a few dotted lines as a guide to the eye.
Figure 5~b! shows the case of a 50:50 % mixture.
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the set of Hamiltonians which correspond to a given ground
state~e.g., aD pair! must be solved. We plan to address this
question in future work.

Besides the ‘‘classical’’ polytypes such as SiC, there are
polytypic structures among simple metals and metallic
alloys.16 Here the effective potentials are long ranged, and
highly frustrated. The approach of CW~Refs. 1,2,4! is
strictly valid only for finite-ranged interactions. However,
there remains the possibility that the ground state for the
long-ranged interactions is already determined by those up to
some ranger̂ , so that our logic may be useful even for this
case. Zangwill and Bruinsma17 have argued that the ground
states for this class of problem form a ‘‘devil’s staircase’’ as
a function of the average valenceZ of the metallic alloy. This
argument implies a periodic ground state for allZ. This re-
sult depends on allowing elastic displacements of the layers
from perfectly periodicc-axis spacing; this feature is also
absent from the simple discrete state space considered here.
Thus it seems that the best current logic predicts periodic
ground states for metallic polytypes; however, there is
clearly room for, and need for, further work on this question.

Our theoretical approach to polytypes, and many other
approaches, share the common feature of reducing a three-
dimensional, quantum-mechanical problem to a one-
dimensional classical problem. We believe such an approach
is well justified by the large mass of the layers. However, one
must consider the possibility that true quantum-mechanical
solids18 may not sample the entire range of possibilities of
classical interlayer Hamiltonians, even after allowing for
symmetry. This question also we plan to address in future
work.

In summary, our study of the diffraction patterns ofD
pairs is motivated by an interest in determining whether the
kind of disordered ground states identified by Canright and
Watson4 may arise in real materials. We find that, depending
on the details of the disordered structure, aD pair may give
either a diffraction spectrum (d functions! very much like
that for a perfect crystal~with however some continuous
spectrum as well!; or one may find a purely continuous spec-

trum, in which the underlying disorder is obvious. These
results are an essential component of any search for disor-
dered ground states in layered solids.
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APPENDIX

1. Probabilities for the periodic chain

In this appendix we prove various properties of the prob-
abilitiesQx , which are useful for understanding the diffrac-
tion patterns. We begin, in this section, with some general
properties for the periodic case. The following sections will
then consider the presence or absence of sharp lines for the
periodic and disordered (D pair! cases, respectively.

Define D( l ) to be theD of a set of l spins within an
interval, from the (q11)st to the (q1 l )th spin (q,l integers
with q>0 and l>1) in an infinite Ising chain.@Hence
D( l )5Dq( l ) strictly depends onq as well; but we will usu-
ally ignore theq dependence.# The D defined in the main
text is then D(T01) in this notation. Also definens( l ),
nc( l ), and nr( l ) to be the number of sets which give
D( l )50,11, and21, respectively, when we scanq from 0
to T0121. Then, for the periodic case,

Qs~mT1n!5
ns~n!

T01
,

Qc~mT1n!5
nc~n!

T01
, ~A1!

Qr~mT1n!5
nr~n!

T01
~m>0!.

TABLE I. D pairs found in S1IG6 . The first column gives theD pairs in binary notation. The type II

pairs are alwayscyc/cycQ . The type III pairs@see Fig. 1~c!# can be decomposed in several ways; here we give
them ascyc/cycQ . The ~binary! periods of the paired cycles are given, as these are apparent even in the
disordered diffraction patterns@see, e.g., Fig. 5~b!#. TheD value and type determines whether the diffraction
pattern hasd functions, or is continuous.

r D pair T01 D valuesa Type Spectrum

6
10111100100001
00111101100001

14 0,0,21,11 III Continuous

6
1011111001000001
0011111011000001

16 0,0,21,11 III Continuous

6
1001011
0001011

7 11,21 II Continuous

6
0001010011101011
1001010001101011

16 0,0,11,21 III Continuous

6
101111110010000001
001111110110000001

18 0,0,21,11 III Continuous

6
100101011
000101011

9 11,21 II
Continuous

aEach entry has two or four values depending on the type ofD pair ~see Fig. 1!.

