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Onsager reaction field theory of the one-dimensional ferromagnet with long-range interactions
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We have studied the one-dimensional ferromagnets with dxchange, using the Onsager reaction field
theory. We have shown the existence of a phase transition at finite temperaturegpfaland estimated its
critical temperature.

The Onsager reaction fieldORF) theory, proposed by perature, to a ferromagnetically ordered phase exists when
Onsaget in 1936, has recently seen a resurgence in the litd<p<2d and that the system becomes disordered at all fi-
erature. Logan, Szechech, and Tifsaked it to study the nite temperatures whénp=2d. The conditionp>d is
two-dimensional Heisenberg model. The theory predictecheeded in order to avoid a ground state with an infinite en-
correctly the absence of long-range order for a0, pro-  ergy per spin.
duced an exponentially divergent correlation lengtfTas0, The Hamiltonian for the one-dimensional Heisenberg and
and gave good quantitative agreement over a wide temperaY model with long-range ferromagnetic interaction is
ture range with both Monte Carlo and high-temperature se-
ries expansion. Also ORF ideas have been extended success- H= — E J én ém )
fully to spin glasseSand itinerant electron systerfisThe Ao '

ORF theory is extremely simple, physically transparent, and .
captures many of the essential features inferred from highifith
sophisticated approach@s. Jnm=3J[n—m["P, (€

The theory provides a self-consistent modification of they heres has three components for the Heisenberg model and
mean-field approximatiofMFA) to account for the crucial 1o for the XY model.
effects of local correlations. In magnetic systems the MFA " \yia start with a brief summary of the basic ORF thedH.
approach does not give a self-consistent correlation functiofpa ,sual procedure is to subtrad(T), the self-consistent

between spins located in different site§S5Sy) (With  yetermined Onsager reaction field, from the simple molecu-
a=x,y,z) is replaced bySg(Sf) for T>T., whereas this |5 field J(q), where

same correlation function obtained from the susceptibility
X(@ ID)=2, Jpme9, (4)
n,m

arQa\ = IdF
(SoS) T; x(q)e @) and we have taken the lattice constastl. This leads to a

wave-vector-dependent spin susceptibility
does not vanish.

The central idea in the ORF is that the part of the local X0
field, acting on a given spin, which arises from the surround- x(@)= 1—xo[J(q)—N]" ®)
ing polarization due to the instantaneous orientation of the
spin in question, should not be included in the effective ori-With xo=S(S+1)/nT, where n=2 for the planar rotator,
enting field. That polarization simply follows the motion of N=3 for the Heisenberg model, and we have takgp=1.
the spin in question and thus does not favor one orientatio¥/e renormalizel asT/S(S+1). This has the advantage that
over another. This is a short-range order effect which thUr calculations can be directly compared with Monte Carlo
MFA does not take into account. Generally this short range i§imulations for the classical models. Now to calculate a
included only for temperatureE above the critical tempera- Self-consistent way we start with the relation
ture T.; the problem forT<T, is considerably more diffi-  t 1 caca
cult, acnd thepreaction field, inC this case is on};y a small cor- x(@=T <qu‘q>’ ©)
rection to the mean field associated with the spontaneousnd sum oveq obtaining
magnetization, except for very close toT,. In this report
we apply the ORF formalism to study the one-dimensional -1 1 em2y 1
ferromagnet with long-range interactions. N % X(@=T"H(S)H=(D) % @)
It is well known that long-range attractive interactions can . )
induce critical behavior in low-dimensional spin systéims, Which leads to the self-consistent equation
and over the last years, the study of spin systems associated 1 1
with a low-dimensional lattice, and interacting via long- N2 T xod@-r] & ®
range potentials has attracted a significant amount of theo-
retical work®~*! For thed-dimensional Heisenberg an¢tly ~ The MFA limit is, trivially, \=0, leading to the critical tem-
model with ferromagnetic interactions decaying rag, it peratureTL“f=J(0)/n. The critical temperatur@& . at which
has been shown tHat? an ordering transition, at finite tem- x(0) diverges occurs when
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Xo(Te)[I(A) —Ac]=1, 9

which leads to the following expression fo,:

nT, [1 1 \]¢

=g 2 )] 10

2J [N % 7(q) (10
where

n(a)= 2, n"P(1—coMnq). (12)

n=1

For smallq and I<p<3 the dispersiony(q) is given by’

(@) =w(p)qP~ 12, (12
wherew(p) is defined by
w(p)=m{T(p)sin=(p—1)/2]} %, (13

andT'(p) is the Gamma function.

Approximating the sum in Eq(10) by an integral and

using expressiol(12) we find for the critical temperature

nT. (2—p)7mP
23 2@ (p)sin@(p-1)/2]

14

We see that, in marked contrast to the MFA limit, the ORF
theory correctly predicts the existence of an ordering transi-

tion when kp<2. [Using the lowg expression forp(q)

in two dimensions given in Ref. 9 we can show that the ORF
correctly predicts the condition<?p<4 for the existence of

a phase transition in two dimensidns
The critical temperature neg@r~1 can be estimated as

NT/2J~[(1—be)e]™ L,
whereb=0.577 ands=p—1.

(19
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FIG. 1. The critical temperature of the classi#af model as a
function of p.

1 fﬂr dg 1 16

7 Jo z+239(q) “nT

wherez=(\—\.)+2(T—T.) and we have used the relation
Ae=J(0)—nT.. In the limit T—« we havex—O0. For the
XY model andp=3/2 inserting Eq(12) into (16) we find,
for T nearT,, the following expression:

(24T )In(Z/4T ) = (T~ T)/T. (17)

Of course the ORF theory predicts a phase transition only

In Fig. 1 we showT/J for the classicaXY model as a
function ofp. (The reason for us to present the data for thewhen we have an ordered phase, and it is not suitable to
XY model is that this model has been studied in the literaturestudy topological phase transitions, such as the Kosterlitz-
using Monte Carlo simulationsFor p=3/2 we have from Thouless transition. Kosterlitz-Thouless-like transitions
Eq. (14) TJ/J=2.22. [We obtain this same value using Eq. occuf in one dimension fop=2, and in two dimensions, for
(10) and performing the sum numericallyThis result is in  the classicaXY modelp=4.
very good agreement with the Monte Carlo estiffate  We have thus shown that the ORF treatment appears con-

TJ/J=2.16.
For T aboveT,, A can be calculated from E¢8) rewrit-
ten as

sistent not only with the fact that a transition to the ordered
phase exists whed<<p<2d, but also that the system is of
necessity disordered wher>2d.
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