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We have studied the one-dimensional ferromagnets with 1/r p exchange, using the Onsager reaction field
theory. We have shown the existence of a phase transition at finite temperatures for 1,p,2 and estimated its
critical temperature.

The Onsager reaction field~ORF! theory, proposed by
Onsager1 in 1936, has recently seen a resurgence in the lit-
erature. Logan, Szechech, and Tusch2 used it to study the
two-dimensional Heisenberg model. The theory predicted
correctly the absence of long-range order for anyT.0, pro-
duced an exponentially divergent correlation length asT→0,
and gave good quantitative agreement over a wide tempera-
ture range with both Monte Carlo and high-temperature se-
ries expansion. Also ORF ideas have been extended success-
fully to spin glasses3 and itinerant electron systems.4 The
ORF theory is extremely simple, physically transparent, and
captures many of the essential features inferred from highly
sophisticated approaches.2

The theory provides a self-consistent modification of the
mean-field approximation~MFA! to account for the crucial
effects of local correlations. In magnetic systems the MFA
approach does not give a self-consistent correlation function
between spins located in different sites:^S0

aSr
a& ~with

a5x,y,z! is replaced byS0
a^Sr

a& for T.Tc , whereas this
same correlation function obtained from the susceptibility
x~qW!

^S0
aSr

a&5T(
q

x~qW !eiqW •rW ~1!

does not vanish.
The central idea in the ORF is that the part of the local

field, acting on a given spin, which arises from the surround-
ing polarization due to the instantaneous orientation of the
spin in question, should not be included in the effective ori-
enting field. That polarization simply follows the motion of
the spin in question and thus does not favor one orientation
over another. This is a short-range order effect which the
MFA does not take into account. Generally this short range is
included only for temperaturesT above the critical tempera-
ture Tc ; the problem forT,Tc is considerably more diffi-
cult, and the reaction field, in this case is only a small cor-
rection to the mean field associated with the spontaneous
magnetization, except forT very close toTc . In this report
we apply the ORF formalism to study the one-dimensional
ferromagnet with long-range interactions.

It is well known that long-range attractive interactions can
induce critical behavior in low-dimensional spin systems,5

and over the last years, the study of spin systems associated
with a low-dimensional lattice, and interacting via long-
range potentials has attracted a significant amount of theo-
retical work.6–11 For thed-dimensional Heisenberg andXY
model with ferromagnetic interactions decaying asr2p, it
has been shown that6,12 an ordering transition, at finite tem-

perature, to a ferromagnetically ordered phase exists when
d,p,2d and that the system becomes disordered at all fi-
nite temperatures when7 p>2d. The condition p.d is
needed in order to avoid a ground state with an infinite en-
ergy per spin.

The Hamiltonian for the one-dimensional Heisenberg and
XY model with long-range ferromagnetic interaction is

H52(
n,m

JnmSW n•SWm , ~2!

with

Jnm5Jun2mu2p, ~3!

whereS has three components for the Heisenberg model and
two for theXY model.

We start with a brief summary of the basic ORF theory.2,13

The usual procedure is to subtractl(T), the self-consistent
determined Onsager reaction field, from the simple molecu-
lar field J(q), where

J~q!5(
n,m

Jnme
iq~n2m!, ~4!

and we have taken the lattice constanta51. This leads to a
wave-vector-dependent spin susceptibility

x~q!5
x0

12x0@J~q!2l#
, ~5!

with x05S(S11)/nT, where n52 for the planar rotator,
n53 for the Heisenberg model, and we have takenKB51.
We renormalizeT asT/S(S11). This has the advantage that
our calculations can be directly compared with Monte Carlo
simulations for the classical models. Now to calculatel in a
self-consistent way we start with the relation

x~q!5T21^Sq
aS2q

a &, ~6!

and sum overq obtaining

N21(
q

x~q!5T21^~Sn
a!2&5~nT!21, ~7!

which leads to the self-consistent equation

1

N (
q

1

12x0@J~q!2l#
51. ~8!

The MFA limit is, trivially, l50, leading to the critical tem-
peratureTc

mf5J(0)/n. The critical temperatureTc at which
x~0! diverges occurs when
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x0~Tc!@J~q!2lc#51, ~9!

which leads to the following expression forTc :

nTc
2J

5F 1N (
q

S 1

h~q! D G21

, ~10!

where

h~q!5 (
n51

`

n2p~12cosnq!. ~11!

For smallq and 1,p,3 the dispersionh(q) is given by8

h~q!5v~p!qp21/2, ~12!

wherev(p) is defined by

v~p!5p$G~p!sin@p~p21!/2#%21, ~13!

andG(p) is the Gamma function.
Approximating the sum in Eq.~10! by an integral and

using expression~12! we find for the critical temperature

nTc
2J

5
~22p!pp

2G~p!sin@p~p21!/2#
. ~14!

We see that, in marked contrast to the MFA limit, the ORF
theory correctly predicts the existence of an ordering transi-
tion when 1,p,2. @Using the low-q expression forh(q)
in two dimensions given in Ref. 9 we can show that the ORF
correctly predicts the condition 2,p,4 for the existence of
a phase transition in two dimensions#.

The critical temperature nearp;1 can be estimated as

nTc/2J'@~12b«!«#21, ~15!

whereb50.577 and«5p21.
In Fig. 1 we showTc/J for the classicalXY model as a

function ofp. ~The reason for us to present the data for the
XYmodel is that this model has been studied in the literature
using Monte Carlo simulations.! For p53/2 we have from
Eq. ~14! Tc/J52.22. @We obtain this same value using Eq.
~10! and performing the sum numerically.# This result is in
very good agreement with the Monte Carlo estimate10

Tc/J52.16.
For T aboveTc , l can be calculated from Eq.~8! rewrit-

ten as

1

p E
0

p dq

z12Jh~q!
5

1

nT
, ~16!

wherez5(l2lc)12(T2Tc) and we have used the relation
lc5J(0)2nTc . In the limit T→` we havel→0. For the
XY model andp53/2 inserting Eq.~12! into ~16! we find,
for T nearTc , the following expression:

~z/4Tc!ln~z/4Tc!5~Tc2T!/T. ~17!

Of course the ORF theory predicts a phase transition only
when we have an ordered phase, and it is not suitable to
study topological phase transitions, such as the Kosterlitz-
Thouless transition. Kosterlitz-Thouless-like transitions
occur9 in one dimension forp52, and in two dimensions, for
the classicalXY modelp>4.

We have thus shown that the ORF treatment appears con-
sistent not only with the fact that a transition to the ordered
phase exists whend,p,2d, but also that the system is of
necessity disordered whenp.2d.
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FIG. 1. The critical temperature of the classicalXY model as a
function of p.
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