5206 53JAICHUL YI AND GEOFF S. CANRIGHT



We can prove these relations as follows. First consider a
set ofn spins and a corresponding close-packing sequence. If
the stacking sequence begins withA (B,C) then aftern fur-
ther layers the position will beA (B,C) if D(n)50, or will
beB (C,A) if D(n)511, orC (A,B) if D(n)521. Thus,
for example,ns(n) is the number of pairs of layers,n apart,
which are in the same~hence ‘‘s’’ ! orientation: A•••A,
B•••B orC•••C. ~Similarly, as in the main text, ‘‘c’’ stands
for ‘‘cyclic’’ and ‘‘ r ’’ for ‘‘reverse.’’ !

Let Np(n) be the number of layer pairs,n apart, over a
whole chain, andns

(`)(n) be the number of pairs among
Np(n) which givesD(n)50. For a periodic chain composed
of Nu unit cycles with periodT01 we will haveNp5T01Nu

and ns
(`)(n)5ns(n)Nu . With this notationQs(n) can be

written as

Qs~n!5
ns~n!

T01
~1<n,`!. ~A2!

Since the chain is periodic it is useful to writen as
n5mT1n8, m>0 and 1<n8<T. Then ns(n)
5ns(mT1n8)5ns(n8) @since D(mT1n8)5D(mT)
1D(n8)5D(n8)#. Finally we can drop the prime, giving

Qs~mT1n!5
ns~n!

T01
. ~A3!

Other equations in Eqs.~A1! can be derived using the same
method. Thus we do not need to count the number of layer
pairs over a whole chain in order to calculate the probabili-
tiesQs(n), Qc(n), andQr(n). Instead only one to three unit
cycles are enough in calculating the probabilities~see be-
low!.

In the remainder of this section we will takeD511 for
concreteness.~Generalizations to otherD are obvious.! We
want to derive relationships betweennx(n) and nx(n8),
wheren andn8 differ by a multiple ofT01. For example, let
us show thatnr(T011n)5nc(n) and nr(2T011n)5ns(n)
for the caseD511. We will use the modular arithmetic
properties ofD(n):

~61!1~61!571 and ~61!2~61!50. ~A4!

A set of T011n spins contributes tonr (nc , ns) if
D(T011n) is 21 (11, 0!. Thus ~for example!
D(T011n)5215D(T01)1D(n) implies thatD(n) should
be 11, sinceD[D(T01)511. With this argument we can
see thatnr(T011n)5nc(n). Similarly, if D(2T011n) is
21, thenD(n)50, sinceD(2T01) is 21 for the case of
D511. Hencenr(2T011n)5ns(n). Finally we see that

Qr~T011n!5Qc~n!,

Qr~2T011n!5Qs~n!. ~A5!

We can consider properties under subtraction, as well as
under addition. Noting thatDq(T2n)5D(T)2Dq2n(n),
and averaging to eliminate theq dependence, we find, for
example,

Qr~n!5Qc~T2n! ~1<n<T!. ~A6!

This result is independent ofD since it only uses the fact that
D(T)50.

With the logic described above it is not hard to derive a
number of relations among the probabilities. In the next sec-
tion we will use such relations as needed.

2. Extinction of diffraction lines

Using the properties shown in Sec. I, we can show that
the lines indexed 3k and 3k21 (k>0) are extinguished for
a periodic chain withD511. Rewrite the intensity equation
@Eq. ~3.5# as

I ~ l !5
sin2~pNl !

sin2~p l !
22A3(

n51

N

~N2n!FQc~n!cosS 2pnl1
p

6 D
1Qr~n!cosS 2pnl2

p

6 D G
[
sin2~pNl !

sin2~p l !
2S . ~A7!

Using the fact that the probabilitiesQc(n) andQr(n) are
periodic and thatQc(T2n)5Qr(n) we can simplify the
summation in Eq.~A7! as

S [
2A3N2

T (
n51

T

Qr~n!cosS 2pnl2
p

6 D . ~A8!

Next, usingQr(T011n)5Qc(n) andQr(2T011n)5Qs(n),
S can be written as

S 5
2A3N2

T (
n51

T01 FQr~n!cosS 2pnl2
p

6 D
1Qc~n!cosS 2pT01l12pnl2

p

6 D
1Qs~n!cosS 4pT01l12pnl2

p

6 D G . ~A9!

Let l5h/T (h5integer!. The first term in Eq.~A7! is 0 ev-
erywhere excepth50 andh5T. Thus ifS vanishes for any
otherh, 0,h,T, then the intensity lines are extinguished.

~i! h50 or T. S 5N2 and then the intensity
I5N22N250.

~ii ! h53k

S 5
2A3N2

T (
n51

T01

@Qr~n!1Qc~n!1Qr~n!#cosS 2pkn

T01
2

p

6 D .
~A10!

The sum of all three probabilities is always 1, and the sum-
mation of the cosine term can be carried out to be 0. Thus
I (3k)50.

~iii ! h53k1253k21. UsingQc(n)5Qs(T012n), the
last two terms in Eq.~A9! cancel. HenceS becomes

S 5
2A3N2

T (
n51

T01

Qr~n!cosS 2pn~3k21!

3T01
2

p

6 D . ~A11!
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By straightforward algebra we can show the above equation
also vanishes, using Qr(n)5Qr(T012n). Hence
I (3k21)50.

Thus we find that only one-third of the allowed lines ap-
pear in the rhombohedral caseD511; the same conclusion
holds forD521. In the hexagonal case (D50) all T lines
appear.

3. Disordered case

For the disordered case, we need to consider the average
values forns(n), nc(n), and nr(n) over the entire chain.
@For the remainder of this section we will use the notation
nx(n), earlier defined for periodic chains, to denote this av-
erage.# For simplicity, we will assume that the chain is built
from a random mixture of two symmetry-related cycles,
present with equal probability. Hence our derivation will be
strictly valid only for type I and IID pairs; however our
conclusions~periodic probabilities andd-function spectra for
pairs with the sameD, decaying probabilities and loss of
sharp diffraction lines for mixtures of cycles of opposing
D) are valid in general.

We consider two cyclesc and c8, related by symmetry
(I or SI!, with bit paritiesD andD8, respectively. We will
need to distinguish the case thatD5D8 ~‘‘same-D ’’ case;
type I D pairs, or type II with D50) from that with
D52D8 ~‘‘opposing-D ’’ case; type II withD561).

Our strategy is to first calculate the short-rangedQ’s, then
the longer-ranged ones, building from the short-ranged val-
ues. Forn sufficiently large (>2T0111), there is always at
least one complete cycle, of lengthT01, which appears un-
changed in all sums involved in the averaging process used
to compute thenx(n) and hence theQx(n) (x5s,c,r ). We
call such a cycle ‘‘lumped.’’ If a cycle, or fraction of a cycle,
is included but not lumped, we say it is ‘‘scanned.’’

~i! n51. We begin withn51. For a same-D pair, n1 and
n0 are the same for eitherc or c8. Thus it is clear that
Qc(1)5n1Nu /N5n1 /T01, Qr(1)5n0Nu /N5n0 /T01, and
Qs(1)50. These are the same as for the periodic case. In the
opposing-D case the probabilities will depend on the prob-
abilities of the two cycles. Taking an equal fraction of the
two cycles, the probabilities~neglecting edge effects! are
Qc(1)5Qr(1)5(1/2)(n11n0)/T0151/2.

~ii ! 2<n<T0111. If 2<n<T0111 the length of spin
sets involved in the counting process will be up to
2T01—that is, two cycles are scanned@from the first spin
(q50) to 2T01th spin (q5T0121)#.19 Since we scan more
than one cycle in this case, we need to compute thenx(n) by
averaging over the four possible combinations of two cycles:
cc, cc8, c8c, c8c8. We find that, in the same-D case, there
exists a threshold (nc) between 1 andT01, above which the
probabilitiesQx are periodic. Since the most general bound
is nc,T0111, we will confine ourselves to showing the pe-
riodicity for n.T0111.

~iii ! T0111,n<2T01. For n in this range, three unit
cycles are scanned. Therefore thenx(n) should be calculated
by averaging over eight possible combinations of the two
cycles (ccc, ccc8, etc!. Let these averaged values be
n̄s
(0)(n), n̄c

(0)(n), andn̄r
(0)(n). Then the probabilities can be

written as

Qs~n!5
n̄s

~0!~n!

T01
,

Qc~n!5
n̄c

~0!~n!

T01
, ~A12!

Qr~n!5
n̄r

~0!~n!

T01
~T0111,n<2T01!.

~iv! 2T0111<n<3T01. In this region there exists one
unit cycle which is lumped~i.e., makes an invariant addition
to the sum! when we scanq from 0 toT0121. This cycle can
be either c or c8 with equal probability, and the
D(T01)[D of this cycle will be 0,11, or21 depending on
the D pair considered. Letf 1

(s) , f 1
(c) , and f 1

(r ) be the prob-
abilities @we will use the term ‘‘cycle probability’’ in order to
distinguish these probabilities from theQx(n)# that theD of
the lumped cycle is 0,11, or21, respectively. For example,
for a type IID pair, in which theD of cyc is 11 and that of
cyc is 21, f 1

(s)5 f 1
(r )51/2 andf 1

(s)50. Recalling the modu-
lar arithmetic of theD ’s, the nx(n) in this range can be
written in terms of the cycle probabilities andn̄s

(0)(n),
n̄c
(0)(n), andn̄r

(0)(n):

n̄s~2T011n!5 f 1
~s!n̄s

~0!~n!1 f 1
~r ! ,n̄c

~0!~n!1 f 1
~c!n̄r

~0!~n!,

n̄c~2T011n!5 f 1
~c!n̄s

~0!~n!1 f 1
~s!n̄c

~0!~n!1 f 1
~r !n̄r

~0!~n!, ~A13!

n̄r~2T011n!5 f 1
~r !n̄s

~0!~n!1 f 1
~c!n̄c

~0!~n!1 f 1
~s!n̄r

~0!~n!.

Dividing Eq. ~A13! by T01, we can calculate the probabili-
tiesQs(n), Qc(n), andQr(n).

~v! Larger n. If n is in the range 3T0111<n<4T01,
there are two lumped cycles. The cycle probabilitiesf 2

(s) ,
f 2
(c) , and f 2

(r ) can then be obtained using those obtained be-
fore: f 2

(s)5 f 1
(s) f 1

(s)1 f 1
(r ) f 1

(c)1 f 1
(c) f 1

(r ) and so on. From these
cycle probabilities we can calculate thenx(n) as before.

In general, if n is in the range
(p11)T0111<n<(p12)T01 (p>1), we can use the fol-
lowing formulas:

f p
~s!5 f p21

~s! f 1
~s!1 f p21

~r ! f 1
~c!1 f p21

~c! f 1
~r ! ,

f p
~c!5 f p21

~c! f 1
~s!1 f p21

~s! f 1
~c!1 f p21

~r ! f 1
~r ! , ~A14!

f p
~r !5 f p21

~r ! f 1
~s!1 f p21

~c! f 1
~c!1 f p21

~s! f 1
~r ! .

Since f 1
(s) , f 1

(c) , and f 1
(r ) can be determined by theD of the

D pair, we can obtain the cycle probabilities for anyp using
these recursion relations. Using Eqs.~A14! we can finally get
nx@(p11)T011n#:

n̄s@~p11!T011n#5 f p
~s!n̄s

~0!~n!1 f p
~r !n̄c

~0!~n!1 f p
~c!n̄r

~0!~n!,

n̄c@~p11!T011n#5 f p
~c!n̄s

~0!~n!1 f p
~s!n̄c

~0!~n!1 f p
~r !n̄r

~0!~n!,

n̄r@~p11!T011n#5 f p
~r !n̄s

~0!~n!1 f p
~c!n̄c

~0!~n!1 f p
~s!n̄r

~0!~n!

~p>2,1<n<T01!. ~A15!
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Thus, once we known̄s
(0)(n), n̄c

(0)(n), and n̄r
(0)(n), and the

f p
(x) from the recursion relations, we can calculate the prob-
abilitiesQx@(p11)T011n# by dividing Eqs.~A15! by T01.

WhenD511 in a type ID pair, for example, we know
that f 1

(s)50, f 1
(c)51, and f 1

(r )50. The recursion relations
~A14! for this case will be

f p
~s!5 f p21

~r ! f p
~c!5 f p21

~s! f p
~r !5 f p21

~c! ~A16!

so that the probabilities are given by

Qs~2T011n!5
n̄r

~0!~n!

T01
, Qs~3T011n!5

n̄c
~0!~n!

T01
,

Qs~4T011n!5
n̄s

~0!~n!

T01
,

Qr~2T011n!5
n̄c

~0!~n!

T01
, Qr~3T011n!5

n̄s
~0!~n!

T01
,

Qr~4T011n!5
n̄r

~0!~n!

T01
, ~A17!

Qc~2T011n!5
n̄s

~0!~n!

T01
, Qc~3T011n!5

n̄r
~0!~n!

T01
,

Qc~4T011n!5
n̄c

~0!~n!

T01
.

Thus, even for the disordered chain, we can see that the
probabilities are periodic, whenn.nc , with period
3T01[T for theD511 case. In that region ofn the prop-
erties of periodic probabilities~see above! can be applied to
this disordered case. Therefore we can expect that the dif-
fraction lines (d function! in Fourier space occur at the same
positions as those for a periodic chain, as derived above.

With the same method we can show the periodicity of prob-
abilities for any same-D case, i.e., any type ID pair, or for a
type IID pair withD50. It is clear that the proof generalizes
to types III–V, as long asD50 for all possible cycles which
can be formed.

On the other hand, for the opposing-D cases~type II–VD
pairs, withDÞ0) we have a different story. The initial cycle
probabilities for this case are different from the previous ex-
ample: they aref 1

(s)50 andf 1
(c)5 f 1

(r )51/2. From Eqs.~0.14!
and the initial cycle probabilities it is not hard to get the
following recursion relation:

f p
~x!5

1

2
~ f p21

~x! 1 f p22
~x! ! ~A18!

~where againx5s,c,r !; here we have used the fact that
f p
(c)5 f p

(r ) . We can solve~A18! to get

dp[ f p2 f p215CS 2
1

2D
p

, ~A19!

with C54( f 22 f 1). We then sum~A19! to get, for largep,

f p→`
~x! 5 f 1

~x!1
2

3
~ f 2

~x!2 f 1
~x!!. ~A20!

With initial conditions appropriate toD561 ~i.e., f 1
(s)50

and f 2
(s)51/2, or equivalently,f 1

(c,r )51/2 andf 2
(c,r )51/4) we

can show that all three cycle probabilities decay to 1/3 at
large p. With Eqs. ~A13!, n̄s ~large n! can be found to be
(1/3)T01, using the fact thatn̄s

(0)(n)1n̄c
(0)(n)1n̄s

(0)(n)
5T01. Finally, the probabilities for largen are

Qs~n!5
n̄s~n!

T01
5
1

3
5Qc~n!5Qr~n!. ~A21!

The diffraction pattern for the opposing-D case is thus dif-
fuse, without anyd functions.
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